Pesticide: Using SMT Processors to Improve Performance of Pointer Bug Detection

Jin-Yi Wang, Yen-Shiang Shue, T. N. Vijaykumar, and Saurabh Bagchi
School of Electrical and Computer Engineering, Purdue University
{shue, jywang, vijay, sbagchi}@ecn.purdue.edu

Abstract pointer management. The study defines high-impact bugs as those that
. b iated with d icallv-all d obi " often results in system unavailability. The memory allocation and
Pointer bugs associated with dynamically-allocated objects resu t'n%ointer management bugs cause out-of-bounds memory access. Accord-

in out-of-bounds memory access are an |mportar_1t CI‘_"‘SS Of_ softwarﬁ] ly, we target pointer bugs associated with dynamically-allocated
bugs. Because such bugs cannot be detected easily via statlc-checklggects resulting in out-of-bounds memory access. Because such bugs

technigues, dynamic monitoring schemes have been proposed. Howev, nnot be detected easily via static checking, we explore a dynamic
the key challenge with dynamic monitoring schemes is the runtime Overﬁonitoring scheme

head (slowdowns of the order of 10x are common). Previous approaches While implementing dynamic monitoring is relatively straightfor-

have used thread-level §pt_aculation (TLS_) to reduce the ovgrhead._Howard, the key difficulty is the runtime overhead. Though dynamic moni-
ever, the approaches still incur substantial slowdowns while requmngtoring is powerful and can catch hard-to-find bugs, its considerable

complex TLS hardware. We make the key observano_n that be'cause tBCerhead has limited its applicability to in-house testing. As such,
monitor code and user code are largely and unambiguously Indeperﬂynr:tmic monitoring is too slow to be used in production runs. For

dent, TLS hardware with all its complexity to handle speculative paral'instance, though Purify, which uses software for monitoring without any

lelism is unnecessary. We explicitly multithread the monitor code insupport from hardware, has been extremely successful in catching

which a thread checks one access and use SMT to exploit the parallelisHbinter bugs, 1000% slowdowns are common. Recent dynamic-monitor-

in the mgnltor ?Qﬂe' ing th . . _ing schemes, such as [17], iWatcher [27], and AccMon [26], propose to
) Despite multithreading the monitor code on SMT, dY”am'C _mon'tor'address this performance problem by leveraging thread-level speculation
ing slows ‘?'OW” _th_e user thread due to two pro_blems: Instruction over TLS). These schemes use TLS to overlap speculative threads spawned
head and insufficient overlap among the monitor threads. To addre om the user computation as well as the monitoring code. [17] uses

instruction overhead, we exploit the natural locality in the user threadDynamic Multi Threading [2] as its TLS architecture, and iWatcher and
addresses and memoize recent checks in a small table called the auocﬁbcMon use [21] as their TLS architectures

tion-record-cache (ARC)However, programs making and accessing

simply merging the r_anges.into one. This merging increases_ the effectl\{ acking through the cache hierarchy. (2) Despite using TLS, dynamic
size of the ARC. F!nally,_lnsuf'flment o_verl_ap among monitor threa_dsmonitoring still inflicts considerable performance loss. [17] reports
occurs because of inefficient synchronization to protect the allocat_lonioo% runtime overhead over no monitoring, and [26] incurs 200% for
data structure updated by the user thread and read by the monitog, .o spEC2000 programs. While [17] targets dynamic monitoring dur-

threads. We make the third key observation that because monitor-threa}ﬁg production runs, [26] targets the debugging phase of software devel-

reads occur for every check but user-thread writes occur only in alloca'opment. Irrespective of the intended target, their high performance

tions and deallocations, monitor reads are much more frequent than us‘?fegradation coupled with their reliance on complex TLS hardware
writes. We propose a locking strategy, called biased lock, which puts th%akes it hard to deploy them in production runs

locking overhead on the writer away from the readers. We show that In this paper we address these shortcomings in the context of moni-

starting from a runtime overhead of 414% our scheme reduces this OVef51ing out-of-bounds memory access due to pointer bugs based on the
hegd to a respectable 240{? running thrgeb.mondlt?r Lhreads onan SM}—ollowing key observations: (1) The main computation and the monitor-
using a 256-entry ARC with merging and biased lock. ing code are unambiguously and truly independent except that the
1 Introduction addresses _of t_he main compu'_[ation’s memory accesses r_1eed to be passed
to the monitoring code. More importantly, each dynamic instance of the

According to the National Institute of Standards (NIST) “software itori q t 1o check . bi |
developers spend approximately 80% of development costs on identifym%n'tor:ng. cg N m(;eant (; Ctﬁc pn? memoryzacEcesIs |ts unambllguousy
ing and correcting defects and yet few products of any type other thaffn@ truly independent ot other nstances. (2) Exploiting ambiguous,

software are shipped with so many errors” [1]. To address this IE)roblemspecuIative parallelism and incurring its complexity is unnecessary when
3xplicit, unambiguous parallelism exists. Accordingly, we propose to

static checking tool, such as [9], [11], [16], [18] attempt to detect an ltithread th tor de in which a thread check
remove software bugs in the testing and verification phase. HoweveP?LI thread the montoring code in which a thread Checks one memory
access, and to use SMT [24] to exploit the explicit parallelism in our

NIST reports that more than half of bugs are not found until “down- o . - oo
stream” in the development process or during post-sale use of softwar@.omto”ng code. Because SMT exploits explicit parallelism instead of
eculative parallelism, SMT is considerably simpler than TLS.

