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Abstract— It is well known that queues with exponentially i.e. support intervals of the forr(% — €, i + ¢). The service
distributed service times have the smallest Shannon capagi time distribution does not need to be symmetric abbyt.
among all single-server queues with the same service raten | We derive an upper boundy;(¢) on the capacity of BSTC

this paper, we study the capacity of timing channels in whictthe . feedback d ity |
service time distributions have bounded support, i.e., Bouded using a feedback argument, and tegpo-error capacity lower

Service Timing Channels (BSTC). We derive an upper bound bounds,Cy 1(e) andCy o(e), using geometrically distributed
and two lower bounds on the capacity of such timing channels. inter-arrival times. WhileCy; (¢) is dependent on the service

The tightness of these bounds is investigated analyticallgs well  time distribution, bothC',;(¢) and Cy, »(¢) are independent
as via simulations. We find that the uniform BSTC serves a role of the distribution of the service time, given the support

for BSTCs that is similar to what the exponential service tining . .
channel does for the case of timing channels with unbounded interval. All these results can easily be extended to BSTCs

service time distributions. That is, when the length of the spport ~ that have support intervals asymmetric ab(%uti.e. of the
interval is small, the uniform BSTC has the smallest capacit form (+ — ¢, % +€R).
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among all BSTCs. We further show that these bounds are asymptotically tight

for the uniform BSTC. By the tightness, we mean, whes

- . . ._.._small, thecapacity of the uniform BSTC isC', 2(¢) +o(1) (or
A timing channel is a non-conventional communicatiopy 1(€) + O(1)). Since our lower bound’; »(c) is universal

c_hannel, ir_‘ which a message is encoded i_n terms of the arr_iy all BSTC, the uniform BSTC serves a role similar to that of
times of bits. The receiver observes the time of the demartify, . EsTC in the paper by Anantharam and Verdu [1]. Namely
bits and decodes the message. It has been shown in [1] i3k . is small, the uniform BSTC has the smallest capacity
when the service time of the queue is exponentially distéBu 5,00 all BSTCs, just as the exponential service time has the

Hathd '
the channel capacity,”" 1 nats/sec, is the lowest among allyjjest capacity when considering unbounded service time
the servers with the same service rateMost of the existing istributions.

work such as in [1], [2], [3], [4], [5], [6], [7], [8] has been

focused on Exponential Service Timing Channels (ESTC). Tr\}veeTh(reo:/?j(te c;‘nthue p:?iro:frgg(ae ?Iéidts: Lc;lo;\(/:?t: Ir;fSBegll_? L
discrete-time counterpart has been studied in [9], [10]. P PP v pactty

hile ESTC has the | ; " ysing a feedback argument. In Section Ill, we provide two
ol ESTC s e ot capacty ot servere ler bounds, ) andC ), o of wrich are sy
have infinite capacity I'n [11], we estimated the lower bain otically tight but in different Senses. .Furthermore, W(m.ih.
: ' hat the second lower bound, exploiting the absolute timing

on the c?pacg!ets .gf :[slmgle-serve.rf timing g?anneBIZJrnCwltiGmw information, is extremely close to the capacity of the umifo
sgrwcgsl_lmg IS r('j tj |onstarde ém orm (unclsorm ) BLZS,TCau STC when smalt is considered and is hence asymptotically
sian ( ), and truncated Gaussian (Gaussian )- fimal. We conclude our paper in Section IV.

capacities of these channels are on the orderlof, (o) ~!
bits/sec asr — 0, wherey is the service rate and is the
standard deviation of the service time. Il. AN UPPERBOUND ON THE CAPACITY OF BSTCs

