
Single versus Multi-hop Wireless Reprogramming in Sensor
Networks

Rajesh Krishna Panta, Issa Khalil, Saurabh Bagchi
Dependable Computing Systems Lab, School of Electrical

and Computer Engineering, Purdue University
465 Northwestern Avenue,West Lafayette,IN 47907

Email: {rpanta,ikhalil,sbagchi}@purdue.edu

Luis Montestruque
Emnet LLC

12441 Beckley Street, Granger, IN 46530
Email: lmontest@heliosware.com

Abstract— Wireless reprogramming of the sensor network
is useful for uploading new code or for changing the
functionality of the existing code. In recent years, the
research focus has shifted from single hop reprogramming to
multi-hop reprogramming primarily because of its ease of
use. Practical experience from a multi-hop sensor network
for monitoring water pollution, called CSOnet, deployed in
South Bend, IN, indicates that single-hop reprogramming
may be preferable under certain conditions to minimize
reprogramming time and energy. In this, the user gets close
to a node to be reprogrammed and wirelessly reprograms a
single node at a time. The choice between single hop and
multi-hop reprogramming depends on factors like network
size, node density and most importantly, link reliabilities. We
present a protocol called DStream having both single and
multi-hop reprogramming capabilities. We provide
mathematical analysis and results from testbed experiments
(including experiments conducted on CSOnet networks) and
simulations to give insights into the choice of the two
reprogramming methods for various network parameters.

Keywords- Network reprogramming; sensor networks; single

hop reprogramming; multi-hop reprogramming; link reliability.

I. INTRODUCTION

Large scale sensor networks may be deployed for long
periods of time during which the requirements from the
network or the environment where the nodes are deployed
may change. The change may necessitate uploading a new
code or re-tasking the existing code with different sets of
parameters. The deployed software on a network may need to
be changed, to correct software bugs. Wirelessly
reprogramming the nodes is particularly useful because the
network may be deployed over a wide geographical region
and some nodes may be in difficult to reach places. However,
remote reprogramming in sensor networks poses several
challenges. First, the reprogramming should be 100%
reliable, i.e. each node being reprogrammed should receive
the code in its entirety. A program image is relatively large
for the low-bandwidth wireless radio. Therefore, code
delivery has to be done efficiently to minimize redundant
transmissions due to multiple senders and extra
retransmissions due to link losses or collisions. Also, a
sensor node has limited power supply and memory. So, it is
important to minimize the energy and memory consumption
for network reprogramming.

In recent years, the focus of the sensor network
reprogramming has shifted from single hop reprogramming
(only nodes within the transmission range of the base node
(BN) are reprogrammed) to multi-hop reprogramming (all
nodes in the multi-hop network are reprogrammed) because
of various reasons. First and perhaps the biggest advantage is

that from user’s point of view, it is tedious to perform many
rounds of single hop reprogramming to completely reprogram
the multi-hop network. Second, multi-hop reprogramming
protocols like Deluge [3], Freshet [6] and Stream [5] spatially
pipeline the code transfer (also called spatial multiplexing)
and thus reduce the time to reprogram the network. That is, a
node does not need to completely download the code image
before starting to send the code to its neighbors. These
protocols divide the entire code image into pages consisting
of fixed number of packets. When a node completes
downloading a single page, it can send that page to other
nodes in the network.

But in some deployment conditions, like in combined
Sewage Overflow (CSO) project implemented in South Bend,
Indiana, multi-hop reprogramming can be costly in terms of
reprogramming time and energy. In CSO, a multi-hop sensor
network, called CSOnet, with nodes mounted on traffic lights
and lamp-posts, is used to collect alerts from monitoring
sensors planted in the manholes of the municipal sewage
system. The network then forwards these alerts to gateways at
major traffic intersections which make distributed control
decisions to channel the flow to temporary reservoirs so that
dumping the waste water into rivers or lakes can be avoided.

At first glance, it may appear pointless to sacrifice the
relative ease of the multi-hop reprogramming in favor of
node by node reprogramming. The conditions in which a
sensor network is deployed may change over time. For
example, the link reliabilities between the nodes in the
network may change because of varying environmental
factors. When link reliabilities are low, sending entire
application image over multiple links imposes a heavy
burden in terms of retransmissions. This increases the
reprogramming cost-both reprogramming energy and time-
and congestion in the wireless links which may be better
utilized in transferring critical data. In fact, for all current
reprogramming protocols, except Stream, what needs to be
transferred over the network is the entire application image
plus the reprogramming protocol image. This exacerbates the
problem by increasing the number of packets that needs to be
transmitted reliably through the network. The increase is
sometime by a factor of 20 [5].

This specific problem reared its head in the CSOnet
deployment where it was observed that the batteries were
being drained much faster than the theoretical calculations
had predicted. Our investigation revealed that regular code
updates being sent using the multi-hop method were the
culprit for parts of the network, particularly the parts having
linear topology and unreliable links. We decided to explore
the possibility of judiciously using single hop reprogramming.
In contrast to multi-hop reprogramming, in the single-hop

 2

method1, the user visits each node in the deployment field and
remotely reprograms it being physically as close as possible
to the node. The severity of the above problem can thus be
greatly reduced because the user goes as close as possible to
the node to be reprogrammed to maximize link reliability.
This reduces the number of retransmissions and hence
reprogramming time and energy will be conserved. Generally
hardwired reprogramming (by directly connecting the sensor
node to the computer via say serial port) cannot be a
substitute for single hop reprogramming to tackle the high
cost of multi-hop reprogramming. For example, in the
CSOnet deployment, since the sensor nodes are situated on
top of the traffic posts, it is tedious and difficult to bring down
the sensor nodes from the traffic posts and manually upload
the code to these sensor nodes. The company responsible for
the implementation of the project EmNet LLC in Granger,
Indianareports high cost and logistical difficulties in
reprogramming the sensors manually. This mode of operation
cost EmNet $200 to reprogram each node including 3 persons
involved and the rental cost of a bucket truck. Moving to a
single hop reprogramming brings the cost down by a factor of
10 and therefore, economically, the single hop wireless
reprogramming appears a good compromise.

