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Abstract— It is well known that queues with exponentially
distributed service times have the smallest Shannon capacity
among all single-server queues with the same service rate. In
this paper, we study the capacity of timing channels in whichthe
service time distributions have bounded support, i.e., Bounded
Service Timing Channels (BSTC). We derive an upper bound
and two lower bounds on the capacity of such timing channels.
The tightness of these bounds is investigated analyticallyas well
as via simulations. We find that the uniform BSTC serves a role
for BSTCs that is similar to what the exponential service timing
channel does for the case of timing channels with unbounded
service time distributions. That is, when the length of the support
interval is small, the uniform BSTC has the smallest capacity
among all BSTCs.

I. I NTRODUCTION

A timing channel is a non-conventional communication
channel, in which a message is encoded in terms of the arrival
times of bits. The receiver observes the time of the departing
bits and decodes the message. It has been shown in [1] that
when the service time of the queue is exponentially distributed,
the channel capacity,e−1µ nats/sec, is the lowest among all
the servers with the same service rateµ. Most of the existing
work such as in [1], [2], [3], [4], [5], [6], [7], [8] has been
focused on Exponential Service Timing Channels (ESTC). The
discrete-time counterpart has been studied in [9], [10].

While ESTC has the lowest capacity among all servers with
the same service rate, deterministic service timing channels
have infinite capacity. In [11], we estimated the lower bounds
on the capacities of single-server timing channels in whichthe
service time distributions are uniform (uniform BSTC), Gaus-
sian (GSTC), and truncated Gaussian (Gaussian BSTC). The
capacities of these channels are on the order ofµ log2(µσ)−1

bits/sec asσ → 0, whereµ is the service rate andσ is the
standard deviation of the service time.

In many real world applications, the service time distribu-
tions havebounded support. By bounded support, we mean
that there exist some constantsa, ∆ > 0, such that thei.i.d.
service timesS1, S2, · · · satisfy P (a < Sk < a + ∆) = 1.
Such timing channels are called Bounded Service Timing
Channels (BSTC), and(a, a + ∆) is called a support interval
of the BSTC. We are especially interested in BSTC with small
relative fluctuation of the service time, i.e.∆/a ≪ 1.

In this paper, we focus on the capacity of BSTCs with
support intervals symmetric about the mean service time1

µ
,

i.e. support intervals of the form( 1
µ
− ǫ, 1

µ
+ ǫ). The service

time distribution does not need to be symmetric about1/µ.
We derive an upper boundCU (ǫ) on the capacity of BSTC
using a feedback argument, and twozero-error capacity lower
bounds,CL,1(ǫ) andCL,2(ǫ), using geometrically distributed
inter-arrival times. WhileCU (ǫ) is dependent on the service
time distribution, bothCL,1(ǫ) and CL,2(ǫ) are independent
of the distribution of the service time, given the support
interval. All these results can easily be extended to BSTCs
that have support intervals asymmetric about1

µ
, i.e. of the

form ( 1
µ
− ǫL, 1

µ
+ ǫR).

We further show that these bounds are asymptotically tight
for the uniform BSTC. By the tightness, we mean, whenǫ is
small, thecapacity of the uniform BSTC isCL,2(ǫ)+o(1) (or
CL,1(ǫ) + O(1)). Since our lower boundCL,2(ǫ) is universal
for all BSTC, the uniform BSTC serves a role similar to that of
the ESTC in the paper by Anantharam and Verdu [1]. Namely,
whenǫ is small, the uniform BSTC has the smallest capacity
among all BSTCs, just as the exponential service time has the
smallest capacity when considering unbounded service time
distributions.

The rest of the paper is organized as follows: In Section II
we provide an upper boundCU (ǫ) on the capacity of BSTC
using a feedback argument. In Section III, we provide two
lower boundsCL,1(ǫ) andCL,2(ǫ), both of which are asymp-
totically tight but in different senses. Furthermore, we show
that the second lower bound, exploiting the absolute timing
information, is extremely close to the capacity of the uniform
BSTC when smallǫ is considered and is hence asymptotically
optimal. We conclude our paper in Section IV.