In many real world applications, the service time distribu-
tions havebounded support. By bounded support, we mean Bounded Service Timing Channels (BSTC) are single-server
that there exist some constantsA > 0, such that theé.i.d. queue based timing channels in which the service times
service timesS;, Sy, --- satisfy P(a < S, < a+ A) = 1. 51,52, arei.i.d. with bounded support. In this paper, we
Such timing channels are called Bounded Service Timiggnsider servers with support intervals symmetric aboat th
Channels (BSTC), anflz,a + A) is called a support interval mean service time[Sy] = -, i.e. 3¢,0 < ¢ < - such that
of the BSTC. We are especially interested in BSTC with smaﬂ?(%t —e< Sk < %L+e) = 1. The service times$, Sy, - - - of
relative fluctuation of the service time, i.A/a < 1. the uniform BSTC are.i.d. U(%L — ¢, L 4+ ¢) uniform random

In this paper, we focus on the capacity of BSTCs withariables. The service time%, So, - - - of the Gaussian BSTC
support intervals symmetric about the mean service tﬁme are i.i.d. truncated Gaussian random variables with density

I. INTRODUCTION



function: uniform BSTC is the smallest among all BSTC for eagh

1 (z —1/p)? 1 1 ThereforeCy () for the uniform BSTC is the smallest among

f(z) = TN exp(————5—) I(; — 3o, m +30)  all BSTCs with the same service rate and support interval.
]

wheree = 30 < &, andK = [ f(z)dz = 0.997. It is apparent that the value @y (¢) is dependent on the

We will first provide an upper bound on the capacity of thgervice time distribution. Next, we will provide two zero-
BSTC by.qsmg a feedpack argument.of thesg channels. error lower bounds”y, 1(¢) and C 2(e) on the capacity for
Proposition 1: Consider a BSTC with service raieand BSTCs. Both lower bounds aiedependent of the service time

support interval(;; — e, - +e). distributions given the support interval.

(a) An upper bound”y; (¢) on the capacity of the BSTC is

Cur(€) = psupge, <1 G(e,7) bits/sec, where 1. Two LowERBOUNDS ON THECAPACITY OF BSTCs
G(e,y) = y[logy(ep + % —1) + logy(e) — logy(p) — h(S;)] A The First Lower Bound

(b) Cu(e) for the uniform BSTC with service ratg and  |n this section, we will provide a sub-optimal lower bound
support interval { —e, .- +¢) is the smallest among all BSTC (¢, on the capacity of BSTC. This lower bound is obtained
with the same service rate and support interval. by using a coding scheme in which the inter-arrival times

[Proof] (a) LetsS; be the service time of thé" bit, and let 4, 4, ... arei.i.d. geometric random variables. We require
a; andd; be the arrival and the departure time of # bit, A; > % + ¢ to avoid queuing. Further, the possible values of

respectively. Further, lefl; and D; be the inter-arrival time 4, are spacedle apart to allow error-free decoding. More
and the inter-departure time between the- 1)* bit and the precisely, A1, A, --- are i.i.d. random variables with the

ith bit, respectively, and I6i; be the queue’s idle time beforefollowing probability mass function:
the arrival of thei*” bit. .

An upper boundCy is the capacityCrp of the timing — P{A; = (= +¢€) + k(4e)} = p1(1 — p1)*, k=0,1, -
channel in which there is an additional feedback channel K
providing the queue size information on the server back toSince this encoding scheme does not require prior knowl-
the transmitter, so that the sender has the knowledge asfge of the service time distribution, given the suppogrival
d;_1 before deciding;. With the feedback information, the(i —¢,1 4 ¢), it yields auniversal lower boundC', ; (¢) on
sender has full control ové#’; and can completely avoid anythe capacity of BSTC.
gueueing. Thus, the timing channel is reduced to a seqligntia We now state our first lower bound Lemma without proof.
juxtaposed.i.d. channel:W; — W; + S;. The capacity of this The proof is provided in our online technical report [12].