This figure will worsen as software becomes more complex. To addres? Another choice t loit licit lleli id be chi i
the large percentage of bugs slipping through static checking, dynamic no erc(::Moléce 0 exzpomdexp 'C|_'| parallelism wou dg chip mu I-d i
monitoring schemes, such as [10], [17], [26], [27], [20] and [8] a’[temptprocessors (s), as [20] does. owever, memory addresses need 1o
to detect bugs at runtime. be passed from the user thread to the monitor threads. In CMPs, the user

A detailed study of software defects in commercial database mana-“.1d monitor t_hreads vvpu}d run on diffe_renF cores, requiring high-band-
agement systems and operating systems [22], reports that as many\;&lglth (potentially specialized) communication paths between the cores.

half of the *high-impact” bugs are in dynamic memory allocation and '° avoid this problem, we choose SMT where the user and monitor

threads run within one core and can communicate easily. o
Despite running multiple monitor threads overlapped with the user 4. Monitoring threads consuftthe

. . hook-keeping-structure. If successful
thread, dynamic monitoring slows down the user thread due to two prob- wn do nothing, otherwise report error

lems: instruction overhead and insufficient overlap among the monitor AT T2
threads. . . . L 3. Monitoring jobs passes to monitggikg

Because each check involves tens of instructions, monitoring incurs threads
the first the problem of instruction overhead. Though user and monitor MJQ/ARC \
threads are independent, because all threads run on one SMT core the [F 2. Putheap accesses into MJQ
monitor threads compete with the user thread for execution resources for monitoring at commit
causing substantial performance degradation. To reduce the volume of p)

Y g ; o gram thread g -
monitor instructions, we exploit the natural locality in the user addresses L. Update book-keepingsstructure
and memoize recent checks in a small table calledtoeation-record-
cache (ARC)When a user address hits in the ARC, the hardware effec-

tively .checks. the access without invoking a monitor thread, avoidinqn Section 1, shows that heap objects account for about half of all the
extra |hn.st1uct||qns. I oited b 1 its check-lookasid “high-impact” bugs [22], we monitor only heap objects and not the stack
This locality was also exploited by AccMon in its check-lookaside- or static objects. Moreover, there are efficient schemes to monitor the

bufier (CLB). However, because each entry in CLB (and ARC) COME-gtack (e.g., [7] protects against buffer overflow while incurring minimal

spond to a memory object, programs allocating and accessing ma rformance degradation). As we explain later, pesticide can be
objects need a large CLB (and ARC). In an attempt to reduce the size fxtended easily to static objects

the CLB, AccMon implements a bloom filter which results in false posi-]
tives. However, while AccMon is used for debugging where the false2.1 Overview

positives will not reach the user, pesticide is for production user runs To achieve our goal of monitoring user-thread heap accesses, we
where users will not tolerate false positives unnecessarily terminatingeed to track user-thread heap allocations and deallocations, and check
their program. Consequently, we propose a scheme without false posihether user-thread accesses fall within a valid allocation. We track the
tives. We make the key observation that because adjacent memogfemory allocations and deallocations in a hash table called the book-
objects result in ARC entries with contiguous address ranges, the entriggeping-structure (BKS). To perform the checking, our monitor threads
can be merged into one by simply merging the ranges into one. Becauggn concurrently with the user thread on a SMT processor. Upon a load
the set of valid address ranges are derived from memory allocation fungy store instruction in the user thread, pesticide triggers a monitor thread
tions in software, we perform this merging in software in the monitoringto check the address and the length of the access. Multiple instances of
code. The effect of the merging is that the ARC can cover more memorihe monitor thread run on the SMT processor to check multiple accesses
objects with fewer entries. in parallel (the number of monitor threads is fixed). Each monitoring
The second performance problem is the insufficient overlap amonghread matches the address and length of the access against the BKS
the monitor threads. Although monitor threads are largely independerdntries. A match (i.e., access is to a valid address and access length is
of the user program there still exists some synchronization. The monitgjithin allocated size) indicates that the access is legal. A mismatch indi-
threads have to read the data structure holding the current set of valightes a pointer bug. Figure 1 shows a block diagram of pesticide.
memory allocations where as the user thread writes to the structure when \we now give the details of our software in Section 2.2 and hard-
allocating or deallocating memory (e.g., malloc and free). Using theyare structures in Section 2.3.
standard reader-writer-lock [6] for this synchronization causes inordi-
nate contention among the monitor threads. To address this issue, we2 SOftware support
make the key observation that because monitor-thread reads occur for In order for application programmers not having to worry about
every check but user-thread writes occur only in malloc and free, monimonitoring routines, we propose that library functions be instrumented
tor reads are much more frequent than user writes. Accordingly, wevith monitoring capabilities. We augment library calls to memory-man-
employ a novel locking strategy, calleéhsed lockin which each moni- agement routines (e.gmallog, calloc, realloc, andfree) with code to
tor thread has its own lock for reading whereas the user thread has tnaintain the BKS.
obtain all the monitor-thread locks before writing. This biased strateg .
makes readers fast at the cost of the writer which fits our context of fre= 2.1 Book-keeping-structure (BKS)
quent monitor reads and infrequent user writes. The book-keeping-structure (BKS) is a hash table that tracks valid
The key novelty of this paper are the range merging ARC andnemory address ranges by recording memory allocations and dealloca-
biased lock. Our simulation results show that starting from an averagons (the addresses are virtual addresses annotated with process ID to
runtime overhead of 414% incurred by monitoring over no monitoring,allow for multiple concurrent user processes). Every allocation creates a
pesticide reduces this overhead to a respectable 24% using a 256-enfi§w BKS entry which is removed at the corresponding deallocation.
ARC and three monitor threads. This 24% overhead compares well witfFach entry contains the start address and the length of the allocation.
[17]'s 700% and [26]'s 200% and also with the fact the Java which per- The BKS is fundamentally different from conventional hash tables.
forms bounds-checks in-line in the user code incurs about 100% runtimi@ a conventional hash table, an object that is hashed into the hash table
overhead [4], [25]. Because pesticide checks all heap accesses, it covédound by using theameobject as the key. In BKS, while we hash in
all out-of-bounds heap accesses without any false positives. allocations’ address ranges, accesses to a specific address probe the BKS
The roadmap for the rest of the paper is as follows. In Section 2 wéo determine if a given address falls within a valid range. Thus there is a
describe our software and hardware architecture. In Section 3, wdisparity between what is stored (i.e., address ranges) and what is used
describe the ARC the biased locks. We present our evaluation methoddP probe (i.e., a specific address). This disparity implies that if we hash in
ogy in Section 4 and our results in Section 5. Section 6 describes relatélong address range using the range’s start address, and an access far