II. A N UPPERBOUND ON THE CAPACITY OF BSTCS

Bounded Service Timing Channels (BSTC) are single-server
queue based timing channels in which the service times
S1, S2, · · · are i.i.d. with bounded support. In this paper, we
consider servers with support intervals symmetric about the
mean service timeE[Sk] = 1

µ
, i.e. ∃ǫ, 0 < ǫ < 1

µ
such that

P ( 1
µ
− ǫ < Sk < 1

µ
+ ǫ) = 1. The service timesS1, S2, · · · of

the uniform BSTC arei.i.d. U( 1
µ
− ǫ, 1

µ
+ ǫ) uniform random

variables. The service timesS1, S2, · · · of the Gaussian BSTC
are i.i.d. truncated Gaussian random variables with density



function:

f(x) =
1

K
√

2πσ
exp(− (x − 1/µ)2

2σ2
) I(

1

µ
− 3σ,

1

µ
+ 3σ)

whereǫ = 3σ < 1
µ

, andK =
∫
∞

−∞
f(x)dx = 0.997.

We will first provide an upper bound on the capacity of the
BSTC by using a feedback argument of these channels.

Proposition 1: Consider a BSTC with service rateµ and
support interval( 1

µ
− ǫ, 1

µ
+ ǫ).

(a) An upper boundCU (ǫ) on the capacity of the BSTC is
CU (ǫ) = µ sup0<γ<1 G(ǫ, γ) bits/sec, where
G(ǫ, γ) = γ[log2(ǫµ + 1

γ
− 1) + log2(e) − log2(µ) − h(Si)]

(b) CU (ǫ) for the uniform BSTC with service rateµ and
support interval (1

µ
− ǫ, 1

µ
+ ǫ) is the smallest among all BSTC

with the same service rate and support interval.
[Proof] (a) LetSi be the service time of theith bit, and let

ai anddi be the arrival and the departure time of theith bit,
respectively. Further, letAi and Di be the inter-arrival time
and the inter-departure time between the(i− 1)st bit and the
ith bit, respectively, and letWi be the queue’s idle time before
the arrival of theith bit.

An upper boundCU is the capacityCFB of the timing
channel in which there is an additional feedback channel
providing the queue size information on the server back to
the transmitter, so that the sender has the knowledge of
di−1 before decidingai. With the feedback information, the
sender has full control overWi and can completely avoid any
queueing. Thus, the timing channel is reduced to a sequentially
juxtaposedi.i.d. channel:Wi → Wi +Si. The capacity of this
new channel with feedback information is simply

CFB = sup
λ<µ

λI(Wi; Wi + Si),

where λ is the inter-departure rate (λ = 1/E[Di]) and
I(Wi, Wi + Si) = h(Wi + Si) − h(Si).

SinceWi + Si − ( 1
µ
− ǫ) > 0 andE[Wi + Si − ( 1

µ
− ǫ)] =

1
λ
− 1

µ
+ ǫ, We have

sup
Wi>0

[h(Wi + Si)] ≤ 1 + ln(
1

λ
− 1

µ
+ ǫ) nats. Thus,

CFB = sup
λ<µ

{λ[1 + ln(
1

λ
− 1

µ
+ ǫ) − h(Si)]}

= µ sup
λ<µ

{λ

µ
[ln(

µ

λ
− 1 + ǫµ) + 1 − ln(µ) − h(Si)]

Let γ = λ/µ. Define

G(ǫ, γ) = γ[log2(ǫµ +
1

γ
− 1) + log2(e) − log2(µ) − h(Si)]

We have an upper bound on the capacity of BSTCs:

CU (ǫ) = CFB = µ sup
0<γ<1

G(ǫ, γ) bits/sec

(b) Since the uniformU( 1
µ
− ǫ, 1

µ
+ ǫ) random variable has

the maximum entropy among all random variables with the
support interval( 1

µ
− ǫ, 1

µ
+ ǫ), G(ǫ, γ) in part (a) for the

uniform BSTC is the smallest among all BSTC for eachγ.
Therefore,CU (ǫ) for the uniform BSTC is the smallest among
all BSTCs with the same service rate and support interval.

