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Abstract 

In multihop wireless systems, such as ad-hoc and sensor networks, the need for cooperation among nodes to 
relay each other’s packets exposes them to a wide range of security attacks. A particularly devastating attack is 
known as the wormhole attack, where a malicious node records control and data traffic at one location and tunnels it 
to a colluding node far away, which replays it locally. This can either disrupt route establishment or make routes 
pass through the malicious nodes. In this paper, we present a lightweight countermeasure for the wormhole attack, 
called LITEWORP, which relies on overhearing neighbor communication. LITEWORP is particularly suitable for 
resource-constrained multihop wireless networks, such as sensor networks. Our solution allows detection of the 
wormhole, followed by isolation of the malicious nodes. Simulation results show that every wormhole is detected 
and isolated within a very short period of time over a large range of scenarios. The results also show that the fraction 
of packets lost due to the wormhole when LITEWORP is applied is negligible compared to the loss in an unprotected 
network. Simulation results bring out the configuration where no framing is possible, while still having high 
detection rate. Analysis is done to show the low resource consumption of LITEWORP, the low detection latency, and 
the likelihood of framing by malicious nodes. 

 
Keywords: Wireless sensor and ad-hoc networks, neighbor watch, wormhole attack, malicious node detection, 
malicious node isolation. 
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1 Introduction 

Ad-hoc and sensor networks are emerging as promising platforms for a variety of application areas in both 
military and civilian domains. These networks are especially attractive for scenarios where it is infeasible or 
expensive to deploy significant networking infrastructure. Initial research efforts have focused on the realization and 
practical implementation of these networks by focusing on their functional attributes, such as data aggregation 
protocols and routing protocols. However, the open nature of the wireless communication channels, the lack of 
infrastructure, the fast deployment practices, and the hostile environments where they may be deployed, make them 
vulnerable to a wide range of security attacks. These attacks could involve eavesdropping, message tampering, or 
identity spoofing, which have been addressed by customized cryptographic primitives in the wired domain. 
Alternately, attacks may be targeted at control or data traffic in wireless networks, such as the blackhole attack [5] 
and the rushing attack [9]. Since many multihop wireless environments are resource-constrained (e.g., bandwidth, 
power, or processing), providing detection and countermeasures to such attacks often turn out to be more 
challenging than in their wired counterparts. 

A particularly severe security attack, called the wormhole attack, has been introduced in the context of ad-
hoc networks [5], [7], [8], [30]. During this attack, a malicious node captures packets from one location in the 
network, and “tunnels” them to another malicious node at a distant point, which replays them locally. The tunnel can 
be established in many different ways, e.g., through an out-of-band hidden channel (e.g., a wired link), packet 
encapsulation, or high powered transmission. This makes the tunneled packet arrive either sooner or with a lesser 
number of hops compared to the packets transmitted over normal multihop routes. This creates the illusion that the 
two end points of the tunnel are very close to each other. A wormhole tunnel can actually be useful if used for 
forwarding all the packets. However, in its malicious incarnation, it is used by attacking nodes to subvert the correct 
operation of ad-hoc and sensor network routing protocols. The two malicious end points of the tunnel may use it to 
pass routing traffic to attract routes through them. They can then launch a variety of attacks against the data traffic 
flowing on the wormhole, such as selectively dropping the data packets. The wormhole attack can prevent two nodes 
from discovering legitimate routes greater than two hops away and thus disrupt network functionality. In addition, it 
may affect data aggregation and clustering protocols and location-based wireless security systems. Finally, it is 
worth noting that the wormhole attack can be launched even without having access to any cryptographic keys or 
compromising any legitimate node in the network [5], [7].  

In previous paper [29], we present a simple lightweight protocol, called LITEWORP, to detect and mitigate 
wormhole attacks in static ad-hoc and sensor wireless networks. LITEWORP uses secure two-hop neighbor discovery 
and local monitoring of control traffic to detect nodes involved in the wormhole attack. It provides a countermeasure 
technique that isolates the malicious nodes from the network thereby removing their ability to cause future damage. 
We provide a novel taxonomy of the different ways in which wormhole attacks can be launched and show how 
LITEWORP can be used to handle all but one of these attack modes. LITEWORP has several features that make it 
especially suitable for resource-constrained wireless environments, such as sensor networks. LITEWORP does not 
require specialized hardware, such as directional antennas or fine granularity clocks. It does not require time 
synchronization between the nodes in the network. It does not increase the size of the network traffic, and incurs 
negligible bandwidth overhead, only at initialization and on detection of a wormhole. The lightweight feature of 
LITEWORP is in contrast to other countermeasures for wormhole attacks, which have requirements (e.g. directional 
antennas [8], highly accurate time measurement [21], specialized trusted nodes [30], and clock synchronization [7]) 
that often make them impractical for sensor networks and other classes of ad-hoc networks. Finally, in LITEWORP, 
detection and isolation are done judiciously to minimize the possibility of victimizing innocent nodes due to false 
alarms caused by natural collisions in the wireless medium or due to malicious framing. 

In this paper, we present a coverage analysis of LITEWORP and show the relation between the number of 
nodes required for local monitoring, called guards, and the probability of false or missed detection. Moreover, we 
present an analysis for the isolation latency and the framing probability with various parameters such as the number 
of malicious nodes. We build a simulation model for LITEWORP using the network simulator ns-2 and perform a 
comparative evaluation of a network with and without the technique. The results show that with a large number of 
guards, LITEWORP can achieve 98.9% non-malicious routes, with 12% of the network nodes compromised. For this 
configuration, the possibility of false detection (due to natural collisions) or framing (due to malicious reporting) is 
negligible. Further, the detection and isolation of the nodes involved in the wormhole can be achieved in a negligible 
time after the attack starts, and the cumulative number of lost packets and malicious routes established saturates with 
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time because wormholes are identified and isolated. Finally, we analyze the storage, computational, and bandwidth 
overheads incurred by LITEWORP, and demonstrate its lightweight nature. 

The rest of the paper is organized as follows. Section 2 presents related work in the field of wormhole 
detection and mitigation. Section 3 describes the taxonomy of the wormhole attack modes. Section 4 describes local 
monitoring and isolation. Section 5 describes the LITEWORP defenses against the various modes of the wormhole 
attack. Section 6 presents analysis of the framing probability, isolation latency, coverage, and cost of LITEWORP. 
Section 7 presents simulation results. Finally, Section 8 discusses some extensions and concludes the paper. 

2 Related Work 

The wormhole attack in wireless networks was independently introduced by Dahill [1], Papadimitratos [2], 
and Hu [7]. An approach called RF watermarking [17] modulates the radio waveform in a specific pattern and any 
change to the pattern is used as the trigger for detection. This mechanism will fail to prevent a wormhole if the 
waveform is accurately captured at the receiving end of the wormhole and exactly replicated at the transmitting end. 

Hu et al. [7] introduce the concept of geographical and temporal packet leashes for detecting wormholes. They 
define a leash to be any added information to the packet for the purpose of defending against the wormhole. The 
geographical leashes ensure that the recipient of the packet is within a certain distance from the sender. They require 
each node to know its own location and require all the nodes to have loosely synchronized clocks. The temporal 
leashes ensure that the packet has an upper bound on its lifetime, which restricts the maximum travel distance. They 
require that all nodes have tightly synchronized clocks. An implicit assumption is that packet processing, sending, 
and receiving delays are negligible. Both geographical and temporal leashes need to add authentication data to each 
packet to protect the leash, which add processing and communication overhead. In addition, a large amount of 
storage is needed at each node since a hash tree based authentication scheme (Merkle hash trees) is used [25]. 
Capkun et al. [21] present SECTOR, a set of mechanisms for the secure verification of the time of encounters 
between nodes in multihop wireless networks. They show how to detect wormhole attacks without requiring any 
clock synchronization through the use of MAD (Mutual Authentication with Distance-Bounding). Each node u 
estimates the distance to another node v by sending it a one bit challenge, which node v responds to instantaneously. 
Using the time of flight, node u detects if node v is a neighbor or not. The approach uses special hardware for the 
challenge request-response and accurate time measurements. Neither of the above two techniques nullifies the 
capacity of the compromised nodes from launching attacks in the future.  

