

Distributed Diagnosis of Failures in a Three Tier E-Commerce System

Gunjan Khanna, Ignacio Laguna, Fahad A. Arshad, Saurabh Bagchi
Dependable Computing Systems Lab (DCSL)

School of Electrical and Computer Engineering, Purdue University
Email: {gkhanna, ilaguna, faarshad, sbagchi}@purdue.edu

Abstract

For dependability outages in distributed internet
infrastructures, it is often not enough to detect a
failure, but it is also required to diagnose it, i.e., to
identify its source. Complex applications deployed in
multi-tier environments make diagnosis challenging
because of fast error propagation, black-box
applications, high diagnosis delay, the amount of states
that can be maintained, and imperfect diagnostic tests.
Here, we propose a probabilistic diagnosis model for
arbitrary failures in components of a distributed
application. The monitoring system (the Monitor)
passively observes the message exchanges between the
components and, at runtime, performs a probabilistic
diagnosis of the component that was the root cause of
a failure. We demonstrate the approach by applying it
to the Pet Store J2EE application, and we compare it
with Pinpoint by quantifying latency and accuracy in
both systems. The Monitor outperforms Pinpoint by
achieving comparably accurate diagnosis with higher
precision in shorter time.

1. Introduction
The connected society of today has come to rely

heavily on distributed computer infrastructure, be it an
ATM network, or the distributed multi-tier applications
behind e-commerce sites. The consequences of
downtime of distributed systems may be catastrophic.
They range from customer dissatisfaction to financial
losses to loss of human lives [1][2]. There is an
increased reliance on Internet services supported by
multi-tier applications where the typical three tiers are
the web, middleware and database tier. In distributed
systems, especially multi-tier applications, the fault in
a component may manifest itself as an error, and then
propagate to multiple services through the normal
communication between the services. The error may
remain undetected for an arbitrary length of time
causing long error propagation chains. The error can
propagate from one component to another and finally

manifest itself as a failure. The failure might be
detected at a component distant from the originally
faulty component. The availability of a system can be
quantified as MTTF/(MTTF+MTTR) (MTTF: Mean
time to failure, MTTR: Mean time to recovery). There
is enormous effort in the fault tolerance community to
increase the reliability of components in a distributed
system, thus increasing MTTF. There are also a
growing number of efforts aimed at reducing MTTR
[3]. An important requirement for this is to know
which components to recover. This requires tracing
back through the chain of errors to determine the
component that originated the failure. This serves as
the goal for our diagnosis protocol.

For the application and diagnosis model, consider
that the application is comprised of multiple services
communicating through standard protocols and
externally observable messages. Example of such
application services are web services and
authentication services. The services themselves are
comprised of multiple components, e.g. Enterprise Java
Beans (EJBs) or servlets, and the interactions between
these components are also externally visible. Separate
from the application system, we have a monitoring
system (the Monitor) that can observe the external
interactions of the components but not their internal
states. The Monitor initiates diagnosis when a failure is
detected through an existing detection system. In this
paper we use the existing detection system from our
previous work [4].

In practical deployments, the Monitor may not
observe the interaction between components of the
application perfectly because of congestion or their
relative network placement. This is particularly likely
because the application as well as the Monitor is
distributed with components spread out among
possibly distant hosts. Next, any Monitor will have
limited resources and may drop some message
interactions from consideration due to exhaustion of its
resources (e.g., buffers) during periods of peak load.
Third, any diagnostic tests used by the Monitor might
not be perfect. Finally, several parameters of the
environment are not known deterministically and have

to be estimated at runtime. These include the ability of
a component to stop the cascade of error propagation
(error masking ability) and the unreliability of links
between the application components and the Monitor.
All these factors necessitate the design of a
probabilistic diagnosis protocol, in which the root
cause of the failure cannot be deterministically
identified.

Our solution implemented in the Monitor rests on
three basic techniques. First, the messages between the
components are used to build a causal dependency
structure between the components. Second, when a
failure is detected, the causal structure is traversed (till
a well-defined bound) and each component is tested
using diagnostic tests. These diagnostic tests are not
executed on the components directly but on the
component state that had been deduced and stored at
the Monitor. We decide against direct tests on the
components because the state of the component may
have changed since the time it propagated the error and
the probing introduces additional stress on the
component at a time when failures are already
occurring in the system. Third, runtime observations
are used to continually estimate the parameters that
bear on the possibility of error propagation, such as
unreliability of links and error masking capabilities. In
our approach, the end goal of the probabilistic
diagnosis process is to produce a vector of values
called the Path Probability of Error Propagation
(PPEP). For the diagnosis executed due to a failure
detected at component n, PPEP of a component i is the
conditional probability that component i is the faulty
component that originated the cascaded chain of errors
culminating in n.

The basic structuring of an observer and an
observed system is not new [4][5]. The problem of
diagnosis of failures in networked environments
comprised of black-box entities has also been studied
by numerous researchers [6][7][8]. Some of these
efforts however are aimed at easing the task of
distributed debugging rather than accurate diagnosis of
the faulty entity, some are offline approaches, some
require accurate prior dependency information between
the entities, and yet others need help from the
application system through event generation. Our work
aims to provide diagnosis of the faulty entities at
runtime in a non-intrusive manner to the application.

We apply the diagnosis protocol to a three tier e-
commerce system consisting of the Pet Store
application deployed on the JBoss application server
with the Tomcat web server as the front end and the
MySQL database server at the backend. The
application supports multiple kinds of browse-and-buy
transactions that involve interactions between many
components, where components are defined as servlets

and EJBs. Through a modification to the JBoss
containers, messages between the components are
trapped and forwarded to the Monitor. We compare our
approach to Pinpoint [7] in terms of accuracy and
precision of diagnosis. Pinpoint uses statistical
clustering of components with failed transactions to
identify the faulty components. We inject errors in the
application, where the errors may be due to a single
component or interactions between multiple
components. Our approach outperforms Pinpoint with
the accuracy of the diagnosis improving from 20% to
100% over the Pinpoint algorithm for comparable
precision values.

