
Resource Failure Prediction in Fine-Grained Cycle Sharing Systems

Xiaojuan Ren Seyong Lee Rudolf Eigenmann Saurabh Bagchi
School of ECE, Purdue University

West Lafayette, IN, 47907
Email: {xren,lee222,eigenman,sbagchi}@purdue.edu

Abstract

Fine-Grained Cycle Sharing (FGCS) systems aim at uti-
lizing the large amount of computational resources avail-
able on the Internet. In FGCS, host computers allowguest
jobsto utilize the CPU cycles if the jobs do not significantly
impact the local users of a host. A characteristic of such re-
sources is that they are generally provided voluntarily and
their availability fluctuates highly. Guest jobs may incurre-
source failuresbecause of unexpected resource unavailabil-
ity. To provide fault tolerance to guest jobs without adding
significant computational overhead, failure prediction isre-
quired. This paper presents a method to predict resource
failures in FGCS systems. It applies a semi-Markov Process
and is based on a novel failure model, combining generic
hardware-software failures with domain-specific failuresin
FGCS. We describe the failure prediction framework and
its implementation in a production FGCS system named
iShare. Through the experiments on an iShare testbed, we
demonstrate that the prediction achieves accuracy above
86% on average and outperforms linear time series mod-
els, while the computational cost is negligible. Our experi-
mental results also show that the prediction is robust in the
presence of irregular resource failures.

1 Introduction

The opportunity of harvesting cycles on idle PCs over
the Internet has long been recognized [19]. Distributed
cycle-sharing systems have shown success through popu-
lar projects such as SETI@home [12], which have attracted
a large number of participants donating time on their home
PCs to a scientific effort. The PC owners voluntarily share
the CPU cycles only if they incur no significant inconve-
nience from letting a foreign job (guest process) run on their
own machines. To exploit available idle cycles under this
restriction, fine-grained cycle sharing (FGCS) systems [25]
allow a guest process to run concurrently with local jobs
(host processes) whenever the guest process does not impact

the performance of the latter noticeably. For guest users, the
free compute resources come at the cost of highly fluctuat-
ing availability with the incurredresource failuresleading
to undesirable completion time of guest jobs. The primary
victims of such resource failures are large compute-bound
guest applications, most of which are batch programs. Typ-
ically, they are either sequential or composed of multiple
related jobs that are submitted as a group and must all com-
plete before the results being used (e.g., simulations con-
taining several computation steps [2]). Therefore, response
time rather than throughput is the primary performance met-
ric for such compute-bound jobs. The use of this metric
represents an extension to the traditional use of idle CPU
cycles, which had focused on high throughput in an envi-
ronment of fluctuating resources.

In FGCS systems, resource failures have multiple causes
and have to be expected frequently. First, as in a normal
multi-process environment, guest and host processes are
running concurrently and competing for compute resources
on the same machine. Host processes can be decelerated
significantly by a guest process. Decreasing the priority of
the guest process can only alleviate the deceleration in few
situations [25]. To completely remove the impact on host
processes, the guest process must be killed or migrated off
the machine, which represents a resource failure. In this
paper, we refer to such resource failures asFRC (Failures
caused byResourceContention). Another type of resource
failures in FGCS is the sudden unavailability of a machine
— FRR, (Failures caused byResourceRevocation). FRR
happens when a machine owner suspends resource contri-
bution without notice, or when arbitrary hardware-software
failures occur.

To achieve fault tolerance for remote program execu-
tion, proactive job management, such as turning on check-
pointing adaptively based on the results of failure predic-
tion, has been proposed in the environment of large-scale
clusters [20]. Proactive approaches achieve significantly
improved job response time [31] compared to the meth-
ods which are oblivious to future failures. While these ap-
proaches can also be applied to FGCS systems, they require

1

successful failure prediction mechanisms. However, there
have been few studies on failure prediction in large-scale
distributed systems, especially in FGCS systems. Although
several previous contributions have measured the distribu-
tion of general machine availability in networked environ-
ment [4, 21, 16], or the temporal structure of CPU availabil-
ity in Grids [29, 19, 15], no work targets predicting failures
caused by both resource contention and resource revocation
in FGCS systems.

The main contributions of this paper are the design and
evaluation of an approach for predicting resource failuresin
FGCS systems. We develop a multi-state failure model and
apply a semi-Markov Process (SMP) to predict thetemporal
reliability, which is the probability that no resource failure
will occur on a machine in a future time window of given
length. The failure model integrates the two classes of fail-
ures, FRC and FRR, in a multi-state space which is derived
from the observed values ofhost resource usages(the re-
source usages of all the host processes on a machine). The
prediction does not require any training phase or model fit-
ting, as is commonly needed in linear regression techniques.
To compute the temporal reliability on a given time window,
the parameters of the SMP are calculated from the host re-
source usages during the same time window on previous
days. A key observation leading to our approach is that the
daily patterns of host users’ workloads are comparable to
those in the most recent days [19]. Deviations from these
regular patterns are accommodated in our approach by the
statistical method that calculates the SMP parameters.

We show how the prediction can be realized and utilized
in a system, iShare [23], that supports FGCS. We evaluate
our prediction techniques in terms of accuracy, efficiency,
and robustness to noise (irregular occurrences of failures).
To obtain these metrics, we monitored host resource usages
on a collection of machines from a computer lab at Pur-
due University over a period of 3 months. Host users on
these machines generated highly diverse workloads, which
are suitable for evaluating the accuracy of our prediction ap-
proach. The experimental results show that the prediction
achieves the accuracy above86.5% on average and above
73.3% in the worst case, and outperforms the prediction ac-
curacy of linear time series models [9], which are widely
used prediction techniques. The SMP-based prediction is
also efficient and robust in that, it increases the completion
time of a guest job of less than0.006% and the intensive
noise in host workloads disturbs the prediction results by
less than6%.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the multi-state fail-
ure model and its derivation from empirical studies. The
background and application of the semi-Markov Process are
described in Section 4. In Section 5, implementation issues
of the failure prediction in iShare are discussed. Experi-

mental approaches and results are described in Section 6
and Section 7, respectively.

2 Related Work

The concept of fine-grained cycle sharing was intro-
duced in [25], where a strict priority scheduling system
was developed and added to the OS kernel to ensure that
host processes always receive priority in accessing local re-
sources. Deploying such a system involves an OS upgrade,
which can be unacceptable for resource providers. In our
FGCS system, available OS facilities (e.g.,renice) are uti-
lized to limit the priority of guest processes. Resource fail-
ures happen if these facilities fail to prevent guest processes
from impacting host processes significantly. In [25], the
focus is on maintaining priority of host processes. By con-
trast, our work develops resource failure prediction meth-
ods, so that guest jobs can be managed proactively with im-
proved response times.