Hu and Evans [8] use directional antennas [18],[19] to prevent wormhole attacks. To thwart the wormhole, 
each node shares a secret key with every other node and maintains an updated list of its neighbors. Neighbor lists are 
built in a secure manner by using the direction in which a signal is heard from a neighbor with the assumption that 
the antennas on all the nodes are aligned. However, it only partially mitigates the wormhole problem. Specifically, it 
only prevents the kind of wormhole attacks in which malicious nodes try to deceive two nodes into believing that 
they are neighbors. This is only one of the five wormhole attack modes that we describe in Section 3. Moreover, the 
requirement of directional antennas on all nodes may be infeasible for certain deployments. Finally, the protocol 
may degrade the connectivity of the network by rejecting legitimate neighbors in their conservative approach to 
prevent wormholes from materializing. 

Wang et al. [28] present a method for graphically visualizing the occurrence of wormholes in static sensor 
networks by reconstructing the lay-out of the sensors using multi-dimensional scaling. However, their approach is 
centralized and only detects the existence of wormholes but does not isolate malicious nodes involved in the attack. 
Lazos et al. [30] propose a technique for neighbor discovery that prevents external nodes from forming wormholes 
by using the references to trusted specialized guards (the guards are trusted, higher range, know their locations) and 
it prevents local nodes from forming the wormhole attack using a global preloaded key in the sensors. 

Awerbuch et al. [20] present a protocol called ODSBR that does not prevent the wormhole from happening but 
tries to mitigate its consequences through discovery and avoidance. The technique suffers from the drawback that 
every single packet needs to be acknowledged by the destination and many packets could be lost before the 
wormhole is discovered. 

Note that if it is possible for each node in the network to securely verify the locations of all its first-hop and 
second-hop communicating nodes, then the wormhole attack can be defeated. There are few solutions proposed in 
the literature for secure neighbor discovery. The approach by Evans [8] uses directional antennas on each node with 
precise alignment of the nodes. The approach by Perrig [9] is presented in the context of designing a route discovery 
component that is secure to the rushing attack. The approach relies on the time of flight and thus assumes very 
accurate time measurement and disregards all sources of delay other than the propagation delay. The MAC delay in 
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networks of even moderate density can make this assumption dubious. Many schemes use beacons sent by powerful 
nodes to enable location determination by other nodes. Sastry et al. [34] tackle the problem of a node securely 
verifying the location of possibly malicious beacon nodes that send spurious information about their own location. 
Their approach uses a very fast (e.g., radio frequency) and a relatively slow (e.g., ultrasound) signal to derive 
distance from the time delay. While this kind of capability can be mounted on a limited set of beacon nodes, it is 
infeasible to do this on all the nodes in the network.  

This paper builds on our previous work in [29] and [32]. In [29], we introduced the concept of local monitoring 
and applied it to detection and isolation of wormhole attacks in static networks, the problem addressed in the current 
paper. In [32], we showed how local monitoring can be applied to detect the basic primitives (drop, delay, fabricate, 
and modify) that form the basis for many control attacks in ad hoc networks. In this paper, we introduce the concept 
of framing of good nodes through local monitoring and show through analysis and simulation the parameter settings 
that can be used to minimize framing. This paper also provides the analysis for the detection latency, both with and 
without independence of observations and modifies the analysis of missed and false isolation from [29] to take into 
account the possibility that evidence of misbehavior can come from direct observations or second hand reporting.  

3 Wormhole Attack Modes 

Wormhole attacks are particularly severe against many ad-hoc and sensor network routing protocols, such as 
the two ad-hoc on-demand routing protocols DSR [4] and AODV [14], and the sensor TinyOS beaconing routing 
protocol [5]. First, we demonstrate how a generic wormhole attack is launched against such routing protocols, using 
DSR as an example. In DSR, if a node, say S, needs to discover a route to a destination, say D, S floods the network 
with a route request packet. Any node that hears the request packet transmission, processes the packet, adds its 
identity to the source route, and rebroadcasts it. To limit the amount of flooding through the network, each node 
broadcasts only the first route request it receives and drops any further copies of the same request. For each route 
request that D receives, it generates a route reply and sends it back to S.   The source S then selects the best path 
from the route replies; the best path could be either the path with the shortest number of hops or the path associated 
with the first arrived reply. In a malicious environment, this protocol may fail. When a malicious node at one part of 
the network hears the route request packet, it tunnels it to a second colluding party at a distant location near the 
destination. The second party then rebroadcasts the route request. The neighbors of the second colluding party 
receive the route request and drop any further legitimate requests that may arrive later on legitimate multihop paths. 
The result is that the routes between the source and the destination go through the two colluding nodes that will be 
said to have formed a wormhole between them. This prevents nodes from discovering legitimate paths that are more 
than two hops away. One way in which two colluding malicious nodes can involve themselves in a route is by 
giving the false illusion that the route through them is the shortest, even though they may be many hops away.  

In the following subsections we classify the wormhole attack based on the techniques used for launching it. 

3.1 Wormhole using Encapsulation 

Consider Figure 1 in which nodes A and B try to discover the shortest path between them, in the presence of 
the two malicious nodes X and Y. Node A broadcasts a route request (REQ), X gets the REQ and encapsulates it in a 
packet destined to Y through the path that exists between X and Y (U-V-W-Z). Node Y demarshalls the packet, and 
rebroadcasts it again, which reaches B. Note that due to the packet encapsulation, the hop count does not increase 
during the traversal through U-V-W-Z. Concurrently, the REQ travels from A to B through C-D-E. Node B now has 
two routes, the first is four hops long (A-C-D-E-B), and the second is apparently three hops long (A-X-Y-B). Node B 
will choose the second route since it appears to be the shortest while in reality it is seven hops long. Any routing 
protocol that uses the metric of shortest path to choose the best route is vulnerable to this mode of wormhole attack. 

This mode of the wormhole attack is easy to launch since the two ends of the wormhole do not need to have 
any cryptographic information, nor do they need any special capabilities, such as a high speed wire line link or a 
high power source. A simple way of countering this mode of attack is a by-product of the secure routing protocol 
ARAN [10], which chooses the fastest route reply rather than the one which claims the shortest number of hops. 
This was not a stated goal of ARAN, whose motivation was that a longer, less congested route is better than a 
shorter and congested route. 
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Figure 1: Wormhole through packet encapsulation 

3.2 Wormhole using Out-of-Band Channel 

This mode of the wormhole attack is launched by having an out-of-band high-bandwidth channel between the 
malicious nodes. This channel can be achieved, for example, by using a long-range directional wireless link or a 
direct wired link. This mode of attack is more difficult to launch than the previous one since it needs specialized 
hardware capability. Consider the scenario depicted in Figure 2. Node A sends a route request to node B, and nodes 
X and Y are malicious nodes having an out-of-band channel between them.  Node X tunnels the route request to Y, 
which is a legitimate neighbor of B. Node Y broadcasts the packet to its neighbors, including B. B gets two route 
requests—A-X-Y-B and A-C-D-E-F-B. The first is both shorter and faster than the second, and is thus chosen by B.  
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Figure 2: Wormhole through out-of-band channel 

3.3 Wormhole with High Power Transmission 

 In this mode, when a single malicious node gets a route request, it broadcasts the request at a high power 
level, a capability which is not available to other nodes in the network. Any node that hears the high-power 
broadcast rebroadcasts it towards the destination. By this method, the malicious node increases its chance to be in 
the routes established between the source and the destination even without the participation of a colluding node. A 
simple method to mitigate this attack is possible if each node can accurately and securely measure the received 
signal strength and has models for signal propagation with distance. In that case, a node can independently 
determine if the transmission it receives is at a higher than allowable power level. However, this technique is 
approximate at best and dependent on environmental conditions. The local monitoring approach used in LITEWORP 
provides a more feasible defense against this mode. 