It is apparent that the value ofCU (ǫ) is dependent on the
service time distribution. Next, we will provide two zero-
error lower boundsCL,1(ǫ) and CL,2(ǫ) on the capacity for
BSTCs. Both lower bounds areindependent of the service time
distributions given the support interval.

III. T WO LOWER BOUNDS ON THECAPACITY OF BSTCS

A. The First Lower Bound

In this section, we will provide a sub-optimal lower bound
CL,1 on the capacity of BSTC. This lower bound is obtained
by using a coding scheme in which the inter-arrival times
A1, A2, · · · are i.i.d. geometric random variables. We require
Ai ≥ 1

µ
+ ǫ to avoid queuing. Further, the possible values of

Ai are spaced4ǫ apart to allow error-free decoding. More
precisely, A1, A2, · · · are i.i.d. random variables with the
following probability mass function:

P{Ai = (
1

µ
+ ǫ) + k(4ǫ)} = p1(1 − p1)

k, k = 0, 1, · · ·

Since this encoding scheme does not require prior knowl-
edge of the service time distribution, given the support interval
( 1

µ
− ǫ, 1

µ
+ ǫ), it yields auniversal lower boundCL,1(ǫ) on

the capacity of BSTC.
We now state our first lower bound Lemma without proof.

The proof is provided in our online technical report [12].
Lemma 1: Consider a BSTC where the service times

S1, S2, · · · , arei.i.d. random variables with service rateµ and
P [Si ∈ ( 1

µ
− ǫ, 1

µ
+ ǫ)] = 1. A zero-error lower boundCL,1(ǫ)

on the capacity of the timing channel is:

CL,1(ǫ) = µ sup
0<γ<(1+ǫµ)−1

γ[H(p1)/p1] bits/sec

whereH(p) = −p log2(p) − (1 − p) log2(1 − p) and

p1 =
4ǫµ

1/γ − 1 + 3ǫµ
.

Figure 1 showsCL,1(ǫ) as a function of the load factorγ =
λ/µ whenǫµ = 0.01, along with the upper boundsCU (ǫ) for
uniform BSTC and Gaussian BSTC. As shown in this figure,
CL,1 = 3.4µ bits/sec, andCU for the uniform BSTC (4.16µ
bits/sec) is smaller than that of the Gaussian BSTC (4.58µ
bits/sec). This is expected by Proposition 1(b).

Now, we compare the performance ofCL,1(ǫ) with our
upper boundCU (ǫ). Denote∆C1(ǫ) = CU (ǫ) − CL,1(ǫ). We
will show that∆C1(ǫ) for the uniform BSTC is the smallest
among all BSTC and∆C1(ǫ) = O(1) for the uniform and
Gaussian BSTC.

Proposition 2: For BSTC with service rateµ and support
interval, ( 1

µ
− ǫ, 1

µ
+ ǫ), ∆C1(ǫ) satisfies:

(a) ∆C1(ǫ) < µ(log2(e) + D(Sn||Uµ,ǫ)) bits/sec, where
D(·||·) is the Kullback-Leibler distance andUµ,ǫ is the uniform
distribution on( 1

µ
− ǫ, 1

µ
+ ǫ).

(b) ∆C1(ǫ) for the uniform BSTC is the smallest such
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Fig. 1. Capacity Lower BoundCL,1 compared withCU for the uniform
and Gaussian BSTC whenǫµ = 0.01 (in bits per average service time).

difference between ourCU (ǫ) andCL,2(ǫ) among all BSTCs
with the same service rateµ and support interval( 1

µ
−ǫ, 1

µ
+ǫ).

[Proof] See Appendix.