Figure 1: Proposed monitoring scheme

work and we conclude in Section 7. from the start but within the range occurs, then the range and the access
. L may fall into different hash buckets resulting in the access not finding the
2 Our dynamic monitoring scheme range though the access is valid. One way to solve this problem is that

In general, pointer bugs can be associated with heap, stack, or statiee could repeatedly hash each byte of the whole range of the allocation
objects, However, because the study on commercial software, mentioneaid store all of them in the BKS. However, this approach would result in

inordinately many copies of the same range and blow up the hash tabtsmmits till the check completes. Thus, accesses may commit before the
size. Instead, we break the original allocation’s address range into mamgheck completes. (e.g., a few hundreds of cycles). To prevent bug propa-
small ranges called hash-blocks (e.g, 512-byte ranges). We hash all tgation, we ensure that all checks pending in the MJQ are complete
hash-blocks of the original allocation into the BKS using the hash-before any system call, including I/O call, is committed. Because system
block’s start address. Consecutive hash-blocks fall into consecutivealls are infrequent this delay in commit does not significantly impact
buckets, and a BKS entry corresponds to one hash-block. Upon gmerformance.
access, we use the hash-block number part of the access’s address (e.g., Apart from system calls, the other point where the user thread waits
hash-block of 512 bytes and a 32-bit address mean that the upper 23 bits the monitor thread is upon memory deallocations. Deallocating a
of the address are the hash-block numbers) to probe the BKS. Becauseap object while there are pending checks of accesses to the object
the addresses within a hash-block have the same hash-block numberasuld cause us to flag a bug incorrectly. Consequently, we ensure that all
the hash-block’s start address, accesses to a hash-block map to the sgeading checks complete before the deallocation starts. While hardware
bucket as that holding the hash-block. Though our solution allows thean easily detect system calls as special opcodes and trigger the draining
access to find its corresponding range, we break up long address rangdsthe MJQ, deallocation functions are indistinguishable from other
into many hash-blocks, each of which repeatedly store the originaiunctions in the user thread. To that end, we use a special NOP to signal
range, increasing the hash table size. the beginning of a deallocation. Because deallocations are also infre-
We use simple open chains to handle collisions. Because accegsient, delaying the deallocation till all pending checks are complete
probes need to traverse the chains to ascertain validity of the access, tiiees not significantly impact performance.
longer the chains the more the monitoring overhead. Therefore, it is We mentioned earlier that we can easily extend pesticide to static
important to keep the chains short. While a good hash function is necesbjects. Because static objects’ address ranges are known at link time,
sary for this purpose, it is not sufficient. Hash-block size has a considethe linker can insert the ranges into the BKS.
able impact on the chain length. Both small and large hash-blocks res o .
in long chaining but in different scenarios. Small hash-blocks break u Supportlng efficient dynamlc monitoring
larger allocations into many BKS entries (albeit in different buckets) ~ The key reasons for performance degradation in the basic scheme
resulting in much chaining. Large hash-blocks imply that many smalleglescribed so far are instruction overhead and insufficient overlap among
allocations fall into the same bucket resulting in much chaining. Thusimonitor threads. We alleviate these problems via our optimizations.
thri hrgf:;block size has to match the allocation size commonly found i@.l Allocation-record-cache (ARC)
P gOne simple optimization we can do is that, upon an check, we move To reduce the instruction overhead of monitoring, we exploit the

a hash element to the top of its hash chain in anticipation that the hadRClity in the user-thread accesses to memoize checks to recently-
element will be accessed again due to locality. This move reduces thc-éccessed heap objects so that future checks to the same objects are elided
completely and the instruction count overhead of monitoring is reduced.

We use a hardware cache, called the allocation-record-cache (ARC), for

2.3 Hardware support this memoization.

Because the volume of memory accesses to be checked is high and Before inserting an access into the MJQ, the address of the access is
the check itself is fairly short especially if the BKS chains are short (e.g.first checked in the ARC. Upon a hit, the ARC performs the check in
a few tens of instructions), using software to spawn monitor threads or tBardware. Consequently we do not place the access in the MJQ, saving
pass the addresses from user to monitor thread would incur consideraBfe instructions of the check. A miss launches a monitor thread which
overhead. Instead, we employ hardware support in the form ahtivé- performs the check in software but also loads the ARC with the BKS
tor-job-queue (MJQWwhich captures the user thread’s addresses off theentry used to perform the check.

chain traversal in subsequent accesses.

pipe”ne and ’[riggers a monitor thread to check the access. Each ARC entry holds a BKS entry: the start address and the Iength
. of the allocation. However, there is a key difference between the BKS
2.3.1 Monitor-Job-queue(MJQ) and ARC entry. To avoid the danger of an address not finding its range in

The MJQ is a FIFO queue built in hardware. The queue bufferdhe BKS, both the address and range are hashed by their hash-block
address (virtual address and process ID) and the length of the heapmber. Consequently, each hash entry can cover only a hash-block
accesses to be monitored. As we mentioned before, we check only heapplying that large allocations be broken up into multiple hash-blocks,
accesses, and not stack and static accesses. The MJQ determinesirdroducing repetition in the hash entries. Because the ARC is a small
address to belong to the heap if the address lies between the heap bottoathe, such repetition would be wasteful. Instead we use a fully-associa-
and heap ceiling. Address and length of the access whether it is a bytiye cache so that there is no indexing into the ARC. Because every
word, or quadword are then taken from the load-store queue. access searches through all of ARC's entries, there is no danger of an

Monitoring could potentially be triggered at any point in the execu-access not finding its range in the ARC. Consequently, each entry in the
tion of loads and stores. Monitoring before commit would include mis-ARC is not restricted to covering one hash-block, implying that an ARC
speculate loads and stores along with the correct loads and stores leademgry can cover an entire allocation without breaking up the allocation
to wastage of SMT resources as much of the monitoring would becross multiple ARC entries.
unnecessarily triggered. Therefore, we check at commit. Because loads Thus, the address of an access is matched against all the ARC'’s
and stores stay in the load-store queue until commit, we readily obtaientries in parallel checking if the address fall within an entry’s start
the addresses and the access lengths from the load-store queue. address and the entry’s allocation length.

