Adaptive Correctness Monitoring for Wireless Sensor Networ ks
Using Hierarchical Distributed Run-Time Invariant Checking

Douglas Herbert, Vinaitheerthan Sundaram, Yung-Hsiang Lu, Saurabh Bagchi, and Zhiyuan Li*
School of Electrical and Computer Engineering, * Department of Computer Science

Purdue University, West Lafayette, IN 47907

{herbertd, vsundar, yunglu, and sbagchi} @purdue.edu, li@cs.purdue.edu

This paper presents a hierarchical approach for detecting faults in wireless sensor networks (WSNs)
after they have been deployed. The developers of WSNs can specify “invariants” that must be
satisfied by the WSNs. We present a framework, Hierarchical SEnsor Network Debugging (H-
SEND), for lightweight checking of invariants. H-SEND is able to detect a large class of faults
in data gathering WSNs and leverages the existing message flow in the network by buffering and
piggybacking messages. H-SEND checks as closely to the source of a fault as possible, pinpointing
the fault quickly and efficiently in terms of additional network traffic. Therefore, H-SEND is
suited to bandwidth or communication energy constrained networks. A specification expression is
provided for specifying invariants so that a protocol developer can write behavioral level invariants.
We hypothesize that data from sensor nodes does not change dramatically, but rather changes
gradually over time. We extend our framework for the invariants that include values determined
at run time in order to detect the violation of data trends. The value range can be based on
information local to a single node or the surrounding nodes’ values. Using our system, developers
can write invariants to detect data trends without prior knowledge of correct values. Automatic
value detection can be used to detect anomalies that were not previously possible. To demonstrate
the benefits of run-time range detection and fault checking, we construct a prototype WSN using
CO2 and temperature sensors coupled to Mica2 motes. We show that our method can detect
sudden changes of the environments with little overhead in communication, computation, and

storage.

Categories and Subject Descriptors: C.Zbfputer-Communication Networks]: Network Architecture and Design Bistributed Networks,

Network Communications, Packet Networks
General Terms: Fault tolerance and diagnostics, In-network processing and aggregation, Network

protocols, Programming models and languages, Data integrity

Additional Key Words and Phrases: Invariants, Correctness Monitoring, Run-time, Tools

1. INTRODUCTION

Wireless Sensor Networks (WSNs) enable continuous datactinlh or rare event detection in large, hazardous or
remote areas. The data being collected can be critical. cBegeindoor air quality or tracking tank movement are

two examples from civilian and military domains. WSNs are posed of many sensors that may fail for many

reasons. Faults may come from incorrect sensor networlogotst. Distributed protocols are widely recognized as
being difficult to design [1]. WSNSs present unique challenigesause of the lack of sophisticated debugging tools
and the difficulty of testing after deployment. Even afteteasive testing, faults may still occur due to environment
conditions, such as high temperatures. While this is trueafynsystems, this is especially true with WSNs as they

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-20.

arein situ in physical environments that may be changing over the desfadeployment. Regardless of design or
validation, sensors can still be damaged by unexpectedrfastich as storms, hail, animals, or flood.

Run-time techniques are required to detect faults in omlendintain high-fidelity data in the presence of possible
faults from design, implementation, or a hostile environtmé&arlier work for run-time observation in wired networks
[2], [3], [4] does not directly apply to WSNs as they are resedimited. It is essential to minimize the overhead of
storage, computation, and communication in observatighdatection. We develop a framework called Hierarchical
SEnsor Network Debugging (H-SEND) [5] to observe node dimus and network traffic for detecting symptoms
of faults. H-SEND differs from existing work in that it is sgalized for large scale WSNs. H-SEND has four key
features: (a) During program development, a programmespaaify important properties as “invariants” that should
never be violated in the network’s operation. (b) When they@mm is compiled, the code for checking invariants is
automatically inserted. An invariant may be checked Igchyl an individual node or remotely by sending messages
to another node for detecting faults that cannot be detemnby a single sensor node. (c) After deployment, the
inserted code is used to detect abnormal behavior of theonketuAt run-time, the system can compare against fixed
values, or data trends. An anomaly is detected by when anamias violated. An invariant may include a fixed value
determined at compile time, or a data trend observed atme tOnce detected, an anomaly can trigger several actions,
such as increasing logging details or reporting faults éoltase station. (d) After a fault is detected, it is reported t
the programmer and a new program is uploaded to the relewat@snthrough multi-hop wireless reprogramming.
H-SEND is designed for WSNSs with the following special coesation:

(a) Our approach has small overhead in storage, computati@hnetwork. H-SEND checks invariants through a
hierarchy without sending all observed variables to a e¢tdcation for detection. Instead, invariants are checked
at the closest nodes where the requisite information idablai We present the analysis of the overhead in Section
4.4,

(b) H-SEND assists programmers by automatically (or samwaatically) determining where to insert invariant
checking code and when to send messages that include othsemables. A programmer only needs to specify
the invariants and the variables to be observed. Our toodesgrmine the locations to insert code for checking
invariants and send observed information.

(c) Using H-SEND, faults may be detected by comparing theesfrom multiple nodes. H-SEND can observe data
trends that are determined only at run-time, such as temyerehanges in a wildlife reserve. In normal operations,
temperatures do not change suddenly. A sudden rise of tamopemay be caused by fire and must be reported
immediately. We can compare current values against histioralues on an individual node (temporal trend) or the
current values on surrounding nodes (spatial trend).

(d) H-SEND can handle WSNs with heterogeneous nodes thatgarined as hierarchies. Different nodes may check
different types of invariants and also by performing renatecking when observed information is aggregated.

We construct a prototype WSN to demonstrate H-SEND througtaddr election and data gathering protocol in
a hierarchical configuration. Some invariants are local twde but others are collective to a cluster or the entire
network. We choose a representative leader election mbtatled LEACH (Low-Energy Adaptive Clustering Hier-
archy) [6], [7]. LEACH assigns cluster heads in a “near reuoltin manner” to evenly distribute energy drain. A set
of invariants is inserted into the application code. We debeth temporal and spatial trends based on data collected
from our CG, and temperature sensors coupled to Mica2 motes with custdtpbwer supply and interface circuits.
2

Sensing Sensing Sensing Sensing Sensing Sensing
Node Node Node Node Node Node
A

X A 7

|
i .
N I
I

Cluster
Head

Cluster
Head

—

Sensed Data,
Invariants,
Errors

Base
Station

- >
Software F’rograrp
i Developer Corrections

Fig. 1. Overview of the framework for fault detection, proptign, diagnosis, and repair.

We use simulations to measure the overhead of the augmesdedrcour approach. The experiments and simulations
show that data trends can be observed and used to detectlgvathasmall overhead.