TABLE I

THE UPPER ANDLOWER BOUNDS ON THECAPACITY OF UNIFORM BSTC

AND GAUSSIAN BSTC (IN BITS PER AVERAGE SERVICE TIME).

ALL Uniform Uniform Gaussian Gaussian
ǫµ CL,1 CU ∆C1 CU ∆C1

10−1 1.4500 2.0314 0.5814 2.3927 0.9428
10−2 3.4287 4.1582 0.7295 4.5833 1.1547
10−3 5.9081 6.7469 0.8388 7.2127 1.3045

We obtain∆C1(ǫ) < log2(e)µ bits/sec≈ 1.447µ bits/sec
for uniform BSTCs, and∆C1(ǫ) < 2.004µ bits/sec for Gaus-
sian BSTCs by Proposition 2(a).

In Table I, we show the values ofCL,1(ǫ) for BSTCs, and
the values ofCU (ǫ) and ∆C1(ǫ) for the uniform BSTC and
the Gaussian BSTC whenǫµ = 10−1, 10−2, and10−3. We
can see that∆C1 < 2µ bits/sec for allǫ in this Table.

Our first lower boundCL,1(ǫ) is sub-optimal by using a
naive coding scheme with a large(4ǫ) spacing. Nevertheless,
it is a good lower bound because it is tight in the sense that
for the uniform BSTC,∆C1(ǫ) < 1.447 bits/sec for allǫ.
That is, thecapacity of the uniform BSTC isCL,1(ǫ)+O(1).
Moreover, it is universal for all BSTC in a given support
interval.

We now present our optimal lower boundCL,2(ǫ) for
BSTCs, which is also independent of the service time distribu-
tion given the support interval. However, it requires knowledge
of absolute timing information at both sender and receiver.

B. The Second Lower Bound

To derive our second zero-error lower boundCL,2, the
receiver is required to use more computational power to
recover the absolute time. When the absolute time is available
to the receiver, we use aslotted-arrival-time coding scheme
to obtain our lower boundCL,2(ǫ).

Lemma 2: Assuming that absolute time information is
available to both the sender and the receiver, a zero-error lower
boundCL,2(ǫ) on the capacity of BSTCsde with service rate
µ and support interval( 1

µ
− ǫ, 1

µ
+ ǫ) is:

CL,2(ǫ) = µ sup
0<γ<(1+(1+2α)ǫµ)−1

γ[H(p2)/p2] bits/sec

whereH(p) = −p log2(p) − (1 − p) log2(1 − p),

p2 =
2ǫµ

1
γ
− 1 + (1 − 2α)ǫµ

, andα = ⌈1 + ǫµ

2ǫµ
⌉ − 1 + ǫµ

2ǫµ
.

Proof. When the absolute time information is available, we
useslotted arrival times with slot size2ǫ. That is, the arrival
time of the ith bit, ai, is restricted to be on the gridt =
(2ǫ)ki, ki = 0, 1, 2 · · · .

To see why our scheme works, we start with a simple
example of encoding messages by sending only one bit at
time a1. Let d1 be the departure time of that bit. Assuming the
queue is initially empty, we haved1 = a1+S1. In our scheme,
the only possible values ofa1 are(2k)ǫ, k = 0, 1, 2, · · · . Since
S1 ∈ ( 1

µ
− ǫ, 1

µ
+ ǫ), we havea1 = (2k)ǫ if and only if

d1 ∈ Ik = (µ + (2k − 1)ǫ, µ + (2k + 1)ǫ). Moreover,Ik and
Ik′ do not overlap ifk 6= k′.