While the checking itself is independent of the user thread once the Because the ARC is essentially a cache of the BKS, any modifica-
access address and length are given to the monitor thread, the decisiortioihs to the BKS need to be handled by the ARC for maintaining coher-
whether to allow the access to commit before the check completes or nenhce between the BKS and the ARC. Consequently, the ARC is flushed
impacts the parallelism between the monitor and user threads. Whilepon deallocations which are identified by the special NOPs described in
loads does not cause bugs to spread to other programs, stores may pr8gction 2.3.1. As mentioned earlier, deallocations are infrequent, so the
agate bugs via I/O. Delaying the commit till the check completes preflushes do not significantly impact the ARC.
vents a buggy store from propagating further. Because stores al .
frequent enough, this option would curtail the parallelism between use?‘2 Range merging
and monitor threads and would severely slow down the user threads. While the ARC works well for many programs, a few programs
Instead, to retain the user-monitor parallelism, we do not hold up storé1ake and access many (small) allocations. Because one ARC entry can

hold only one allocation, small allocations imply that the ARC can reacHock overhead is amortized. Unfortunately, because our monitor threads
only a small part of the user thread’s working set; and many allocationare very short, the local lock overhead is not amortized.
imply that many ARC entries would be needed. The net effect is many = We make the key observation that our writer (i.e., user thread) is
misses in the ARC. Many allocations also implies long hash collisiormuch less frequent than readers (i.e., monitor thread). Therefore we bias
chains in the BKS. Here again, the long collision chains is not due to athe overhead away from the readers and towards the writer in the lock
ineffective hash function, but rather due to the fact the one hash entryalled biased-lock, as shown in Figure 2c. In the biased-lock each reader
can hold only one allocation. is given its own lock. So there is no contention among the readers. The
We exploit the fact that the BKS entries for adjacent heap objectsvriter on the other hand needs to grab the lockalbthe readers. This
can be merged to increase the effective capacity of the ARC. This mergnsure mutual exclusion and at the same time allows the monitors to be
ing has the additional benefit of shortening the hash collision chains. accessed without too much overhead. With biased lock, we do not per-
Because memory allocations and deallocations are tracked by tHerm the locality optimization of moving the hash element to the top of
BKS, we perform this merging in software in the BKS code. To imple-the hash chain as such moving will make monitor threads also writers of
ment merging, we keep the BKS entries in the collision chains in ascendKS, breaking our assumption that monitor threads can execute in paral-
ing order of starting addresses. Upon new allocations, an insert into lal completely.
chain merges entries if two entries contain contiguous ranges. Upon In SMT, resources are shared across threads. It is wasteful for a
deallocations, a previously-merged entry may be broken into two entrieshread to be spin-waiting on a lock because instructions which go repeat-
As such, merging increases the overhead of the BKS code. Because alkdly into the pipeline will only confirm that the lock is still not available.
cations and deallocations are relatively less frequent than accesses whidgle want the thread waiting for this lock to stall so the thread will not eat
benefit from the improved effective ARC size and shorter chain lengthsyp resources which would be allocated to other threads which may make
merging improves performance (allocations need not be infrequent in therogress. Such a stalling scheme is implemented in [23] which we use.
absolute just fewer than accesses). Also, we do not perform the localiffhe lock-box stalls a thread on a busy bit when the lock is already taken.
optimization of moving the hash element to the top of the hash chain aldpon the unlock instruction, the bit is cleared and the waiting thread is
such moving will violate the ordering of the start addresses. signaled to go ahead.
There is one difficulty with merging: Because memory allocators .
often allocate memory objects padded to a size larger than requested for Evaluation MethOdOIOgy
reducing memory-management overhead, storing heap-management- We use a SMT simulator based on the Simplescalar 3.0c [5] run-
related meta information, and alignment reasons, merging padded rang@i§d the Alpha instruction set to simulate pesticide. Our simulation
would result in letting some bugs go undetected. If an access falls in thearameters are shown in Table 1.
padding which is in the middle of a merged range then the access is \We use SPEC2000CPU [14] benchmark set. Because we focus on
invalid, but we cannot detect it to be so. To address this problem, we firdteap accesses, we do not consider Fortran-77 benchmarks which does
make the key observation that same-sized objects are adjacent in tAgt have dynamic allocations. Due to time constraint, we simulate only
common case. This observation implies that in the common case pa§ benchmarks and not C++. We create benchmark binaries with and
ding would exhibit a repetitious pattern in the merged ranges. ConséNithOUt monitoring incorporated into the memory management libraries.
quently, recording the padding just once for the entire merged rang@O ensure that both versions have the same level of compiler optimiza-
would suffice. Therefore, we merge two ranges only if they are adjacerftons, we compile the benchmarks using gcc2.97 on a DEC Alpha work-
and they are of the same size and have the same padding. We record gation running OSF.
start address of the first allocation, the size of the allocation, and end The key software parameters are hash-table size and hash-block
address of the merged entry_ The ARC caches these merged entries. size. We use a hash-table with 64K buckets which are sufficient for our
Ignoring the above observation and merging different-sized objectgenChmarkS. We found that the best hash-block size is 512 bytes which
would mean recording all the paddings within the merged range. Thi¥e use in all experiments except while varying the hash-block size.
recording even if done via bit vectors would add substantial space over- \We incorporate early SimPoints [19] in our simulations. Because of

head, defeating merging’s purpose. the instruction-count overhead of monitoring, the no-monitoring and
. monitoring versions of the benchmarks execute diffetetal number of
' instructions for the same Simpoints. We ensured that the two versions
3.3 Biased Locks instructions for th Simpoints. Wi d that the t i

Because checking of one access is independent of checking of otharn the sameserinstructions as intended by SimPoints.
accesses, we employ multiple monitor threads in parallel. However,
because memory allocation and deallocation routines in the user threz§1 Results
share the BKS with the monitor threads, it is necessary to protect the Because performance is the key concern for dynamic monitoring,
shared data via proper synchronization. Specifically, the user threadle present performance achieved by pesticide. We do not show coverage
writes and the monitor threads read. However, the two commonly-useflecause by design pesticide covers 100% of all out-of-bounds heap
locking strategies lead to heavy contention among the monitor threadgccesses. Also, we do not incur any false positives.