2. RELATED WORK
2.1 Sensor Programming Environment and Simulation

A typical hierarchical sensor network is shown in Figure hc®sensor network software is created by a developer, it
may be uploaded to individual sensors by utilizing distr@aslipropagation techniques over the radio link [8] as illus-
trated in Figure 1. Berkeley Mica Motes [9] are widely usedss® nodes for experiments. Mica nodes use TinyOS as
the run-time environment. TinyOS provides an event-baiedlator, TOSSIM, that can be used to simulate a network
of varying node size [10]. TOSSIM compiles from the same sewode as the Mica platform Our experiments use
TOSSIM because it scales to large numbers of nodes easilgST® provides deterministic results so it is a better
test bed in contrast to the non-deterministic results pleyiby real-life execution. Finally, TOSSIM allows us tosep
arate instrumentation code from the actual code runningach sode so we can measure the nodes’ behavior without
perturbing the network’s normal operations. To increasesitturacy of our simulation, we inject sensed values from
actual sensors, and use these values to simulate dataticollec

2.2 Program Monitoring and Profiling

Program monitoring and profiling have been developed foedvinetworks [2], [3], [4]. One approach is to directly
modify binary code [11] using binary analysis tools to in$estrumentation code to monitor program operation. This
approach detects faults in programs while operating in beraronment. DIDUCE [12] instruments source code
and formulates hypotheses of possible rules about corregrgam operations. DIDUCE uses machine learning by
starting with strict rules that are gradually relaxed towlhew program behavior. Formal methods have been used to
prove programs from a theoretical view [13]. Analysis ofgnam operations with an SQL-like language is used for
correctness monitoring in [14]. Adding hardware to moniteemory changes for checking at run-time is discussed
in [15], [16]. Several studies discuss how to find invaridiotsprograms [17], [18], [19]. These studies provide the
foundation for using invariants in WSNs but existing apptasccannot be applied to WSNs directly because the
observation algorithms may execute at a location far awamy fnodes where data are collected, adding significant
network traffic to propagate data. WSNSs are resource-limitedce, invariant checking must be efficient in using the
3

sensor nodes’ communication and computation.

2.3 Clustering

WSNs are distributed systems. Distributed algorithms haenlstudied in [20]. WSNs differ from wired distributed
systems because sensors have stringent resource casstirmttuding energy, storage, and computation capability
To conserve energy, some routing protocols use hierareniesg sensor nodes [21], [22], preventing all nodes from
relaying all messages (i.e., routing by “flooding”). Sensodes are often divided into clusters and a special node
or “cluster head” (CH) in each cluster relays messages legtwisters or to a base station. Cluster heads can be
chosen in several ways. If sensor nodes are heterogenbeumdes that have more resources are selected as cluster
heads. For homogeneous nodes, they can take turns playgnglth of the cluster head through leader election
protocols [23], [24], [25].

2.4 Fault Detection and Recovery

Studies have been conducted to observe run-time behaviavifed networks [2], [3], [4]. In these studies, the
observed node and the observer are different and this agippravides several advantages: (a) An observer may be
a monolithic entity with perfect knowledge of the observed@. (b) An observer may be fault-proof or may only fail

in constrained ways, such as fail-silence. (c) An obsenay have abundant resources. fault observation in resource-
constrained WSNs has also been studied. Several projedsoasebservation whereby nodes oversee traffic passing
through the neighbor nodes [26], [27], [28], [29], [30], [3132]. Each node can both sense the environment and
observe other nodes. Previous work uses local observatibuild trust relationships among nodes in networks [29],
[27], detect attacks [28], [30], or discover routes withtaar properties, such as a node becoming disconnected [26].
Huang et al. [30] propose distributed intrusion observetar ad-hoc networks. Their paper uses machine learning to
choose the parameters needed to accurately detect fantitgsibn detection systems exist [33], [34]. However, the
knowledge in these systems is built by each individual noileout the need for coordination, and no information is
transmitted to remote nodes. Smith et al. [35] detect padtiawilts for ad-hoc networks. After faults are detectedy ne
programs may be sent to the sensor nodes through the santeswinetwork for transmitting data. Deluge [36] allows
program replacement by propagating new program imageswaveless networks. In our previous work [37], we
present a method to enable neighbor observation in reseortgrained environments and to provide the structures
and the state to be maintained at each node. We analyze thbilit#gs and the limitations of local observation for
WSNSs.

2.5 Estimation and Approximate Agreement

A summary of approximate agreement upon a single value igged by Lynch [20]. Lamport et al. [40] formulates
the Byzantine Generals problem of gaining distributed earas in the presence of faults. It is shown thaBfir+ 1
nodes reporting binary (true or false) data, the correatesalan be determined if no more thah nodes report
incorrect values. Maheney et al. [41] shows that continu@lige estimation requires fewer correct nodes to achieve
consensus for a given degree of fault tolerance. Two-tlofdsodes performing correctly guarantees convergence
of their algorithm, and between one-third and two-thirdnofles performing correctly will allow their algorithm to
detect that too many faults have occurred to determine coress or show that the divergence is bounded. Marzullo
et al. [42] provides an algorithm to obtain inexact agreenfiencontinuous valued data, and presents a method of
transforming a process control program for better fautremhce. They demonstrate how to modify specifications to
4

H-SEND | Sympathy | DICAS | Sendto Base Daicon | DIDUCE
Mobility Yes Yes Yes Yes No No
Hierarchy Yes No Yes Yes No No
Learning Yes Not Yet No No Yes Yes
Resource
Efficient Yes Yes Yes No No No
Aggregation | Yes Yes No Yes No No
Designed
for Security | No No Yes No No No
Add/Remove
Nodes Yes No Yes Yes No No

Table I. Matrix of Capabilities of Fault Observation Metlsod
Sympathy [38], DICAS [39],
Daicon [18], DIDUCE [12]

accommodate uncertainty.

2.6 Benefits of CO, Monitoring

Many studies have provided the relationship between theardration of carbon dioxide (GQand indoor air quality
[43] [44] [45]. In an office building, occupants (i.e. peopbre the primary source of GO High levels of CQ
(usually above 1000 parts per million, or ppm) are conneutighl sick building syndrome (SBS) symptoms. As a
reference, the COlevel in outdoor air is usually below 350 ppm. Even though,@&els are not a direct indicator of
indoor air quality, the C@levels can provide indirect information of ventilation effincy, SBS, respiratory disease,
and occupant absence. Every year, approximately 4 milleihss occur due to viral respiratory infections [46]. Liao
et al. [46] develop a model for the infection of influenza ardese acute respiratory syndrome (SARS) for indoor
environment. Studies show that increasing ventilationrealuce the infection of airborne diseases [47], [46], [48],
[49]. Ventilation volume for un-instrumented spaces is ownly collected with a device that fits over the supply
vent, and forces air to flow through the measurement devisd@sn in Figure 2. This method device with only one
data point. We use multiple GGensors as indicators of ventilation volume and transmi@ereadings to a central
location using wireless sensor nodes. Sensor data aretealleontinuously and automatically without the need of a
human worker. We believe this type of application will be @liddeployed because of (a) the low cost of sensors, and
(b) the real time feedback they provide in control systenhalt been shown that demand controlled ventilation can
save energy [50], [51]. WSNs substantially reduce the coselnoving the need of long cables for communication
cables between sensors and the control center.

2.7 Comparison and Our Contributions
Table | summarizes the capabilities of several relateceptsj In this table, we adopt the following definitions:

—"Mobility” is the ability of nodes to move over time.