To decode a message, the receiver uses slotted departure
times with slot size2ǫ, and thekth slot corresponds to the time
intervalIk = ( 1

µ
+(2k− 1)ǫ, 1

µ
+(2k +1)ǫ). Upon observing

a bit departing at timed∗1 in slot k∗, i.e.d∗1 ∈ Ik∗ , the receiver
can recover the arrival time correctly asa∗

1 = (2k∗)ǫ.
When we encode messages by transmitting more than one

bit, the receiver can decode the message error-free in exactly
the same way as transmitting only one bit, as long as there is
no queueing at the server. To avoid queueing, simply choose
ki so thatki ≥ ki−1 + 1+ǫµ

2ǫµ
for i ≥ 2. This condition is

equivalent toai − ai−1 ≥ 1
µ

+ ǫ.
Thus, in our coding scheme, the inter-arrival times

A1, A2, · · · must satisfy (1)Ai = 2k′ǫ and (2)Ai ≥ 1
µ

+ ǫ.

Let K0 = ⌈1 + ǫµ

2ǫµ
⌉, and α = K0−

1 + ǫµ

2ǫµ
, 0 ≤ α < 1.

ChooseA1, A2, · · · to be i.i.d. geometric random variables
that satisfy (1) and (2), with probability mass function:

P [Ai = K0(2ǫ) + k(2ǫ)] = p2(1 − p2)
k, k = 0, 1, · · ·

Let λ be the departure rate andγ = λ/µ. We have
1/λ = E[Di] = E[Ai] = K0(2ǫ) + 2ǫ( 1

p2

− 1). Thus,

p2 =
2ǫµ

1
γ
− 1 + ǫµ − 2α(ǫµ)

SinceI(Ai; Di) = h(Ai) = H(p2)/p2, we have

C ≥ I(Ai; Di)

E[Di]
= µ[γH(p2)/p2]

for all γ, such that 0 < γ < (1 + (1 + 2α)(ǫµ))−1.

Therefore,

CL,2(ǫ) = µ sup
0<γ<(1+(1+2α)ǫµ)−1

γ[H(p2)/p2] bits/sec



The major difference between the first scheme in Sec-
tion III-A and the second scheme is that the timing information
is now embedded in theabsolute timing of each arrival rather
than the traditional inter-arrival time. Or equivalently,the
timing information is in the inter-arrival time between thei-th
bit and the timing origin, rather than in the lapse between the
i-th and the(i−1)-th bits, so that the noisy component of the
service time is kept at2ǫ rather than4ǫ, the superposition of
the noises from both thei-th and the(i − 1)-th bits.

The absolute timing (or the timing origin), on the other
hand, is generally not available at the receiver end. Nonethe-
less, by slightly increasing the size of the slots, from2ǫ to
2ǫ + δ, whereδ serves as a guard band, the absolute timing
information recovery problem is reduced to a grid realigning
problem. The goal of this problem is to find a realignment
such that no departure time falls into the guard bandδ. With
a sufficiently long observation period, the recovery is always
possible in probability. By further reducing the size of the
guard bandδ, we obtain the same lower bound in Lemma 2
as if we have the absolute timing information.
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Fig. 2. Capacity Lower BoundCL,2 compared withCU for the uniform
and Gaussian BSTC whenǫµ = 0.01 (in bits per average service time).

Figure 2 shows the universal lower boundCL,2(ǫ) for
BSTCs as a function of the load factorγ = λ/µ for µǫ =
0.01, along with upper boundsCU (ǫ) for uniform BSTCs and
Gaussian BSTCs. As shown in Figure 2,CU (ǫ) for uniform
BSTCs is extremely close toCL,2(ǫ).

In the next Proposition, we will show thatCL,2(ǫ) is
asymptotically optimal in the sense that,CU (ǫ)−CL,2(ǫ) → 0
as ǫ → 0 for uniform BSTCs.

Proposition 3: Denote∆C2(ǫ) = CU (ǫ) − CL,2(ǫ).
(a) ∆C2 for a uniform BSTC is the smallest such difference
between ourCU (ǫ) andCL,2(ǫ) among all BSTCs with same
service rateµ and support interval( 1

µ
− ǫ, 1

µ
+ ǫ).