Related contributions include work in estimating re-
source exhaustion in software systems [28] and critical
event prediction [27, 26] in large-scale dedicated comput-
ing community (clusters). In order to anticipate when a sys-
tem is in danger of crashing due to software aging, the au-
thors of [28] proposed a semi-Markov reward model based
on system workload and resource usage. However, the data
they collected tend to fluctuate a great deal from the sup-
posed linear trends of resource exhaustion rate, resulting
in prohibitively wide confidence intervals. The work in
[27, 26] predicted the occurrences of general error events
within a specified time window in the future. The pre-
sented analysis and prediction techniques are not well suited
for failures occurring in FGCS, where resources are non-
dedicated and their availability changes dynamically.

Emerging platforms that support Grids [10] and global
networked computing [7] motivated the work to provide ac-
curate forecasts of dynamically changing performance char-
acteristics [9] of distributed compute resources. Our work
will complement the existing performance monitoring and
prediction schemes with new algorithms to predict failures
in the environment of fine-grained cycle sharing. In this pa-
per, we compare the commonly used linear time series algo-
rithms which are related work to our SMP-based algorithm,
and show that our algorithm achieves higher prediction ac-
curacy, especially for long-term prediction.

Research efforts have analyzed machine availability
in enterprise systems [21, 4], or large Peer-to-Peer net-
works [3] (where machine availability is defined as the ma-
chine being reachable for P2P services). While these re-
sults were meaningful for the considered application do-
main, they do not show how to relate machine up times
to actual available resources that could be effectively ex-
ploited by a guest program in cycle-sharing systems. On

2

the other hand, our approach integrates machine availabil-
ity into a multi-state failure model, representing different
levels of availability of compute resources.

A few other studies have been conducted on percentages
of CPU cycles available for large collections of machines
in Grid systems [19, 30, 15]. In [19], the author predicted
the amount of time-varying capacity available in a cluster
of privately owned workstations by simply averaging the
amount of available capacity over a long period. The work
in [30] applied the one-step-ahead forecasting to predict
available CPU performance on Unix time-shared systems.
This approach is applicable to short-term predictions within
the order of several minutes. By contrast, our SMP-based
technique predicts for future time windows with arbitrary
lengths. The authors of [15] studied both machine and CPU
availability in a desktop Grid environment. However, they
focused solely on measuring and characterizing CPU avail-
ability during periods of machine availability. Instead, we
target at predicting the availability of both machines and
their compute resources in FGCS systems.

3 Resource Failure Model

A failure model that represents the two types of resource
failures, FRC and FRR, is the basis for detecting and pre-
dicting these failures. To define such a model, we study the
level of observability to detect resource failures and how a
failure model can be derived from the observability.

3.1 Observability of Resource Failures

FRR happen when machines are removed from the
FGCS system by the owners or fail due to hardware-
software faults. FRR can be detected by the termination
of FGCS services, such as the service for job submission.
This detection method indicates a two-state failure model
for FRR: a machine is either available or unavailable; there
are no other observable states in-between. For FRC, the
failures happen when host processes incur noticeable slow-
down due to resource contention from guest processes. Be-
fore terminating the guest processes, a FGCS system will
first decrease their priority, with the expectation that theim-
pact on host processes will disappear. These actions need
to be modeled and the modeling requires the quantification
of noticeable slowdownof host processes. The system uses
observable parameters of host resource usage as indicators
for the slowdown. By observable parameters, we mean pa-
rameters, such as CPU and memory utilization, that can be
obtained without special privileges on the host machine.
The reason of using these indicators is that, at runtime, it
is not possible to measure the slowdown of the host pro-
cesses directly because the performance without contention
is not known. The overall technique we use is to determine

the threshold for what constitutesnoticeable slowdownof
the host process and thus implies the occurrence of an FRC.
Then, we use offline empirical studies to determine the val-
ues of the observable parameters of host resource usage
when such slowdown occurs.

We use empirical studies instead of an analytical model,
because developing such a model is very difficult, if not im-
possible, considering the complexities in OS resource man-
agement. To make sure that the empirical studies are not
biased by arbitrary workloads, we use representative guest
applications and a broad range of host applications. The
experimental approaches and observations are discussed in
the next section. Because the empirical studies are not the
focus of this paper, we concentrate on deriving the resource
failure model from the studies. Details for the experimental
results can be found in a separate paper [22].

3.2 Empirical Studies on Resource Con-
tention

In FGCS systems, guest applications are typically CPU-
bound batch programs, which are sequential or composed
of multiple tasks with little or no inter-task communication.
Such applications arise in many scientific and engineering
domains. Common examples include seismic applications
and Monte-Carlo simulations. Because these applications
use files solely for input and output, file I/O operations usu-
ally happen at the start and the end of a guest job; file trans-
fers can be scheduled accordingly to avoid peak I/O activ-
ities on host systems. Some of the guest applications also
have large memory footprints. Therefore, CPU and mem-
ory are the major resources contended by guest and host
processes.

We conducted a set of experiments by running host pro-
cesses with various resource usages together as an aggre-
gatedhost group. To avoid any adverse contention among
multiple guest processes, only one guest process is allowed
to run at one time on the same machine. The priority of
a running guest process is minimized (usingrenice) when-
ever it causes noticeable slowdown on the host processes. If
this does not alleviate the resource contention, the reniced
guest process is suspended. The guest process resumes if
the resource contention diminishes after a certain duration
(1 minute in our experiments), otherwise it is terminated.
In the experiments, the “noticeable slowdown” is quantified
by the reduction rate ofhost CPU usage(total CPU usage
of all the host processes running on a machine) going above
an application-specific threshold (we chose a threshold of
> 5%). The reduction rate can be simply obtained by run-
ning the host processes in isolation and then together with a
guest process.

3

3.2.1 Experiments on CPU Contention

To study the contention on CPU cycles, we created a set
of synthetic programs. The main component in each pro-
gram is a loop with some computation and process sleep-
ing. To isolate the impacts of memory contention, all the
programs have very small resident sets. The host programs
haveisolated CPU usage(CPU usage of a program when it
runs alone) ranging from10% to 100%. The wall clock
time (gettimeofday) and CPU time (getrusage) measure-
ments were inserted in the synthetic programs to calculate
their CPU usages and to adjust the sleep time to achieve the
given isolated CPU usages. The guest process is a com-
pletely CPU-bound program. In the experiments, these pro-
grams were ran on a 1.7 GHz Redhat Linux machine.