—“Hierarchy” refers to a tiered arrangement of nodes.
—"“Learning” indicates the ability to estimate correct vada run time.
—"Resource Efficient” shows if hardware resource usage i\aerm.

—"Aggregation” is the ability to combine data together.
5

Fig. 2. Device for measuring airflow volume

—"“Designed for Security” states if security is a main goalte# tesign.

—“Add/Remove nodes” shows if it is possible to change the nemalh nodes at run-time.

Sympathy [38] transmits metrics such as network link quaditd routing stability back to the base station for
analysis. Sympathy assumes high throughput of the netwutlat data for correctness checking are sent to the base
station. Dicas [39] places additional nodes to monitor l@se communication for detecting faults. Send-to-base is a
simple method where the developer manually inserts codenim all variables to be monitored back to the base station.
Daicon [18] and DIDUCE [12] observe the behavior of programautomatically create invariants; developers are
not required to specify invariants. Automatic creationésfprmed by first creating strict invariants. As the progsam
execute, the invariants are gradually relaxed to accomtaauaw correct behavior. Neither Daicon nor DIDUCE is
designed for distributed or resource-constrained sysli&m¥VSNs.

This paper extends our previous work [5] where we introduiseoving variables specified by a developer through
invariants to detect faults. This prior work used invarsagétermined at compile-time. This paper includes a detaile
study how to use the same infrastructure with the additiorunftime determined invariants which have changing
parameters, and validates this approaches on data cdllieate real sensors. We construct a WSN to measure indoor
CO, and temperature levels and demonstrate that our framewaorkarrectly detect data trends and sudden changes
of the levels as violations of invariants.

3. TECHNIQUES FOR FAULT DETECTION, DIAGNOSIS, AND REPAIR
3.1 Overview

Our system determines the health of a WSN by detecting sdadtimaits or sudden changes of data trends, propagating
the information to the base station, assisting a progranorgiagnose the faults, and then distributing correct saféw
after the programmer fixes the faults. Our approach addse¥ghat is observed and when?”, and “How is a fault
detected?”.

3.1.1 What is observed and whenthvariants are classified in several ways:

Local invariantsare formed from variables resident on the same node (heticefeferred to as local variables,
not to be confused with local variables within a function)yoand multi-node invariantdfrom a mix of local and
non-local variables. Local invariants can be checked atpaiirgt where the constituent variables are in scope, while
remote invariants can be checked when the set of networkagessarrying all the non-local variables have been

6

successfully received and the local variables are in scope.

Stateless invariantandstateful invariants For the invariants on a single node, stateless invariaetalavays true
for the node, irrespective of the node’s operation stategefil invariants are true only when the node is in a padicu
execution state.

Compile-time determined invariardsdRun-time determined invariant€ompile-time determined invariants com-
pare variables and program conditions against values thabtichange. Run-time determined invariants sjzatial
trendingto compare variables and program conditions against o#ighhoring nodes aemporal trendingo com-
pare against prior history. An example of a compile-timesdmined invariants is “Sensed temperature is between 10
and 30 degrees Celsius.” An example of a run-time determimediant utilizing history is “Temperature does not
change by more than 10% in a period of 60 seconds.” A run-tieterthined invariant can check the condition “All
nodes report temperatures that are within 1 standard dmviaf each other.” H-SEND allows different classes of
invariants to detect different faults.

3.1.2 How is a fault detected?A fault is detected when one or multiple invariants are \tieda The verification
of a local invariant involves some computation without giddial communication. One of the benefits of performing
temporal trending is that expensive communication is meguonly when a fault is detected. The verification of a
remote invariant involves additional communication. $pdtending requires communication energy to propagate
values, but requires less memory because a history buféer dat need to be kept. WSNs are energy bound so nodes
are often put to sleep for conserving energy and sendinggdietformation separately can use a significant amount
of energy. An alternative is to piggy-back invariant inf@tion onto data messages that contain sensed data. This
reduces the cost of communication — the fixed cost is amaktizelditionally, this removes interference with any
existing node sleep-awake protocol. However, this implias the fault can be propagated only when a data message
is generated. Such delay, fortunately, is bounded and dypsism& presented in Section 4.4.

3.2 Invariant Grammar

Invariants are specified in source code in the form:
[scope modifier() [where (condition modifier)]] require (rule);

An example isforal(HS _NODES) where (node==HS _.CLUSTERHEAD) require (HS _HIGH, a <
MAXHOPS). HS NODESefers to all nodes, andS CLUSTERHEALEfers to the current cluster head. This invariant
checks thaa is less thatMAXHOPS

The scope modifier may includerall ~ orexists . If there is no scope modifier, the invariant applies to ohby t
local node. The scope modififarall indicates that the invariant holds for every node. The scopdifierexists
indicates that it holds for at least one node. The conditiodiffer where indicates that a condition is present to act
as a filter upon the scope. Several enumerated values aftetd@dd use for this purposéiS NODESor all nodes,

HS CLUSTERHEAT€Dr cluster heads, andS BASESTATIONfor the base station. Local and remote variables can
also be used. Theule may use remote variables, local variables, variables frangle function or variables from
multiple functions in defining the expression.

Placement will specify the scope of an invariant. If an insaris to hold for a single statement, then the specification
is placed immediately after that statement. If an invariargpecified for an entire function, then the specification
is placed at the beginning of the function body. If an invarienust be satisfied no matter which function is being

7

executed, then the specification is placed at the begindiagpamgram module, i.e. a source file in the NesC language.

Theforall scope modifier can be applied to functions. The entire setraftfons is denoted S FUNCTIONS
For example,foral(HS _FUNCTIONS) require (HS _CLUSTERHEAD == message.sender); means
that the sender of any message must be the current clustdy tegmrdless of which function is being executed.
Receiving a message from any other node indicates a faulditiddally, we identify the most recently received
message by the variabMIN , and the most recently sent message by the varldlidJT MALL refers to all mes-
sages and the nodes identification numbeN&DEID . The forall andexists quantifiers can be applied to
both messages and node IDs. The fiddeder and.type can be accessed for messages. For all data, the
.age field is incremented each time a new piece of data is samplddeamluated, and can be used to perform
historical analysis. For examplfrall(M _IN) where (M _IN.type == M5) && (M _IN.age < 20))
require (M _IN.sender == 5); reads “For the last 20 messages received, all messages ldbtiype must
come from node number five.”

In the prior example, the value “5” is determined at comptiiee and checked at run-time. This restricts the applica-
bility of invariants because some values may be specificaaéployment environment. A programmer does not have
to rely on compile-time values when creating invariantsnfime determined values can be used for invariants using
spatial trendingor temporal trending The former compares a value against the values from othghlpering nodes;
the latter compares the current value with earlier values.sgecify trending, one can use the additional reserved
keywordtrend ; it allows WSN developers to specify invariants using rundidetermined values. One example of
trending is to detect the meanand the standard deviatienof sensed data.