(b)∆C2(ǫ) → 0 as ǫ → 0 for uniform BSTC.
Proof See Appendix.
Proposition 3 shows thatCL,2(ǫ) is asymptotically tight

for the uniform BSTC. By tightness, we mean that whenǫ
is small, thecapacity of the uniform BSTC isCL,2 + o(1).

Since our lower boundCL,2(ǫ) is universal for all BSTCs, the
uniform BSTC serves a role similar to that of the ESTC in [1].
Namely, whenǫ is small, the uniform BSTC has the smallest
capacity among all BSTCs, while the exponential service time
has the smallest capacity when considering unbounded service
time distribution. Further, Proposition 3(b) does not holdfor
Gaussian BSTC. We can show that∆C2(ǫ) > 0 as ǫ → 0 for
Gaussian BSTC.

Table II shows the values of the universal lower bound
CL,2(ǫ) of BSTCs, CU and ∆C2 for uniform BSTCs and
Gaussian BSTCs, for various values ofǫµ. Whenǫµ = 10−3,
CL,2 = 6.7384µ; and for the uniform BSTC,CU = 6.7469µ
and ∆C2 = 0.0086µ. Using the two tight bounds, we can
infer that thecapacity of this uniform BSTC is6.7µ bits/sec.

TABLE II

THE UPPER ANDLOWER BOUNDS ON THECAPACITY OF UNIFORM BSTC

AND GAUSSIAN BSTC (IN BITS PER AVERAGE SERVICE TIME).

ǫµ ALL Uniform Uniform Gaussian Gaussian
CL,2 CU ∆C2 CU ∆C2

10−1 1.9106 2.0314 0.1198 2.3927 0.4812
10−2 4.1240 4.1582 0.0342 4.5833 0.4593
10−3 6.7384 6.7469 0.0086 7.2127 0.4743

IV. CONCLUSION

We have studied the capacity of timing channels with
bounded service times. We have obtained an upper bound,
and two universal lower bounds on the capacity of BSTCs.
These bounds are shown to be asymptotically tight for uniform
BSTCs. An interesting observation that comes about as a by-
product of this work is that the uniform BSTC serves a role
similar to that of the ESTC in [1], i.e., whenǫ is small, the
uniform BSTC has the smallest capacity among all BSTCs.
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APPENDIX

[Proof of Proposition 2]
(1) We wish to show∆C1(ǫ) ≤ µ[log2(e)−h(Sn)+log2(2ǫ)]
bit/sec. ByProposition 1,
CU (ǫ) = µ sup0<γ<1 G(ǫ, γ) bits/sec, where
G(ǫ, γ) = γ[log2(ǫµ + 1

γ
− 1) + log2(e) − log2(µ) − h(Si)].

By Lemma 1,

CL,1(ǫ) = µ sup
0<γ<(1+ǫµ)−1

γ[H(p1)/p1] bits/sec,

whereH(p) = −p log2(p) − (1 − p) log2(1 − p) and
p1 = (4ǫµ)(1/γ − 1 + 3ǫµ)−1. Thus,

∆C1 = CU (ǫ) − CL,1(ǫ)

< µ sup
0<γ<(1+ǫµ)−1

[G(ǫ, γ) − γH(p1)/p1] (1)

First, express the first term ofG(ǫ, γ), log2(ǫµ + 1/γ − 1),
in terms ofp1.

p1 =
4ǫµ

1/γ − 1 + 3ǫµ
⇒ ǫµ =

(1/γ − 1)p1

4 − 3p1

Thus,ǫµ + 1/γ − 1 = (ǫµ)(4−2p1

p1

), so that

G(ǫ, γ)

= γ[log2(ǫµ +
1

γ
− 1) + log2(e) − log2(µ) − h(Si)]

= γ{log2[(ǫµ)(
4 − 2p1

p1
)] + log2(e) − log2(µ) − h(Si)}

= γ{log2[(ǫ)(
4 − 2p1

p1
)] + log2(e) − h(Si)}

Thus,

G(ǫ, γ) − γH(p1)/p1

= γ{log2[(ǫ)(
4 − 2p1

p1
)] + log2(e) − h(Si)} − γH(p1)/p1

= γ[log2(2ǫ(2 − p1)/p1) + log2(e) − h(Si)