The first strategy, called the basic lock, uses one global lock contended ~Section 5.1 presents the unoptimized, raw impact of monitoring on
by all threads (i.e., user thread and multiple monitor threads), as showperformance. Section 5.2 shows how running multiple monitor threads
in Figure 2a. There is heavy contention among the multiple monitofmpacts performance—with different locking strategies. These numbers
threads leading to complete serialization. show the benefit of using explicit parallelism. Because the hash-block

The second strategy, called RW, is for multiple readers and writer§ize impacts the hash chain lengths which directly impacts the instruc-
involved in producer-consumer scenarios (user thread is the productipn overhead of monitoring, we vary the hash-block size in Section 5.3.
and the monitor threads are the consumers). As shown in Figure 2b, RWection 5.4 shows the benefit of eliding checks via ARC’s memoization.
also has a global lock between the reader and the writer. RW attempts &gction 5.5 shows how much merging improves performance by increas-
reduce the overhead on the readers by requiring only the first reader #39 the ARC's reach and also shortening the hash chains. Finally,
grab the global lock, allowing later readers to avoid grabbing the globaPection 5.6 summarizes our results.

Ioc_k. Hc_nwever,_the readers among themselves have to grgb a Iocgl |0@<_1 Runtime overhead due to monitoring
to identify the first reader. Because the local lock protects just an incre-

ment operation, the local lock does not serialize the readers much. If the . N Figure 2, we show the runtime overhead of monitoring. The Y
original critical section to be protected from the writer is long, the local2XIS shows as percent, the run time of the user thread with one monitor

thread normalized to the run time of the user thread with no monitoring.

a) Basic lock b) Reader-Writer lock c) Biased lock Simulator Parameters
Reader: Reader #i (1<=i<=n): fetch width 3

Reader. lock(R); lock (MUTEX);, decode width S

|0(‘3:|'§it(|"—\:/|ali1-srgél)6n readcount=readcount+1; ...critical section... Issue width 8

unlock (MUTEX); if (readcount==1 unlock (MUTEXi); commit width 3
unltggl?(ll'\(’))(:k (MUTEX) active Tist size (per thread)) 256
Ica(t;%a\l section... Writer : LSQ size (per thread) 128

T ock(R); PR ISSUE qUEUE 64

Writer : readcount=readcount-1; for (i=1; i<=n; i++)

lock (MUTEX); if (readcount==0 lock (MUTEXi) L1 I-cache 64K, 2way, 3cycle

...critical section... then unlock (MUTEX) ..-critical section... L1 D-cache 64K, 2way, 3cycle

unlock (MUTEX); unlock(R) Lorglgc_lg'l{/fﬂ%zl)tr) 2 unified 7M, 8way, 12cycle
Writer: () Memory Latency 300 cycles
lock MUTEX%; Branch prediction 2-level hybrid
...critical section... MJQ size 1000
uniock(MUTEX); ARC size 0,8,256,1024

Figure 2: Three lock schemes Table 1: Simulation parameters

We show a line at the 100% mark which represents no performance deffom Section 3.3. Figure 3 shows the runtime for seven monitor threads

radation due to monitoring. The higher the bars above this line, the moreormalized to that of no monitoring. For each benchmark, the bars going

the performance degradation. The X axis shows the benchmarks. Lofsom left to right represent one monitor thread (same as Figure 2), basic

IPC (instructions per cycle) in the case of no monitoring implies that thdock, reader-writer lock, and biased-lock, respectively.

pipeline can absorb the extra monitoring instructions. To show this trend, ~ While one would expect runtime to improve with multiple monitor

we order the X axis in increasing order of no-monitoring IPC. There arghreads, that is not the case for basic locks (e.g., equake). Basic lock

two numbers shown on top of each bar. The top number is the ratio of thiacurs contention which offsets the benefits of multiple monitor threads.

dynamic instruction counts with monitoring over the counts withoutComparing basic lock with biased lock, we see that biased lock performs

monitoring. The bottom number is the IPC of the benchmarks withousignificantly better due to the reduced contention for the readers. This

monitoring. improvement is despite the fact that the monitor code using biased lock
With monitoring the benchmarks’ runtime overhead range from 5%requires 42 instructions for each check compared to the 33 required by

to 1634% with an average of 414%. Most benchmarks incur significanbasic lock. This instruction count increase is because biased locks do not

runtime overhead. There are two factors that determine performanggerform the locality optimization done by basic lock of moving the hash

with monitoring: (1) the dynamic instruction overhead due to monitoringelement to the top of the hash chain (Section 3.3).