The rest of the paper is organized as follows.
Section 2 presents the system model. Section 3
presents the probabilistic diagnosis approach. Section 4
presents the implementation and experimental test bed.
Section 5 presents the experimental results. Section 6
reviews related work and section 7 concludes the paper.
Table 1 provides a list of acronyms used in this paper.

Table 1. Table of acronyms

Acronym Description
PPEP Path Probability of Error Propagation
LC Logical Clock
CG Causal Graph
DT Diagnostic Tree
STD State Transition Diagram
EMC Error Masking Capability
AG Aggregate Graph

2. System Model and Background
There are two distinct systems—the Monitor and

the application system. The Monitor obtains the
protocol messages either through modification to the
application’s middleware layer to forward the
messages or by a passive snooping mechanism by the
Monitor (see Figure 1). In either scenario the internal
state of the components is not visible to the Monitor
and they are treated as black-box for the diagnostic

Figure 1. A monitoring system, (the

Monitor) verifying the interactions between the
service components

process. The diagnostic process is triggered when a
failure is detected.

2.1. Assumptions
We assume that components can fail arbitrarily, as

long as the failures are observable in the message
interaction between components. These failures could
be caused by incorrect deployment, software bug,
security vulnerability or performance problems to
name a few. We follow the classical definition of faults
being underlying defects that are triggered to become
errors and some errors causing end-user visible failures.
Errors can propagate from one component to another
through the message exchanges between them.

The communication between the components can
be asynchronous but the jitter on any given link
between the components and the Monitor is bounded.
This allows the Monitor to assign a temporal order in
which messages occur in the application. For a non-
zero jitter value there can be messages that the Monitor
will determine to have occurred simultaneously. We
assume that the Monitor maintains a logical clock for
each observed component and it is incremented for
each event – a send or receive message. The
assumption required by the diagnosis protocol is that
for an S(ender)-R(eceiver) communication, the
variation in the latency on the S-M(onitor) channel as
well as the variation in the sum of the latency in the S-
R and R-M channels is less than a constant ∆t, called
the phase. If messages M1 and M2, corresponding to
two send events at S, are received at the Monitor at
(logical) times t1 and t2, it is guaranteed that the send
event M1 happened before M2 if t2 ≥ t1+∆t. The
communication channel is considered to be unreliable
where message duplication, loss or conversion to
another correct protocol message may happen.

2.2. Dependency Information
The Monitor performing diagnosis maintains a

causal graph during the times that it is verifying the
operation of the application protocol. Let us denote the
Causal Graph (CG) at Monitor m by CGm which is a
graph (V, E) where (i) the set V contains all the
components verified by m; (ii) an edge or link e
contained in E, between vertices v1 and v2 (which
represent components) indicates interaction between v1
and v2 and contains state information about all
observed message exchanges between v1 and v2
including the logical clock (LC) at each end. The state
information includes a type of interaction and any
arguments associated with that interaction. The links in
the CG are also time-stamped with the local (physical)
time at the Monitor where the link is created. An
example of a CG created at the Monitor is given in

Figure 2 for the sequence of message exchange events
shown with components A, B, C, and D. The number
denotes the sequence of the messages. For example, for
message ‘6’, the logical clock time at the sender is
B.LC4. Since message ‘2’ is assigned a logical time
value of B.LC2, it causally precedes message ‘6’. The
LC time stamps helps obtain a partial order over the
messages and hence causality. The order of the
messages is the order seen by the Monitor which may
be different from the order in the application because
the communication links are asynchronous.

For a link to be completed in the CG, a matching is
required between the sending and the receiving
component’s messages. The link A→B will be matched
once both the message sent by A and the corresponding
message received by B is seen at the Monitor. The
Monitor initially stores the messages in a Temporary
Links table and moves the matched links to the CG
when some trigger is met. As many links as can be
matched are transferred to the CG while those that are
not matched, but are within the phase from the latest
message, are kept in the temporary links. Remaining
links in the temporary links table are moved to the CG
as unmatched links.

It is imperative to avoid the CG growing in an
unbounded manner since this would lead to long delays
in traversing the CG during diagnosis leading to high
latency in diagnosis. However, complete purging of the
information in the CG can cause inaccuracies during
the diagnosis process. We aggregate the state
information in the CG at specified time points and
store it in an Aggregate Graph (AG). The AG contains
aggregate information about the protocol behavior
averaged over the past. The AG is similar to CG in the
structure i.e. a node represents a component and a link
represents a communication channel. Unlike the CG,
there is a single directed link between A and B for all
the messages which are sent from A to B. The AG
contains some node level information (such as, the
node reliability) and some link level information (such
as, the reliability of the link in the application system).

2.3. Diagnosis Tree
When a failure occurs, a Diagnosis Tree (DT) is

constructed using the state information stored in CG.
The DT formed for failure F at node D is denoted as
DTFD. The tree is rooted at node D and the nodes
which have directly sent messages to node D are
present at depth 1. Recursively, depth i consists of all
the components which have sent messages to nodes at
depth (i-1). Since the CG is finite size, the tree is
terminated when no causally preceding message is
available in the CG after some depth k. The same
component might appear several times in the tree at

various depths because it might have exchanged
messages with various components at different points
during the application run. Specifically, a component
is represented as many number of times as the number
of different states it has been in, while exchanging
messages.