An example of a trending invariant iforall (sensedData) where (sensedData.age < 10)
require (trend(sensedData,l)) , Which allows a program to perform temporal trending and gara
sensed data over time and trigger a fault message. If angdesmdue is more than one standard deviation away
from the mean of the last 10 samples, a fault is detected. hematvariant,forall (HS _NODES) require
(trend(sensedData,1)) , performs spatial trending by comparing an individual reodata against the values
collected by all the other nodes. A violation occurs if thifeslence exceeds one standard deviation.

3.3 Invariant Examples

H-SEND can be used to detect data trends and faults in WSNtipesasuch as leader election, time synchronization,
and location estimation. We use leader election as an exahgue and as a case study in Section 4 to illustrate H-
SEND'’s capability. We use several types of messages as dasiigted in Table Il. Message “M1: Election” initiates
an election, upon which nodes randomly respond by sending 1vh a new cluster head” to other nodes, and the old
cluster head responds with “M7: Relieve cluster head.” Bgnsodes then send “M2: Data” messages to the cluster
head, which combines the messages and sends “M3: AggregtdétD the base station. If a cluster head disappears,
a node will broadcast “M6: My cluster head is unavailableationodes.

The invariants listed below can be specified in the prograimgutie format shown in Section 3.2. The following
list shows (a) possible invariants for the protocol in Esigli(b) the invariant specification grammar, (c) whether the
invariant has fixed parameters (compile-time) or the systiearns parameters (run-time) (d) if state is kept, and (e)
what type of fault is detected.

1. Rule: If a node detects unavailability of a cluster heaukw cluster head should take over withitime units:
Invariant:forall(M _OUT) exists(M _IN) where (M _OUT.type == M6) && (M.N.type ==
8

M essage Function

M1: Election Initiate the election process for a CH (cluster head)
M2: Data Send sensed data from a node to a CH

M3: Aggregate Data Aggregate data in a CH and send to base station
M4: I'm a new CH Inform the nodes that the sender is a new CH

M5: I'ma CH Send periodic “keep-alive” to nodes in the cluster

M6: My CH is unavailable| Realize my CH is unreachable and send to the base station

M7: Relieve CH Inform the other nodes that the CH intends to relinquish

its role due to, for example, impending energy exhaustipn

Table Il. Messages used for cluster formation

M4)) require (M _IN.time - M _OUT.time > 0) &% (M_IN.time - M _OUT.time < X));
NesC checking code inserted by H-SEND code augmenter:

int lastM4MinMsgTime;

if(M_OUT == M6) && (((lastM4MinMsgTime - M_OUT.time) < 0) |
((lastM4MinMsgTime - M_OUT.time) > X))) {
/* Create and send fault packet */

if(M_IN.type == M4)
lastM4MinMsgTime = M_IN.time;

Type: Compile-time/Stateful/Implementation Fault

2. Rule: A node is no more thathops from a cluster head:
Invariant:forall(HS _NODES) where (M_IN.sender == HSCLUSTERHEAD) require
(M_IN.hops <= X);
NesC checking code inserted by H-SEND code augmenter:

if(M_IN.sender == HS_CLUSTERHEAD} && (M_IN.hops > X) {
/= Create and send fault packet */

Type: Compile-time/Stateless/Scalability Fault

3. Rule: Sensed data value stored in variable sensedVatserm differ among nodes by more than 3 standard
deviations.
Invariant:foral(NODES) require (trend(sensedValue,3));
NesC checking code inserted by H-SEND code augmenter todbeated at base station:
9

/IRetain values between calls
static int datalMAX_NODES]; static int index = 0;
int i; int mean = 0; int stddev = O;

/I Insert into array with latest data from other nodes.
data[NODE_ID] = M_IN.sensedValue;

/I Calculate Mean
for(= 0; i < MAX_NODES; i++) { mean += data][i]; }
mean = mean / MAX_NODES;

/I Calculate Standard Deviation
for(= 0; i < MAX_NODES; i++) { stddev += (data[i] - mean)'2; }
stddev = sqrt(stddev/MAX_NODEYS);

/I Check against tolerance
for(i = 0; i < MAX_NODES; i++)
if((datafi] < (mean - 3 *stddev)) || datafi] > (mean + 3 * stddev)))
{1/ Create and send fault packet *[}

Type: Run-time/Stateful/Scalability Fault

From the list of examples, we can see that checking invarigmhot an onerous task. The computation is small,
consisting of an equality or inequality check and calcakathe conjunction or disjunction of multiple boolean value

4. CASE-STUDY: DEBUGGING A DISTRIBUTED LEADER ELECTION PROTOCOL

In this section we demonstrate the capabilities the H-SELIX fletection approach. We implement leader election
to show a wide range of compile-time determined invariaatg] we use data collected from our testbed of, CO
and temperature sensors to show how to determine the histryand tolerance needed to use run-time determined
invariants effectivly.

4.1 LEACH

We implemented the LEACH (Low-Energy Adaptive Clusterinigtdrchy) cluster based leader election protocol for
WSNSs [6], [7]- In LEACH, the nodes organize themselves intastdrs, with one node acting as the head in each
cluster. LEACH randomizes which node is selected as the imeadler to evenly distribute the responsibility among
nodes and to prevent draining the battery of one node tokiguié cluster head compresses data (also cadlath
fusion) before sending the data to the base station. LEACH assuma¢slt nodes are synchronized and divides
election into rounds. Nodes can be added or removed at thereg of each round. In each round, a node decides
whether to become a head using the following probabilitypfisep is the desired percentage of cluster heads (5%
is suggested in [6]). If a node has not been a head in the}%laetmds, the node chooses to become a head with
10

Send Advertise Message f i
P(Cluster Head) Send Cluster Head N Wait for Join
Advertise Message Message
) I Join
Restructuring

I
I ; I
+Advemse Message Advertise Message |
Period Ends|
_ Receive Cluster Head Choose Cluster Head
1 - P(Cluster Head) 8 and Send Join
Advertise Message
Sent Join Join Period End
Received Message
TDMA Schedule
Sensing Wait for TDMA
Schedule
TOMA TOMA i
Slot Over Slot Begin , TDMA
Data : Schedule
Message Send Data | Message
Collect Data [~ (
and Forward Send TDMA Schedul
to Base Station Sent TDMA Schedule

Fig. 3. State Diagram of the LEACH Protocol

probability — L

again. If a node decides to become a head, the node broadaastssage to the other nodes. The other nodes joins
a cluster whose leader’s broadcast message has the grEgtedtstrength. In the case of a tie, a random cluster
is chosen. LEACH is used in many other studies, such as [53], [54] because LEACH is efficient, simple to
implement, and resilient to node faults.

Figure 3 shows the states of the LEACH protocol. Each solidvaindicates an event that causes a state change,
and each dashed arrow indicates a communication messageiahts can be easily created from this state diagram.
If a node is in a certain state, and any event occurs for wiietstate diagram is not defined, an fault has occurred.
Possible invariants for the LEACH protocol include “onlytive "Wait for Join Message State’ should a 'Join Message’
be received” or “A node should only receive a ' TDMA scheduethe 'wait for TDMA schedule state’”. The compiler
can then insert code for these compile-time invariant takliee health of a node or the network.