In this paper, we present a protocol called DStream having
both single and multi-hop reprogramming capabilities. We
use the terms DStream-SHM and DStream-MHM to
represent the single and multi-hop reprogramming modes of
Stream. Using mathematical analysis, testbed experiments
and simulations, we draw valuable inferences about the two
reprogramming approaches. The common insight that all
three gives us is that single hop may be more energy efficient
and faster than multi-hop in some scenarios. For a given
topology, the cutoff depends on the link reliability of the
links in the network. High link reliability favors multi-hop
reprogramming. However the cross-over point depends on
which metric is of interest to the network owner- if it is
reprogramming time, the cross-over happens at a lower link
reliability value than for energy. Second, for networks that
are linear (or close to linear), single hop reprogramming
tends to be favored since a single broadcast of the code
image can satisfy only a few nodes. The actual choice
between the two modes will also be determined by the
human cost of reprogramming a node at a time as in single
hop reprogramming. For reference, we quantify this value for
the CSOnet deployment.

To summarize, our contributions are: 1) Motivate the
community to consider situations where single hop method
may be more attractive than the currently held view of multi-
hop reprogramming. 2) Design a dual reprogramming
protocol, DStream that does not significantly increase the
code size or the memory footprint over the previous Stream
protocol. 3) Through analytical, experimental and simulation
results, provide a set of guidelines that help the network
owner to choose single or multi-hop reprogramming
approach based on current network conditions. The rest of
the paper is organized as follows. Section II surveys related
work. Section III provides the detailed DStream design.
Section IV presents the mathematical analysis. Section V
explains the testbed and the simulation results. Section VI

1 Technically this method is single node reprogramming. However,

the term single hop reprogramming follows the standard usage in
the literature.

concludes the paper with the recommendations for a network
owner.

II. RELATED WORK

In recent years, there has been significant research work
aimed at developing protocols for reprogramming sensor
networks. To the best of our knowledge, all of the existing
reprogramming protocols provide either single or multi-hop
reprogramming features, but not both. Importantly existing
work is silent on the choice between the two approaches for
different deployment conditions.

The earliest network reprogramming protocol XNP [1]
operated over a single hop. The Multi-hop Over the Air
Programming (MOAP) protocol extended this to multiple
hops [2]. It introduced several concepts which are used by
later multi-hop reprogramming protocols, namely, local
recovery using unicast NACKs and broadcast of the code, and
sliding window based protocol for receiving parts of the code
image. However, it did not leverage the pipelining effect with
segments of the code image. The three protocols that define
the state-of-the-art today are Deluge, MNP, and Freshet. They
are all based on the idea of epidemic based reliable multicast
whereby code images are flooded through the network in a
controlled manner guaranteeing reliability through the use of
epidemic multicast. Deluge [3] was the earliest and laid down
some design principles used by the other two. It uses a
monotonically increasing version number, segments the
binary code image into pages, and pipelines the different
pages across the network. It builds on top of Trickle [7], a
protocol for a node to determine when to propagate code over
a single hop. The code distribution functions through a three-
way handshake protocol of advertisement, request, and code
broadcast. The operation of each node is periodic according to
a fixed size time window. The first part of the window is for
listening to advertisements and requests and sending
advertisements. The second part of the window is for
transmitting or receiving code corresponding to the received
requests. Within the first part of the time window, a node
randomly selects a time at which to send an advertisement
with meta-data containing the version number, the number of
complete pages it has, and the total number of pages in the
image of this version. When the time to transmit the
advertisement comes, the node sees whether it has heard a
threshold number of advertisements with identical meta-data,
and if so, it suppresses the advertisement. When a node hears
code that is newer than its own, it sends a request for that
code and the lowest number page it needs. In the second part
of the periodic window, the node transmits packets with the
code image, corresponding to the pages for which it received
requests. The design goal of MNP [4] is to choose a local
source of the code which can satisfy the maximum number of
nodes. Freshet [6] aggressively optimizes the energy
consumption for reprogramming by allowing a node to sleep
till the code reaches its neighborhood.

There have been some studies which show how low link
reliabilities cause problems in multi-hop networks. [11]
showed that shortest path algorithm in a network with lossy
links selects a path with poor reliability. In [10], the authors
evaluate Deluge and MNP for different densities and packet
organizations. But as far as we know, there has been no prior
work to study the effect of parameters like link reliabilities on
the performance of multi-hop reprogramming. In this paper,
we show how poor link qualities adversely affect multi-hop

 3

reprogramming making the alternate single hop
reprogramming approach attractive.

III. PROTOCOL DESIGN

A. Background and Rationale

It is desirable to have the sensor nodes equipped with the
facility of both single and multi-hop reprogramming so that a
choice can be made at runtime based on the current network
conditions (topology, link reliabilities, density etc). The
obvious approach is to have two separate reprogramming
protocols (a single hop protocol like XNP and a multi-hop
protocol like Stream) stored in each node’s permanent storage
(external flash) so that it can run the appropriate protocol
when required by loading that protocol from external flash to
the program memory. This is not an attractive solution
because requiring a node to store two reprogramming
protocols decreases the storage (e.g. external flash for Mica2
is 512KB) for the application running on the nodes. Our
proposed approach is to have a single protocol with both
single and multi-hop reprogramming capabilities. Existing
single-hop reprogramming protocols, such as XNP, were not
designed with the ability of propagating the code updates
through the network in a multi-hop manner. Therefore they
cannot serve as a starting point for our protocol. Multi-hop
reprogramming protocols like Deluge, Stream and Freshet are
more suited for this purpose. Since Stream is the most energy
efficient and fastest among these protocols, we chose Stream
and modified it to DStream, having both single and multi-hop
reprogramming capabilities.