new channel with feedback information is simply Lemma 1: Consider a BSTC where the service times
O — NI(Wo: W + S S1,59,--- , arei.i.d. random variables with service rateand
FB = igﬁ (Wi; Wi + Si), P[S; € (;; —¢, 5 +¢)] = 1. A zero-error lower bound’r, ; (¢)
_ ) on the capacity of the timing channel is:
where X is the inter-departure rateA(= 1/F[D;]) and
I(W;, Wi + 8;) = h(Wi + Si) — h(S;). Crile)=up  sup  ~[H(p1)/p1] bits/sec
SinceW; + S; — (£ —¢) > 0 and E[W; + 5; — ( —¢)] = 0<y<(Thep) ™
;- ﬁ + ¢, We have where H(p) = —plogs(p) — (1 — p) logy(1 — p) and
s [h(VV+S)]<1+1(1 1—1— ) nats. Thus p1 = e
u i i) < n(———+e . ) T T 1 La..
Wiso D L/y =1+ 3ep

Figure 1 shows”, 1 (¢) as a function of the load factor =
1 1 A/ wheney = 0.01, along with the upper boundsy; (¢) for
/S\1<1P{)\[1 +1n(5 - 4 +€) —h(S:)]} uniform BSTC and Gaussian BSTC. As shown in this figure,
a \ Cr.1 = 3.4 bits/sec, and’y; for the uniform BSTC 4.16
= Msup{_[ln(ﬁ —1+4+eu)+1—1In(u) — h(S;)] Dbits/sec) is smaller than that of the Gaussian BSTG8{:
A<p BA bits/sec). This is expected by Proposition 1(b).
Let v = \/u. Define Now, we compare the performance 6f ;(e) with our
1 upper boundCy (¢). DenoteAC, () = Cy(e) — Cr1(e). We
G(e,7) = y[logy(epn + — — 1) + logy(e) — logy (1) — h(S;)]  will show that AC| (€) for the uniform BSTC is the smallest
v among all BSTC andAC;(e) = O(1) for the uniform and
We have an upper bound on the capacity of BSTCs:  Gaussian BSTC.
Proposition 2: For BSTC with service ratg and support
Cu(e) = Crp = sup G(e,7) bits/sec interval, (£ — ¢, £ 4 ¢), AC) (¢) satisfies:
<<t (@) ACi(e) < pu(logy(e) + D(Sn||U,..)) bits/sec, where
(b) Since the unifornU(llt —€, ;17 + ¢) random variable has D(-||-) is the Kullback-Leibler distance arid, . is the uniform

the maximum entropy among all random variables with thdistribution on(% — ¢, L + ¢).
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support interval(; - e,ﬁ +€), G(e,v) in part (a) for the (b) AC;(e) for the uniform BSTC is the smallest such

Crp



Capacity Bounds Comparison Lemma 2: Assuming that absolute time information is

—C_ 4 forBoth o000 available to both the sender and the receiver, a zero-ena@rl|
A C, forustc . o boundC7, 2 (¢) on the capacity of BSTCsde with service rate
o CU for TGSTC  o° : u and support mtervaal — €+ + €) is:

Crae)=p sup v[H (p2)/p2] bits/sec
0<y<(14+(142a)ep) !

where H (p) = —plog,(p) — (1 — p)logy(1 — p),

2 1
- i , anda =[ +€“1_
S =1+ (1= 2a)ep 2ep

‘ ‘ ‘ ‘ ‘ Proof. When the absolute time information is available, we
0 0.2 0.4 0.6 0.8 1 usesdlotted arrival times with slot siz€e. That is, the arrival

Load factor AM/u L th b . . .

time of the*" bit, a;, is restricted to be on the grit =

Fig. 1. Capacity Lower Bound’;, ; compared withCy; for the uniform (26)1%', ki=0,1,2---
and Gaussian BSTC whesu = 0.01 (in bits per average service time). To see why our scheme works, we start with a simple
example of encoding messages by sending only one bit at
timea;. Letd; be the departure time of that bit. Assuming the

difference between oufy (¢) andCy »(e) among all BSTCs queue is initially empty, we hawé, = a; +5:. In our scheme,