3 wherer is the current round. Afte% rounds, all nodes are eligible to become cluster heads

4.2 Carbon Dioxide and Temperature Measurement

A picture of a sensor node from our data collection test besh@vn in Figure 4. Each sensor node contains a
Crossbow MPR400CB (Mica2) sensor mote coupled to a SengS€nse carbon dioxide (GDand temperature

Antenna

CO2 +
Temperature
Sensor

Power
Board

(@) (b)
Fig. 4. CQ, and Temperature Sensing Node (a) The internal componentiéa)dde as seen from the outside (ink pen is shown for sizeerefe).

11

sensor through a custom interface circuit. Power is sugpde¢he CQ and temperature sensor by an unregulated 24
volt AC transformer. A 5 volt transformer is regulated to 3tsdoy an external voltage regulation circuit and provides
power to the rest of the interface board and the sensor mbeinierface board scales the analog output of the aSense
to a range acceptable to the mote, and adds diode limitersotegh the sensor mote from electrical damage. All
circuits use precision potentiometers which were tunedguaidigital multi-meter to reduce losses in accuracy due
to power fluctuations and signal scaling. The £&d temperature data are sensed by the on board 10-bit analog
digital converter of the mote, and forwarded to the baséostathere the values are recorded and archived. Figure 5
shows the readings from multiple locations inside a stutiemtge on our campus. Some people find this room ideal
for napping, and this may be explained by the high conceatratf CO,. We use data collected from these sensors to
evaluate the performance of run-time determined invasipatforming both spatial and temporal trending.

4.3 Examples of Invariant Violation

At present, all invariants are manually inserted but ingertan be done by a compiler as explained in Section 3.3.
This automatic invariant-insertion tool is under develgom In our experiments, we originally intended to write
“correct” code first and then intentionally inject faultdéda However, we encountered unexpected behavior by the
nodes and decided to insert invariants first to help us isohea fault (or faults). We observed that some nodes entered
the “Cluster Head Advertise” state at wrong time. The fawbw state-transition violation. An invariant required tha
“Restructuring State” be the previous state before the dS&inster Head Advertise Message” state. This is a binary
example: there is only one correct previous state. If theipus state is incorrect, the invariant is violated. Afteist
invariant was inserted, we discovered an fault in our LEAGHdlementation. When the invariant was violated, a fault
was reported at the node level. Without this distributedudging system, a simple fault would have been difficult to
diagnose. This shows that a binary invariant can be venyflilelfn invariant can also include numeric quantities. For
example, we can observe the signal strength received byrestehin order to analyze the health of the network. An
invariant can be written to ensure that the signal strengtin fa cluster head does not vary above 50%. If this invariant
is violated, a fault is reported. This report can assist tioéggol designer to decide whether a more robust (and higher
overhead) protocol should be chosen.

4.4 Analysis

This section analyzes the overhead, time to detect fatdisgding parameter selection and code size.

1400 CO2 Levelsin a S‘tudent ‘Lounge

1300 People Entering

I
I
and Leaving |
I

| [
I |
| ! |
P, | I
E the Lounge | | :
| . . i
_5 1200 ! No Air Circulation ! ! Turn on Window |
2 | | | FantoBring !
3 1100 ! ! External Air | L _
8 A \ \ | Relocate the sensor inside the lounge
o | 1 | |
1000 I Circulating ! T
! {ndoor Air |
900 ! ‘ L ‘ ‘ ‘
0 0.5 1 1.5 2

Time (hour)

Fig. 5. CQ Levels Observed in Multiple Locations In and Around Studsminge

12

x 10° Num Packets vs. Network Size

<
41| ¢ Cluster + Base Debugging
o Cluster Debugging o
* No Debugging
35F o o
a
o
3r o
- o
2 o
=2 25+
5 * e
< *
E 2r © " *
] o o *
c%’ 15 o o * *
o *
o
1 M .
19 *
o *
05¢ 8 *
*
ok ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120

Number of Nodes

Fig. 6. Network Traffic vs. Network Size

4.4.1 Network Traffic ScalingSince sensor nodes have limited energy, they should seritfl@iformation as
possible to conserve energy. LEACH uses data fusion to estthecamount of network traffic. We analyze the network
overhead of H-SEND as follows. Let. andm, represent the size of a message sent from a node to its chestdr
and the base station. L¢tbe the fusion factor. For examplg,is 10 if the cluster head summarizes 10 samples
and sends the average to the base station bet the additional amount of information sent by each nodédoit
detection. The value of is zero if no information is transmitted for detecting faulT he total amount of data sent in
the whole wireless network can be expressed &8s > (mc+ = +0). One goal of the H-SEND approach is

Vxe nodesr?ﬁjsri?es
to minimize the communication overhead. Supposeis the total amount of information transmitted in the netkvor
without any detection messages (i®&.= 0). Letms be the amount of information with detection messages. The
overhead is defined a@% In H-SEND, nodes only forward debugging data to clustedeeand cluster heads
only forward debugging data to the base station (i.e. upsyafdo debugging data is sent back down to nodes from
higher levels of the hierarchy. The rationale is that diaimaoeeds to aggregate information only. Therefore, adding
nodes results in a linear increase in network traffic. The clgsdy presented here observed three variables at the
cluster level, and six variables at the network level. Fégéirshows that the traffic grows linearly for network sizes
between 5 and 125 nodes. This figure shows three lines: (ggutbdetection. This has the same amount of traffic
as node-level detection. (b) cluster-level detection, @haluster and base-level detection. The vertical axisvsho
the number of bytes transmitted. The actual amount depéediuration of the simulated network. Regardless of the
duration, the ratio o% and% is approximately 1.64 and 1.95, respectively. In other wpthle percentage of the
network overhead is nearly a constant. Detecting faultdasedo the source as possible allows H-SEND to reduce
the amount of traffic sent over the network. The worst caseast®is to send all data to the base-station, and perform
data-analysis at the base station. Through simulatiorgstfound that the H-SEND method resulted in a 7% message
reduction size vs. sending all data needed to evaluateiémtarto the base station.

4.4.2 Detection Time.To further reduce network traffic, observed detection dafgidgy-backed onto data mes-
sages through the network as part of normal operation. Biisssthe fixed cost of communicating a new packet, such
as the cost of the header bytes accompanying each packeted duyt of the default size of 36 bytes for the Mica2

13

100~

Il Fusion Factor 1x Il Fusion Factor 1x
90 [Fusion Factor 10x] 90 [Fusion Factor 10x

% Errors
% Errors
a
(=]

[
0 | . . P
0 4 8 12 16 20 24 28 32 36 40 44 48 0 4 8 12 16 20 24 28 32 36 40 44 48
Time To Detect (Time Slices) Time To Detect (Time Slices)

(a) (b)