(the top number on top of the bars) and (2) the IPC of the no-monitoring ~ While the RW lock performs better than the basic lock, biased lock

case (the bottom number). Because each check adds about 33 instrigbetter than RW. In RW, the readers incur the overhead of its local lock

tions to probe the BKS and determine the validity of the access an{Section 3.3). Apart from the serialization due to the local lock, RW

because heap accesses are frequent in general, the instruction overhesgliires 61 instructions for each check compared to biased-lock’s 42.

is usually high. If the instruction overhead is low, as is the case in gzifrhis increase in instruction count is due to the local lock because neither

and crafty, then there is little increase in the runtime due to monitoringbiased lock and RW perform the locality optimization. Thus, the local

However, if the instruction overhead is high, then there is substantidbck overhead is high.

increase in the runtime even if the no-monitoring IPC is low allowing Comparing one monitor thread with the biased lock, we see that

SMT to absorb the instruction overhead. This trend is true for most ofuntime overhead decreases from an average of 414% to 157%.

the benchmarks on the left side of the graph such as art, equake, twog, 3 Hash-block size

vpr, parser, and ammp. The only exception to this trend is mcf whose no--

monitoring IPC is so low that even a high instruction overhead does not ~ As discussed in Section 2.2.1, a small hash-block implies long hash

hurt performance. If the no-monitoring IPC is higher, then SMT canchains due to breaking up larger allocation into many hash-blocks and a

absorb the overhead only to a lesser extent, resulting in higher increat®fge hash-block implies long hash chains due to many smaller alloca-

in runtime with monitoring. gap, per|’ and mesa show this effect. tions falllng into the same bucket. WE varied the hash block size from
Thus, monitoring introduces substantial runtime overhead. While256 bytes to 4KB and found that 512 bytes is the best hash-block size for

programs with low performance such as mcf can absorb monitoring’§ur benchmarks.

instruction overhead, we want programs with high performance not t% 4 ARC

degrade. Therefore, we apply our optimizations to reduce monitoring)

overhead, both by overlapping monitor threads and by eliminating soft- _ 1° reduce the runtime overhead further, we now use the ARC

ware checks by memoizing in hardware which exploits locality to reduce the number of checks in software by
) ' memoizing recent checks in hardware.
5.2 Locking strategy Figure 4 shows the runtime for seven monitor threads using biased

We show the improvements achieved by better locking strategies 3000
== 1 monitor thread, basic lock
== 7 monitor thread, basic lock 4
= 7 monitor thread, RW lock

2000 L == 7 monitor thread, biased lock

N
o)l
o

o
T

1500

1000

=
o u
S O
S o
T

500

108

500 -
100
0

)

)

d

)

q d
))
d

{ BN B 5
U KR R

Runtime relative to no monitor (%)
Runtime relative to no monitor (%

0
2

N RO I R T) N

P o L S F %@@%@

Figure 2: Runtime overhead of monitoring Figure 3: Effectiveness of different locks

1000 16.2 0] S . |
< 61.9% 0% 5 600 |- =m NO Merging 256ARC
s: = N0 ARC E= =1 no merging 1024ARC
8 m 8-entries ARC S 500 L = with merging 256ARC
-g] iggaentrtle_s AEISC E =1 with merging 1024ARC
2 = -entries 2 400 | i
o 3.6 2
S 500 77.4% L 0.3 g -2 300 g
.01 . 9 K
g 8.1%0 57:2% , 7'”’0 T 200 |]
<] 0.1
° ML 9% 1u%o0 | % 0% € 100
) 0% 9 z
E i k) InIIsIIsII:ILII».IInIIaInIIsI I & S0 P S EL RIS RS
X S A% QL F R & i X & 2 © Lo TS
& R QQ"‘}Q’Z)&& FGX P &Q’@“@z ¢ < <

Figure 5: Effectiveness of merging
Figure 4: Effectiveness of the ARC from left to right we show 1, 3 and 7 monitor threads.
locks and 512-byte hash-blocks normalized to no-monitoring case. For ~ Going from basic lock to biased lock corrects the disadvanta-
each benchmark, the bars going from left to right vary ARC sizes as 0, gjeous trend of worsening performance with more threads. In all the
256, and 1024 entries. Note that the y-axis scale is different than that @froups, the ARC significantly improves performance, and a 256-
the previous graphs. There are two numbers on top of the bars for eagntry ARC is enough for most benchmarks. Merging improves over
benchmark. The top number is the ratio of the instruction count of monithe ARC by providing performance-robustness.
toring over that of no monitoring, and the bottom number is the ARC We see that we started with a 414% runtime overhead which we
miss rate, both for 1024-entry ARC. reduced to 24% using a 256-entry ARC and 3 monitor thretms

We see that even an 8-entry ARC significantly improves runtimepyerhead is 18% for 7 monitor threads but using 7 SMT contexts for
over the no-ARC case. For many benchmarks, even 8 entries suffice. Fgpinter bugs may be too aggressive, so we highlight 3 threddsk

these benchmarks, the ARC miss rates (bottom numbers) are low allowe4 overhead compares well with the 700% overhead for [17] and
ing many checks to be_ mem_0|zed resultlng in low instruction _overhea%oo% overhead for [26] which also incurs false positives, and also
(top number). Comparing this overhead with the overhead without th ;) the fact the Java which performs bounds-checks in-line in the

ARC (the top numbers in Figure 2), we see a large reduction. The Onlyjser code incurs about 100% runtime overhead [4], [25]. Because
exceptions are equake and twolf, both of which have large miss rates '

) - , - esticide checks all heap accesses, it covers all out-of-bounds heap
even with 1024 entries. In equake’s case, there are over 1 million les S ccesses without false positives

than-32-bytes memory allocations which overwhelm the ARC. An ARC P)

with 1024 entries could only reach 32KB of equake’s 32MB memoryg Related work

footprint. We have discussed [17], iWatcher [27], and Accmon [26]. Previous

55 Merging work on bug detection is broadly divided into two classes, static and

To increase the effective size of the ARC and to shorten hash chairflrsy r:r?rglc iqedigg' :éatl'% ck\;\?clgngnanci e’:inalﬁsskficr)‘r bug{; 'nCIUdE v:/;)rk
we employ our merging scheme which merges BKS entries of contigu-O [9], [11], [16] and [18]. We define static checking as those schemes

ous allocations of the same size. Figure 5 shows the runtime for sevetnat do notimpose any runtime overhead. However, for languages like C,

monitor threads using biased lock, 512-byte hash-blocks, 512- and 10229int§r alias problems prevent thorough checking of code during com-

entry ARC, and merging and no-merging normalized to no-monitoringpIIe time.