3.4 Wormhole using Packet Relay 

  In this mode of the wormhole attack, a malicious node relays packets between two distant nodes to convince 
them that they are neighbors. It can be launched by even one malicious node. Cooperation by a greater number of 
malicious nodes serves to expand the neighbor list of a victim node to several hops. For example, assume that node 
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A and node B are two non-neighbor nodes with a malicious neighbor node X. Node X can relay packets between 
nodes A and B to give them the illusion that they are neighbors. 

3.5 Wormhole using Protocol Deviations 

 Some routing protocols, such as ARAN [10], choose the route with the shortest delay in preference to the 
one with the shortest number of hops. During the route request forwarding, the nodes typically back off for a random 
amount of time before forwarding. This is motivated by the fact that the request forwarding is done by broadcasting 
and hence, reducing MAC layer collisions is important. A malicious node can create a wormhole by simply not 
complying with the protocol and broadcasting without backing off. The adversary’s purpose is to let the request 
packet it forwards arrive first at the destination thereby increasing the chances of being included in the path. This is 
a special form of the rushing attack described in [9]. 

 
Table 1: Summary of wormhole attack modes 

Mode name Minimum # adversary nodes Special requirements 
Packet encapsulation Two None 
Out-of-band channel Two Out-of-band link 
High power transmission One High energy source 
Packet relay One None 
Protocol deviations One None 

   
 Summarizing, the different modes of the wormhole attack along with the associated requirements are given 

in Table 1. Many routing protocols, including secure ones [2], [6], are vulnerable to the wormhole attack (see [7] for 
review). Moreover, all the protocols that are used in building neighbor lists and, by extension, the routing protocols 
(e.g. DSDV [3], OLSR [15], and TBRPF [16]) that use these lists, are vulnerable as well.  

4 Local Monitoring & Isolation 

In this section, we describe the process for wormhole detection in LITEWORP followed by the process for 
isolation of the malicious nodes.  

4.1 System Model and Assumptions 

Attack Model: The wormhole is launched by a malicious node, which may be either an external node that does not 
have cryptographic keys, or an insider node, that possesses the keys. The insider node may be created, for example, 
by compromising a legitimate node. All these malicious nodes can exhibit Byzantine behavior and can collude 
amongst themselves. The malicious node can be a powerful entity that can establish out-of-band fast channels or 
have high-powered transmission capability. 
System assumption: We assume that the communication links are bi-directional which means that if a node A can 
hear node B then B can hear A. We assume that a finite amount of time is required from a node’s deployment for it 
to be compromised. We further assume that no external or internal malicious node exists before the completion of 
the first- and second-hop neighbor discovery. However, we can remove this assumption and use one of the protocols 
for secure neighbor discovery such as the one by Hu and Evans using directional antennas [8] or by using trusted 
and more powerful nodes as in [30].  There is an obvious tradeoff here between cost (advanced hardware resources) 
and benefit (more relaxed set of assumptions). We assume that the network has a static topology. This does not rule 
out route changes due to node failures, malicious node isolation, route evictions from the routing cache, or the 
change in the role that a node practices (e.g., cluster head, data aggregator, etc.). From the point of view of 
LITEWORP, incremental deployment of a node in the network is identical to having a mobile node move to its 
location and thus is not addressed here. The interested reader may refer to [33] for techniques to handle a mobile 
adversary node. LITEWORP requires each packet forwarder to explicitly announce the immediate source of the 
packet it is forwarding, i.e., the node from which it receives the packet. Finally, LITEWORP assumes a pre-
distribution pair-wise key management protocol (e.g. [11] for ad-hoc networks and [12],[13] for sensor networks) 
such that any two nodes can acquire a key for secure communication.   
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4.2 Local Monitoring for Wormhole Defense  

4.2.1 Information Structures 

Building neighbor lists: This protocol is used to build the data structure of the first-hop neighbors of each node and 
the neighbors of each neighbor. The data structure is used in local monitoring to detect malicious nodes and in local 
response to isolate these nodes. A neighbor of a node, X, is any node that lies within the transmission range of X. As 
soon as a node, say A, is deployed in the field, it does a one-hop broadcast of a HELLO message. Any node, say B, 
that hears the message, sends back a reply to A. Node A accepts all the replies that arrive within a timeout. For each 
reply, A adds the responder to its neighbor list RA. Then, A does a one-hop broadcast of a message containing the list 
RA. When B hears the broadcast, it stores RA. Hence, at the end of this neighbor discovery process, each node has a 
list of its direct neighbors and the neighbors of each of its direct neighbors. This process is performed only once in 
the lifetime of a node and is assumed to be secure. Henceforth, a node will not accept a packet from a node that is 
not a neighbor, nor forward to a node that is not a neighbor. Also, second-hop neighbor information is used to 
determine if a forwarded packet comes from a neighbor of the forwarder. .If a node C receives a packet forwarded 
by B purporting to come from A in the previous hop, C discards the packet if A is not a second-hop neighbor. 
Finally, A activates local monitoring immediately after building its first and second-hop neighbor lists. 
Local monitoring: This module detects the wormhole attack and diagnoses the malicious nodes involved in 
launching it. Local monitoring starts immediately after the completion of neighbor discovery. It uses a collaborative 
detection strategy, where a node monitors the traffic going in and out of its neighbors.  

For a node, say α, to be able to monitor a node say, β, α must be a neighbor of both β and the previous hop 
from β, say δ. If this is satisfied, we call α the guard node of β over the link from δ to β. This implies that α is the 
guard node for its entire outgoing links. For example, in Figure 3, nodes M, N, and X are the guard nodes of A over 
the link from X to A. Information for each packet sent from X to A is saved in a watch buffer at each guard. The 
information includes the packet identification and type, the packet source, the packet destination, the packet’s 
immediate sender (X), and the packet’s immediate receiver (A). The guards expect that A will forward the packet 
toward the ultimate destination, unless A is itself the destination. Each entry in the watch buffer is time stamped with 
a time threshold,τ, by which A must forward the packet. Each packet forwarded by A with X as a previous hop is 
checked for the corresponding information in the watch buffer. 

S DB X
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N

A

AX Y

The transmission 
range of node Y

 
Figure 3: X, M, and N are guards of node A over the link from X to A  

A malicious counter (MalC(i,j)) is maintained at each guard node, i, for a node, j, at the receiving end of each 
link that i is monitoring over a sliding window of length Twin that slides by δ units. MalC(i,j) is incremented for any 
malicious activity of j that is detected by i. The increment to MalC depends on the nature of the malicious activity 
detected, e.g., Vf for fabricating and Vd for dropping a control packet, being higher for more severe infractions. To 
account for intermittent natural failures that can occur at legitimate nodes, a node is determined to be misbehaving, 
only if the MalC goes above a threshold (Ct) over Twin time units. Of course, it is possible that there may not be any 
guard node for a given link. In that case, malicious behavior cannot be detected. 

Now, we present the detection algorithm individually for each of the first four wormhole attack modes and 
show how existing approaches can be used to detect the fifth mode. However, prior to that, we give the isolation and 
the response algorithm that applies across all the attack modes 
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4.2.2 Response and Isolation Algorithm 

1. When MalC(α,A) crosses Ct , α revokes A from its neighbor list, and sends to each neighbor of A, say D, an 
authenticated alert message indicating A is a suspected malicious node. This communication is authenticated 
using the shared key between α and D to prevent false accusations. Alternately, if the clocks of all the nodes in 
the network are loosely synchronized, α can do authenticated local two-hop broadcast as in [22] to inform the 
neighbors of A.  