Fig. 7. Simulated Results for Detection Time. (a) Node-LelgEluster-Level

platform). Piggy-backing data adds a bounded latency tectien, as data is held at the node or cluster level until a
data message is sent to the next level. Due to bounded aetdictie, all faults are reported, and there are no losses.
If piggy backing is not used, fault propagation delay is ¢f trder of communication delay. If the fault is delay
sensitive, an additional strategy that can be used in additi piggy-backing is generating an explicit control megssa

if the delay goes above a threshold. Piggy-backing faultsagss causes bounded delays. Detection time is defined as
the time period between when a node detects a fault, and Heedbation receives the message indicating a fault. The
worst-case detection time occurs when a node transmitsrdtiie first transmit slot and detects a fault in the very next
slot, and must wait for all nodes in it's cluster to transmiti(slots). It must then wait for the network to restructure,
and then the same node must be assigned to the last transingit-4! slots). Analytically, we can define the worst case
detection time as: 2(Number of Transmit Slots-1)+Number of Slots to Restrugtdris equation was confirmed by
simulation. The LEACH protocol has 4 slots of administratoverhead. In [7] it is found that 5% of nodes acting as
cluster head is ideal, yielding an average cluster size ofdes with 20 time slots to broadcast results. Using these
parameters, the worst-case detection time is 42 time sldis. data fusion factor will affect the detection time, as
higher fusion factors result in fewer messages. As a rededéction time increases when the fusion factor increases.
Figure 7 (a) shows a histogram of node-level detection titfasion factors of 1 and 10. As the figure shows, most
faults can be detected within 4 time slots. When the fusiotofds higher, the figure shows that detection time in-
creases. Figure 7 (b) shows the detection time for clustet fault detection. The detection time is significantlyses
than at the node level, because cluster heads communidatéheibase station much more often.

4.4.3 Choosing Trending Parameter3rending accuracy is closely related to the tolerance athvin our exper-
iments, the tolerance is measured by multiples of the stdmdieviationz - 0. The natural amount of variation in a
WSN is sensor and environment specific. Harsh environmenyscoraectly sense a large amount of variation with
no fault occurrences, such as seismic sensors for eartleguilany applications, however, will report small amount
of variation, such as indoor GGsensing. To determine the toleranaeapove), one must consider what variation is
seen in normal operating conditions is, and choose a talerslightly above this. If is too small, normal runtime
variance will trigger faults. Iz is too large, faults may not be detected. Hencenust be larger than the natural
variation of correct data, but smaller than abnormal suddemges. The WSN developer must also determine the
amount of history to useyj for temporal trending. lf; is too small, the amount of history is insufficient to observe
the trend. Ify is too large, the trend is influenced by data collected in émeate past. The history sizg &bove) is

14

also directly related to the amount of memory temporal tirgndonsumed at run-time, and therefore it is desirable to
chose the smallest history size that can capture enoughadatzate faults. We show in the following paragraphs how
to determine appropriate values for bat{the tolerance) angd (the history size) for trending based on empirical data.

To demonstrate a real world example of choosing the properatoce and history size, we collected data from
two CO, and temperature sensors placed on different sides of anxpyately 50 meter square student lab with two
occupants for 2 hours under indoor office building cond#io@are was taken to not perturb the environment. Normal
building ventilation was present, and the single door totihBway was left open to simulate normal conditions.
Data was sampled every 30 seconds, and the base stationl lttggdata to permanent storage during collection. We
repeated the data collection with a student holding a 1500 pesisonal hair dryer to one node temporarily at two
different times during the experiment. The hair dryer cawusguick spike in temperature to 50 degrees Celsius, the
maximum temperature the sensor can measure, before theratmme falls back towards ambient room temperature.
Additionally, we recorded an increase in ¢f@vel when the student was operating the hair dryer, fronintiease in
air flow over the sensor and the close proximity of the studéfe use this data collected with the hair dryer blowing
to represent a malfunctioning sensor or a sudden change @thironment. The CQand temperature data of both
the normal case, and the hair dryer case is shown in Figure 8.

To evaluate trending performance across a wide range ghtates and history sizes, we inserted the data collected
above into a TOSSIM simulation where nodes use it as thesezbrnalues in a 20 node simulation of a network
running the LEACH protocol. TOSSIM allows us to use the saemsed data in multiple simulations of different
tolerance and history values. The sensed data from nodeulaged the sensed data for one node, the data from node
2 simulated sensed data for 18 other nodes, and the remaiadeserved as the base station. We inserted run-time
determined invariants into the application code to perftnending on (1) the time between cluster elections, (2) the
number of members in an individual cluster, (3) the numberldters, (4) the number of bytes transmitted between
elections, (5) the value of the sensed{fata, and (6) the value of the sensed temperature data.

To determine the appropriate tolerance for spatial tremdire simulated a network performing spatial trending with
tolerances of 1, 2, 3, 4, and 5 standard deviations for theevall with both the normal data, and the hair dryer data
representing faults. We recorded the number of faults tleaewletected by trend monitoring, and show the results
in Figure 9 which shows that at a tolerance of 4 standard temiamo errors are reported for correct data, and 310
errors are reported for the hair dryer simulated fault d&t& can see from the figure that a tolerance value lower
than 4 shows a similar number of errors in both the corree datl hair dryer data, and is therefore not tight enough.
Tolerances larger than 4 standard deviations do not déteetrtors in faulty data, and are therefore too loose.

To determine the appropriate tolerance and history sizéefaporal trending, we simulated a network performing
temporal trending with tolerances from 1 to 5 standard dmvia for «, and with history sizes of 4, 8, 16, and 32
sensor readings fay. We simulated nodes sensing both correct and hair dryeceditaulty data. We counted the
errors for each set of parameters and show the results inedF&gWA history size of 16 sensed readings, with a tolerance
of 3 standard deviations shows an order of magnitude motfesiaithe hairdryer case, compared with the normal data
case. A window size of 32 with 4 standard deviations also shamvorder of magnitude more faults in the hairdryer
case than in the normal data case. In this particular apjalicave find both pairs of parameters to perform excellent
temporal and spatial trending, but we recommend 3 standariatibns with a history size of 16 due to the reduced
memory requirement.

15

CO2 Data Normal Over Time Temperature Data Normal Over Time

a
o

o0 ——Node 1 2 —Node 1
— Node 2 % 45¢ ~ Node 2
600 N 9 0
—) [
E W'WN/ wf!W M'WWMW'MMWWWW | 5
[L 4
N e A (R o
N o
O % 301
5007 g -
S
(]
450 : : : ‘ F 20 : : : ‘
0 0.5 1 15 2 0 0.5 1 15 2
Hours Hours
(a) (b)
CO, Data with Hairdryer over time Temperature Data with Hairdryer over time
650(2 %0
——Node 1 2 —Node1
(2] -
< 45 Node 2
(&)
600}, 2 40
— (O]
5 2
£ 550 5 35
D o
O = 30
©
500 5
g_ 25 B iy et e S
(5]
450 : : : : F 20 : : : :
0 0.5 1 15 2 0 05 1 15 2
Hours Hours

(© (d)

Fig. 8. (a) CQ Data and (b) Temperature Data Collected with Normal Conditi@) CQ, Data and (d) Temperature Data Collected with Hair
Dryer induced Fault Conditions

4.4.4 Code Size When implementing the LEACH protocol, all nodes except theebstation must use the same
binary image because all nodes can be cluster heads at samheTee data reported in Table 11l was collected with -
O1 optimization, based on binary images for the Mica2 ptatforhe column for ROM indicates the code size written
to the flash memory. The column for RAM indicates the memoguiement at run-time. The baseline includes
the program that performs the basic sensor functionalityl#PACH leader election. Adding node level observation
increases the code size by 9%%3 — 1). Adding all levels of observation increases the code sjzElS6 (12249 —1).
The increased RAM size comes from the additional bytes imttiters for each packet.