2.4. Diagnostic Tests
We assume the existence of diagnostic tests which

operate on a component and are specific to that
component and its state. We impose that the tests
should only operate on the information already stored
at the Monitor. These tests could be probabilistic in
nature, implying that they may not be perfect. The
specifics of these tests do not affect our probabilistic
model. However, for our implementation, we employ a
kind of tests called causal tests. A causal test has the
format: <Type> <State1> <Event1> <Count1>
<State2> <Event2> <Count2>, where, Type could be
one of {incoming, outgoing, hybrid} depending on the
kind of messages being tested. The (State1, Event1,
Count1) forms the pre-condition to be matched, while
(State2, Event2, Count2) forms the post-condition that
should be satisfied for the node to be deemed correct.
The examination of Event2 is done in an interval of
time ∆t (a phase) from Event1. The tuple (S, E, C)
refers to the fact that the event E should have been
detected in the state S at least counts C number of
times.

The correctness rules can be created by examining
the state transition diagram (STD) of the component
and verifying the transitions or by observing some
traces of the correct protocol operation. Additionally,
rules corresponding to QoS requirements (such as, the
number of accesses to the SignOnEJB in Pet Store
must be restricted to 20 within a 1 sec time window)
can be framed by the system administrators. Finally,
rules for verifying security properties in the system
(such as, the number of logins to Pet Store bounded by
a threshold) can be set by security administrators.
Rules therefore can be framed through a mix of
automated and manual means. This is similar to the
situation in all rule based systems, such as intrusion
detection systems [9][10].

3. Probabilistic Diagnosis
The operation of the diagnosis protocol has two

logical phases: (1) The diagnostic process that results
in a set of nodes being diagnosed as the root cause of
failure; (2) Information from the diagnostic process
being used to update the parameters used later for
diagnosis. The overall process is depicted in Figure 4.
Let us first look at the diagnostic process. The goal of
the diagnostic process is to calculate the probability of
each node in the distributed system being faulty.

3.1. Path Probability of Error Propagation
The DT forms the basic structure on which the

algorithm operates. The path from any node ni to the
root of the DT constitutes a possible path for error
propagation, i.e. a fault present in ni could have caused
the root node to fail during operation. The probability
of a path being the chain of error propagation is termed
as the Path Probability of Error Propagation (PPEP).

 A sample DT created from the sample CG in
Figure 2 is shown in Figure 3. Here the failure was
manifested at node D. The numbers at the links
correspond to the message IDs. The root of the tree is
the failure node, i.e., D. Depth 1 consists of nodes C
and B which have sent messages to D causally before
the failure was detected. Here node B is repeated twice
because the states of B in which B→C and B→D
communication take place are different.

Definition: PPEP(ni, nj), where ni ≠ nj, is defined
as the probability of node ni being faulty and causing
this error to propagate on the path from ni to nj, leading
to a failure at nj. The probability that the error is caused
by the component where the failure is detected is
denoted as P(nj) = PPEP(ni, nj), where ni= nj and it is
the root of DT. The relation between PPEP and P(nj) is

)(1),(j

Nn
ji nPnnPPEP

i

−<∑
∈

Message ID Sender.LogicalClock,
Receiver.LogicalClock

1 A.LC1, B.LC1
8 A.LC4, D.LC3
2 B.LC2, C.LC1
6 B.LC4, A.LC3
7 B.LC5, D.LC2
3 C.LC2, B.LC3
4 C.LC3, A.LC2
5 C.LC4, D.LC1

Figure 2. A sample causal graph. A, B, C

and D exchange messages 1-8 among each
other. The message ID indicates the causal
order, i.e., message 1 precedes the rest of

messages

Figure 3. Sample DT for the CG in Fig. 2

where nj is the root of DT, and N is the set of all nodes
in DT except the root node. This inequality is due to
the fact that CG is truncated (as explained in section
2.2) and because DT is constructed from CG, it does
not represent all the possible nodes and paths to the
root node. PPEP depends on the following parameters:
(1) Node reliability – The node reliability (nr) is a
quantitative measure of the component corresponding
to the node being correct. The PPEP for a given node
is proportional to (1- nr). This node reliability is
obtained by running the diagnostic tests on the state of
the entity. A set of predetermined tests are performed,
each of which yields a ‘0’ (test flags an error) or a ‘1’
(success). If the entire set of tests is denoted by R and a
subset of tests which yield ‘1’ be denoted by R′, we
define coverage c(n) = |R′ |/|R|, assuming all tests
have equal weights. For the first time the diagnosis is
triggered, the node reliability is equal to c(n). During
the entire execution of the application, multiple failures
cause multiple diagnosis procedures to execute. Each
time the diagnosis is performed, node reliabilities (in
AG) corresponding to all of the nodes in the DT are
updated. In [11] it is explained how node and link
reliabilities are updated.
(2) Link Reliability – In simple terms the link
reliability between two nodes ni and nj denoted as lr(i,j)
measures the number of received packets by the
receiver over the number of packets actually sent.
PPEP can be considered proportional or inversely
proportional to the link reliability between nodes,
depending on the nature of the application being
observed. On the one hand, we can assume (as we have
done in our current design) that a reliable link increases
the probability of the path being used for propagating
errors. However, we can also think an unreliable link
as the source of unexpected inputs to subsequent
components leading to a higher value of PPEP. In our
framework, PPEP is proportional to link reliability
because we consider that, in the majority of
applications, errors are more likely to be propagated in
the presence of reliable links. The Monitor does not
diagnose a link as the root cause of a failure, rather it

diagnoses application components. Thus, if in reality,
an unreliable link initiates the cascading chain of errors,
then the first component that is affected by the link
error will be diagnosed. Since the Monitor does not
detect link failures, we do not inject failures in links for
our experiments. The link reliability is maintained for
each edge in the AG. Note that since the Monitor is
only observing the system, the errors within the
Monitor in observing the messages also may
erroneously affect the link reliability. These errors
cannot be distinguished in our framework. The
Monitor deduces the link reliability through observing
the fraction of successful message transmissions over a
particular link.
(3) Error masking capability (EMC) – The error
masking capability (em) quantifies the ability of a node
to mask an error and not propagate it to the subsequent
link on the path in the DT toward the root. The EMC of
an entity depends on the type of error, e.g., syntactical
or semantic errors. Additionally, a node may have
different error masking capabilities depending on the
type of message being processed and forwarded, e.g., if
there is an off-by-one bug in the counter check on the
number of simultaneous JDBC connections, it will
mask the errors when the number of JDBC connections
is one more than the maximum threshold. The EMC of
node C in Figure 3 is denoted by em(C) and is a
function of message type and error type. The PPEP for
a given node is inversely proportional to the EMC
values of nodes in the path since the intermediate
nodes are less likely to have propagated the error to the
root node.