2. When D gets the alert, it verifies the authenticity of the alert message, that α is a first-hop neighbor of node A, 
and that A is D’s neighbor. It then stores the identity of α in an alert buffer associated with A.  

3. When D gets enough alert messages, γ, about A, it isolates A by marking A’s status as revoked in the neighbor 
list.  We call γ  the detection confidence index (Section Error! Reference source not found.) of D.  The 
detection confidence represents the minimum number of guard nodes that must report that a certain node, j, is 
malicious for a neighbor, i, of that node to isolate it, if i does not directly detect j. Note that the number of guards 
that report malicious activity is cumulative over time. A single node, due to the authentication mechanism, 
cannot generate more than one acceptable alert. Framing is the process by which an innocent node is proved to 
be malicious by a quorum of malicious nodes. A small value for γ increases the chance of successful framing of 
good nodes, while a large value of γ increases the rate of harm a malicious node causes in the network before 
being locally detected. If we set γ to be infinity it means that a node only trusts itself in revoking a suspicious 
node and thus the local framing probability goes to zero. False alarm, distinct from framing, is caused by a 
(legitimate) node mistaking another (legitimate) node to be malicious because of imperfections in the wireless 
channel, e.g., node i does not observe node j dutifully forwarding a packet. 

4. After isolation, D does not accept or send any packet to a revoked node.  
  Note that this isolation is performed locally within the neighbors of the malicious node. This makes the 

response process quick and lightweight, and has the desired effect of removing the malicious nodes from the 
network. 

5 Detecting Different Modes of Wormhole Attacks 

5.1 Detecting out-of-band and packet encapsulation wormholes 

A guard α of a node A over the link, say from X to A,   saves information from the packet header of each 
control packet going over the link and time stamps it with the deadline τ. Node α overhears every packet going out 
of the receiver end of the link, A. For all the packets that node A claims have come from X, α looks up the entry in 
its watch buffer. If an entry is found, α drops that entry since the corresponding packet has been correctly 
forwarded. If an entry is not found, then A is accused of fabricating the packet. Therefore, α increments MalC (α,A) 
by Vf. If an entry for a packet sent from X to A stays in the watch buffer of α beyond τ, then A is accused of dropping 
the corresponding packet. Therefore, α increments MalC(α,A) by Vd. 
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Figure 4: Wormhole detection for out-of-band and packet encapsulation modes 
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Consider the scenario in Figure 4 above. M1 and M2 are two malicious nodes wishing to establish a wormhole 
between the nodes S and D. When M1 hears the REQ packet from S, it directs the packet to M2. Node M2 
rebroadcasts the REQ packet after appending the identity of the previous hop from which it got the REQ. Node M2 
has two choices for the previous hop—either to append the identity of M1, or append the identity of one of M2’s 
neighbors, say X. In the first choice all the neighbors of M2 will reject the REQ because they all know, from the 
stored data structure of the two-hop neighbors, that M1 is not a neighbor to M2. In the second case, the knowledge of 
the first-hop and second-hop neighbor lists is not sufficient for all the guards to detect the attack. However, using 
local monitoring, all the guards of M2 over the link from X to M2 (X, N, and L) will detect M2 as fabricating the route 
request since they do not have the information for the corresponding packet from X in their watch buffer. In both 
cases M2 is detected, and the guards increment the MalC value of M2. 

In addition, the REP packet may also be used for detection of M1 and M2. When D gets the REQ, it generates 
a route reply packet, REP, and sends it back to M2. The guards of M2 over the link from D to M2 (D, N, and W) 
overhear the REP and save an entry in their watch buffers. Node M2 sends the route reply back to M1 using the out-
of-band channel or packet encapsulation. After τ time units, the timers in the watch buffers of the guards D, N, and 
W run out, and thus the guards detect M2 as dropping the REP packet and increment the MalC of M2. However, if M2 
is smarter, it can forward another copy of the REP through the regular slower route. In this case, MalC of M2 is not 
incremented. When M1 gets the REP from M2, M1 forwards it back to S after appending the identity of the previous 
hop. As before, M1 has two choices—either to append the identity of M2, or append the identity of one of M1’s 
neighbors, say Z. In the first choice, node S rejects the REP because it knows that M2 is not a neighbor to M1. Also, 
all the neighbors of M1 know that M2 is not a neighbor to M1 and therefore increment the MalC of M1. In the second 
case, all the guards of M1 over the link from Z to M1 detect M1 as forging the REP since they don’t have the 
corresponding entry from Z in their watch buffers.  

5.2 Detecting high power transmission wormhole 

This mode is detected using the first-hop neighbor list. Suppose a malicious node, say X, tries to use high 
power transmission to forward a packet P1 to its final destination, or to cross multiple hops to introduce itself in the 
shortest path. Then all the nodes for which X is not in their neighbor lists detect the malicious behavior of X and 
reject P1.  For example, in the scenario shown in Figure 5, the inner circle represents the legitimate neighborhood of 
X. When X uses high power transmission, its coverage (the outer circle) reaches non-neighbor nodes such as A and 
B. Based on the absence of X in their neighbor lists, both A and B detect the malicious behavior of X.  

 

X
A

B

 
Figure 5: Single-node high power transmission mode of the wormhole attack 
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5.3 Detecting packet relay wormhole 

This mode is detected using the stored neighbor lists at each node. Suppose a malicious node X (Figure 6) is a 
neighbor to two non-neighbor nodes A and B and tries to deceive them by relaying packets between them. Both A 
and B detect the malicious behavior of X since they know that they are not neighbors and reject the relayed packet. 

XA B

 
Figure 6: Single-node packet relay mode of the wormhole attack 

5.4 Detecting protocol deviation wormhole 

This mode cannot be detected using LITEWORP. Researchers have proposed techniques for countering selfish 
behavior in specific protocols. Selfishness refers to the property that nodes may tend to deny providing cooperating 
services to other nodes in order to save their own resources, e.g., battery power. Kyasanur et al. have addressed the 
problem of greediness at the MAC layer [23], while Buttyán et al. have addressed the problem in packet forwarding 
[21]. Hu et al. have proposed a solution to an attack, called the rushing attack, in which nodes greedily forward the 
route request passing through them without back off [9]. 

6 LITEWORP Analysis 

6.1 Selection of the Detection Confidence Index (γ) Value  

The value of γ is application-specific and may range between one and infinity. A small value for γ increases 
the chance of successful framing, while a large value of γ increases the rate of harm a malicious node causes the 
network before being locally detected and isolated. If we set γ to be infinity it means that a node only trusts itself in 
revoking a suspicious node, thus the local framing probability goes to zero. Any malicious node may be fully 
isolated as long as γ or more good-guards detect it. If the number of good guards is less than γ, then the node is only 
partially isolated from the network. Only the good guards that directly detect the malicious activity of the node 
isolate the malicious node. However, other neighbors of the malicious node continue to consider the malicious node 
as a legitimate node. The effect of partial or full isolation of malicious nodes is studied through the simulations 
(Figure 23, Figure 27, and Figure 28). In the simulations, the nodes are distributed randomly with a given density 
and the malicious nodes are also distributed randomly in the sensor field. The simulations include the case when the 
number of good guards of a node may fall below γ which negatively impacts isolation latency and the delivery ratio. 
Thus, the output metrics such as the drop ratio and the detection coverage are affected when number of guards drop 
below γ. However, the protocol as a whole does not break since this case may rarely occur for a reasonable ratio of 
malicious nodes. Moreover, based on our mathematical analysis presented in Section 6, we examine the effect of 
changing the detection confidence (γ) in the network. Our simulation and analytical results indicate that a value of γ 
equal to infinity provides a relatively high performance. Our recommendation of infinite value of γ is dependent on 
the experimental condition, specifically that the volume of traffic on the different outgoing links is statistically 
equal. Hence, γ  can be looked upon as a design parameter in LITEWORP to tune its performance according to the 
application needs. 