5. CONCLUSION AND FUTURE WORK

This paper presents a hierarchical approach for detectifiggare faults for WSNs. The detection is divided into

multiple levels: node, cluster, and base station. Progrararspecify the conditions (called invariants) that have to

be satisfied. Correct values can be specified in source calldetarmined at compile-time, or trending can be used

to determine correct value ranges at run-time. It is posdiblto insert invariants by a compiler automatically. Our

method is distributed and has low overhead in code size amgrietraffic. While our method applies to a wide range
16

Temporal Trending Errors Reported from Differant History Buffer Lengths

5000 T T T . :
Il 4 Normal Samples
~ Il 4 Hairdryer Samples
40001 I 8 Normal Samples
0 [8 Hairdryer Samples
2 3000t - [16 Normal Samples ||
w []16 Hairdryer Samples
g [132 Normal Samples
E 2000} [132 Hairdryer Samples
z
1000+] 8
0 IIH H I Hﬂ“ L ﬂ L
1 2 3 4 5
Standard Deviations
(@
Spatial Trending Errors Reported
400 T T : :
- Il Normal Samples
— — |[__IHairdryer Samples
3001 [] b
14
o
o
o 2001 b
Qo
£
=}
Z
100+ b
O Il Il .\ Il L
1 2 3 4 5

Standard Deviations

(b)

Fig. 9. Number of Faults for Different Sigma on Normal and ErmreData (a) Temporal Trending (b) Spatial Trending.

Components ROM Size | RAM Size
LEACH without observation 11744 1466
LEACH with node level 12838 1470
observation

LEACH with node, and 12906 1530
cluster level observation

LEACH with node, cluster, and 13040 1639
base station level observation

Table lll. Code Size of H-SEND in Bytes

of protocols, we use a leader election protocol as a casg, stnd show run-time trending performance onsGd

temperature data. The H-SEND approach is designed to bénteather existing technologies. For future work,

we would like to address ways of detecting scenarios thatltreonitoring can not detect, such as sensor calibration

shifting. We plan to implement automatic invariant ingamtby a compiler. We would also like to further automate

correctness monitoring by using offline invariant detectiools and incorporate their results into on-line operatin
17

networks automatically. In this manner, developers cancoseputer tools to determine which invariants should be
evaluated, and have code generated to perform that exalusiihout human interaction.

ACKNOWLEDGMENTS

Doug Herbert is supported by the Tellabs Fellowship fromdBais Center for Wireless Systems and Applications.
This project is supported in part by the National Sciencendation grant CNS 0509394 and by Purdue Research
Foundation. Any opinions, findings, and conclusions or nem@ndations in the projects are those of the authors and
do not necessarily reflect the views of the sponsors.

REFERENCES

G. Tel. Topics in Distributed Algorithms. I@hapter 3: Assertional Verificatiot€ambridge University Press, 1991.
Michel Diaz, Guy Juanole, and Jean-Pierre Courtiat. OlesekConcept for Formal On-Line Validation of Distributeds$gms.IEEE Trans-
actions on Software Engineering0(12), 1994.
Gunjan Khanna, Padma Varadharajan, and Saurabh BagchiClsatking Network Protocols: A Monitor Based Approach.Iriternational
Symposium on Reliable Distributed Systepagies 18—-30, 2004.
Mohammad Zulkernine and Rudolph E. Seviora. A Compositiongrdach to Monitoring Distributed Systems. limternational Conference
on Dependable Systems and Netwppeges 763772, 2002.
Douglas Herbert, Yung-Hsiang Lu, Saurabh Bagchi, and Zmyli. Detection and Repair of Software Errors in Hierarah8ensor Networks.
In IEEE International Conference on Sensor Networks, Ubayst and Trustworthy Computingages 403-410, 2006.
Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balaain. An Application-Specific Protocol Architecture foirtess Microsensor
Networks.|EEE Transactions on Wireless Communicatidh(@):660—670, October 2002.
Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hekshnan. Energy-Efficient Communication Protocol for &léss Microsen-
sor Networks. IrHawaii International Conference on System Sciengelkime 2, pages 1-10, 2000.
Jonathan W Hui and David Culler. The Dynamic Behavior of a Massemination Protocol for Network Programming at Scaldnternational
Conference on Embedded Networked Sensor Sygtageas 81-94, 2004.
Jason L Hill and David E Culler. Mica: A Wireless Platform deeply Embedded Network$EEE Micro, 22(6):12—24, November-December
2002.
Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TO®SAccurate and Scalable Simulation of Entire TinyOS Apptions. In
International Conference on Embedded Networked SensterBypages 126-137, 2003.
Naveen Kumar, Bruce R Childers, and Mary Lou Soffa. Low OvadhBrogram Monitoring and Profiling. IACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engingegpages 28—34, 2005.
Sudheendra Hangal and Monica S. Lam. Tracking Down Softwags BJsing Automatic Anomaly Detection. International Conference on
Software Engineeringpages 291-301, 2002.
Dick Hamlet. Invariants and State in Testing and Formal Meshdd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soétw
Tools and Engineeringpages 48-51, 2005.
Simon Goldsmith, Robert O’Callahan, and Alex Aiken. RelatioQueries Over Program Traces. ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applicatages 385-402, 2005.
Yuanyuan Zhou, Pin Zhou, Feng Qin, Wei Liu, and Josep TaselEfficient and Flexible Architectural Support for Dynarkionitoring. ACM
Transactions on Architecture and Code Optimizatidfl):3—33, March 2005.
Jin-Yi Wang, Yen-Shiang Shue, T N Vijaykumar, and SaurabhcBagPesticide: Using SMT Processors to Improve Performah&oimter
Bug Detection. INEEE International Conference on Computer Desig006.
Jeff H. Perkins and Michael D. Ernst. Efficient Incrementag@ithms for Dynamic Detection of Likely Invariants. WCM SIGSOFT
International Symposium on Foundation of Software Engingepages 23-32, 2004.
Michael D Ernst, Jake Cockrell, William G Griswold, and Dawotkin. Dynamically Discovering Likely Program Invarianto Support
Program EvolutionlEEE Transactions on Software Engineerji2g(2):99-123, February 2001.