We measured the reduction rate of host CPU usage (to-
tal CPU usage of all the processes in a host group), when
resource contention happens between a guest process (G)
and the host group (H). We tested on host groups contain-
ing different numbers of host processes with isolated CPU
usages of each process randomly distributed between10%
and100%. G’s priority was set successively to 19 (lowest)
and 0 while H’s priority was 0. The measured reduction
rates were plotted as a function of isolated host CPU usage,
LH . Intuitively, in a time-sharing system, the chances that
a guest process can steal CPU cycles decrease when there
are more host processes running. This trend of decreasing
CPU utilization for the guest process with increasing size of
the host group is indeed experimentally seen for host group
sizes from 1 to 5. When the size is beyond 5, the reduc-
tion saturates and therefore experiments do not need to be
conducted for arbitrary sizes of the host group.

The experimental results on CPU contention indicate the
existence of two thresholds,Th1 andTh2, for LH , that can
be used as indicators of noticeable slowdown of host pro-
cesses.Th1 andTh2 are picked according to the lowest
values ofLH among the different host group sizes, where
the guest process needs to be reniced or terminated, respec-
tively, to keep the slowdown below5%. According to the
trend described earlier, these thresholds would typicallybe
for the host group of size 1. The reasoning above indicates
that for any larger sized host group, the slowdown would be
less than5% at the thresholdsTh1 andTh2.

To verify that the existence of the two thresholds is not
the simple result of our method of controlling guest priori-
ties, we tested resource contention using different ways to
adjust guest priorities, as used in practical FGCS systems.
The two alternatives are, gradually decreasing the guest pri-
ority from 0 to 19 under heavy host workload (LH > Th1),
or set the guest priority to its lowest value whenever the
guest process starts [7]. (The extreme case of terminating a
guest application whenever a host application starts makes
it a coarse grained cycle sharing system [12].) In the first
alternative, fine-grained values betweenTh1 andTh2 are

needed to indicate different guest priorities. Relating tothe
second alternative, onlyTh2 is needed. We have done a set
of experiments to test if these two alternatives deliver a bet-
ter model of CPU availability than using the two thresholds
mentioned above. The details of the experiments are pre-
sented in [22]. From the results, we arrived at the conclu-
sion that, gradually decreasing the guest priority introduces
redundancy, while always taking the lowest guest priority
slows down the guest process unnecessarily under light host
workload (LH < Th1). The fine-grained values introduced
by the first alternative are redundant, because they are ob-
served to have the same effect asTh2 in terms of the CPU
availability for host processes. These experiments show that
the choice for the two thresholds is not arbitrary. They re-
flect the levels of CPU availability accurately without in-
troducing redundancy or imposing an overly-conservative
restriction on guest processes.

In all the above experiments, we used randomly-
generated host groups without relying on any specifics in
OS scheduling. The existence of the two thresholds is there-
fore viewed as a general, practical property of Linux sys-
tems. This also holds for Unix systems, as confirmed by
our experiments on both CPU and memory contention on a
Unix machine. The next section presents these experiments.

3.2.2 Experiments on CPU and Memory Contention

To test the more complicated resource contention on both
CPU and memory, we experimented with a set of real ap-
plications. For guest processes, we chose applications from
the SPEC CPU2000 benchmark suite [13]. All of the appli-
cations are CPU-bound. Their working set sizes rang from
29 MB to 193 MB, which represent the range of memory us-
ages of typical scientific and engineering applications. To
simulate the behaviors of actual interactive host users on
text-based terminals, we used the Musbus interactive Unix
benchmark suite [18] to create various host workloads. The
created workloads contain host processes for simulating in-
teractive editing, Unix command line utilities, and compiler
invocations. We varied the size of the file being edited and
compiled by the “host users” and created host workloads
with different usages of memory and CPU. The CPU us-
ages of these workloads range from8% to 67%, and their
memory usages range from 53 MB to 213 MB.

We ran a guest process concurrently with each host
workload on a 300 MHz Solaris Unix machine with384
MB physical memory. For each set of processes, we mea-
sured the reduction of the host CPU usage caused by the
guest process, when the guest process’s priority was set to 0
and19, respectively. Two observations can be derived from
the experimental results. First, memory thrashing happens
when the total working set size of the guest and host pro-
cesses (including kernel memory usage) exceeds the phys-

4

ical memory size of the machine. Changing CPU priority
does little to prevent thrashing when the processes desire
more memory than the system has. Second, when there is
sufficient memory in the system, the occurrences of FRC
caused by CPU contention, solely depend on the host CPU
usage. And, in this scenario, the two thresholds,Th1 and
Th2, can still be used to evaluate CPU contention. There-
fore, the impact of host memory usage can be ignored when-
ever there is enough free memory to hold a guest process.

In conclusion, the memory contention and CPU con-
tention can be isolated in detecting FRC. We do not need to
consider the case of both resources under contention, since
the additional effect due to the second resource, when con-
tention for the first is already underway, is negligible.

3.3 Multi-State Failure Model

The above experimental results on CPU contention show
the feasibility of two thresholds,Th1 and Th2, for the
measured host CPU load (LH), that can be used to quan-
tify the noticeable slowdown of host processes, thus the
occurrences of FRC. In our FGCS testbed, consisting of
Linux systems,Th1 and Th2 are 20% and 60% respec-
tively. Based on the two thresholds, a 3-state model for
CPU contention can be created, where the guest process is
running at default priority (S1), is running at lowest priority
(S2), or is terminated (S3), respectively. Due to the isola-
tion between CPU contention and memory contention, the
3-state model can be extended by adding a new failure state
(S4) for memory thrashing. These resource states are com-
bined with FRR (S5) to give a five-state model, as presented
in Figure 1.

S3

S1 S2

S4

S1: Full resource availability for
guest process
S2: Resource availability for
guest process with lowest priority
S3: CPU unavailability (FRC)
S4: Memory thrashing (FRC)

S5: Machine unavailability (FRR)

S5

Figure 1. Multi state system for resource fail-
ures in FGCS.