For this paper, the meaning of single hop reprogramming
is that only a single node, specified by the user, within single
hop of the BN is reprogrammed. Contrary to what the name
suggests, single hop reprogramming does not mean that all
the nodes within the single hop of the BN are reprogrammed
by this approach. This is because the main rationale behind
single hop reprogramming is to avoid reprogramming nodes
which have low link reliability to the BN but may technically
be considered within a single hop of the BN. If we attempt to
reprogram a node within single hop of the BN but with low
link reliability, this may take considerable time and energy to
be reprogrammed defeating the purpose of single hop
reprogramming.

B. Design approach of Stream

The main disadvantage of multi-hop reprogramming
protocols like Deluge, MNP and Freshet is the overhead
involved in reprogramming. Each protocol transfers the entire
reprogramming protocol image together with the new user
application image. Since the reprogramming protocols are of
considerable complexity, the inflation in the program image
size that gets transferred over the wireless medium increases
greatly. The idea in Stream is to have all nodes in the network
be pre-installed with the Stream-ReprogrammingSupport
(Stream-RS) component that includes the complete
functionality for network reprogramming. Stream-RS is
installed as image 0. The application image augmented with
the Stream-ApplicationSupport (Stream-AS) component that
provides minimal support for network reprogramming is
installed as image 1. The addition to the size of the program
image over the application image size with Stream is
significantly less than for previous protocols. When a new
program image is to be injected into the network, all the
nodes in the network running image 1 reboot from image 0

and the new image is injected into the network using Stream-
RS. The new image again includes Stream-AS and the
protocol avoids the entire reprogramming component from
being transferred to all the nodes each time the network needs
to be reprogrammed. The exact saving in terms of the number
of pages transferred depends on the application. Any
application that uses radio communication will need to add
about 11 more pages if Deluge is used while Stream-AS adds
only one more page [5].

C. Design Approach of DStream

Next we describe DStream that can provide both single
and multi-hop reprogramming features. Let initially all nodes
have Stream-RS as image 0 and the application with Stream-
AS as image 1. Each node is executing the image 1 code.
Consider that a new user application has to be injected into
the network.
1. If multi-hop reprogramming is to be used, in response to

the reboot command from the user, all nodes in the
network reboot from image 0. This is accomplished as
follows:
a. From the computer, the user sends the command to

reboot from image 0 to the BN.
b. The BN executing image 1 broadcasts the reboot

command to its one hop neighbors and itself reboots
from image 0.

c. When a node running the user application receives the
reboot command, it rebroadcasts the reboot command
and reboots from image 0.

2. If single hop reprogramming is to be used, in response to
the reboot command from the user, a single node specified
by the user reboots from image 0. This is accomplished as
follows:
a. From the host computer, the user sends the command to

reboot a single node, say nodeα, from image 0 to the
BN.

b. The BN running image 1 broadcasts the reboot
 command along with the user specified node id α to its
one hop neighbors. The BN then reboots from image 0.

c. Each node that receives the reboot command,
 determines if the reboot command is targeted to it. If
yes, it reboots from image 0. Otherwise, it ignores
the reboot command. So, only the node α reboots from
image 0 (Stream-RS) and is subsequently reprogrammed.

3. Stream-RS starts to reprogram the node(s) that has
rebooted from image 0. Thus, Stream-RS which forms the
bulk of the reprogramming protocol does not need any
modification to support the single-hop mode of operation.

4. Stream-RS uses the three way handshake method for
reprogramming [5] where each node broadcasts the
advertisement about the code pages that it has. When a
node hears the advertisement of newer data than it
currently has, it sends a request to the node advertising
newer data. Then the advertising node broadcasts the
requested data. Each node maintains a set S containing the
node ids of the nodes from which it has received the
requests.

5. Once the node downloads the new user application
completely, it performs a single-hop broadcast of an ACK
indicating it has completed downloading. In single-hop
reprogramming, only one node sends the ACK while in
multi-hop all nodes in the network are ultimately
reprogrammed and send the ACK message.

 4

6. When a node n1 receives the ACK from node n2, n1
removes the id of n2 from the set S. Note that in multi-hop
reprogramming case, set S is maintained by all the nodes
that are participating in sending code to any of its
neighbors, while only the BN has a non-empty set S in
single hop reprogramming and it only contains the node id
α. For the set S at a node A, the following invariant holds:

. { | (,) (,) }A S x REQ x A true ACK x A false= = ∧ =
This ensures that the set S at a node A consists of the ids of
those nodes to which it is currently sending code fragments.
The condition for a node A to reboot from the user
application (image 1) is as follows:

. .#A S A pages Total number of pagesφ= ∧ =
The first condition is that A is not sending code to any node
and the second condition is that A itself has downloaded all
the pages of the application.
7. When the set S is empty and all the images are complete

(by complete we mean that all pages of all images have
been downloaded), the node reboots from image 1. So, in
multi-hop case, at completion, the entire network is
reprogrammed and all nodes reboot from image 1. In the
single hop case, the set S is always empty for the node α
that is reprogrammed and hence immediately after it
completes downloading the image, the node α sends ACK
and reboots from image 1. When the BN receives the ACK
from the node α, it removes the id of node α from its set S
and reboots from image 1.
From the above discussion, it is clear that DStream can

provide both multi-hop and single hop reprogramming
features. If the user specifies the id of the node to be
reprogrammed in the reboot command, DStream reprograms
only the specified node (single hop reprogramming). Besides
this, the user can also specify an option (switch_SH) for
automatic switching between single and multi-hop
approaches. When this option is specified, DStream starts
with multi-hop reprogramming. When a node n1 receives a
request from a node n2 for a page of the new image, n1 keeps
track of how many packets are requested for the same page in
the next request by n2. This gives n1 the estimate of the link
reliability between n1 and n2. If the estimated link reliability is
less than some threshold (user specified), a message is sent
back to the BN informing it about the current link reliability
between n1 and n2. The BN then forwards that message to the
computer. This suggests the user to switch to single hop
reprogramming for n2. In this way, nodes with low link
qualities are reprogrammed using single hop method and
other nodes are reprogrammed using multi-hop method.