+(log2(p1) + (1 − p1)/p1 log2(1 − p1))]

= γ[log2(e) − h(Sn) + log2(2ǫ)]

+γ[log2(2 − p1) + (
1 − p1

p1
) log2(1 − p1))]

= γ[log2(e) + D(Sn||Uµ,ǫ)]

+γ[log2(2 − p1) + (
1 − p1

p1
) log2(1 − p1))]

Sincelog2(2 − p) + 1−p

p
log2(1 − p) < 0 and0 < γ < 1,

we haveG(ǫ, γ) − γH(p1)/p1

< γ[log2(e) + D(Sn||Uµ,ǫ)] < log2(e) + D(Sn||Uµ,ǫ)

By equation (1),∆C1(ǫ) ≤ µ[log2(e))+D(Sn||Uµ,ǫ)] bits/sec.
(2) By Proposition 1 part (b), CU (ǫ) the uniform BSTC

with service rateµ and support interval (1
µ
− ǫ, 1

µ
+ ǫ) is the

smallest among all BSTCs with the same service rate and
support interval, and by Lemma 1,CL,1(ǫ) is independent
of the service distribution. Therefore,∆C1 for the uniform
BSTC is the smallest among all BSTCs with service rateµ
and support interval( 1

µ
− ǫ, 1

µ
+ ǫ)

[Proof of Proposition 3]
(a) Same argument as in the proof of Proposition (2)(b).
(b)We wish to show∆C2(ǫ) → 0 asǫ → 0 for uniform BSTC.

As in the proof of Proposition 2,

∆C2(ǫ) = CU (ǫ) − CL,2(ǫ)

= µ sup
0<γ<1

G(ǫ, γ) − sup
0<γ<(1+ǫµ)−1

[γH(p2)/p2]

First, express the first term ofG(ǫ, γ), log2(ǫµ + 1/γ − 1),
in terms ofp2. Since

p2 =
2ǫµ

1
γ
− 1 + (1 − 2α)ǫµ

⇒ ǫµ =
( 1

γ
− 1)p2

2 − (1 − 2α)p2
,

we have ǫµ+
1

γ
−1 = (

1

γ
−1)(

2 + 2αp2

2 − (1 − 2α)p2
) = (ǫµ)(

2

p2
+2α).

Sinceh(Si) = log2(2ǫ) for uniform BSTC, we have

G(ǫ, γ) = γ[log2(ǫµ +
1

γ
− 1) + log2(e) − log2(µ) − h(Si)]

= γ{log2[(ǫµ)(
2

p2
+ 2α)] + log2(e) − log2(µ) − log2(2ǫ))}

= γ{log2(
1

p2
+ α) + log2(e)}

Thus,

G(ǫ, γ) − γH(p2)/p2

= γ[log2(
1

p2
+ α) + log2(e)] − γH(p2)/p2

= γ[log2(
1

p2
+ α) + log2(e)

+(log2(p2) +
1 − p2

p2
log2(1 − p2)]

= γ[log2(e) + (
1 − p2

p2
) log2(1 − p2))] + γ log2(1 + αp2)

Let γ∗ = γ∗(ǫ) be the value whereG(ǫ, γ) achieves its
maximum, i.e.CU (ǫ) = G(ǫ, γ∗). The corresponding value of
p∗2 sastifiesp∗2 → 0 as ǫ → 0. Thus,

log2(e) + (
1 − p∗2

p∗2
) log2(1 − p∗2) → 0 as ǫ → 0,

and log2(1 + αp∗2) → 0 as ǫ → 0.
Thus for uniform BSTCs,

(G(ǫ, γ∗) − γ∗H(p∗2)/p∗2) −→ 0 as ǫ → 0.

Therefore,∆C2(ǫ) → 0 as ǫ → 0 for uniform BSTCs.