The formal definition of the five states is as follows:

• S1: When the host CPU load is light (LH < Th1), the
resource contention due to a guest process can be ig-
nored.S1 also contains the cases whenLH transiently
rises aboveTh2 and the guest process is suspended;

• S2: When the host CPU load is heavy (Th1 ≤ LH ≤
Th2), the guest process’s priority must be minimized

to keep the impact on host processes small (slowdown
≤ 5%). S2 also contains the cases whenLH tran-
siently rises aboveTh2 and the guest process is sus-
pended;

• S3: When the host CPU load is steadily higher than
Th2, any guest process (with default or lowest priority)
must be terminated to relieve the resource contention;

• S4: When there is not enough free memory to fit the
working set of a guest process, any guest process must
be terminated to avoid memory thrashing;

• S5: When the machine is revoked by its owner or in-
curs a system failure, FRR occurs whereby resources
immediately become offline.

In the above definition,S1 andS2 also represent the sce-
narios that,LH gets higher thanTh2 transiently (last less
than 1 minute in our experiments) and the guest process
is suspended. We do not introduce a new state for a tem-
porarily suspended guest process, because we find it very
common that the host CPU load which exceedsTh2 will
drop down shortly after several seconds. The transiently
high CPU load may be caused by a user starting remote X
applications or by some system processes.

The proposed prediction algorithm is to predict the prob-
ability that a machine will never transfer toS3, S4, or S5

within a future time window. Note that, these three states
represent unrecoverable failures for guest processes. Even
if the CPU or memory usage of host processes drops signif-
icantly or the host is reintegrated into the system, the guest
process is already killed or migrated off and no state is left
on the host.

4 Semi-Markov Process Model

In the multi-state failure model presented above, transi-
tions between the states fit a semi-Markov Process (SMP)
model, where the next transition only depends on the cur-
rent state and how long the system has stayed at this state.
In essence, the SMP model quantifies the dynamic structure
of the multi-state model. More importantly, for our objec-
tive, it enables the efficient prediction of temporal reliabil-
ity. This section presents background on SMP and shows
how it can be applied for our prediction based on the failure
model in Figure 1.

4.1 Background on Semi-Markov Process
Models

Markov Process models are probabilistic models useful
in analyzing dynamic systems [1]. A semi-Markov Process
(SMP) extends Markov process models to time-dependent

5

stochastic behaviors [17]. An SMP is similar to a Markov
process except that its transition probabilities depend onthe
amount of time elapsed since the last state transition. More
formally, an SMP can be defined by a tuple, (S, Q, H),
whereS is a finite set of states,Q is the state transition
matrix, andH is the holding time mass function matrix.
The most important statistics of the SMP are the interval
transition probabilities,P .

Qi(j) = Pr{the process that has enteredSi will
enterSj on its next transition};

Hi,j(m) = Pr{the process that has enteredSi re-
mains atSi for m time units before the
next transition toSj}

Pi,j(t1, t2) = Pr{S(t2) = j | S(t1) = i}
(1)

To calculate the interval transition probabilities for a
continuous-time SMP, a set of backward Kolmogorov in-
tegral equations [17] were developed. Basic approaches to
solve these equations include numerical methods and phase
approximation. While these solutions are able to achieve
accurate results in certain situations, they perform poorly
in many situations, such as, when the rate of transitions in
the SMP is as high as exponential with time. In real appli-
cations [1], a discrete-time SMP model is often utilized to
achieve simplification and general applicability under dy-
namic system behaviors. This simplification delivers high
computational efficiency at the cost of potentially low accu-
racy. We argue that the loss of accuracy can be compensated
by tuning the time unit of discrete time intervals to adapt to
the system dynamism. In this paper, we develop a discrete-
time SMP model, as described in the next section.

4.2 Semi-Markov Process Model for Re-
source Availability

This section discusses how a discrete-time SMP model
can be applied to the failure model presented in Figure 1.
The goal of the SMP model is to compute a machine’s tem-
poral reliability,TR, which is the probability of never trans-
ferring to S3, S4, or S5 within an arbitrary time window,
W , given the initial system state,Sinit. The time win-
dow W is specified by a start time,Winit, and a length,
T . Equation 2 presents how to computeTRby solving the
equations in terms ofQ andH. The derivation of the equa-
tion can be found in [1]. In Equation 2,Pi,j(m) is equal
to Pi,j(Winit, Winit + m), P 1

i,k(l) is the interval transition
probabilities for a one-step transition, andd is the time unit
of a discretization interval.δij is 1 wheni = j and 0 other-
wise.

TR(W) = 1 −

5∑

j=3

Pinit,j(T/d)

Pi,j(m) =
m∑

l=0

∑

k∈S

P 1

i,k(l) × Pk,j(m − l)

=
m−1∑

l=1

∑

k∈S

Hi,k(l) × Qi(k) × Pk,j(m − l)

Pi,j(0) = δij j = 3, 4, 5
i = 1, 2, 3, 4, 5

(2)
The matricesQ andH are essential for solving Equa-

tion 2. In our design, these two parameters are calculated
via the statistics on history logs collected by monitoring the
host resource usages on a machine. The details on resource
monitoring are explained in Section 5. To computeQ andH
within an arbitrary time window on a weekday (a weekend),
we derive the statistics from the data within the correspond-
ing time windows of the most recentN weekdays (week-
ends). The rationale behind this is the observation that the
load patterns in a given time window (e.g., from 9 to 11 am)
are comparable on different weekdays (weekends) [19].

5 System Design and Implementation

The proposed prediction approach is implemented
within an Internet-sharing system callediShare[23]. iShare
is an open environment for sharing both HPC resources
(from the Grid community), such as the TeraGrid facil-
ity [5], and idle compute cycles available from any Internet-
connected host. This section introduces the fine-grained cy-
cle sharing in iShare and shows how the resource failure
prediction is implemented and utilized.

5.1 Fine-Grained Cycle Sharing in iShare

In iShare, a Peer-to-Peer (P2P) network is applied for re-
source publication and discovery [24]. The cycle-sharing
happens when resource consumers submit guest jobs to the
published machines. Existing techniques can be utilized to
estimate the execution time [14] and the memory usage [11]
of a guest job. A job scheduler would use these two quan-
tities and pass them to the temporal reliability prediction.
The predicted result can be used by the scheduler to select
the machines with relatively high availability or to manage
the job adaptively during its execution.

