

1 Introduction
Voice over IP (VoIP) systems are gaining in popularity as the

technology for transmitting voice traffic over IP networks.

Along with the anticipated widespread adoption of VoIP

systems comes the possibility of security attacks targeted

against such systems. The attacks can be thought of as a

combination of traditional kinds of security attacks against IP

networks and novel attacks enabled by the architecture of

VoIP systems.

VoIP applications have soft real time requirements. Second,

the attacks can span multiple protocols between different end

points and may be spread over arbitrary time periods.

Considering a range of attack scenarios seen in practice, we

observe that the attack symptom is often detectable only by

correlating information from multiple sources. The

correlation is required among information from multiple

protocols at multiple end points. The correlation may need to

be done from sources that are peers, such as, two

communicating clients or across peer levels, such as, the

communicating clients and the servers.

We propose the design of a system called SPACEDIVE to

serve as a correlation-based IDS for VoIP systems. The Snort

IDS [2] is well known for its efficiency in examining

incoming packets and SPACEDIVE leverages the Snort

functionality. To achieve good performance, SPACEDIVE is

built into Snort using part of its low-level functionality

(examining and processing packets) and adding to it (e.g., to

build state to support stateful detection) and building

completely the high level functionality specific to the VoIP

environment.

The contributions of the paper and the advantages of

SPACEDIVE can be specified as follows:

1. SPACEDIVE presents the architecture of a hierarchical

correlation based IDS that is well suited to detecting

attacks in VoIP applications. The ability to match rules

remotely makes the system less prone to DoS attacks

launched against VoIP components or their hosts.

2. SPACEDIVE provides a language to specify rules for local

matching and remote matching. SPACEDIVE’s

architecture makes the rule matching, efficient and

scalable, both essential features for a VoIP system since

it has soft real-time requirements.

2 SPACEDIVE Design
2.1 SPACEDIVE Design Hierarchy
The SPACEDIVE design can be decomposed into two parts –

the local-level design and the network-level design. Local-

level design involves a single VoIP component (client, proxy,

etc.) and has the local Rule Matching Engine (RMEL).

Network–level design takes into consideration all the

components deployed in one domain or across multiple

domains and the interactions between them and provides the

remote Rule Matching Engine (RMER)

Rule Matching Engine - (RMER)

Rule Matching Engine (RMEL)

Protocol

Stacks
Snort Rules

Sniffing

Module State Repository

Local Event Trail

Event Parser

Network Event Trail

Figure 1: Local-level SPACEDIVE design (Components

below the dotted line are local)

LAN1LAN1

RMER

LAN2LAN2

RMER

RMEH

RMEL RMEL
RMEL RMEL

Figure 2: Rule Matching Engine Hierarchy.

2.2 SPACEDIVE Local Level Design
 Figure 1 shows the SPACEDIVE components at the local level

– the RMEL’s. The components below the dashed line

represent an instance of SPACEDIVE installed on each VoIP

component and integrated with Snort. The sniffing module

makes use of the libpcap library to read packets received

over the network.

The State Repository stores the current state of the system.

State comprises the status of an ongoing session – i.e.

connecting, established, terminated, etc., the status of a node,

e.g., if the node has moved, or the reception of a particular

type of packet (e.g. a SIP BYE message). The Event Trail

keeps track of events, specified using the low level rule

language. The event trail contains events ordered by session

ID. The Processing Engine determines whether a pre-defined

SPACEDIVE: A Distributed Intrusion Detection

System for Voice-over-IP Environments

Vinita Apte, Yu-Sung Wu, Saurabh Bagchi

Dependable Computing Systems Lab

School of Electrical & Computer Eng

Purdue University

Email: {vapte,yswu,sbagchi}@purdue.edu

Sachin Garg, Navjot Singh

Avaya Labs

Email:{sgarg,singh}@avaya.com

event has occurred and records it in the event trail. It also

updates the state of the rule variables in the State Repository.

The Event Parser takes the event trail as input and generates

a trail of “Network Events”. What constitutes a Network

Event is specified in the RMER, which disseminates the

pertinent network event definitions to the RMEL’s. The

RMER uses the Network Event Trail to correlate events

across the different components of the network.