IV. MATHEMATICAL ANALYSIS

Here we present an approximate analysis of the
reprogramming time and energy for DStream-SHM and
DStream-MHM for linear and grid networks. For linear
networks, we assume that the spacing between consecutive
nodes is equal to the transmission range and for grid
networks, it is √2 times the grid spacing. Let the application
consist of Np pages with Apkt packets per page. Let LRS and
LRM be the link reliability of single hop reprogramming (for
the link between the BN and the single node being
reprogrammed) and multi-hop reprogramming (we assume
identical link reliability for all links) respectively. Let Ps be
the probability of successful transmission of a packet over a
single link, which is equal to LRS in single hop mode and LRM
in multi-hop mode.

A. Reprogramming time

The reprogramming model that we use for the analysis is
an approximation of the behavior of DStream. We divide the
time line into fixed-size rounds. The source sends the
advertisement at the beginning of each round and the
destination, the one hop neighbor of the source that hears the
advertisement, sends one request for each new advertisement
received. We assume, for tractability of analysis, that the
advertisement and the request packets are reliably delivered.
This can be achieved in practice by either having a separate
control channel or by transmitting the control signals multiple
times to give a desired reliability. If this assumption is not
true, then the multi-hop reprogramming time we find is a
lower bound. Once the source receives the request, the data
packets are sent immediately. If all the data packets in a page
do not reach the destination, the remaining data packets are
sent over the following one or more rounds. The time Tr is
defined as the time to send a new advertisement, receive a
request, and send all the Apkt packets of the page being
advertised when the link reliability is 1.0. The number of
rounds that it takes for all the packets in a page to be received
at the destination is thus a random variable, call it Nr. The
probability of completing the upload of the entire page within
the kth round since the start of transmitting the page is the
probability that each packet in the page is successfully
delivered within k rounds. Assuming independence of the
losses of different packets within a page,

 () 1

1

() 1
pktA

k
j

r s s
j

P N k P P
−

=

 
≤ = − 

 
∑ (1)

The expected number of rounds for successfully sending a
whole page is

1 1

[] () ()r r r
i i

E N i P N i P N i
∞ ∞

= =

= ⋅ = = ≥∑ ∑ (2)

 () ()
1 1

[] 1 () 1 (1)r r r
i i

E N P N i P N i
∞ ∞

= =

= − < = − ≤ −∑ ∑ (3)

 ()
1

1

1 1

[] 1 1
pktA

i
j

r s s
i j

E N P P
∞ −

−

= =

  
 = − − 
   

∑ ∑ (4)

Since the page transmission is pipelined, the expected
number of rounds it takes to download the whole application
at a node h-hop away is given by

 { },[] min 3 (1)), []r h p p rE N N h N h E N= ⋅ − + ⋅ (5)

Here h.E[Nr] is the number of rounds to download the first
page, 3.(Np-1).E[Nr] is the number of rounds to download the
rest of the pages if the network spans across more than 4 hops
because of two-hop interference effect on pipelining, i.e. at
any point of time, if a node at hop h receives data from hop h-
1, no node at hop h+1 can send data at the same time because
of collision at hop h [3] . For networks with maximum hop
separation less than 4, there is no pipelining of the code
transfer and Np.h.E[Nr] is the number of rounds to download
all the pages [3]. From Equation (4) and Equation (5),

{ }

()

,

1
1

1 1

[] min 3 (1)),

 1 1
pkt

r h p p

A
i

j

s s
i j

E N N h N h

P P
∞ −

−

= =

= ⋅ − + ⋅ ⋅

  
 − − 
   

∑ ∑
 (6)

 5

 Assuming maximum number of hops to be hmax and the
round time to be Tr, the expected multi-hop reprogramming
time is

max() ,[]conv M r r hT T E N= ⋅ (7)

For multi-hop reprogramming, Ps = LRM. For single-hop
reprogramming, Ps = LRS, and the pages can not be pipelined.
Therefore, the reprogramming time for the single-hop mode is

 ()
1

1

()
1 1

1 1
pktA

i
j

conv S r p RS RS
i j

T N T N L L
∞ −

−

= =

  
 = ⋅ ⋅ − − 
   

∑ ∑ (8)

The relative reprogramming time of single-hop to that of
multi-hop is given by

 ()

()

()
(/)

()

1
1

1 1

1
1

max
1 1

1 1

(3 (1)) 1 1

pkt

pkt

conv S
conv S M

conv M

A
i

j

P RS RS
i j

A
i

j

P RM RM
i j

T
T

T

N N L L

N h L L

∞ −
−

= =

∞ −
−

= =

= =

  
 ⋅ ⋅ − − 
   

  
 ⋅ − + − − 
   

∑ ∑

∑ ∑

 (9)

Using Equation (9), Figure 5 and Figure 6 show the
relative reprogramming time (single hop/ multi-hop)
respectively for linear and grid topologies as a function LRM
for different network sizes with LRS=0.95, Np=12 pages,
Apkt=48 packets, hmax=N-1, for the line topology, where N is
the number of nodes, and hmax = m-1 for the n×m grid
(ignoring the edge effects).

For the linear topology, as the network size increases the
multi-hop mode reprogramming is faster due to the pipelining
effect of multiple pages. However for the 5 node network,
when the multi-hop link reliability is less than 0.8, single hop
reprogramming is preferred from the delay point of view. For
the grid topology, the reprogramming time of the multi-hop
mode is always better than that of the single hop mode due to
two factors— the spatial multiplexing and multiple nodes
receiving the same single broadcast of the code packet. The
spatial multiplexing becomes more efficient with increasing
network size, which explains the advantage of multi-hop
reprogramming as network size increases.