With the DT in Figure 3, PPEP(C, D) = (1-nr(C)) ·
lr(C,D), PPEP(B, D) = (1-nr(B)) · lr(B,C) · (1- em(C)) ·
lr(C,D). For a general path P consisting of nodes n1,
n2…nk with link lr(i, j) between nodes ni and nj, the
PPEP(n1, nk) for a failure detected at node nk (root
node in the corresponding DT) is given by

PPEP(n1, nk) = (1-nr(n1))·lr(1,2)·(1- em(n2))·lr(2,3)…
·lr(i,i+1)·(1- em(ni+1))·lr(i+1,i+2)… (1- em(nk-1))·lr(k-1,k).

We consider that all rules cannot be matched at
runtime because that would impose unnecessary
overhead and would not be useful in most executions
(when there is no failure). The first component that
failed a test does not necessarily implicate the
component that sent it, other factors are to be
considered, such as, how reliable were the links
between that component and the component at which
the failure was ultimately detected. This is because the
distance from the root is not a matter simply of the
number of links on the DT. Also, the tests are not
perfect and cannot therefore be trusted to indict a
component by themselves.

Figure 4. Schematic with the overall

process flow of the diagnostic process

4. Experimental Testbed
4.1. Application

We use for our evaluation Pet Store (version 1.4), a
sample J2EE application developed under the Java
BluePrints program at Sun Microsystems [12]. It runs
on top of the JBoss application server [13] with
MySQL database [14] as the back-end providing an
example of a 3-tier environment. Figure 5 depicts the
application topology for the experiments. The Pet Store
application is driven by a web client emulator which
generates client transactions based on sample traces.
The web client emulator is written in Perl using lynx as
the web browser. For the mix of client transactions, we
mimic the TPC-WIPSo [15] distribution with equal
percentage of browse and buy interactions. The
servlets and the EJBs are considered as components in
our experiments and these serve as the granularity level
at which diagnosis is done. This design choice is based
partly on the fact that in JBoss a faulty servlet or an
EJB can be switched out at runtime for a correct one.
We identify a total of 56 components in the application.

We consider a web interaction to be a complete
cycle of communication between the client emulator
and the application, as it is defined by the TPC
Benchmark WIPSo specification [15]. Examples of
web interactions could be entering the Welcome page
or executing a Search. A transaction is a sequence of
web interactions. An example of a transaction by a user
who is searching and viewing information about a
particular product is: Welcome page Search View
Item details. For our experiments we created a total of
55 different transactions. A round is a permutation of
these 55 transactions modeling different user activities
that occur on the web store. Within a round,
transactions are executed one at a time. Two
transactions are considered to be non-unique if they
use exactly the same components, neglecting the order
in which the components are used. Thus, a transaction
that comprises: Welcome, Search, Search is not unique

with respect to another that comprises: Welcome,
Search. There are 41 unique transactions in the set of
55 transactions that we use. Although 55 is not an
exhaustive set of possible transactions in the
application, the chosen set exercised a wide variety of
web-interactions and between them, touched all the
components of Pet Store. We note that the results
presented here depend on the exact set of transactions
used to exercise the system.

4.2. Monitor configuration
The Monitor is provided an input of state transition

diagrams for the verified components and causal tests
used during calculation of PPEP values. The size of
the causal graph is bounded at 100 links. Figure 6
shows an example STD for CreditCardEJB used by the
Monitor in our experiments. A start state S0 signifies a
no request state. If a request for processing is received
from another component, the state of the EJB moves
from S0 accordingly. With the STD, we have some
simple causal tests which can be derived from the STD
itself. As explained in section 2.4, causal tests are
dependent on the state and event of the component.
The exhaustive list of STDs and rules used for the
experiments here is provided in [16].

4.3. Pinpoint Implementation
 Pinpoint serves as a valid point of comparison with

the Monitor since both systems have the same focused
goal (diagnosis, as opposed to say performance
debugging as in [6] with diagnosis being a side issue)
and have the same target application model (black-box
or gray-box application and passive observation of the
application for diagnosis). Importantly, Pinpoint
represents a recent state-of-the-art development
([7][17]) and has been well explained and
demonstrated on an open source application (compare

Figure 5. Logical Topology of the Client
and Server for the Experiments

Figure 6. An example STD for

CreditCardEJB and some Causal Tests

to Magpie [18] where the application is not available to
us), and its algorithms are not dependent on a large set
of parameters (compare to the machine learning
approach in [19][20] where several statistical
distributions would have to be assumed).

We implement the Pinpoint algorithm (as explained
in [7]) for comparison with the Monitor’s diagnosis
approach. Pinpoint diagnosis algorithm requires as
input a dependency table—a mapping of which
components each transaction depends on. This is in
contrast to the Monitor approach, where such
dependency information does not have to be
determined a priori and fed into the system before
execution. Instead the Monitor deduces the
dependencies through runtime observations as
described in section 2.2. For Pinpoint, when
transactions are executed, their failure status is
determined by the failure detectors. A table (called the
input matrix) is then created with the rows being the
transactions, the first column being the failure status,
and the other columns being the different components.
If a cell T(i, 1) is 1, it indicates transaction i has failed.
If a cell T(i, j) (j≠1) is 1, it indicates transaction i uses
the component j. Pinpoint correlates the failures of
transactions to the components that are most likely to
be the cause of the failure.