2.3 SPACEDIVE Network Level Design
At the network level, SPACEDIVE views the system as

composed of multiple VoIP domains, each with its own

RMER (Figure 2). The RMER’s perform remote rule matching

from network events generated by each RMEL in its domain.

We have developed a high-level rule language for specifying

network level events in the RMEs.

2.4 Low level rule language
The native rule language of Snort is not well-suited for

stateful or cross-protocol detection, described in [1]. Snort

provides very limited capability for remembering state both

within a session for a given protocol and across protocols. To

make up for this, we add constructs to the existing rule

language so that it is better-suited for detecting attacks

targeted to VoIP environments that span packets in a session

and different protocols. A brief description of the new

constructs follows-

(a) var. This construct is used to set the integer value of a

variable in case of a rule match. This is used as a way of

keeping state. The var construct belongs to the ‘options’ part

of a Snort rule.

(b) Event. The event construct is used to create event trails. It

tells Snort to record an event when the corresponding rule-

match occurs. An event can be triggered on a combination of

rule matches according to the following constructs.

(c) And/Or/Not – Logical Constructs. These constructs are

used to trigger an event based on logical combinations of rule

matches;

(d) Before/After – Temporal Constructs. The Before and

After constructs are used to trigger events based on a

temporal sequence of rule matches.

(e) Net_Event. This construct follows the same syntax as

‘Event’ except that it is used to represent a network event as

opposed to a local event.

(f) Protocol-specific constructs. To detect certain attacks

we need to look into specific fields in the header of a

protocol.

3 Demonstration and Results
To realistically emulate a VoIP environment, we have built a

testbed with two domains. This enables us to demonstrate

intra-domain calls as well as inter-domain calls. Each domain

has a SIP gateway, a proxy server, a registrar server, clients

and support servers like FTP, DNS, etc. The SIP clients and

servers are equipped with the SPACEDIVE IDS. We use the

SIP Express Router (ser) [3] for the SIP servers. Ser can be

configured as a SIP registrar or proxy server. Our SIP clients

are Windows based and use X-Lite [4]. In the testbed, we

have the gateway, registrar and proxy server running on the

same machine. We deployed RMEH in domain 1 though in

practice it can belong to either domain or be in a separate

domain altogether.

Next we demonstrate the detection of the Man-in-the Middle

attack using SPACEDIVE.

Man in the middle attack : intercepting outgoing calls
S2 HS1A B

Invite

Challenge

Invite

Invite

Invite with

Response to

challenge

Challenge

Invite with

Response to

challenge

Invite

404 Not

Found
OK

OK
OK

Figure 3: Man in the middle attack

In this attack, we assume H is on the route between S2 and B.

The goal for H is to intercept outgoing calls from B. The

INVITE messages are authenticated through a challenge-

response mechanism. As B places an outgoing call, the

attacker H forwards the INVITE messages and the challenge-

responses between S2 and B until the authentication phase is

completed. Then H fakes a ‘404 Not Found’ message back to

B such that B thinks A is not present. In effect a call is

established between H and A with H representing itself as B.

This attack can be detected by SPACEDIVE with an end-to-

end matching rule for the OK message going correctly all the

way from A to B through S1 and S2. The end-to-end

matching rule where the passage of a message through

several VoIP components is tracked, is an important class of

rules supported by SPACEDIVE.

Figure 4 shows the results of the detection of this attack.

Local event

detection at S2

Local event

detection at S1 Attack detected

at RMER

Time (ms)

t = 0 t=3.6 t=5.2

Figure 4: Timeline for Remote Rule Matching (times are

not drawn to scale)

References:

[1] Y. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai,

“SCIDIVE: A Stateful and Cross Protocol Intrusion

Detection Architecture for Voice-over-IP

Environments.” In 2004 International Conference on

Dependable Systems and Networks (DSN'04)

[2] The Snort Intrusion Detection System, www.snort.org

[3] SIP Express Router (ser), http://www.iptel.org/ser/

[4] X-Lite, http://xten.com/index.php?menu=X-Series