B. Energy Cost

Let C be the energy cost of transmitting a single packet.
The energy cost of receiving packets depends on the specifics
of the underlying application such as sleeping schedules.
Moreover, since receiving and idle listening have almost the
same energy cost, the energy overhead beyond packet
transmission can be directly computed from the
reprogramming time. Hence, in this analysis, we use the
number of transmitted packets as a measure of the
reprogramming energy. The expected number of
transmissions over a link for a successful transmission of a
packet Nret is

 ()1

1

1
[] (1)

k
k

ret s s
k s

K E N k P P
P

=∞
−

=

 = = ⋅ − = ∑ (10)

Figure 1. Relative reprogramming time (single hop : multi-hop)

as a function of link reliability for linear topologies

Figure 2. Relative reprogramming time (single hop : multi-hop)

as a function of link reliability for grid topologies

Let the redundant set at hop h be Sh, where Sh is the set of
nodes at hop h that can be reprogrammed by one node at hop
h-1. Let |Sh| be the average size of the set. Moreover, let αh be
the cardinality of the subset of nodes at hop h-1 that can
reprogram all the nodes at hop h. The additional energy cost
to reprogram all the nodes at hop h given that all the nodes at
hop h-1 have been reprogrammed is given by

h

p pkt h
h p pkt h S

s

N N C
E K N N C

P

α
α

⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ = (11)

The total energy overhead of multi-hop reprogramming all
the nodes in a network with hmax maximum number of hops is

max max

1 1
h

h h h h
p pkt h

M h S
h h RM

N N C
E E

L

α= =

= =

 ⋅ ⋅ ⋅
= =  

  
∑ ∑ (12)

For a linear topology of N nodes with Rtx = d, where d the
spacing between nodes, and Rtx is the transmission range,
αh=1, |Sh|=1, and max (1)h N= − . For an n×m grid topology,

ignoring edge effects, with r = √2d,αh= 2
n 
 

, |Sh| =3, and

max (1)h m= − (ignoring the edge effects). Let Npkt = Apkt + 1 +
E[Nr], where the second term is to account for the
advertisement packet and the last term represents the expected
number of request packets to successfully transmit the whole
page (Equation 4). For single-hop reprogramming (Ps = LRS),
the total energy to reprogram all the nodes is given by

 p pkt
S

RS

N N C N
E

L

⋅ ⋅ ⋅
= (13)

The relative energy consumption of single-hop to multi-
hop reprogramming is given by,

 6

()
()

()

() ()

max

max

/

1

1
1

1 1

1 1

1 1

1 []

1 []

1 1 1

1 1 1

h

pkt

h

pkt

h h

p pkt S r RSS
S M

h h
M p pkt M r h

S
h RM

A
i

jS
pktRM RS RS

i j

Ah h i j
S S

pktRS h RM RM
h j

N A E N C N LE
E

E N A E N C

L

N L A L L

L A L L

α

α

=

=

∞ −
−

= =

= − −

= =

⋅ + + ⋅ ⋅
= =

 ⋅ + + ⋅ ⋅
 
  

   
  ⋅ + + − − 
     =

  
+ + − − 

 

∑

∑ ∑

∑ ∑
1i

∞

=

 
  
    

∑

 (14)

Figure 3. Relative energy overhead (single hop : multi-hop) as a

function of link reliability for linear topologies

Figure 4. Relative energy overhead (single hop : multi-hop) as a

function of link reliability for grid topologies

Using Equation 14, we plot relative energy overhead
(single hop/ multi-hop) versus LRM for linear and grid
topologies for different network sizes. Figure 3 shows that the
single hop mode is more efficient than the multi-hop mode for
the linear topology with link reliability less than 0.8.
Moreover, the difference increases, in favor of the single hop
mode, as the network size increases. In linear topologies, only
one node can be satisfied by the transmission by a node and
this negatively impacts the energy consumption of the multi-
hop mode. This is due to the low link reliabilities with |Sh| =1
for the line topology. Figure 4 shows that for a grid topology,
almost irrespective of its size, the single hop mode is better
when the link reliability is less than or equal to 0.8 and the
multi-hop mode is better otherwise. Below multi-hop link
reliability of 0.8, a redundant set of size |Sh| = 3 is not enough
to compensate for the lower reliability, however, it becomes
enough for multi-hop link reliabilities of more than 0.8. For a
deployment with higher transmission ranges and hence higher
values of |Sh|, the balance will shift in favor of multi-hop
reprogramming.

V. EXPERIMENTS AND RESULTS

We implement DStream using the nesC programming
language in TinyOS. In this section, we compare the
performances of DStream-SHM and DStream-MHM using

both testbed experiments and simulations. The metrics that
we use to compare single and multi-hop reprogramming
approaches are reprogramming time and energy.

A. Calculation of reprogramming time and energy

For multi-hop reprogramming, time to reprogram the
network is the time interval between the instant t0 when the
BN sends the first advertisement packet to the instant t1 when
the last node (the one which takes the longest time to
download the new application) completes downloading the
new application. Since clocks maintained by the nodes in the
network are not synchronized, we cannot take the difference
between t1 and t0. Although a synchronization protocol can
be used to solve this issue, we do not use it in our experiments
because we do not want to add to the load in the network (due
to synchronization messages) or the node (due to the
synchronization protocol). Instead we follow the following
approach. When the BN sends the first advertisement packet,
it reads its local clock and stores the current local time t0

i in
its external flash. Then it broadcasts a special packet called
the sync packet after putting its node id i in the src field of the
packet. It stores the time t1

i when the sync packet is sent (i.e.
when sendDone() event is signaled). Each node i in the
network stores the local time t0

i when it receives the first sync
packet. It also stores the id of the node from which it received
the first sync packet. Let us define a parent of a node i to be
the node j from which the node i receives the first sync
packet. Then the node i broadcasts the sync packet (with its id
inserted into the src field) after random time uniformly
distributed between some interval (0,T). This is to avoid the
collision of the sync messages broadcast by different nodes
within the communication range of each other. Finally the
node i stores the time t2

i when it completes downloading all
the pages of the new image. Note that a node i may receive
many sync packets but it discards all of them except the first
one. Also, a node sends a sync packet only once. So, this
approach floods the sync packet across the network in a
controlled manner. Let Ri be the reprogramming time for a
node i- the time interval between the instant when the BN
sends the first advertisement packet and the instant when the
node i downloads the new code image completely. Let the
parent of the node i be i1 whose parent is i2 and so on, and in is
the BN. Reprogramming time Ri for node i is

)()(0
1

102
kk i

n

k

iii
i ttttR −+−= ∑

=

Reprogramming time for the network is max(Ri) over all
nodes i in the network.