A crucial point for the accurate operation of
Pinpoint is that the transactions should be diverse
enough, i.e., use distinct non-overlapping components.
Two transactions T1 and T2 are called distinct with
respect to a set of components {C1, C2, …, Ck} if there
is no overlap between these columns for T1 and T2, i.e.,
when T1’s row has a 1 in any of these columns, T2’s
row has a zero, and vice-versa. Pinpoint as described
by the authors in [7] is an offline approach. For
comparison with the Monitor, we convert it into an
online protocol. We incrementally feed the transactions
and their corresponding failure status as they occur in
the application, rather than waiting for all the
transactions in a round to be completed before
executing Pinpoint. To provide a comparable platform
between the Monitor and Pinpoint, we keep the testbed
identical to that in [7]—same client, web server,
application server (with identical components), and
database server. Pinpoint is sensitive to the transactions
used; however, [7] is silent on the list of used
transactions and we were unable to obtain them.

We created an internal and an external failure
detector as in [7] to provide failure status of
transactions to Pinpoint and the Monitor.

4.4. Fault Injection
We perform fault injection into the components of

the Pet Store application (i.e., Servlets and EJBs). We

choose a set of 9 components called target components
(see Figure 12) consisting of six EJBs and three
servlets for fault injection. We use four different kinds
of fault injection as in [7], i.e., declared exception,
undeclared exception, endless call and null call. The
injected faults affect node reliability and EMC for the
PPEP calculations.

The internal detector is more likely to detect the
declared and the undeclared exceptions, and the null
calls while the external detector is more likely to detect
the endless call. For a given round only one target
component is injected. We use 1-component, 2-
component and 3-component triggers. In a 1-
component trigger, every time the target component is
touched by a transaction, the fault in injected in that
component. In a 2-component trigger, a sequence of 2-
components is determined and whenever the sequence
is touched during a transaction, the last component in
the transaction is injected. This mimics an interaction
fault between two components, and, in the correct
operation of a diagnosis protocol, both components
should be flagged as faulty. The 3-component fault is
defined similarly.

5. Results
5.1. Performance Metrics

 We use precision and accuracy as output metrics
as in the Pinpoint work to enable a comparison. A
result is accurate when all components causing a fault
are correctly identified. For example, if two
components, A and B, are interacting to cause a failure,
identifying both would be accurate. Identifying only
one or neither would not be accurate. However, if the
predicted fault set (by the diagnosis algorithm) is {A, B,
C, D, E} and the fault was in components {A, B}, then
the accuracy is still 100%. Precision captures the non-
idealness in this case. Precision is the ratio of the
number of faulty components to the total number of
entities in the predicted fault set. In the above example,
the precision is 40%. Components {C, D, E} are false
positives. Lower precision implies high false positives.
There is a tension between accuracy and precision in
most diagnosis algorithms. When the algorithm is
sensitive, it generates highly accurate results, but also
causes a large number of false alerts reducing precision.
Pinpoint uses the UPGMA clustering algorithm and
varying the size of the faulty cluster varies the
precision and accuracy. In the Monitor, after the
diagnosis algorithm terminates, an ordered list of
components is produced in decreasing order of PPEP.
We define the predicted fault set as the top k
components in the ordered output list. We vary k to
obtain different accuracy and precision values.

5.2. Single Component Faults
 In single component faults, the fault injection

trigger consists of a single component. If a transaction
touches the target component then one of the four
kinds of faults (chosen randomly) is injected and the
injection remains permanent for the remainder of the
round. First, let us consider the effect of varying cluster
size on the performance of Pinpoint. The total number
of injections for these results is 36—9 target
components for injection and all 4 types of injection
done on each component. The averaged results for
accuracy and precision are plotted in Figure 7 (the bars
show 90% confidence interval). As the size of the
cluster increases, we see an increase in the accuracy
which is intuitive because at some point the failure
cluster includes all the components that are actually
faulty. Beyond that, increase in cluster size does not
impact the accuracy. As the cluster size increases, the
precision increases to a maximum value and then
decreases thereafter. The increase occurs till all the
faulty components are included in the failure cluster.
Thereafter, increasing the cluster size includes other
non-faulty components and thus brings down the
precision. The maximum value of precision occurs
when all the faulty components are included in the
failure cluster. However the precision is still poor (less
than 10%). This is explained by the observation that
for the transactions in the application, there is tight
coupling between multiple components. Whenever the
entire set of tightly coupled components does not
appear together as a fault trigger, which is the

overwhelming majority of the injections, the precision
suffers. The amount of tight coupling between the
components is showed in Figure 12. We emphasize
that if we were to hand pick transactions such that they
are distinguishable with respect to the target
components, then the performance of Pinpoint would
improve. Two transactions Ti and Tj are
indistinguishable with respect to a set of components
{C1, C2, … , Ck} if the columns of Ti in the input matrix
corresponding to these components are identical to that
of Tj. Figure 8 shows the variation of Accuracy with
False Positives for Pinpoint and the Monitor. This is
averaged across the 36 injections for the presented
results. For 1-component faults, Pinpoint has high false
positives rates but the accuracy eventually reaches 1. In
contrast the Monitor has a much higher accuracy
keeping a low false positive rate. The Monitor’s
accuracy also reaches 1 but at a much lower value of
false positives (0.6) as compared to Pinpoint (> 0.9).
The latency of detection in our system is very low.
Thus, the faulty component is often at the root of the
DT in the Monitor. Since error propagation is
minimized, the PPEP value for the faulty entity is high
causing it to be diagnosed by the Monitor. This
explains the high accuracy for the Monitor. However,
Pinpoint’s algorithm does not take advantage of the
temporal information—the temporal proximity
between the component where detection occurs and the
component that is faulty. As a consequence its
accuracy suffers relative to that of the Monitor. Note
that we do not have a figure corresponding to Figure 7
for the Monitor since its performance does not depend