1+ en
Qe

P2 =

Capacity (bits per average service time)

with the same service rateand support intervalt —, £ +¢). the only possible values ah are(2k)e, k = 0,1,2,---. Since
[Proof] See Appendix. S1 € (; — €, ; + ¢€), we havea; = (2k)e if and only if
di € I, = (u+ (2k — 1)e, u + (2k + 1)¢e). Moreover,I;, and
TABLE | I;» do not overlap ifk # k.
THE UPPER ANDLOWERBOUNDS ON THECAPACITY OF UNIFORMBSTC To decode a message, the receiver uses slotted departure
AND GAUSSIANBSTC (N BITS PER AVERAGE SERVICE TIMB. times with slot size¢, and thek'” slot corresponds to the time

interval I), = (% +(2k—1)e, % + (2k +1)¢). Upon observing

! SLL Unclform UZféfm Gagss'a” qués'a” a bit departing at time? in slot k*, i.e.d; € I;-, the receiver
L,1 U 1 U 1 . : o «
To-T T 14500 20314 | 051 | 2392 | 09428 can recover the arrival time correctly a$ = (2k )e.
10-2 1| 34287 | 41582 | 07295 || 45833 | 11547 When we encode messages by transmitting more than one
10~° || 5.9081 || 6.7469 | 0.8388 || 7.2127 | 1.3045 bit, the receiver can decode the message error-free inlgxact

the same way as transmitting only one bit, as long as there is

_ no queueing at the server. To avoid queueing, simply choose
We obtainAC (€) < logy(e)u bits/seca 1.447p bits/sec 1. so thatk; > k;_ 1 + 1+eu for i > 2. This condition is
for uniform BSTCs, and\(; (¢) < 2.004y bits/sec for Gaus- equivalent toa; — a;_; > 1 + c.

sian BSTCs by Proposition 2(a). Thus, in our coding scheme, the inter-arrival times
In Table I, we show the values @, :(¢) for BSTCs, and 4 As,--- must satisfy (1)4; = 2ke and (2)A4; > L +e.

the values ofCy (¢) and AC; (¢) for the uniform BSTC and -

the Gaussian BSTC whenu = 107,102, and107%. We | o Ko = (1 +€M1 and a = Ko — L+ep

can see thal\C; < 2u bits/sec for alle in this Table. 2ep 2ep
Our first lower boundCy, 1(e€) is sub-optimal by using a ChooseA;, A,,--- to bei.i.d. geometric random variables

naive coding scheme with a largée) spacing. Nevertheless,that satisfy (1) and (2), with probability mass function:
it is a good lower bound because it is tight in the sense that

— — k _

for the uniform BSTC,ACy(¢) < 1.447 bits/sec for alle.  © 1A4i = Ko(26) + k()] = p2(1 —p2)",  k=0,1,---
That is, thecapacity of the uniform BSTC isC7, 1(¢) +O(1).  Let X be the departure rate and= \/u. We have
Moreover, it is universal for all BSTC in a given support /\ = E[D;] = E[A;] = K (2¢) + 2€(pi —1). Thus,
interval. ’

, 0<a< .

We now present our optimal lower boundy 2(e) for Py = 1 2ep
BSTCs, which is also independent of the service time distrib 5 — 1+ en—2a(ep)
tion given the support interval. However, it requires knegde SincelI(A;; D;) = h(A ) H(p2)/p2, we have
of absolute timing information at both sender and receiver. (A D))
B. The Second Lower Bound ¢z "B = pu[yH (p2)/p]

To derive our second zero-error lower bount 2, the
receiver is required to use more computational power to
recover the absolute time. When the absolute time is availad herefore,
to the receiver, we use dotted-arrival-time coding scheme CLa(e)