For DStream-SHM, we calculate the time ts to reprogram a
single node using the same method as explained above. Time
to reprogram the network using single hop method is R=N*ts
where N is the number of nodes in the network. Of course, we
do not include the time required by the user to move from one
node to another since such travel times differs from
deployment to deployment. To compare the reprogramming
times for single and multi-hop approaches for a given sensor
network deployment, one should add these travel times to the
single hop reprogramming times mentioned in this paper.
Alternately, the reprogramming of the nodes can be done
concurrently through multiple base stations at a higher
resource cost.

Among the various factors that contribute to the energy
used in the process of reprogramming, two important ones are

 7

the amount of radio transmissions in the network and the
number of flash-writes (the downloaded application is written
to the external flash as image 1). Since the radio transmissions
are the major sources of energy consumption and the number
of writes to the external Flash is the same in the two cases
(DStream-SHM and DStream-MHM), we take the total
number of packets transmitted by all nodes in the network as
the measure of energy used in reprogramming. The listening
energy depends on two primary factors – the first is the time
to complete reprogramming (which is already captured in our
first metric) and the second is application policy about setting
the node off to sleep (which is not related to the
reprogramming protocol itself). The receiving energy and the
listening energy are therefore neglected in the evaluation.

B. Testbed description

We perform the experiments using Mica2 nodes having a
7.37 MHz, 8 bit microcontroller; 128KB of program memory;
4KB of RAM; 512KB external flash and 916 MHz radio
transceiver. Testbed experiments are performed for three
different network topologies: grid, linear and actual CSOnet
networks (Figure 5). For each network topology, we define
neighbors of a node n1 as those nodes which can receive the
packets sent by n1. In our testbed experiments, if a node n1
receives a packet from a node n2 which is not its neighbor, the
packet is dropped. Otherwise if n1 and n2 are neighbors, n1
generates a random number u uniformly distributed in the
interval [0,1] and if u<LRM, then n1 accepts the packet,
otherwise the packet is dropped. This emulates different link
reliabilities, since it is difficult to generate experimental
conditions with exact link reliabilities. For the grid network
used in our experiments, the transmission range Rtx of a node
satisfies √2d < Rtx < 2d, where d is the separation between the
two adjacent nodes in any row or column of the grid. For the
linear networks, d<Rtx<2d. For multi-hop reprogramming of
grid network, a node situated at one corner of the grid acts as
the BN while the node at one end of the line is the BN for
linear networks. For DStream-SHM, the link reliability of the
single wireless link from the user to the one node being
reprogrammed is kept constant (0.95) in the experiments. In
practice, this is a high value since the user can get close to the
node with the BN and there is no other transmission going on.
In DStream-MHM, the link reliabilities LRM of all links are
identical and we vary it from 0.6 to 1.0 (perfect link).The link
reliabilities shown in Figure 5 are derived from data collected
over a summer period by doing a ping test with two radios
with no other traffic in the CSOnet network. The values of
link reliabilities among the nodes vary over different seasons
of the year and even within the same season, the current
environmental conditions may change these values from one
day to another.

C. Testbed experiment results
Figure 6-a and Figure 6-b compare the average

reprogramming time and energy for 2x2, 3x3 and 4x4 grid
networks using DStream-SHM and DStream-MHM with
different values of link reliabilities. These figures show that
multi-hop reprogramming takes more time and energy to
reprogram the network if link reliability is decreased because
of more retransmissions (and hence more time) required for a
packet to be successfully received by the sensor node. Figure
6-a shows that in small networks (2×2 in the experiment), for
LRM<0.8, single hop reprogramming is faster than multi-hop
reprogramming. However, for larger networks, DStream-

MHM is always better for the range of LRM (0.6-1.0)
considered in these experiments. But it should be noted that
even in large grids, if we carry out the experiments for link
reliabilities less than 0.6, then below some value rt, single hop
becomes faster than multi-hop reprogramming. Figure 6-b
shows that there exists some value of link reliability LRM >0.6
for which multi-hop reprogramming takes less energy than
single hop reprogramming. For good link reliabilities, multi-
hop approach is faster and more energy efficient than single
hop because of the following reasons: (1) Multiple listening
nodes: In multi-hop reprogramming, a single broadcast of the
data packet by a node can be received by all its neighbors
simultaneously. On the other hand, in single hop
reprogramming, a single broadcast of the data packet is
received by only one node at a time. (2) Spatial multiplexing:
In multi-hop reprogramming, spatial multiplexing of the code
transfer makes reprogramming faster. Note that spatial
multiplexing contributes in reducing the reprogramming time,
not the energy. As link reliability decreases, the difference
between single and multi-hop approaches in terms of both
reprogramming time and energy decreases and for r < rt,
single hop reprogramming becomes faster and for r < re
single hop reprogramming is more energy efficient. An
experimental observation is that rt ≠ re in general; thus system
designers have to make a decision depending on which metric
is more important, energy or delay. In linear networks, the
only advantage that multi-hop reprogramming has over single
hop reprogramming is spatial multiplexing of the code
transfer. By definition, a single broadcast cannot satisfy more
than one node in linear networks and thus this factor cannot
provide an advantage to DStream-MHM. Hence as shown in
Figure 6-c and Figure 6-d, the advantage of DStream-MHM
over DStream-SHM is not as pronounced as in grid networks.
Further, spatial multiplexing helps to make reprogramming
faster but does not contribute in reducing the reprogramming
energy. As a result, as shown in Figure 6-d single hop
reprogramming is always more energy efficient than multi-
hop reprogramming for linear networks. Since spatial
multiplexing of the code transfer is effective for larger
networks, multi-hop reprogramming incurs less delay than
single hop reprogramming for large networks (for example in
Figure 6-c, for networks having at least 4 nodes) for good link
reliabilities.