Figure 2 shows the iShare framework with resource fail-
ure prediction. TheHost Nodeand theClient show ex-
amples of a provider and a consumer, respectively. The
prediction function is invoked on the host node upon a re-
quest of job submission from the client. There are three
prediction-related daemons on the host node. TheiShare

6

Gatewaycommunicates with remote clients and controls lo-
cal guest processes. TheResource Monitormeasures CPU
and memory usage of host processes periodically. The
State Managerstores history logs and predicts resource fail-
ures. These daemons are started automatically when re-
source providers turn on the iShare software and their ter-
mination indicates resource revocation. The guest process
is launched for a job submission from the client.

iShare
Gateway

Job
Scheduler

State
Manager

Guest
Process

Resource
Monitor

Host Node

Client

Figure 2. The software modules related to re-
source failure prediction in iShare. The four
circles on host node depict processes cre-
ated on the host. The arrows among them
are for inter-process communication.

Upon the request of a job submission on a client, the
client’s Job Schedulerqueries the gateways on the avail-
able machines for their temporary reliability within the fu-
ture time window of job execution, and decides on which
machine(s) the job would be executed. If a machine is se-
lected, a guest process is launched on the machine and the
corresponding resource monitor is notified of the new pro-
cess id. During the job execution, the monitor detects any
state transition and signals the gateway of a new transition.
The gateway then renices, or kills the guest process accord-
ingly. Checkpointing can also be used to migrate the guest
process off the machine if resource failure happens.

There are two main design challenges to implement the
framework shown in Figure 2. First, the resource moni-
tor needs to be non-intrusive to the host machine where the
monitoring takes place periodically. Second, because re-
source failure prediction happens in the critical path upon
the request of a job submission, the computational cost of
the prediction must be negligible. Our solutions to the two
challenges are described in the next two sections.

5.2 Non-intrusive Resource Monitoring

As discussed in Section 3, state transitions amongS1, S2

andS3 can be detected by monitoring the total CPU load of
all the host processes on a machine; transitions toS4 can

be detected by monitoring the free memory size on the ma-
chine. The resource monitor shown in Figure 2 uses system
utilities such asvmstatandprstaton Unix andtopon Linux,
which are light-weight operations in most OS implementa-
tions, including Redhat Linux used in our experiments.

To monitor the occurrences of resource revocation (tran-
sitions toS5), the timestamp of the most recent load mea-
surement,tmonitor, is recorded in a special log file on the
host machine. This timestamp is updated when the peri-
odic resource monitoring occurs. To detect if machine un-
availability has happened, the monitor compares the current
timestamp with the savedtmonitor at each periodic mon-
itoring. If the gap between the two timestamps exceeds
a threshold, it indicates that the resource monitor, and by
implication the iShare system, had been turned off on the
monitored machine (due to either system crash or machine
owner’s intentional leave). This is a simple solution to the
important problem of avoiding the need for administrator
privileges in accessing system logs for machine reboots. It
is also more efficient and scalable compared to other tech-
niques [3] for tracing machine up times, where a centralized
unit is needed to probe all the nodes in a networked system.

5.3 Minimum Computation in Solving
SMP

In our design, matrix sparsity in the SMP model is ex-
ploited to minimize the computational cost of failure pre-
diction. Figure 3 describes the sparsity of the matricesQ,
H andP in Equation 2. In this figure, all the blank cells are
for zero values. The sparsity relies on two facts — it takes a
finite amount of time to transition from one state to another,
and statesS3, S4 andS5 are unrecoverable failure states.

X

 S1 S2 S3 S4 S5

 S1

 S2

 S3

 S4

 S5

X X

X X X

1

1

1

1

1

1

X

X X X X

X X X

Q and H(m), m > 0

 H(0) = 0

 P(0) P(m), m > 0

X

X

 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1

X

X

Figure 3. The sparsity of Q, H and P . The
blank cells are for elements whose values are
zero. Non-zero elements are labeled with a X
(arbitrary values) or 1 (the value is 1).

With the sparsity shown in Figure 3,Q andH(m) can be
stored as an 8-element vector. As shown in Equation 2, the
value ofTR is decided by the summation ofPinit,3(T/d),
Pinit,4(T/d) andPinit,5(T/d), where the value ofinit is
either1 or 2. Equation 3 shows the minimum computation

7

needed to solve the three probabilities by exploring the spar-
sity ofQ andH. This equation shows that only six elements
in P (m) are required:P1,3, P1,4, P1,5, P2,3, P2,4, andP2,5.
The total number of recursive steps isT/d − 1, decided by
both the length of the time window,T , and the discretization
interval,d. In this work, we choose the discretization inter-
val the same as the period of resource usage monitoring.
The results on computational overhead presented in Sec-
tion 7 prove the effectiveness of the optimization in solving
SMP.

P1,j(T/d) =
T/d∑

l=0

∑

k∈S

H1,k(l) × Q1(k) × Pk,j(T/d − l)

=
T/d−1∑

l=1

[H1,2(l) × Q1(2) × P2,j(T/d − l)

+H1,j(l) × Q1(j)] + H1,j(T/d) × Q1(j)

P2,j(T/d) =
T/d∑

l=0

∑

k∈S

H2,k(l) × Q2(k) × Pk,j(T/d − l)

=
T/d−1∑

l=1

[H2,1(l) × Q2(1) × P1,j(T/d − l)

+H2,j(l) × Q2(j)] + H2,j(T/d) × Q2(j)
j = 3, 4, 5

(3)

6 Experimental Approach

We have developed a prototype of the system as de-
scribed in Section 5. This section presents the experimental
approach for evaluating the performance.

6.1 Experimental Testbed

All of our experiments were conducted on an FGCS
testbed. The testbed contains a collection of 1.7 GHz Red-
hat Linux machines in a general purpose computer labora-
tory for student use at Purdue University. The local users
on the tested machines are students from different disci-
plines. They used the machines for various tasks, e.g.,
checking emails, editing files, and compiling and testing
class projects, which created highly diverse host workloads.
Because the effectiveness of the SMP-based prediction is
mainly affected by the variety of host workloads, the testbed
proved appropriate to test our prediction algorithm compre-
hensively.

On each tested machine, processes launched via the
iShare gateway are guest processes, and all the other pro-
cesses are viewed as host processes. Resource revocation
happens when the user with access to a machine’s console
does not wish to share the machine with remote users, and

simply reboots the machine. Therefore, the resource behav-
ior on these machines reflects the failure model in Figure 1.
We installed and started a resource monitor on each ma-
chine in the testbed, which measured host resource usage
every 6 seconds. We recorded these data for 3 months, from
August to November in 2005, resulting in roughly 1800
machine-days of traces. The data contains the start and end
time of each failure occurrence, the corresponding failure
state (S3, S4, or S5), and the available CPU and memory
for guest jobs. Statistical results show that the number of
failures happened on an individual machine during the 3
months ranges from 405 to 453 (for different machines).
The frequency of failure occurrences is substantial, and this
motivates the development of prediction techniques. Fur-
thermore, our failure trace presents comparable patterns of
host workload as observed by previous work on different
testbeds [19].