: €)= sup H(ps)/p2| bits/sec
to obtain our lower bound’;, 5 (e). M0<7<(1+(1+2a)5#)—1 "H (p2)/p]

for all , such that 0 < v < (1 + (1 + 2a)(ep)) "



B Since our lower bound’;, 2(¢) is universal for all BSTCs, the

The major difference between the first scheme in Segniform BSTC serves a role similar to that of the ESTC in [1].
tion IlI-A and the second scheme is that the timing informati Namely, where is small, the uniform BSTC has the smallest
is now embedded in thabsolute timing of each arrival rather capacity among all BSTCs, while the exponential servicetim
than the traditional inter-arrival time. Or equivalentihe has the smallest capacity when considering unboundedservi
timing information is in the inter-arrival time between théh time distribution. Further, Proposition 3(b) does not hfid
bit and the timing origin, rather than in the lapse between tiGaussian BSTC. We can show th&C5(e) > 0 ase — 0 for
i-th and the(i — 1)-th bits, so that the noisy component of th&saussian BSTC.
service time is kept ae rather thande, the superposition of  Table Il shows the values of the universal lower bound
the noises from both theth and the(i — 1)-th bits. Cr,2(e) of BSTCs, Cy and AC, for uniform BSTCs and

The absolute timing (or the timing origin), on the otheGaussian BSTCs, for various valuesepf Wheneyu = 1073,
hand, is generally not available at the receiver end. N@netlC, ; = 6.7384y; and for the uniform BSTCCy = 6.7469u
less, by slightly increasing the size of the slots, framto and AC> = 0.0086u. Using the two tight bounds, we can
2¢ + 9, where serves as a guard band, the absolute timingfer that thecapacity of this uniform BSTC is6.7 bits/sec.
information recovery problem is reduced to a grid realignin

problem. The goal of this problem is to find a realignment TABLE Il
SUCh that no departure tlme fa."S into the guard bénwlth THE UPPER ANDLOWERBOUNDS ON THECAPACITY OF UNIFORMBSTC
a sufficiently long observation period, the recovery is aisva AND GAUSSIANBSTC (N BITS PER AVERAGE SERVICE TIME.
possible in probablllty. By further reducing the_ size of the " AT Oniform T Oniform T Gaussian Gaussian
guard band), we obtain the same lower bound in Lemma 2 ClLo Cy AC, Cu AC,
as if we have the absolute timing information. 10T | 1.9106 | 2.0314 | 0.1198 23927 0.4812
10 2 | 41240 4.1582 | 0.0342 || 4.5833 | 0.4593
Capacity Bounds Comparison 103 | 6.7384 6.7469 0.0086 7.2127 0.4743
5,
_CL’lfor Both oooos
. C forUSTC °
4 U
o G forTesSTq ¢ o IV. CONCLUSION

w
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We have studied the capacity of timing channels with
bounded service times. We have obtained an upper bound,
and two universal lower bounds on the capacity of BSTCs.
These bounds are shown to be asymptotically tight for umifor
BSTCs. An interesting observation that comes about as a by-
product of this work is that the uniform BSTC serves a role
similar to that of the ESTC in [1], i.e., whenis small, the

0.2 0.4 0.6 08 1 i i
Load factor M uniform BSTC has the smallest capacity among all BSTCs.

N
T

=
T

Capacity (bits per average service time)

(@)

o
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APPENDIX

[Proof of Proposition 2]
(1) We wish to showAC (e) < pflogs(e)
bit/sec. ByProposition 1,
Cu(e) = ;Lsup0<,y<1G(e v) bits/sec, where

G(e, ) = [logy(ep + = —1) +logy(e) — logy (1) —
By Lemma 1,

—h(Sy)+1ogy(2€)]

h(S3)]-

Cra(e) =p sup v[H (p1)/p1] bits/sec

0<y<(14ep)™*

where H (p) = —plogy(p) — (1 —p) logy(1 — p) and
p1 = (4ep)(1/y — 1+ 3eu)~ L. Thus,

AC, Cu(e) = Cra(e)
< p [G(e,7)

—vH(p1)/p1] (1)

sup
0<y<(1+ep) ™!