Figure 5: Two CSOnet networks: EmNet1 and EmNet2

We can conclude that for linear networks (or networks
which are approximately linear, i.e. most of the nodes have
degree 2) single hop reprogramming is always more energy
efficient than multi-hop reprogramming and except for very
high link reliabilities among the nodes, single hop method is
also faster than multi-hop method. On the other hand, multi-
hop reprogramming is faster and more energy efficient for
reasonable link reliabilities in grid networks, with the

Base node

95% 68% 83%

95% 89%
59%

95%
97%

95%

95%
95%

95%

95%

85%

EmNet2

Base node

95% 95% 60% 78% 90% 68% 99%

EmNet1

 8

0

600

1200

1800

2400

2x2 3x3 4x4

R
ep

ro
g

ra
m

m
in

g
 t

im
e(

se
cs

)

Single hop
Multi hop/Link rel=0.6
Multi hop/Link rel=0.7
Multi hop/Link rel=0.8
Multi hop/Link rel=0.9
Multi hop/Link rel=1.0

0

4000

8000

12000

16000

2x2 3x3 4x4

N
u

m
b

er
 o

f
p

ac
ke

ts

Single hop
Multi hop/Link rel=0.6
Multi hop/Link rel=0.7
Multi hop/Link rel=0.8
Multi hop/Link rel=0.9
Multi hop/Link rel=1.0

0

500

1000

1500

2000

2-linear 3-linear 4-linear 5-linear

R
ep

ro
g

am
m

in
g

 t
im

e(
se

cs
) Single hop

Multi hop/Link rel=0.6
Multi hop/Link rel=0.7
Multi hop/Link rel=0.8
Multi hop/Link rel=0.9
Multi hop/Link rel=1.0

(a) (b) (c)

0

2500

5000

7500

2-linear 3-linear 4-linear 5-linear

N
u

m
b

er
 o

f
p

ac
ke

ts

Single hop
Multi hop/Link rel=0.6
Multi hop/Link rel=0.7
Multi hop/Link rel=0.8
Multi hop/Link rel=0.9
Multi hop/Link rel=1.0

0

400

800

1200

1600

2000

EmNet1 EmNet2

R
ep

ro
g

ra
m

m
in

g
 t

im
e(

se
cs

)

Single-hop
Multi-hop

0

3000

6000

9000

12000

EmNet1 EmNet2

N
u

m
b

er
 o

f
p

ac
ke

ts

Single-hop
Multi-hop

(d) (e) (f)

Figure 6: Testbed results. Reprogramming time for (a) grid, (c) linear and (e) CSOnet networks. Number of packets transmitted in
the network during reprogramming for (b) grid, (d) linear and (f) CSOnet networks. For grid and linear topologies, the leftmost

bar is reprogramming time for single hop and the remaining bars are multi-hop reprogramming times with increasing link
reliabilities. The order of the legends is the order of the bars from left to right.

advantage increasing with network size. However consider
that for practical deployments other factors, such as travel
times may be added to the cost of DStream-SHM.

Figure 6-e and Figure 6-f compare reprogramming time
and energy for the two CSOnet networks (Figure 5). Since
EmNet1 is a linear network, reprogramming energy for
EmNet1 is always less for single hop case than the multi-hop
case. Reprogramming time of EmNet1 is also less for single
hop reprogramming than multi-hop reprogramming because
some link reliabilities are very low (like 60% and 68%). Even
though multi-hop reprogramming for EmNet1 has the
advantage of spatial multiplexing of the code transfer which
helps to reduce the reprogramming time, the disadvantage due
to low link reliabilities outweighs this advantage. For
EmNet2, multi-hop reprogramming is faster than single hop
reprogramming because multiple listening nodes can receive
the single broadcast of the data packet simultaneously and
spatial multiplexing of the code transfer make multi-hop
reprogramming faster. The reprogramming energy for single
and multi-hop reprogramming are almost equal for EmNet2.

D. Simulation Results

We used TOSSIM simulator to examine the trend of
overhead energy and reprogramming time for larger sized
networks. We perform simulations for three different network
topologies: grid, linear and random. The random topology is
generated by uniformly distributing nodes with some given
density over a square field. Figure 7-a to Figure 7-d compare
DStream-SHM and DStream-MHM for linear and grid
networks with LRM = 0.9 and LRS=0.95. These results confirm
with the analytical and testbed results.

 Figure 7-e and Figure 7-f show the reprogramming time
and the overhead energy respectively as a function of network
density (shown as number of neighbors per node) for a
random topology consisting of 100 nodes with LRM = 0.9 and
LRS=0.95. The figures show that the performance of multi-hop

reprogramming improves as the network density increases.
This is due to the increase in the number of nodes that can
listen to the single broadcast of the code packet as the
network density increases. Figure 7-g and Figure 7-h show
the reprogramming time and the overhead energy respectively
as a function of the multi-hop link reliability for a random
topology with N = 100 and LRS=0.95. Figure 7-g shows that
multi-hop reprogramming is always faster and gets better as
the multi-hop link reliability increases-again due to the
pipelining of the code in multi-hop reprogramming. Figure 7-
h shows that overhead energy of single hop reprogramming is
lower than that of multi-hop reprogramming when the link
reliability is less than or equal to 0.7 and the multi-hop mode
is better otherwise. Below a link reliability of 0.7, the number
of the nodes that can simultaneously receive the single
broadcast of the code packet is not enough to compensate for
the lower reliability. However, it becomes enough for link
reliabilities of greater than 0.7. For a deployment with higher
transmission ranges, the balance will shift in favor of multi-
hop reprogramming.