6.2 Coverage Analysis 

In this section, we characterize the probability of missed detection and false detection as the network density 
increases and as the detection confidence index γ varies. The results provide some interesting insights. For example, 
we are able to compute the required network density d to detect p% of the wormhole attacks for a given γ. 
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 Consider a homogeneous network of nodes where the nodes are uniformly distributed in the field. For 
simplicity, we assume that the field is large enough that edge effects can be neglected in our analysis. Consider any 
two randomly selected neighbor nodes, S and D, as shown in Figure 7(a). Nodes S and D are separated by a distance 
X, and the communication range is r.  X is a random variable that has the probability density function of fX(x) = 2x/r2 
with range (0,r). This follows from the assumption of uniform distribution of the nodes. 

 The guard nodes for the communication between S and D are those nodes that lie within the communication 
range of S and D, the shaded area in Figure 7(a). This area is given by 
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Therefore, the expected number of guards is 
 2[ ( )] 1.84g E Area X d r d = =    (4) 

The number of neighbors of a node is given by 2
BN r dπ= , therefore, 

 0.59 Bg N≈     (5) 
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Figure 7: (a) The area where a node can guard the link S D; (b) Illustration for detection accuracy 

Now, as in [26] where IEEE 802.11 was analyzed, we assume that each packet collides on the channel 
independently with a constant probability PC. As shown in Figure 7(b), a guard G will not detect a fabricated packet 
sent by D, claiming it was received from S, if G experienced a collision at the time that D transmits. Thus, the 
probability of missed detection is PC. Assume that S sends ψ packets to be forwarded by D within a time window 
Twin. Assume that D selectively fabricates (to evade detection) packets with probability Pfab. Then, the number of 
packet fabrications (µ) that occur within Twin is ψ•Pfab. Also assume that the MalC threshold over time window of 
Twin is β and each malicious activity increases the MalC by one. Then, using the binomial distribution, the 
probability of detection by direct observation at a guard (henceforth shortened as “direct detection”) is given by, 
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Now consider the case of detection through evidence furnished by γ or more guards, shortened as “indirect 
detection”. Assuming independence of collision events among the different guards, the probability that at least γ of 
the guards generate an alert is given by 
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Where, ( , 1)B gγ γ− + is the Beta function and ( )( | ; , 1)directB P gβ µ γ γ− + is the incomplete Beta function. 
This gives the probability of indirect detection at a guard. Therefore, the probability of detection at a guard is the 
sum of the probability of direct detection and the conditional probability of indirect detection given that no direct 
detection occurs, 
 ( ) ( ) ( ) ( )| |detect direct indirect direct indirectP P P P Pβ µ γ β µ γ= + −  (8) 

Based on Equation (8), Figure 8 shows the probability of detection at a guard as a function of the average 
number of neighbors with µ = 7, β = 4, γ =3, Pfab=1, the number of compromised nodes M = 2, and PC = 0.05 at NB = 
3. The number of guards is determined from NB using Equation 5. Thereafter, PC is assumed to increase linearly with 
the number of neighbors. Since the number of guards increases as the number of neighbors increases, the probability 
of indirect detection increases since it becomes easier to get the alarm from γ guards. However, the collision 
probability also increases with the number of neighbors, and thus the probability of direct detection starts to fall 
rapidly beyond a point which in turn decreases the indirect detection and the overall detection at a guard. However, 
note that the detection is still high (above 98.5%) at the relatively high density of each node having 35 neighbors 
since the reduction in the direct detection capability is compensated by the indirect detection. 

 
Figure 8: Probability of detection at a guard against NB 

Figure 9 shows the probability of detecting the wormhole attack against γ with µ = 7, β = 4, NB  = 20, the 
number of compromised nodes M = 2, and PC = 0.33. As γ increases, the probability of indirect detection at a guard 
decreases since it becomes harder to reach consensus among all the γ guard nodes. Therefore, the probability of 
detection decreases rapidly with increasing γ. However, note that the probability of detection is still high even at the 
lowest point (above 0.88) since the probability of direct detection is not affected by γ. 



 13

  
Figure 9: Probability of wormhole detection at a guard against γ 

Recollect that false alarm is caused by a (legitimate) node mistaking another (legitimate) node to be 
malicious because of imperfections in the wireless channel. As shown in Figure 7(b), a false alarm occurs when D 
receives a packet sent from S, while G does not receive that packet, and later, G receives the corresponding packet 
forwarded by D. Thus, the probability of false alarm is 2(1 )FA C CP P P= − . Assume that S sends ψ packets to D for 
forwarding, within Twin. The probability that D is falsely accused directly by a guard is the probability that β or more 
packets are falsely suspected as fabricated. Therefore, using the binomial distribution, the probability of direct false 
alarm (PDF) is given by, 
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The probability of indirect false alarm (PIF) is the probability that at least γ guards generate false alarms, 
which is given by  
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The probability of false alarm at a guard is given by the sum of the probability of direct false alarm and the 
conditional probability of indirect false alarm given that no direct false alarm occurs 
 ( ) ( ) ( ) ( )| |false DF IF DF IFP P P P Pβ ψ γ β ψ γ= + −  (11) 

Based on Equation (11), Figure 10 shows the probability of false alarm at a guard as a function of the number 
of nodes for the same parameters as in Figure 8. The non-monotonic nature of the plot can be explained as follows. 
As the number of neighbors increases, so does the number of guards. Initially, this increases the probability that at 
least γ guards miss the packet from S to the guard but not from D to the guard, leading to increase in indirect false 
detection. But beyond a point, the increase in the number of neighbors increases the collision probability. This 
increases the probability that both of these packets are missed at the guard and thus does not lead to false detection. 
The worst-case false alarm probability is still low (less than 1.2×10-3). 
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Figure 10: Probability of false alarm at a guard against NB 

Figure 11 shows the probability of false alarm against γ with PC = 0.05, β=4, µ=7, and NB=20. As γ increases, 
the probability of false detection decreases since it becomes harder to reach consensus among all the γ guard nodes. 

 
Figure 11: Probability of false alarm at a guard against γ 

6.3 Analysis of a Node being Framed 

Let N be the total number of nodes in the network, Nm be the number of malicious nodes, Pm=Nm/N be the 
probability that a node gets compromised, d be the density of nodes in the network, r be the range of 
communication, and NB = πr2d be the number of neighbors of a node.  

Using the binomial distribution  and assuming that false detection is zero, then, the probability that a good 
node X is locally framed equals the probability that there are at least γ malicious nodes among X’s neighbors which 
is given by the following equation. Here, we are assuming the worst case in which all the malicious nodes are 
concurrently trying to frame the good node, 
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The probability of node framing (Pframe) as a function of the probability of node compromise for γ = 5 and NB 
= 7 is plotted on Figure 12. From the figure, we see that the probability of framing increases exponentially with the 
probability of node compromise but up to the upper end of the range, it is still less than 0.03.  

 
Figure 12: Probability of node framing against the probability of compromising a given node (γ=5, NB=6) 

6.4 Detection Latency Analysis 

Here, we analyze the amount of time it takes to detect a malicious node. Assume the traffic distribution and 
the bandwidth capacity allows a maximum of µ packets to be forwarded by a malicious node M within a time 
window Twin. Assume that M selectively fabricates (to evade detection) packets with probability Pfab. Let G be the 
guard node of M over the link from X to M that collects and keeps a malicious counter (MalC(G,M)) for M over a 
window of length Twin which slides by δ units, Figure 13. Assume the MalC threshold Ct over this time window is β 
and that each malicious activity increases the MalC by one. Let Twin/δ = η. When η=1 in Figure 13 (a), the sliding 
windows are non-overlapping and therefore, the events detected in any two windows are independent.  