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
ClusterSize

Ac
cu

ra
cy

(a)

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60
ClusterSize

P
re

ci
si

on

(b)

Figure 7. Single component fault injection: Variation of (a) accuracy and (b) precision with
cluster size in Pinpoint

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
False Positive=(1-Precision)

Ac
cu

ra
cy

(a)

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive=(1-Precision)

M
on

ito
r A

cc
ur

ac
y

(b)

Figure 8. Single component fault injection: Performance of (a) Pinpoint and (b) Monitor. Both
can achieve high accuracy but Pinpoint suffers from high false positive rates

on cluster size.
Notice that in Pinpoint, for a given value of false

positives, two different accuracy values are achieved
since a given precision value is achieved for two
different cluster sizes (Figure 7(b)). Since accuracy is a
monotonically increasing plot with cluster size (Figure
7(a)), the different cluster sizes give two different
accuracy values. For a given data point, the accuracy is
either 100% (when the single injected component is
included by Pinpoint in the diagnosed set) or 0%,
which is then averaged across the total number of
experiments. These discrete values explain the large
confidence intervals.

5.3. Two Component Faults
The 2-component fault injection results are shown

in Figure 9. Pinpoint results improve in terms of the
false positives implying higher precision. This is
attributed to the fact that Pinpoint’s clustering method
works better if the failing transactions are better
distinguishable from the successful transactions.
Recollect distinguishable is discussed in the context of
components. A 2-component fault includes two
components as the trigger and going from one
component to two components increases the
distinguish-ability of transactions. Consider transaction
T1 and T2 both of which use component C1 (i.e., the
trigger in a single component fault injection). However,
for a two component fault injection with trigger as {C1,

C2}, the transactions T1 and T2 will be distinguishable
as long as both T1 and T2 do not use C2. Thus, say T1
uses {C1, C2} and T2 does not use C2. Then only T1 will
fail and T2 will not, leading to the diagnosis
(considering simplistically that these are the only
transactions and components) of C1-C2 as the faulty
entities. In contrast, the Monitor results although, still
significantly better than Pinpoint, suffer in the 2-
component fault injection. One can see that accuracy
reaches a maximum of only 0.83 compared to 1.00 in
1-component injection. The number of times in a round
the trigger for the 2-component fault is hit is lower
than for the single component fault. Each detection
causes an execution of the diagnosis process and each
execution of the diagnosis process updates the
parameters of the causal graph away from an arbitrary
initial setting toward an accurate set of values. Thus,
for the 2-component faults, the Monitor gets less
opportunity for refining the parameter values and
consequently the PPEP calculation is not as accurate
as for the single component faults. This explains the
decline in performance of the Monitor for the 2-
component faults.

5.4. Three Component Faults
 The 3-component fault injections show even better

results for Pinpoint with the maximum average
precision value touching 27%. This is again attributed
to the fact that more number of components causes

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive=(1-Precision)

A
cc

ur
ac

y

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
False Positive=(1-Precision)

M
on

ito
r A

cc
ur

ac
y

(b)

Figure 9. 2-component fault injection: Performance of (a) Pinpoint and (b) Monitor.
Performance of the Monitor declines and Pinpoint improves from the single component fault, but

the Monitor still outperforms Pinpoint

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive=(1-Precision)

A
cc

ur
ac

y

(a)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
False Positive=(1-Precision)

M
on

ito
r A

cc
ur

ac
y

(b)

Figure 10. 3-component fault injection: Performance of (a) Pinpoint and (b) Monitor.
Performance of the Monitor declines and Pinpoint improves from the single and two component

faults, but the Monitor still outperforms Pinpoint

selected transactions to fail leading to a better
performance by the clustering algorithm. The Monitor
again outperforms Pinpoint by achieving higher
accuracy at much lower false positives (see Figure 10).
The Monitor’s performance again declines compared
to the 2-component faults due to the same reason
pointed in the previous section (the number of
diagnoses for the 3-component trigger is less than that
for the 2-component trigger).

5.5. Latency
 In its online incarnation, Pinpoint takes as input

the transactions and corresponding failure status every
30 seconds during a round. It runs the diagnosis for
each of these snapshots taken at 30 second intervals,
terminating when the round is complete and Pinpoint
executes on the entire input matrix corresponding to all
the 55 transactions. The latency plots (see Figure 11)
show that after 3.5 minutes the accuracy and precision
of Pinpoint increase with latency. Pinpoint’s
performance is only defined for the time points after
the first failure has been injected and detected. For our
experiments, this happens at and beyond 3 minutes. To
the left of this point, both accuracy and precision are
undefined since Pinpoint does not predict any

component to be faulty before a failure is detected.
We define the latency of diagnosis for the Monitor

as the time delay from the receipt of the detector alert
which marks the beginning of the diagnosis till the
PPEP ordered list is generated. The Monitor has an
average latency of 58.32 ms with a variance of 14.35
ms, aggregated across all three fault injection
campaigns.

5.6. Behavior of Components
The Pet Store application has some components

which are tightly coupled (see Figure 12), i.e., they
tend to be invoked together for the different
transactions supported by the application. We have
noted earlier that tight coupling negatively impacts
Pinpoint’s clustering algorithm. For our experiments,
we inject failures in 9 components and here we
consider how tightly coupled these components are
with the other components in Pet Store. AddressEJB is
tightly coupled with 4 components implying that it
always occurs with these 4 components in all the 55
transactions in our experimental setup. Pinpoint cannot
distinguish between sets of components that are tightly
coupled and thus reports all the tightly coupled
components as faulty even though in reality only a
subset of these may be faulty. This is the fundamental
reason why its precision is found to be low in all our
experiments. To counter this problem, one can
synthetically create transactions that independently use
different components (as noted by the authors
themselves in [7]). However, for an application like Pet
Store, components are naturally tightly coupled and
thus generating such synthetic transactions is a difficult
task. Also even if we could devise such “unnatural”
transactions that would make components
distinguishable, it cannot be assumed that such
transactions will be created by users in the system.