We considered three sets of experiments. First, we mea-
sured the overhead of the resource monitoring and the pre-
diction algorithm. Second, we tested the accuracy of our
prediction algorithm by dividing the trace data for each ma-
chine into a training and a test data set. The prediction was
run on the training set and the results were compared with
the observed values from the test set. The prediction accu-
racy was also compared with that of a suite of linear time se-
ries models discussed in the next section. Finally, to test the
robustness of our prediction algorithm, we inserted noise
randomly into a training set and measured the difference
between the prediction results by using the infected training
set and those by using the original training set. The results
are presented and analyzed in Section 7.

6.2 Reference Algorithm: Linear Time
Series Models

A number of time-series and belief-network algo-
rithms [27] appear in the literature for prediction of con-
tinuous CPU load or discrete events. After studying various
algorithms, we chose linear time series models as reference
points for our SMP-based prediction algorithm. Other ex-
isting algorithms are not well suited for use in the prediction
of resource failures in FGCS. One example is the Bayesian
Network model [27], which can be reduced to a state space
without acyclic transition paths, inapplicable for the 5-state
failure model in Figure 1. Time series models have been
successfully applied in diverse areas, including host load
prediction [9] and prediction of throughput in wireless data
networks [6].

Linear time series models have been used for predict-
ing CPU load in Grids [9]. The algorithms use linear re-
gression equations to obtain future observations from a se-
quence of previous measurements. Compared to the SMP
model, time series models only consider different load lev-

8

els and fit them into a liner model by ignoring the dynamic
structure of load variations. Our comparison on the two
classes of models will quantify the benefits of considering
the dynamic structure in resource failure prediction. In our
experiments, we used time series models to predict the state
transitions in a future time window based on the samples
from the previous time window of the same length. The
prediction accuracy is determined by the difference of the
observed temporal reliability on the predicted and the mea-
sured state transitions.

We used a set of linear time series models implemented
in the RPS toolkit [8]. The models are described in Ta-
ble 1. We took the same parameters for these models as
used in RPS. In our experiments, we focused on the pre-
diction accuracy of the time series models compared to our
SMP-based prediction.

7 Experimental Results

7.1 Efficiency of Failure Prediction

The overhead of the proposed resource failure prediction
includes the computational cost caused by both the resource
monitoring and the SMP computation. With a sampling pe-
riodicity of 6 seconds, resource monitoring consumed less
than 1% CPU and 1% memory on each tested machine in
our testbed. Therefore, our resource monitoring is non-
intrusive to the tested host system. To measure the com-
putational overhead of the prediction, we measured the wall
clock time of the resource failure prediction for time win-
dows with different lengths. In Figure 4, the computation
time of calculatingQ andH and the whole prediction al-
gorithm (including the computation forQ, H andTR) are
plotted as a function of time window length. Recall that
the goal is to predict the probability that no failures will
happen during a given time window for guest job execu-
tion. As expected, the prediction over a larger time window
takes longer because of the higher number of recursive steps
needed. The total computation time follows a superlinear
function (with exponent of1.85) of the number of recur-
sive steps, with the relative overhead increasing with job
execution time. For the time window of10 hours (the last
point on thex-axis), the computation time forQ andH is
29.35 milliseconds and the total computation time is about
2.1 seconds. This gives the stated overhead of0.006% for
the average guest process execution time of 10 hours. Be-
cause most guest jobs in our FGCS system have completion
time less than 10 hours, we can conclude that our prediction
algorithm is efficient and causes negligible overhead on the
completion time of typical guest jobs in FGCS systems.

05 0 01 0 0 01 5 0 02 0 0 02 5 0 0
0 1 2 3 4 5 6 7 8 9 1 0T i m e w i n d o w l e n g t h (h r)T ot al comput ati onti me (ms) 5 1 01 52 02 53 0

Q andH comput ati on ti me(ms)T o t a l c o m p u t a t i o n t i m eQ a n d H c o m p u t a t i o n t i m e

Figure 4. Computation time of resource fail-
ure prediction for time windows with differ-
ent lengths. The prediction is to predict the
probability that no failures will happen during
a given time window.

7.2 Accuracy of Failure Prediction

To test the accuracy of our prediction algorithm, we
created a training and a test data set for each machine
by dividing its trace data into two equal parts and choos-
ing the first half as the training set. The parameters of
the SMP model were calculated by statistics of the train-
ing data set and were then used to predict theTR for
different time windows in the test data set. We used
the actual observations from the test data set to calculate
the empirical TR. We computed the relative error as
abs(TRpredicted − TRempirical)/TRempirical. Figure 5
plots the relative error of our prediction algorithm. The
curve shows the average error of predictions on time win-
dows with different lengths, and the bars show the minimum
and maximum errors. To collect the average errors for pre-
dictions over time windows of the same length, we experi-
mented with different start time ranging from 0:00 to 23:00
on different machines, in steps of 1 hour. As shown in Fig-
ure 5, the relative prediction error increases with the time
window length. The reason is thatTR gets close to0 for
large time windows leading to possibly large relative errors.
Prediction on small time windows performs slightly worse
on weekends than on weekdays, which can be explained
by the smaller training size used for prediction on week-
ends. The prediction achieves accuracy higher than73.38%
in the worst case (maximum prediction error for time win-
dows with length of 10 hours on weekdays). The average
prediction accuracy is higher than86.5% (average predic-
tion accuracy for time windows with length of 10 hours on
weekends) for all the studied time windows in Figure 5.

We also conducted a set of experiments to analyze the
sensitivity of the prediction accuracy to the size of the train-
ing set. Intuitively, the prediction with larger training sets
should perform better than that using smaller training sets.

9

051 01 52 02 53 03 54 0
1 2 3 4 5 6 7 8 9 1 0W i n d o w l e n g t h (H r)R el ati veerrorof predi ct ed TR(%) A v e r a g e

(a) P r e d i c t i o n o n w e e k d a y s
051 01 52 02 53 03 54 0

1 2 3 4 5 6 7 8 9 1 0W i n d o w l e n g t h (H r)R el ati veerrorof predi ct ed TR(%) A v e r a g e
(b) P r e d i c t i o n o n w e e k e n d s

Figure 5. Relative errors of predicted TR.
Each point plots the average error of pre-
dictions over 24 time windows with different
start time ranging from 0:00 to 23:00, in steps
of 1 hour. The bars show minimum and max-
imum prediction errors.