δ

Twin

(b) Twin/ δ = η >1
δ

Twin

δ

Twin

(b) Twin/ δ = η >1

Twin= δ
(a) Twin/δ = η = 1

 
Figure 13: Sliding window illustration 

Using the binomial distribution, the probability that G detects M during a certain time window (PgdM) equals 
the probability that M fabricates at least  β packets within Twin, which is given by 
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The expected time of detection is calculated from the number of  Twin time slots (Nts) that pass before the 
guard G detects the malicious node M. The probability that Nts = k is 
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Using Bernoulli trials, the expected value for Nts is given by E[Nts] =1/PgdM. The expected number of time 
slots (E[Nts]) before a single guard detects a malicious node is plotted in Figure 14. The plot shows that the latency 
decreases very fast with increasing probability of malicious behavior. 

 
Figure 14: Expected number of time slots E[Nts] before a single guard detects a malicious node 

  For the case with overlapping sliding windows (η>1), Figure 13(b), the analysis becomes more difficult and 
we use Martingale Theory [31] to obtain bounds on the delay. Here, we assume rate-based detection, i.e., a node is 
determined to be malicious if the rate of malicious activities goes above a threshold α (Figure 15).  As Figure 15 
shows, after each δ time units, each guard checks the total number of malicious events over the past Twin time units 
and if it crosses the threshold rate (α), the guard marks the respective node as malicious.  The dots in Figure 15 
represent the malicious events rate that is calculated by the guard at the specific time point. We present this analysis 
for γ =  ∞ since it eliminates framing and is shown to give reasonable detection rates as shown through the 
simulations (Section 7). 
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Figure 15: Illustration of rate-based detection with overlapping windows 

  Let Xi be an i.i.d. Bernoulli random variable that tracks the number of malicious actions by a node, such that 
Xi=1 (malicious activity) with probability λ and zero, otherwise. Thus, E[Xi] = λ. Consider that the guard observes 
the node for Nact activities (packet forwarding actions). Define 
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Then it can easily be shown that ZNact
 is a zero-mean martingale process. Similarly, YNact

 defined below is 
also a zero-mean martingale process, 
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 Now, let N0 be the number of activities at which the guard detects the node to be malicious. Then, 
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Our goal is to find E[N0]. From elementary probability, 
 0 0 0 0 0 0 0[ ] [ | 1] ( 1) [ | 1] ( 1)E N E N N P N E N N P N= = ⋅ = + > ⋅ >  (18) 

Note that E[N0|N0=1]P(N0=1) = 1×λ = λ. Also P(N0>1) = P(X1=0) = 1-λ.  
Next we find E[N0|N0>1]. Note that since YNact

 is a martingale, using the Optional Stopping Theorem [31], 
E[YN0

] = E[Y2] = 0. Also, note that given N0>1,  
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This means that given N0>1, 
 0 min ( 1)
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act

N act actN
N Y N Nλ α= + − ≥  (20) 

In other words, YN0
 ≥ (α-λ)N0 + λ. Taking expectations on both sides, 

 
0 0 0 0 0 0[ | 1] ( ) [ ] ( ) [ ] 0 [ | 1] /( )NE Y N E N E N E N Nα λ λ α λ λ λ λ α> ≥ − ⋅ + ⇒ − ⋅ + ≤ ⇒ > ≥ −  (21) 

Therefore, de-conditioning, we get the lower bound as 
 0[ ] (1 ) /( )E N λ λ λ λ α≥ + ⋅ − −  (22) 

 For the upper bound we can repeat the arguments. Therefore, define 
 

0 0 0 1NZ N Nλ α+ ⋅ < ⋅ +  (23) 

The last term is because Xi≤1. Now, choosing α such that, λ < α (i.e., the rate of malicious activity is less 
than the detection threshold) and taking expectations we obtain 
 0 00 [ ] ( ) 1 [ ] 1/( )E N E Nλ α λ α+ ⋅ − < ⇒ < −  (24) 

Therefore, the bounds for the expected number of activities after which the guard will detect the node as 
malicious is, 
 0(1 ) /( ) [ ] 1/( )E Nλ α λ α λ α⋅ − − < < −  (25) 

We plot Equation 23 in Figure 16 and find that the bounds asymptotically converge and exist only for λ > α. 
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Figure 16: Lower and upper bound for expected number of activities before a malicious node is detected by a 
guard 

6.5 Cost Analysis 

In this section, we show the memory, the computation, and the bandwidth overhead of LITEWORP to evaluate 
its suitability to resource-constrained environments. 
Memory overhead: We need to store the first and the second-hop neighbor lists, the watch buffer, and the alert 
buffer. The identity of a node in the network is 4 bytes. Reusing the notation from the previous section, the size of 
neighbor list is NBL = πr2d entries. Each entry in the NBL needs 5 bytes; 4 for identity of the neighbor and 1 for the 
MalC associated with that neighbor. So the total NBL storage, NBLS=5(πr2d)2. For example, for an average of 10 
neighbors per node, NBLS is less than half a kilobyte. The alert buffer has γ number of 4 byte entries. The watch 
buffer size depends on the average number of hops between a source-destination pair, h, the frequency of route 
establishment, f, as well as the density of the nodes, d.  

A B
r2r

(h+1)r

r

Communication rangeA sensor node A-B Bounding path
 

Figure 17: The average number of nodes involved in the watch of a route reply 

To find the average number of nodes involved in watching a REP, we create a rectangular bounding box 
containing nodes that may overhear the REP sent from A to B (Figure 17). This is an overestimate since we use a 
square that circumscribes the circular transmission range. The number of nodes involved in monitoring 
is 22 ( 1)REPN r h d= + . Thus, given N as the total number of nodes in the network, each node is involved in watching 
( / )REPN N f  route replies per unit time. 

For example, if N=100 nodes, h = 4 hops, and f = 1 route every 4 time units, then NREP = 17, and each node 
watches only 4 route replies every 100 time units. Because the time τ for which the packet is kept in the watch 
buffer is relatively small (may be less than one time unit), a watch buffer size of 4 entries is more than enough for 
this example. Each entry in the watch buffer is 20 bytes: 4 bytes each for the immediate source, the immediate 
destination, and the original source, and 8 bytes for the sequence number of the REP. If we include the route request 
in the watch, then each node will be involved in watching ( / )REPf N N f+ . That requires each node to watch 4 
packets every 16 time units; again 4 entries are still sufficient for the watch buffer.  
Computation and bandwidth overhead: Each watched route reply requires (i) one lookup for the current source and 
the current destination in the neighbor list, (ii) adding an entry to the watch buffer (incoming) or deleting an entry 
from the watch buffer (outgoing), and (iii) may be another addition and deletion from the watch buffer (if a node is a 
guard for two consecutive links). Since the size of the watch buffer and the neighbor list structure are relatively 
small, the computation time required for these operations is negligible. For example, a lookup in a 100 entry buffer 
takes the MICA mote with an Atmega128 4 MHZ processor, about 2µ seconds. The bandwidth overhead is incurred 
after deployment of a node for neighbor discovery and in the case of wormhole detection for informing the 
neighbors of the detected node. This is therefore a negligible fraction of the total bandwidth over the lifetime of the 
network.  