6. Related Work
 White box systems: The problem of diagnosis in

distributed systems can be classified according to the

0

0.1

0.2

0.3

0 1 2 3 4 5 6
Latency (minutes)

Pr
ec

is
io

n

1-Component
2-Component
3-Component

(a)

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6
Latency (minutes)

A
cc

ur
ac

y

1-Component
2-Component
3-Component

(b)

Figure 11. Single component fault injection: Variation of (a) precision and (b) accuracy and
precision with latency for Pinpoint in single component fault injection. Higher latency means

higher number of transaction data points and Pinpoint’s performance improves monotonically

0 1 2 3 4 5

AddressEJB

AsyncSenderEJB

CatalogEJB

ContactInfoEJB

CreditCardEJB

ShoppingClientFacadeLocalEJB

order.do

enter_order_information.screen

item.screen

C
om

po
ne

nt
s

w
he

re
 fa

ul
ts

 a
re

 in
je

ct
ed

of tightly coupled components
Figure 12. Number of tightly coupled

components for Pet Store

nature of the application system being monitored –
white box where the system is observable and,
optionally, controllable; and black box where the
system is neither. The Monitor system falls in the latter
class. White box diagnostic systems often use event
correlation where every managed device is
instrumented to emit an alarm when its state changes
[21][22]. By correlating the received alarms, a
centralized manager is able to diagnose the problem.
Obviously, this depends on access to the internals of
the application components. Also it raises the concern
whether a failing component’s embedded detector can
generate the alert. This model does not fit our problem
description since the target system for the Monitor
comprises of COTS components, which have to be
treated as black-box. White box diagnosis systems that
correlate alarms have been proposed also in the
intrusion detection area [23].

Debugging in distributed applications: There has
been a spurt of work in providing tools for debugging
problems in distributed applications – performance
problems [6][7][18], misconfigurations [24],
unexpected behavior [24], etc. The general flavor of
the approaches in this domain is that the tool collects
trace information at different levels of granularity and
the collected traces are automatically analyzed, often
offline, to determine the possible root causes of the
problem. For example, in [6], the debugging system
performs analysis of message traces to determine the
causes of long latencies. The goal of these efforts is to
deduce dependencies in distributed applications and
flag possible root causes to aid the programmer in the
manual debug process, and not to produce automated
diagnosis.

More recent work has produced powerful tools for
debugging of distributed applications. In [25], the
authors present a tool called liblog that aids in
recreating the events that occurred prior to and during
failure. The replay can be done offline at a different
site. The tool guarantees that the event state in its log
will be consistent, i.e., no message is received before it
has been sent. This work stops short of automated
diagnosis. Some other mechanism, not described in the
paper, is responsible for taking the replayed events and
determining the root cause. There are several other
offline tools that aid diagnosis, such as tools for data
slicing [26], and backtracking, but they all require
manual effort in diagnosing the faulty components.

Network diagnosis: Diagnosis in IP networks is
addressed in Shrink [28]. This tool used for root cause
analysis of network faults models the diagnosis
problem as a Bayesian network. It specifically
diagnoses inaccurate mappings between IP and optical
layers. The work in [29] studies the effectiveness and
practicality of Tree-Augmented Naive Bayesian

Networks (or TANs) as a basis for performing offline
diagnosis and forecasting from system-level
instrumentation in a three-tier network service. The
TAN models are studied to select combinations of
metrics and thresholds values that correlate with
performance states of the systems (compliance with
Service Level Objectives). This approach differs from
the Monitor approach in the sense that it relies on
monitoring performance metrics rather than diagnosing
the origin of the problem over a set of possible
components.

Automated diagnosis in COTS systems:
Automated diagnosis for black-box distributed COTS
components is addressed in [30]. The system model
has replicated COTS application components, whose
outputs are voted on and the replicas which differ from
the majority are considered suspect. This work takes
the restricted view that all application components are
replicated and failures manifest as divergences from
the majority. In [31], the authors present a combined
model for automated detection, diagnosis, and recovery
with the goal of automating the recovery process.
However, the failures are all fail-silent and no error
propagation happens in the system, the results of any
test can be instantaneously observed, and the monitor
accuracy is predictable.

 In none of the existing work that we are aware of
is there a rigorous treatment of the impact of the
Monitor’s constraints and limited observability on the
accuracy of the diagnosis process. There are sometimes
statements made on this without supporting reasoning
– for example, in [6], it is mentioned that drop rates up
to 5% do not affect accuracy of the diagnosis.

7. Conclusion
In this paper we presented an online diagnosis

system called the Monitor for arbitrary failures in
distributed applications. The Monitor passively
observes the message exchanges between the
components of the application and at runtime, performs
a probabilistic diagnosis of the component that was the
root cause of a detected failure. The Monitor is
compared to the state-of –the-art diagnosis framework
called Pinpoint. We tested the two systems on a 3-tier
Java-based e-commerce system called Pet Store.
Extensive fault injection experiments were performed
to evaluate the accuracy and precision of the two
schemes. The Monitor outperformed Pinpoint
particularly in precision, though its advantage
narrowed for interaction faults. As part of future work
we are looking at diagnosis in high throughput network
streams. In these streams, the Monitor may have to
decide to drop some parts of a stream. We are looking
into intelligent decision making to maintain a high

accuracy. We are also investigating machine learning
based diagnosis in the presence of uncertain
information.