18

I-Ling Yen, Farokh B Bastani, and David J Taylor. Design of IMinvariant Data Structures for Robust Shared Accesséddliltiprocessor
SystemsIEEE Transactions on Software Engineer,i2d(3):193-207, March 2001.
Nancy A Lynch.Distributed Algorithms Morgan Kaufmann, 1996.
Stanislava Soro and Wendi B Heinzelman. Prolonging theibifebf Wireless Sensor Networks via Unequal ClusterindEEE International
Parallel and Distributed Processing Symposjyrage 236b, 2005.
Mohamed Younis, Moustafa Youssef, and Khaled Arisha. Enékggre Routing in Cluster-based Sensor Networks.|HEE International
Symposium on Modeling, Analysis and Simulation of ComputéiTelecommunications Systemages 129-136, 2002.
Shiomi Dolev, Amos lIsraeli, and Shlomo Moran. Uniform Dynamidf-S&abilizing Leader Election.|[EEE Transactions on Parallel and
Distributed System$(4):424-440, April 1997.
Koji Nakano and Stephan Olariu. A Survey on Leader Electimtd®ols for Radio Networks. Imternational Symposium on Parallel Archi-
tectures, Algorithms and Networksages 63-68, 2002.
Gurdip Singh. Leader Election in the Presence of Link FeBulEEE Transactions on Parallel and Distributed Systeif(8):231-236, March
1996.
Asis Nasipuri, Robert Castaneda, and Samir R. Das. Perfoer@Mdultipath Routing for On-Demand Protocols in Mobile Adddetworks.
Mobile Networking Application$(4):339-349, 2001.
Asad Amir Pirzada and Chris McDonald. Establishing TrustinePAd-Hoc Networks. Ii€onference on Australasian Computer Scig2€94.
Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigag Routing Misbehavior in Mobile Ad Hoc Networks. International Conference
on Mobile Computing and Networkingages 255-265, 2000.
Sonja Buchegger and Jean-Yves Le Boudec. Performance Asafithe CONFIDANT Protocol. IIARCM International Symposium on Mobile
Ad Hoc Networking & Computingages 226—-236, 2002.
Yi an Huang and Wenke Lee. A Cooperative Intrusion DetecBgstem for Ad Hoc Networks. IACM workshop on Security of Ad Hoc and
Sensor Networkgpages 135-147, 2003.
Issa Khalil, Saurabh Bagchi, and Ness B. Shroff. MOBIWORRiddtion of the Wormhole Attack in Mobile Multihop Wireled¢etworks. In
IEEE International Conference on Security and Privacy im@®ounication Network2006.
Issa Khalil, Saurabh Bagchi, and Ness B. Shroff. LITEWORR:ightweight Countermeasure for the Wormhole Attack in Muphwireless
Networks. INIEEE International Conference on Dependable Systems atwlddes 2005.
Giovanni Vigna, Sumit Gwalani, Kavitha Srinivasan, Eliz&b®. Belding-Royer, and Richard A. Kemmerer. An Intrusion &@xion Tool for
AODV-Based Ad hoc Wireless Networks. IREE Annual Computer Security Applications Conferera®4.
Sirisha R. Medidi, Muralidhar Medidi, , and Sireesh Gavibetecting Packet-dropping faults in Mobile ad-hoc Netveork IEEE ASILOMAR
Conference on Signals, Systems and CompL2egs.
Bradley R. Smith, Shree Murthy, and J. J. Garcia-Luna-Ace8esuring Distance-Vector Routing Protocols, 1997.
Jonathan W. Hui and David Culler. The Dynamic Behavior of aallissemination Protocol for Network Programming at ScaleAG@M
International Conference on Embedded Networked SensterBypages 81-94, 2004.
Issa Khalil, Saurabh Bagchi, and Ness B. Shroff. LITEWORR:ightweight Countermeasure for the Wormhole Attack in MuphWwireless
Networks. Ininternational Conference on Dependable Systems and Nkswaages 612—621, 2005.
Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girodli&&ohler, and Deborah Estrin. Sympathy for the Sensor Nét®ebugger.
In International Conference On Embedded Networked SensterBypages 255-267, 2005.
Issa Khalil, Saurabh Bagchi, and Cristina Nina-Rotaru. M8CDetection, Diagnosis, and Isolation of Control AttaagkSensor Networks. In
International Conference on Security and Privacy for EntgggAreas in Communications Networksges 89—100, 2005.
Leslie Lamport, Robert Shostak, and Marshell Pease. TherBiyeaGenerals ProblemACM Transactions on Programming Languages and
Systems4(3):382—-401, July 1982.
Stephen R. Mahaney and Fred B. Schneider. Inexact AgreeAeniracy, Precision, and Graceful Degradatié@M Symposium on Principles
of Distributed Computingpages 237-249, 1985.
Keith Marzullo. Tolerating Failures of Continuous-ValugdnsorsACM Transactions on Computer Syster$4):284-304, November 1990.
O A Seppanen, W J Fisk, and M J Mendell. Association of VetititaRates and CO2 Concentrations with Health and Other dresgs in
Commercial and Institutional Building$ndoor Air, pages 226-252, 1999.

19

C A Erdmann, K C Stiener, and M G Apte. Indoor Carbon Dioxide @unirations and Sick Building Syndrome Symptoms in the BasgyStu
Revisited: Analysis of the 100 Building Dataset.lhaoor Air, pages 443-448, 2002.

Donald K Milton, P Mark Glencross, and Michael D Walters. IRif Sick Leave Associated with Outdoor Air Supply Rate, Huificdtion,
and Occupant Complainténdoor Air, 10(4):212—-221, December 2000.

Chung-Min Liao, Chao-Fang Chang, and Huang-Min Liang. Abtsilistic Transmission Dynamic Model to Access Indoor ArimInfection
Risks. Risk Analysis25(5):1097-1107, 2005.

Ignatius T.S. Yu, Yuguo Li, Tze Wai Wong, Wilson Tam, Andy T.&h Joseph H.W. Lee, Dennis Y.C. Leung, and Tommy Ho. Evidehce o
Airborne Transmission of the Severe Acute Respiratory SymeérVirus. The New England Journal of Medicin850(17):1731-1739, April
2004.

Theodore A Myatt, Sebastian L Johnston, Zhengfa Zuo, Matamd, Tatiana Kebadze, Stephen Rudnick, and Donald K MilDetection
of Airborne Rhinovirus and Its Relation to Outdoor Air Supjih Office Environments.American Journal of Respiratory and Critical Care
Medicing 169:1187-1190, 2004.

S. N. Rudnick and D. K. Milton. Risk of Indoor Airborne Inféah Transmission Estimated from Carbon Dioxide Concentnatindoor Air,
13(3):237-245, September 2003.

F. Haghighat and G. Donnini. IAQ and energy-management by deweamtrolled ventilationEnvironmental technologyt3(4):351-359, 1992.
SJ Emmerich. Demand-controlled ventilation in multi-zone efficilding. Fuel and Energy Abstract87(4):294-294, 1996.

Stephanie Lindsey, Cauligi Raghavendra, and Krishna Mli8yam. Data Gathering Algorithms in Sensor Networks Usingrgy Metrics.
IEEE Transactions on Parallel and Distributed Syste@®(9):924-935, September 2002.

Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Eugene Shih, Amti& Alice Wang, and Anantha Chandrakasan. Low-PowerlééseSensor
Networks. Ininternational Conference on VLSI Desigrages 205210, 2001.

Siva D Muruganathan, Daniel C F Ma, Rolly | Bhasin, and Abrala Fapojuwo. A Centralized Energy-Efficient Routing Praidor Wireless
Sensor NetworkslEEE Communications Magaziné3(3):8—13, March 2005.

20