However, a large training set include older data, which may
bias the most recent pattern of host resource usages on the
studied machine. We are interested in finding out if there
exists a best choice of training size. Toward these goals,
we divided all the trace data for weekdays into training and
test sets with different size ratios. On each setting of the
data, we ran the prediction over the same240 time windows
used for the experiment in Figure 5 and measured the rela-
tive prediction errors which are plotted in Figure 6. “Max-
average error” is measured by first averaging over predic-
tion errors for the time windows of the same length and then
taking the maximum of all the average values. The results
in Figure 6 show that there exists a sweet spot (6:4 in our ex-
periment) for the ratio of training and test sizes. While the
observation of this sweet spot may be specific to our dataset
and is not intrinsic for the SMP-based prediction, its exis-
tence is important. It suggests a practical way to achieve
best prediction accuracy by tunning the size of history data
for arbitrary systems.

7.2.1 Comparison with Linear Time Series Models

To compare with our prediction algorithm, we applied linear
time series algorithms from the RPS toolkit [8] to predict
temporal reliability and measured their prediction accuracy.
The tested time series models are shown in Table 1. In this
experiment, we used the training and the test sets of equal

01 02 03 04 05 06 07 0
1 : 9 2 : 8 3 : 7 4 : 6 5 : 5 6 : 4 7 : 3 8 : 2 9 : 1R a t i o o f t h e t r a i n i n g a n d t e s t d a t a s i z e (t r a i n i n g _ s i z e : t e s t _ s i z e)R el ati veerrorof predi ct ed TR(%) M a x ¡ a v e r a g e e r r o r o v e r 2 4 0 t i m e w i n d o w sM a x i m u m e r r o r o v e r 2 4 0 t i m e w i n d o w s

Figure 6. Relative prediction errors with dif-
ferent ratios of training and test data sizes for
weekdays.

size. We ran the prediction on each time window (starting at
different time and of different lengths) on all the tested ma-
chines. The maximum prediction error over different ma-
chines is used as the metric. It indicates the worst case of
prediction accuracy.

Figure 7 shows the comparisons. As a representative
case, we present the relative errors of predictions over time
windows starting at 8:00 am on weekdays. Predictions for
other time windows (including those on weekends) achieve
similar results in terms of the relative differences among
these algorithms. Due to space limit, we do not include all
the results in this paper.

Table 1. Linear Time Series Models
Model Description

AR(p) Autoregressive models withp coefficients
BM(p) Mean over the previousN values (N ≤ p)
MA(p) Moving average models withp coefficients
ARMA Autoregressive moving average models with
(p, q) p + q coefficients
LAST Last measured value

0 %2 5 %5 0 %7 5 %1 0 0 %1 2 5 %1 5 0 %1 7 5 %2 0 0 %2 2 5 %2 5 0 %
1 3 5 7 9T i m e w i n d o w l e n g t h (h r)R el ati veerrorof predi ct ed TR S M PA R (8)B M (8)M A (8)A R M A (8 , 8)L A S T

Figure 7. Maximum prediction errors of differ-
ent algorithms over time windows starting at
8:00 am on weekdays.

From the results in Figure 7, we made the following ob-

10

servations. (1) Based on the relative prediction errors forthe
time windows studied, our SMP-based algorithm performs
better than all of the 5 time series models. The advantage is
more pronounced for predictions over large time windows.
(2) Linear time series models are more adept at short-term
prediction. This is because these models use multiple-step-
ahead for predicting on large time windows and the predic-
tion error increases with the number of steps lookahead.

7.3 Robustness of Failure Prediction

As we discussed earlier, the SMP-based prediction is
able to accommodate the deviations from the load patterns
that are comparable in recent days. This ability is confirmed
by the high prediction accuracy presented in the previous
section. To further test this ability, we study its robustness
to noise (irregular occurrences of failures) in the training
data.

We injected different amounts of noise into the training
data set and measured its impact on the prediction results.
To inject one instance of noise, we manually inserted one
occurrence of failure around 8:00am (when failure is very
rare due to low resource utilization) to a training log of a
weekday in the trace data collected on a machine in the
testbed. The holding time of the added failure state was
chosen randomly between 60 and 1800 seconds. With vary-
ing number of noise injections, we measured theprediction
discrepancyby comparing the prediction results against the
original predicted values without noise injection. Exper-
imental results are presented in Figure 8. The prediction
discrepancy bars for large time windows (T = 5, 10 hrs)
are often negligible compared to the values associated with
small time windows. Hence some of the bars for large time
windows do not show up in the figure.

Figure 8 shows that predictions on smaller time win-
dows are more sensitive to noise. As shown by the bars
for “T = 1 hr”, 4 instances of noise lead to a prediction
discrepancy of more than50%. On the other hand, for the
time windows larger than 2 hrs, 10 instances of noise cause
less than5.56% (the bar for “T = 3 hr”) prediction discrep-
ancy. The reason behind this observation is that the negative
impact of noise on large time windows is alleviated by tak-
ing more history data in the prediction. Recall that our pre-
diction utilizes history data within the corresponding time
window (with the same start time and length) for predicting
on a future time window.

In a practical FGCS system such as iShare, most guest
jobs are either small test programs taking less than half an
hour, or large computational jobs taking several hours. For
small test programs, they can be restarted upon the occur-
rences of resource failures without causing significant de-
lay in job response times. For large jobs taking more than 2
hours, intensive noise (10 amounts of noise within 1 hour)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10
Amount of injected noise

P
re

di
ct

io
n

di
sc

re
pa

nc
y

T = 1 hr
T = 2 hr
T = 3 hr
T = 5 hr
T = 10 hr

1.036 1.161 1.286

Figure 8. Prediction discrepancy with differ-
ent amounts of noise injected to a training
log for weekdays. T is the length of the fu-
ture time window for the prediction. Predic-
tion discrepancy is the relative difference be-
tween the prediction results using the train-
ing data with noise injection and those using
the original training set.

causes less than6% disturbance in our prediction algorithm.
Therefore we can conclude that our prediction algorithm is
robust enough for application in practical fine-grained cycle
sharing systems.