case. I_n dynamic checking, the earlier proposals are mainly software
Equake and twolf are the two benchmarks which have high ARCSOIUtlons (e.g., BCC [1_3] and_ SafePointer [3]). I_-|owever both these

miss rates in Figure 4. Because equake allocates same-sized obje%fsh emfes haée fSI;)bs_t?ntl?\l/l(r)urgtlrgg Oi\wliesrt?s:tde((jso dtlr::?nggr Sfcl:gclii%d 5.4

(about 24 bytes), merging works well. Equake’s ARC miss rate improveéImes or afePointer) P y 9

from 62% to 11%, resulting in the runtime overhead almost vanishingschemes check for program-invariant violations [12] but incur

. . 0
Because twolf’s allocation is not as regular as equake’s, twolf's improve—hlgh runtime overhead (e.g., 500%).

ment is less drastic. As we explained in Section 3.2, merging does notort lel)(stgvflg]lsizugzs?yggénIf(;rsf:zir:k?: er\]/:’?:t#esf;CC)cn;seSg:r?;naJv?tsil:]p_

merge different-sized objects due to difficulties with padding. By reduc? r rain conti 9 ddr am% r thanfine-arain obiect

ing the high rutime overhead of equake and twolf, merging provide%oa Se-grain contiguous address sp er tnanfine-grain objects .
ISE checks all accesses against the same bound (which can be kept in

peformance-robustness to the ARC.

, . . . wo registers for the whole execution) whereas we check accesses
Perl’'s runtime worsens because of its memory allocation charactef? 9)

istics: perl invokes the realloc() library function often, which not only
reduces the possibility of merging, but also causes high instruction over-

700

) o . S 600 == 1 monitor threads g
head when merging is incorporated. This high overhead is the result of S = 3 monitor threads
realloc() performing both frees and mallocs, both of which incur instruc- < 500 = 7 monitor threads 1
tion overhead due to merging. E 400 .

For the rest of the benchmarks merging is not needed as their ARC S 300 |
miss rates are good to start with. Consequently merging does not °
improve them, but merging does not hurt them either. g 200 1
5.6 Performance summary % 100

. - : E 0

Summarizing our results in Figure 6, we show the normalized = & L RIS L L&
runtime averaged over the benchmarks. The three groups from leftto @ ¥ W ¥ ¥ oF ¥ PN SN o
right, show monitoring with the basic lock, with the biased lock but < rI\,Qq’ . ¢ . P & . I‘f? & .
no merging, and with the biased lock and merging. In each group basic fock biased Tock,no merge biased fock,merge

Figure 6: Runtime overhead summary

against individual object boundaries (need to be kept in memory, nd#]
registers).

HeapMon [20] also targets out-of-bounds bugs but checks at word
granularity whereas we check at byte granularity. Thus, HeapMon woul
miss out-of-bounds accesses for object sizes that are not multiple of
words. As [22] shows, “high-impact” bugs access a few bytes pasfs]
objects. HeapMon would miss these important bugs. Adding byte granu-
larity to HeapMon would increase its overhead. Additionally, HeapMon[7]
uses an extra 128KB cache (much larger than our 256-entry ARC), with-
out which its performance overhead is 17%. However, this 17% cannot
be compared with our 24% overhead because Heapmon uses small,
unrealistic SPEC200@stinputs while we use realistief inputs. Heap-

Mon’s performance would be worse with largefinputs.

Mondrian Memory Protection [8] checks memory protection for 9]
arbitrary-sized memory blocks, and could be used for pointer bugs.
However, Mondrian has no ability to overlap checking with user thread.
Implementing Mondrian with additional features (non-existent in [8]) to [10]
allow this overlap would need significantly more complex and dedicated
hardware to service or buffer checks while checker cache misses are
being serviced. [8]'s performance numbers cannot be compared to ou[rlsl]
because [8] gives an overhead on the number of memory accesses using
SPEC200@estandtrain inputs but not runtime overhead witbfinputs. 12

7 Conclusion

The key challenge with dynamic monitoring schemes for detecting13]
pointer bugs is the runtime overhead. Previous approaches have used
thread-level speculation (TLS) to reduce the overhead. However, thid4]
approaches still incur substantial slowdowns while requiring complex
TLS hardware. We explicitly multithreaded the monitor code and usé!®
SMT to exploit the parallelism in the monitor code, avoiding TLS’s
complexity. [16]

Out scheme still slows down the user thread due to two problems:
instruction overhead and insufficient overlap among the monitor threads.
To address instruction overhead, we exploited the natural locality in the
user thread addresses and memoized recent checks in a small table calfed
the allocation-record-cache (ARC). However, programs making and
accessing many small memory allocations cause many ARC misses a@%]
reduce the effectiveness of ARC. To address this issue, we make the key
observation that because adjacent memory objects result in ARC entri?@]
with contiguous address ranges, the entries can be merged into one by
simply merging the ranges into one. This merging increases the effective
size of the ARC. Finally, insufficient overlap among monitor threads
occurs because of inefficient synchronization to protect the allocatiof?
data structure updated by the user thread and read by the monitor
threads. We made the key observation that because monitor-thread reads
occur for every check but user-thread writes occur only in allocations,,
and deallocations, monitor reads are much more frequent than user
writes. We proposed a locking strategy, called biased lock, which puts
the locking overhead on the writer away from the readers. [22]

We show that starting from a runtime overhead of 414% pesticide
reduces this overhead to a respectable 24% running three monitor
threads on an SMT using a 256-entry ARC with merging and biased?3
lock. This 24% overhead compares well with previous schemes’ 700%
and 200% and also with the fact the Java which performs bounds-chec!
in-line in the user code incurs about 100% runtime overhead. Because
pesticide checks all heap accesses, it covers all out-of-bounds heap
accesses without any false positives. [25]

References
[1] Software errors cost us economy $59.5 billion annually. http:/Awww.nist.gov/[26]
public_affairs/releases/n02-10.htm, 2002.