First, express the first term @ (e, ), log, (e +1/v — 1),

in terms ofp;.
_ dep _(@/y=1p
P T T3 M a3, :
Thus,ep+1/y—-1= (e,u)( L), so that
G(e,7)
= 7[logy(ep + % — 1) + logy(e) — logy (1) — h(Si)]
= {logal(em) (F=22)] + logy (€) — logy (1) — h(S:)}
= {logal()( 2221 + logy () — A(Si)}
Thus,
G(e,7) —vH(p1)/p1

7 {log () (2=22)] + logy (€) — h(S5)} — +H (p1)/p1

v[logy(2€(2 — p1)/p1) + logy(e) — h(S;)
+(logy(p1) + (1 = p1)/p1logy(1 — p1))]
Y[logy(e) — h(Sn) 4 logy(2¢)]

+{loga(2 — 1) + <%>1og2<1—p1>>]
+[l0gy () + D(Sul[U.)]
rflogy(2 — pr) + (A=

) logs (1 — 1)

Sincelog,(2 — p) + 1%17 logy(1 —p) <0and0 <y <1,
we haveG(e,v) — vH(p1)/p1

< logy(e) + D(Snl[Upe)] < logy(e) + D(Sn|Upe)

By equation (1) AC, (¢) < pllogy(e))+D(Sy,||U,,e)] bits/sec.

(2) By Proposition 1 part (b), Cy(e) the uniform BSTC
with service rateu and support intervalfg —€= + €) is the
smallest among all BSTCs with the same serwce rate and

Cazsupport interval, and by Lemma L1 ;(¢) is independent

of the service distribution. Thereforé\C; for the uniform
BSTC is the smallest among all BSTCs with service rate
and support interval-; — ¢, - +¢)
]
[Proof of Proposition 3]
(a) Same argument as in the proof of Proposition (2)(b).
(b)We wish to showAC;(e) — 0 ase — 0 for uniform BSTC.
As in the proof of Proposition 2,

ACy(e) = Cule) — Crale)
= u sup G(e,v)—  sup  [yH(p2)/p2]
0<y<1 0<y<(14ep) ™t

First, express the first term @ (e, ), logy(epr +1/v — 1),
in terms ofps. Since

2ep N (% — 1)p2
= € =
b2 %—14—(1—20&)6,& a 2—(1-2a)p,
1 1 24 2aps 2
we have eut+——1=(=-1)(=——") = (ep)(—+20).
pr =1 = D G gy = (@0 20)
Sinceh(S;) = log,(2¢) for uniform BSTC, we have
1
G(e,y) = y[logy(ep + S 1) + logy(e) — logy (1) — (S5)]
2
= v{logz[(eu)(p—2 + 2a)] +logy(e) —logy (1) — logy(2€))}
1
= v{logz(p—2 +a) +logy(e)}
Thus
G(e,v) — vH(p2)/p2
1
= [10g2( ~ ) +logy(e)] = vH(p2)/p2
1
= ’7[10g2(p_2 + a) +log,(e)
1—
(1085 (p2) + —= log,(1 — po)|
1—
= Allogy(e) + (—2) logy(1 — pa))] + ylog, (1 + apo)
Let v* = ~v*(e) be the value wheré&(e,v) achieves its
maximum, i.eCy(e) = G(e,v*). The corresponding value of
ps sastifiesps — 0 ase — 0. Thus,
1 _ *
logy(e) + (—2)logy(1 —p3) = 0 as e— 0,
2
andlog,(1 4+ ap}) — 0 ase — 0.
Thus for uniform BSTCs,
(G(e,7") =7 H(p3)/p3) — 0 as €—0.

Therefore AC2(e) — 0 ase — 0 for uniform BSTCs.