8 Conclusion and Future Work

In this paper, we developed a multi-state model to rep-
resent the characteristics of resource failures in FGCS sys-
tems. We applied a semi-Markov Process (SMP) to predict
the probability that no resource failure will happen in a fu-
ture time window, based on the host resource usage history.
The SMP-based prediction was implemented and tested in
the iShare Internet sharing system. Experimental results
show that the prediction algorithm achieves accuracy higher
than86.5% on average and adds less than 0.006% overhead
to a guest job. The effectiveness of the prediction in accom-
modating the deviations in host workloads was also tested,
and the results show that our prediction is resilient to noise
in history data. In summary, the resource failure prediction
is accurate, efficient, and robust.

In future work, we plan to test our prediction mecha-
nisms on testbeds with different workload patterns, such as
a testbed containing enterprise desktop resources. We ex-
pect that our prediction will perform well on the proposed
testbeds, because, in this work, the prediction was already
tested in an environment with highly diverse workloads. A
next task is also to integrate our prediction framework with
a proactive job scheduler in the iShare Internet sharing sys-
tem.

11

Acknowledgment

This work was supported, in part, by the National Sci-
ence Foundation under Grants No. 9974976-EIA, 0103582-
EIA, and 0429535-CCF. We thank Ruben Torres for his help
with the reference algorithms used in our experiments.

References

[1] Y. Altinok and D. Kolcak. An application of the semi-
markov model for earthquake occurrences in north anatolia,
turkey.Journal of the Balkan Geophysical Society, 2(4):90–
99, 1999.

[2] B. Armstrong and R. Eigenmann. A methodology for sci-
entific benchmarking with large-scale application.Perfor-
mance Evaluation and Benchmarking with Realistic Appli-
cations, pages 109–127, 2001.

[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility
of a serverless distributed file system deployed on an exist-
ing set of desktop pcs. InACM SIGMETRICS Performance
Evaluation Review, pages 34–43, June 2000.

[4] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for
predicting machine availability in desktop grid and peer-to-
peer systems. InProc. of CCGrid’04, pages 190–199, 2004.

[5] C. Catlett. The philosophy of TeraGrid: Building an open,
extensible, distributed terascale facility. InProc. of CC-
Grid’02, 2002.

[6] L. Cheng and I. Marsic. Modeling and prediction of ses-
sion throughput of constant bit rate streams in wireless data
networks. InProc. of WCNC’03, March 2003.

[7] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:
Architecture and performance of an enterprise desktop grid
system. Journal of Parallel and Distributed Computing,
63(5):597–610, 2003.

[8] P. Dinda and D. O’Hallaron. An extensible toolkit for re-
source prediction in distributed systems. Technical Report
CMU-CS-99-138, School of Computer Science, Carnegie
Mellon University, July 1999.

[9] P. A. Dinda and D. R. O’Halaron. An evaluation of lin-
ear models for host load prediction. InProc. of HPDC’99,
page 10, August 1999.

[10] I. Foster and C. Lesselmann. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11:115–128, 1997.

[11] M. Hofmann and S. Jost. Static prediction of heap space
usage for first-order functional programs. InProc. of the
ACM POPL’03, pages 185–197, 2003.

[12] http://setiathome.ssl.berkeley.edu/. SETI@home: Search
for extraterrestrial intelligence at home.

[13] http://www.spec.org/osg/cpu2000. ”spec cpu2000 bench-
mark”.

[14] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive
application-performance modeling in a computational grid
environment. InProc. of HPDC’99, pages 47–54, 1999.

[15] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A.
Chien. Characterizing and evaluating desktop grids: An em-
pirical study. InProc. of IPDPS’04, April 2004.

[16] D. Long, A. Muri, and R. Golding. A longitudinal survey
of internet host reliability. In14th Symposium on Reliable
Distributed Systems, pages 2–9, September 1995.

[17] M. Malhotra and A. Reibman. Selecting and implementing
phase approximations for semi-markov models.Commun.
Statist. -Stochastic Models, 9(4):473–506, 1993.

[18] K. McDonell. Taking performance evaluation out of the
’stone age’. InProc. of the Summer USENIX Conference,
pages 8–12, 1987.

[19] M. W. Mutka. Estimating capacity for sharing in a privately
owned workstation environment.IEEE Trans. On Software
Engineering, 18(4):319–328, 1992.

[20] A. J. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Siva-
subramaniam. Fault-aware job scheduling for bluegene/l
systems. InProc. of IPDPS’04, pages 64–73, April 2004.

[21] J. Plank and W. Elwasif. Experimental assessment of work-
station failures and their impact on checkpointing systems.
In 28th International Symposium on Fault-Tolerant Comput-
ing, pages 48–57, June 1998.

[22] X. Ren and R. Eigenmann. Empirical studies of resource
failure behavior in fine-grained cycle sharing systems.
Technical Report ECE-HPCLab-05202, High-Performance
Computing Lab, ECE, Purdue University, December 2005.

[23] X. Ren and R. Eigenmann. ishare - open internet sharing
built on p2p and web. InProc. of EGC’05, pages 1117–
1127, February 2005.

[24] X. Ren, Z. Pan, R. Eigenmann, and Y. C. Hu. Decentral-
ized and hierarchical discovery of software applications in
the ishare internet sharing system. InProc. of PDCS’04,
pages 124–130, 2004.

[25] K. D. Ryu and J. Hollingsworth. Resource policing to
support fine-grain cycle stealing in networks of worksta-
tions. IEEE Trans. on Parallel and Distributed Systems,
15(9):878–891, 2004.

[26] R. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma, et al. Pro-
viding persistent and consistent resources through event log
analysis and predictions for large-scale computing systems.
In Workshop on Self-Healing, Adaptive, and Self-Managed
Systems, June 2002.

[27] R. Sahoo, A. J. Oliner, I. Rish, M. Gupta, et al. Critical event
prediction for proactive management in large-scale comput-
ing clusters. InProc. of the ACM SIGKDD, pages 426–435,
August 2003.

[28] K. Trivedi and K. Vaidyanathan. A measurement-based
model for estimation of resource exhaustion in operational
software systems. InProc. of ISSRE’99, pages 84–93,
November 1999.

[29] R. Wolski. Experiences with predicting resource perfor-
mance on-line in computational grid settings.ACM SIG-
METRICS Performance Evaluation Review, 30(4):41–49,
2003.

[30] R. Wolski, N. Spring, and J. Hayes. Predicting the cpu avail-
ability of time-shared unix systems on the computational
grid. Cluster Computing, 3(4):293–301, 2000.

[31] Y. Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. K.
Sahoo. Performance implications of failures in large-scale
cluster scheduling. In10th Workshop on Job Scheduling
Strategies for Parallel Processing, June 2004.

12