Haithm Akkary and Michael Driscoll. A Dynamic Multithreading Processor.
Proceedings of 31st Int'l Symposium on MicroarchitectDrec. 1998.

Todd Austin, Scott Breach, and Gurindar Sohi. Efficient detection of all [27]
pointer and array access errors Hroceedings of ACM SIGPLAN 94 Confer-

ence on Programming Language Design and Implementalion 1994.

(2
(3]

Chris Bentley, Scott Watterson, David Lowenthal, and Barry Rountree.
Implicit java array bounds checking on 64-bit architecturePtoceedings of

the 18th annual Int'l Conference on Ssupercomputing. 2004.

Doug Burger, Todd Austin, and Steve Bennett. Evaluating future micropro-
cessors: The Simplescalar tool set. Technical Report CS-TR-1996-1308, Uni-
versity of Wisconsin, 1996.

P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers and
writers.Communication of the ACM, Vol14 No10, p667-688t. 1971.

Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic
Detection and Prevention of Buffer-Overflow Attacks.Rroceedings of the
USENIX Summer Conference (USENIX, 98n. 1998.

Josh Cates Emmett Witchel and Krste Asanovic. Mondrian Memory Protec-
tion. In Proceedings of the 10th Int'l Conference on Architectural Support for
Programming Languages and Operating Systébus. 2002.

David Evans. Static detection of dynamic memory errorsPtaceedings of

the ACM SIGPLAN 96 Conference on Programming Language Design and
ImplementationMay 1996.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using
automatic anomaly detection. Proceedings of the 24th Int'l Conference on
Software EngineeringViay 2002.

David Hovemeyer and William Pugh. Finding Bugs Is EasyPtaceedings of

the 19th ACM Conference on Object-Oriented Programming, Systems, Lan-
guages and Application®ec. 2004.

Richard WM Jones and Paul HJ Kelly. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C ProgramsPimceedings of the 3rd

Int'l Workshop on Automated Debuggiriday 1997.

Samuel Kendall. BCC: Run-time Checking for C Program$toceedings of

the USENIX Summer Conference (USENIX 88nmer 1983.

Kevin Krewell. Spec CPU 2000 Released. Microprocessor Report, Vol14,
Issue4, pp21-25, April 2004.

E Christopher Marc Corliss and Amir Roth. DISE: A Programmable Macro
Engine for Customizing Applications. Rroceedings of the 30th Int'l Sympo-
sium on Computer Architectur2003.

Madanlal Musuvathi, David Park, Andy Chou, Dawson Engler, and David
Dill. CMC: A pragmatic approach to model checking real codePtaceed-

ings of the 5th Symposium on Operating Systems Design and Implementation
Dec. 2002.

Jeffery Oplinger and Monica Lam. Enhancing Software Reliability with Spec-
ulative Threads. IfProceedings of the 10th Int'l Conference on Architectural
Support for Programming Languages and Operating Syst@cts 2002.

D. Park, U. Stern, J. Skakkebask, and D. Dill. Java model checking5tim
IEEE Int'l conference on Automated Software EngineeiSgpt. 2000.

Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,
and Brad Calder. Using SimPoint for Accurate and Efficient Simulation. In
Proceedings of the Int'l Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS 0B)ne 2003.

Yan Solihin Rithin Shetty, Mazen Kharbutli and Milos Prvulovic. HeapMon:

A Low Overhead, Automatic, and Programmable Memory Bug Detector. In
Proceedings of the 1st Watson Conference on Interaction between Architec-
ture, Circuits, and Compilers (PAC2 Q4)ct. 2004.

J. Gergory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd Mowry.
A Scalable Approach to Thread-Level SpeculationPtoceedings of the 27th

Int'l Symposium on Computer Architectudein. 2000.

M. Sullivan and R. Chillarege. Software defects and their impact on system
availability: A study of Field failures in operating systems.Hroceedings of
21st Int'l Symposium on Fault-Tolerant Computing, 19Rh. 1991.

] Dean Tullsen, Jack Lo, Susan Eggers, and Henry Levy. Supporting fine-

grained synchronization on a simultaneous multithreading processéthin
Int'l Symposium on High Performance Computer Architectia@. 1999.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing
on-chip Parallelism. IfProceedings of the 22nd Int'l Symposium on Computer
Architecture Jun. 1995.

Hongwei Xi and Songtao Xia. Towards array bound check elimination in java
virtual machine language. IRroceedings of the 1999 Conference of the Cen-
ter for Advanced Studies on Collaborative Reseat®89.

Pin Zhou, Wei Lin, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel
Midkiff, and Jose Torrellas. AccMon: Automatically Detecting Memory-
related Bugs via Program Counter-Based InvariantsPrioceedings of the
37th Int'l Symposium on Microarchitecty®ec. 2004.

Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Joseph Torrellas. iWatcher:
Efficient Architectural Support for Softwarefs Debugging.Rroceedings of
the 31st Int'l Symposium on Computer Architectdren. 2004.

	Abstract
	1 Introduction
	2 Our dynamic monitoring scheme
	2.1 Overview
	2.2 Software support
	2.2.1 Book-keeping-structure (BKS)
	Figure 1: Proposed monitoring scheme

	2.3 Hardware support
	2.3.1 Monitor-Job-queue(MJQ)

	3 Supporting efficient dynamic monitoring
	3.1 Allocation-record-cache (ARC)
	3.2 Range merging
	3.3 Biased Locks

	4 Evaluation Methodology
	Table 1: Simulation parameters

	5 Results
	5.1 Runtime overhead due to monitoring
	Figure 2: Runtime overhead of monitoring

	5.2 Locking strategy
	Figure 3: Effectiveness of different locks

	5.3 Hash-block size
	5.4 ARC
	Figure 4: Effectiveness of the ARC

	5.5 Merging
	Figure 5: Effectiveness of merging

	5.6 Performance summary
	Figure 6: Runtime overhead summary

	6 Related work
	7 Conclusion
	References