8. References
[1] META Group, Inc., "Quantifying Performance Loss: IT

Performance Engineering and Measurement Strategies",
November 22, 2000. Available at:
http://www.metagroup.com/cgi-
bin/inetcgi/jsp/displayArticle.do?oid=18750.

[2] FIND/SVP, 1993, "Costs of Computer Downtime to
American Businesses," At: www.findsvp.com.

[3] A. Brown and D. A. Patterson, “Embracing Failure: A
Case for Recovery-Oriented Computing (ROC),” 2001
High Performance Transaction Processing Symp.,
Asilomar, CA, October 2001.

[4] G. Khanna, P. Varadharajan, and S. Bagchi, “Self
Checking Network Protocols: A Monitor Based
Approach,” In Proc. of the 23rd IEEE Symp. on
Reliable Distributed Systems (SRDS ’04), pp. 18-30,
October 2004.

[5] M. Zulkernine and R. E. Seviora, “A Compositional
Approach to Monitoring Distributed Systems,” IEEE
International Conference on Dependable Systems and
Networks (DSN'02), pp. 763-772, Jun 2002.

[6] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen, "Performance debugging for
distributed systems of black boxes," Proc. of the 19th
ACM Symp. on Operating Systems Principles (SOSP),
pp. 74-89, 2003.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E.
Brewer, "Pinpoint: problem determination in large,
dynamic Internet services," Intl. Conf. on Dependable
Systems and Networks (DSN), pp. 595-604, 2002.

[8] G. Candea, E. Kıcıman, S. Kawamoto, and A. Fox,
“Autonomous Recovery in Componentized Internet
Applications,” Cluster Computing Journal, Vol. 9,
Number 1 (February 2006).

[9] K. Bhargavan, S. Chandra, P. J. McCann, and C. A.
Gunter, “What Packets May Come: Automata for
Network Monitoring,” In ACM SIGPLAN Notices, vol.
36, no. 3, pp. 206-219, 2001.

[10] “Snort Flexible Response Add-On,” Available at:
http://cerberus.sourcefire.com/~jeff/archives/snort/sp_re
spond2/

[11] G. Khanna, I. Laguna, F. Arshad and S. Bagchi,
Technical Report, School of Electrical and Computer
Engineering, Purdue University, May 2007,
“http://docs.lib.purdue.edu/ecetr/354/”.

[12] Pet Store J2EE Application:
http://java.sun.com/blueprints/code/index.html.

[13] JBoss Application Server: http://labs.jboss.com.
[14] MySQL: Open Source Database: www.mysql.com.
[15] TPC- Benchmark: http://www.tpc.org/tpcw.
[16] Addendum to SRDS ’07 submission-data files and

communication:
www.ece.purdue.edu/~sbagchi/Papers/srds07_add.pdf

[17] G. Candea, E. Kıcıman, S. Kawamoto, and A. Fox,
“Autonomous Recovery in Componentized Internet

Applications,” Cluster Computing Journal, Vol. 9,
Number 1 (February 2006).

[18] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan,
"Magpie: online modeling and performance-aware
systems " at the 9th Workshop on Hot Topics in
Operating Systems (HotOS IX), pp. 85-90, 2003.

[19] I. Rish, M. Brodie, and S. Ma, "Intelligent probing: A
cost-efficient approach to fault diagnosis in computer
networks," IBM Systems Journal, vol. 41, no. 3, pp.
372-385, 2002.

[20] I. Rish, M. Brodie, M. Sheng, N. Odintsova, A.
Beygelzimer, G. Grabarnik, and K. Hernandez,
"Adaptive diagnosis in distributed systems," IEEE
Transactions on Neural Networks, vol. 16, no. 5, pp.
1088-1109, 2005.

[21] B. Gruschke, "Integrated Event Management: Event
Correlation Using Dependency Graphs," at the 10th
IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM), pp.
130-141, 1998.

[22] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S.
Stolfo, "A coding approach to event correlation,"
Intelligent Network Management, no., pp. 266-277,
1997.

[23] F. Cuppens and A. Miege, “Alert correlation in a
cooperative intrusion detection framework,”
Proceedings of the 2002 IEEE Symp. on Security and
Privacy, May 12-15, 2002.

[24] H. J. Wang, J. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang, "PeerPressure for automatic troubleshooting," at
the Proc. of the joint international conference on
Measurement and modeling of computer systems, New
York, NY, USA, pp. 398-399, 2004.

[25] D. Geels, G. Altekar, S. Shenker, and I. Stoica, "Replay
Debugging for Distributed Applications," USENIX
Annual Technical Conference, pp. 289-300, 2006.

[26] X. Zhang, R. Gupta, and Y. Zhang, "Precise dynamic
slicing algorithms," ICSE, pp. 319-329, 2003.

[27] S. T. King, G. W. Dunlap, and P. M. Chen, "Debugging
operating systems with time-traveling virtual machines,"
USENIX Annual Technical Conference, pp. 1-15, 2005.

[28] S. Kandula, D. Katabi, J. Vasseur, "Shrink: A Tool for
Failure Diagnosis in IP Networks," ACM SIGCOMM
Workshop on mining network data (MineNet-05),
Philadelphia, PA, August 2005.

[29] I. Cohen, M. Goldszmidt, T. Kelly, S. Julie, J. Chase,
"Correlating instrumentation data to system states: A
building block for automated diagnosis and control",
Operating System Design and Implementation (OSDI),
Dec 2004.

[30] A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L.
Romano, "Effective fault treatment for improving the
dependability of COTS and legacy-based applications,"
Dependable and Secure Computing, IEEE Transactions
on, vol. 1, no. 4, pp. 223-237, 2004.

[31] K. R. Joshi, W. H. Sanders, M. A. Hiltunen, R. D.
Schlichting, "Automatic Model-Driven Recovery in
Distributed Systems," At the 24th IEEE Symp. on
Reliable Distributed Systems (SRDS'05), pp. 25-38,
2005.