From the above analysis, we can conclude that LITEWORP has relatively modest memory, computation, and 
bandwidth overhead. This makes it especially suitable for resource-constrained sensor and ad-hoc networks. 
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7 Simulation Results 

We use the ns-2 simulation environment [27] to simulate a data exchange protocol, individually in the 
baseline case without any protection, and with LITEWORP. We distribute the nodes randomly over a square field 
with a fixed average node density. Thus, the field size varies (80×80 m to 204×204 m) with the number of nodes. 
We use a generic on-demand shortest path routing that floods route requests and unicasts route replies in the reverse 
direction. A route, once established, is not used forever but is evicted from the cache after a timeout period expires 
(TOutRoute). When a malicious node hears a route request, it directs the request to all the malicious nodes in the 
network using an out-of-band channel or using packet encapsulation. For packet encapsulation, we assume that the 
colluding nodes always have a route between them. We simulate the out-of-band channel by letting the malicious 
nodes deliver the packets instantaneously to their colluding parties. These two schemes exercise the principal feature 
of LITEWORP, namely, local monitoring and are the most challenging to mitigate. Hence, we simulate them in 
preference to other modes of attack. After a wormhole is established, the malicious nodes at each end of the 
wormhole drop all the packets forwarded to them. Furthermore, a malicious node always frames its good neighbors.  

The simulation also accounts for losses due to natural collisions. The guards inform all the neighbors of the 
detected malicious node through multiple unicasts. For each run, malicious nodes are chosen at random such that 
they are more than 2 hops away from each other.  
Input parameter: Each node acts as a data source and generates data using an exponential random variable with 
inter-arrival rate φ. The destination is chosen at random and is changed using an exponential random distribution 
with rate ξ. We use NM for the number of malicious nodes, γ for the detection confidence, and N for the total number 
of nodes. The input parameters with the experimental values are given in Table 2. A design parameter in LITEWORP 
is the increment to the malicious counter value upon detecting a malicious event. On the one hand, we want the 
increment to be large for higher detection probability, fast detection, and small watch buffer size. On the other hand, 
we want the increment to be small to reduce the percentage of false alarms. We conduct an experiment to design the 
malicious counter increment. We choose the increment as the lower of the two points–the point where the 
percentage detection reaches its maxima and the point where the knee of the false detection curve lies. This gives us 
a reasonable combination of low false alarm rate and high detection rate. The value of the MalC increment used for 
the experiments is given in Table 2. 
Output parameters: The output parameters include (i) the isolation latency, which is defined as the time between 
when the node performs its first malicious action to the time by which all the neighbors of the node have isolated it 
(ii) the fraction of data packets dropped/received due to the wormhole to the data packet sent (drop ratio/delivery 
ratio), (iii) the fraction of malicious routes to the total number of routes established. This parameter quantifies the 
amount of harm caused by the malicious nodes, (iv) the percentage of framing, which is defined as the percentage of 
the number of good nodes that could be framed to the total number of nodes, (v) the percentage of false isolation, 
which is defined as the percentage of the number of nodes that have been isolated due to natural causes to the total 
number of nodes, (vi) and the percentage of malicious node isolation (% true isolation), which is defined as the 
number of malicious nodes isolated to the total number of malicious nodes.  

All the output parameters that we present here are measured at the end of the simulation time (1500 seconds) 
unless otherwise stated. The output parameters are obtained by averaging over 30 runs. Finally, the figures we 
present are for the 100-node scenario unless otherwise stated. 

 
Table 2: Input parameters for LITEWORP simulation 

Param. Value Param. Value 
Tx Range (r) 30 m γ 3,5,7,infinity (default = 3) 
MalC increment 10 φ 0.2  
TOutRoute 50 s NM 0-6 (default 4) 
Ct 150 τ 0.5 sec 
# nodes (N) 20,50,100,150 (default 100) BW 40 kbps 
ζ 0.02  Twin 200 

 

Data Packet Drop: Figure 18 shows the number of packets dropped as a function of the simulation time for 2 and 4 
colluding nodes both with LITEWORP and without LITEWORP with γ =3.  The attack is started 50 sec after the start of 



 20

the simulation. Since the numbers are vastly different in the two cases, they are shown on separate Y-axes; the axis 
on the left corresponds to the baseline case and the axis to the right corresponds to the system using LITEWORP. In 
the baseline case, since wormholes are not detected and isolated, the cumulative number of packets dropped 
continues to increase steadily with time. But in the LITEWORP case, as wormholes are identified and isolated 
permanently, the cumulative number stabilizes. Notice that the cumulative number of packets dropped grows for 
some time even after the wormhole is locally isolated, due to the cached routes that contain the wormhole and 
continue to be used till route timeout occurs.  
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Figure 18: Cumulative number of dropped packets with and without LITEWORP 

Figure 19 shows a snapshot, at the end of the simulation time, of (a) the fraction of data packets dropped and 
(b) the fraction of the malicious routes. This is shown on a log scale for 0-4 malicious nodes for the baseline and 
with LITEWORP with γ =3. With 0 or 1 malicious node, there is no adverse effect on normal traffic since no 
wormhole is created. The relationship between the number of dropped packets and the number of malicious routes is 
not linear. This is because the route established through the wormhole is more heavily used by data sources due to 
the aggressive nature of the malicious nodes at the ends of the wormhole. If we track these output parameters over 
time, with LITEWORP, they would tend to zero as no more malicious routes are established or packets dropped, 
while without LITEWORP they would reach a steady state as a fixed percentage of traffic continues to be affected by 
the undetected wormholes. 
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Figure 19: Fraction of dropped packets and malicious routes with and without LITEWORP  

Framing: Figure 20 shows the percentage of framing with various values of γ. As the number of malicious nodes 
increases, the chances of getting γ malicious nodes framing a good node increases and thus the framing percentage 
increases. As we increase γ, the percentage of framing decreases since it becomes more difficult to get γ malicious 
nodes to frame a good node. When the value of γ is greater or equal to 7, the probability of framing goes to zero 
since no node has more than 7 neighbors in this simulation setup, therefore, it is impossible for framing to occur. As 
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γ increases however, as seen from Figure 21, Figure 23, and Figure 28, the damage done to the network before a 
malicious node is detected and isolated, increases. In the rest of this section the value of γ =7 is equivalent to 
γ=infinity since no node has more than 7 neighbors in the simulation setup, therefore, these two values represent the 
same results. 
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Figure 20: Percentage of framing 

Varying the number of malicious nodes: Figure 21 shows the percentage of malicious nodes isolated at the end of 
the simulation time for three different values of γ. The isolation percentage falls almost linearly as we increase the 
number of colluding malicious nodes from 2 to 6 due to the decrease in the number of available guards. Note that as 
γ increases, the percentage of malicious nodes isolated decreases slightly due the requirement of higher number of 
guards to agree on the detection. However, the percentage of malicious nodes isolated is above 90% for 6 malicious 
nodes with infinite γ. 

Figure 22 shows that the percentage of false isolation increases as the number of malicious nodes increases. 
This is because not all guard nodes come to the decision to isolate a malicious node at the same time. Therefore, a 
given guard node may suspect another guard node when the latter isolates a malicious node but the former still has 
not. For example, a guard node G1 detects a malicious node M earlier than the other guard nodes for the link to M. 
Node G1 subsequently drops all the traffic forwarded to M and is therefore suspected by other guard nodes for M. 
This problem can be solved by having an authenticated one-hop broadcast whenever a guard node performs a local 
isolation. 
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Figure 21: Percentage of malicious node isolation 
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Figure 22: Percentage of false isolation 

Figure 23 shows that the percentage of malicious routes increases as we increase the number of malicious 
nodes. As the number of malicious nodes increases, the percentage of damage that occurs before each of the nodes is 
detected and isolated increases. 
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Figure 23: Percentage of malicious routes 

Higher number of malicious nodes in the network. The following results are shown for γ=3, fdrop = 0.6, µ = 10.  
Here the goal is to observe the effect of increasing the number of malicious nodes. We can extrapolate the trend for 
other values of γ from these experiments. Figure 24 shows the variations of the % true isolation as we vary the 
number of malicious nodes (NM). Recollect that isolation is defined as all the good neighbors of a malicious node 
isolating the malicious node, i.e., refusing to relay its traffic. The % true isolation decreases almost linearly as we 
increase NM. This is because the number of available guards in the network decreases as more and more nodes get 
compromised. Furthermore, as NM increases the local isolation becomes less effective since the number of good 
guards decreases. Moreover, as NM increases the data traffic in the network decreases (malicious nodes do not 
generate their own data) which results in a decrease in the number of packets that a single malicious node may drop. 
This in turn decreases the chances that the malicious node is detected and isolated.  
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Figure 24: True isolation as a function of the number of malicious nodes in the network 

Figure 25 shows the variations of the % delivery ratio as we vary NM. The % delivery ratio decreases as NM 
increases. This is due to the packets dropped before the malicious nodes are detected and isolated. As the number of 
malicious nodes increases, this total initial drop increases and thus the delivery ratio decreases. Moreover, as Figure 
24 shows, as NM increases, the true isolation decreases. Therefore, the malicious nodes that could not be isolated 
continue to drop packets and this decreases the delivery ratio.  
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Figure 25: % Delivery ratio as a function of the number of malicious nodes in the network 

Figure 26 shows the variations of the % false isolation as we vary NM.  The % false isolation initially 
increases with NM and starts to decrease beyond a point. This is because not all guard nodes come to the decision to 
isolate a malicious node at the same time. Thus, a guard node may suspect another guard node when the latter 
isolates a malicious node but the former still has not. The occurrence of this situation increases with NM and hence 
the % of false isolation increases with NM. For example, a guard node G1 detects a malicious node Z earlier than the 
other guard nodes for the link to Z. G1 subsequently drops all the traffic forwarded to Z and is therefore suspected by 
other guard nodes for Z. This problem can be solved by having an authenticated one-hop broadcast whenever a 
guard node performs a local detection. However, the number of good nodes decreases as we increase NM. This in 
turn decreases the indirect false isolation since a node may not have more than γ good nodes to agree on falsely 
isolating a neighbor. Moreover, as NM increases, the data traffic decreases since malicious nodes are not generating 
data. This in turn decreases the chance for collisions and consequently decreases % false isolation. Beyond a point 
(NM = 6), the latter factors dominates the first factor and thus the overall result is a decrease in false isolation with 
increasing NM. 
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Figure 26: % False isolation as a function of the number of malicious nodes in the network 

Varying γ: Figure 27 shows the percentage of false isolation as a function of γ. As γ increases the false isolation 
decreases since it becomes more and more unlikely to get γ nodes falsely accuse a good node as malicious. As the 
number of malicious nodes increases the false isolation increases for the same reasoning as in Figure 20. 

Figure 28 shows that the percentage of malicious routes increases with γ. As γ increases, the detection and 
isolation of nodes decreases and takes  longer time which gives the malicious nodes more chance to establish more 
malicious routes. Moreover, as the number of malicious nodes increases, the percentage of damage (malicious 
routes) increases intuitively. 
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Figure 27: Percentage of false isolation 
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Figure 28: Percentage of malicious routes 

The observation from all the experiments is that an infinite value of γ appears to be a desirable operating 
region. We find that it eliminates framing and minimizes the percentage of false isolation. On the other hand, it only 
slightly increases the percentage of malicious routes and slightly decreases the percentage of malicious nodes 
isolated. However, these values are acceptable and close to the case when γ is small. This is because the guards of a 
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node over a certain link are likely to see the same view of the node and therefore, they are likely to reach to the same 
reasoning about the monitored node whether individually or through the reports of other guards. This reduces the 
importance of having guards inform each other of their view about the monitored node which results in little change 
when we increase the value of γ to infinity. 

8 Conclusion and Future Work 

In this paper, we have presented taxonomy for attack modes used to launch the wormhole attack in multihop 
wireless networks. We have presented a protocol called LITEWORP that incorporates a detection protocol and an 
isolation protocol. The detection protocol can be applied for detecting each mode of the wormhole attack except the 
protocol deviation. The fundamental mechanism used is local monitoring whereby a node monitors traffic in and out 
of its neighboring nodes and uses a data structure of first and second-hop neighbors. LITEWORP isolates the 
malicious node and removes its ability to cause future damage. The coverage analysis of LITEWORP brings out the 
variation of probability of missed detection and false detection with increasing network density. The framing 
analysis brings out the conflicting effect of the detection confidence parameter γ. Higher values of γ result in lower 
framing probability but decrease the detection coverage. However, the degradation of the detection coverage is 
relatively small for the kind of network we consider and therefore γ set to infinity also performs well. The detection 
latency analysis provides insights on the time it takes a node to be detected for two different detection strategies 
(consecutive windows of detection being independent or overlapping). Finally, the cost analysis shows that 
LITEWORP has low storage, processing, and bandwidth requirements. These, together with the fact that no 
specialized hardware is required, make the protocol well suited to resource-constrained wireless networks, such as 
sensor networks.  

We propose to investigate the extension of LITEWORP to consider mobile ad-hoc and sensor networks and the 
effect of local monitoring on sleeping techniques for energy efficiency. For mobility, the fundamental requirement is 
the ability of a node to securely determine its first-hop and second-hop neighbors in the face of mobility. We can 
augment LITEWORP with existing work on dynamic secure neighborhood determination protocols, e.g., [8],[9] to 
achieve the goal as in static networks. However, we are also investigating an alternate design of LITEWORP that is 
customized to mobile networks. Even though, we show the application of local monitoring for mitigating the 
wormhole attack, this approach  is general and can be extended to detect other control attacks like the Sybil and the 
sinkhole attacks by changing the kind of information that is maintained in the watch buffers and the checks run on 
them. We will also investigate the application of local monitoring in mesh networks which have different constraints 
and different traffic patterns. 
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Appendix: Notations 
 
This section provides a summary of the notions used throughout the paper. 
 

Table 3: Summary of notations 

Acronym Description Acronym Description 
REQ Route Request REP Route Reply 
RA The neighbor list of node A r The communication range 
MalC(i,j) The malicious counter maintained by node 

i for its neighbor j 
Twin The malicious counter sliding window 

length 
δ The size of the sliding steps of the 

malicious counter sliding window  
Vf The amount of increment to the malicious 

counter if fabrication is detected 
Vd The amount of increment to the malicious 

counter if drop is detected 
Ct The malicious counter threshold beyond 

which a node is determined as malicious 
γ The detection confidence index, which is 

the minimum number of distinct neighbors 
that report malicious activity before a node 
isolates its suspected neighbor  

τ The time threshold by which a 
forwarding node has to forward the 
packet it has 

g  The expected number of guards over a 
certain communication link 

gmin The minimum number of guards over a 
certain communication link 

NB The number of neighbors of a node d The density of node distribution  
PC The probability of collision over a certain 

communication link 
Pfab The probability of packet fabrication by a 

malicious node  
Pdirect The probability of malicious node 

detection by direct observation 
Pindirect The probability of malicious node 

detection by indirect observation 
Pdetect The probability of malicious node 

detection by both direct and indirect 
observations 

PFA The probability of false alarm, which is 
the probability that single a packet has 
been falsely identified as malicious one 

PDF The probability of direct false alarm, 
which is the probability that a good has 
been directly identified as malicious by 
another good node 

PIF The probability of indirect false alarm, 
which is the probability that a good node 
has been indirectly identified (through γ 
other  nodes) by another good node 

Pfalse The probability of false alarm, which is 
the probability that a good node has been 
identified as malicious by another good 
node either directly or indirectly 

Pgdm The probability that node G detects a 
node M over a certain time window 

N The total number of nodes NM The number of malicious nodes 
Pm The probability of node compromise Pframe The probability of node framing 
Nts The number Twin time slots NBL The size of the neighbor list 
h The number of hops between a source and 

destination nodes 
NBLS The size of the total storage of the 

neighbor lists over all the nodes 
f The frequency of route establishment NREP The number of nodes involved in 

monitoring a REP 
TOutRoute The time out period for unused route φ The inter-arrival rate of packet generation 

at each data source 
ξ The rate for changing the destination by a 

data source  
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