VI. CONCLUSION

Complementary to the prevalent idea explored in wireless
reprogramming protocols, this paper posits that single hop
reprogramming can be a better choice under specific network
conditions. To identify the conditions which favor single hop
reprogramming, we performed mathematical analysis, testbed
experiments (including experiments on real-world sensor
networks) and simulations. Using Equation (9) and Equation
(14), we can approximately find under what values of link
reliabilities, and redundancy in the network, single hop can be
better than multi-hop method in terms of reprogramming time
and/or energy. Further from our mathematical analysis,
testbed experiments and simulations, we can provide the
following insights which can serve as a guideline to the
network-owner:

 9

0

2500

5000

7500

10000

9 16 25 36 49 64 81 100 121

Network size (line)

R
ep

ro
g
ra

m
m

in
g

ti
m

e
(s

ec
)

multi hop
single hop

0

20000

40000

60000

80000

9 16 25 36 49 64 81 100 121

Network size (line)

N
u

m
b

er
 o

f
p

ac
ke

ts multi hop
single hop

0

3000

6000

9000

12000

3X3 4X4 5X5 6X6 7X7 8X8 9X9 10X10 11X11 12X12

Network size (grid)

R
ep

ro
g

ra
m

m
in

g

ti
m

e
(s

ec
)

multi hop
single hop

 (a) (b) (c)

0

20000

40000

60000

80000

3X3 4X4 5X5 6X6 7X7 8X8 9X9 10X10 11X11 12X12

Network size (grid)

N
u

m
b

er
 o

f
p

ac
ke

ts multi hop
single hop

0

2000

4000

6000

8000

8 10 12 14 16 18 20
Average # neighbors (random)

R
ep

ro
g
ra

m
m

in
g
 t
im

e
multi hop
single hop

0

10000

20000

30000

40000

8 10 12 14 16 18 20
Average # neighbors (random)

N
u

m
b

er
 o

f
p

ac
ke

ts

multi hop
single hop

 (d) (e) (f)

0

2000

4000

6000

8000

0.6 0.7 0.8 0.9 1.0
Link reliability (random)

R
ep

ro
g
ra

m
m

in
g
 t
im

e

multi hop
single hop

0

25000

50000

75000

100000

0.6 0.7 0.8 0.9 1.0

Link reliability (random)

N
u
m

b
er

 o
f
P

ac
ke

ts multi hop
single hop

 (g) (h)
.Figure 7: Simulation results. Reprogramming time as a function of network size for (a) linear and (c) grid networks (LRM=0.9).

Number of transmitted packets as a function of network size for (b) linear and (d) grid networks (LRM=0.9). For random
topology, (e) reprogramming time and (f) number of transmitted packets as a function of network density (LRM=0.9); (g)

Reprogramming time and (h) number of transmitted packets as a function of link reliability for 100-random topology (Mean
number of neighbors=8). The multi hop result bar is to the left of the single hop result bar.

1) If the network is linear or approximately linear, single hop
reprogramming is favored in terms of energy.
2) For smaller linear networks, single hop is faster than
multi-hop if link reliabilities are poor. Our testbed results
show that for a linear network consisting of 5 nodes, single
hop is faster if link reliability is less than 0.9. Even for larger
networks, if some of the links are very unreliable (as in the
CSOnet deployments), single hop can be faster than multi-
hop reprogramming. However as the network size increases,
multi-hop improves relative to single hop since pipelining
becomes more efficient.
3) For non linear networks, unless the link reliabilities are
very poor, multi-hop reprogramming is both more energy
efficient and faster than single hop. But single hop is worth
considering if some links are really unreliable.
4) The exact cross-over link reliability below which single
hop outperforms multi-hop depends on what metric we are
interested in. If it is reprogramming time, then the cross-over
value is lower than that for reprogramming energy.
5) With increasing density, multi-hop performs better since
more number of nodes can be satisfied by a single broadcast
of the code image. Also, this reaffirms the claim of Stream
and Deluge that they are able to handle high network densities
by appropriate collision arbitration schemes.

We are performing work currently on supporting
reprogramming in heterogeneous networks, including for
nodes that have multiple channels as in wireless mesh
networks

REFERENCES
[1] Crossbow Tech Inc., "Mote In-Network Programming User

Reference," http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf, 2003.

[2] T. Stathopoulos, J. Heidemann, and D. Estrin, "A remote code update
mechanism for wireless sensor networks," Technical Report CENS
Technical Report 30, no., 2003.

[3] J. W. Hui and D. Culler, "The dynamic behavior of a data
dissemination protocol for network programming at scale," at the Proc.
of Sensys, 2004.

[4] S.S.Kulkarni and W.Limin, "MNP: Multi-hop Network
Reprogramming Service for Sensor Networks," at IEEE ICDCS pp. 7-
16, 2005.

[5] R. K. Panta, I. Khalil, S. Bagchi, “Stream: Low overhead Wireless
Reprogramming for Sensor Networks”, at INFOCOM, 2007.

[6] M.D.Krasniewski, R.K.Panta, S.Bagchi,C-L.Yang, W.J.Chappell,
“Energy-efficient, On-demand Reprogramming of Large-scale Sensor
Networks,” Accepted to appear in ACM TOSN,2007.

[7] P.Levis, N.Patel, S.Shenker, and D.Culler, "Trickle: A Self-Regulating
Algorithm for Code Propogation and maintenance in Wireless Sensor
Network," at the Proc. of the First USENIX/ACM NSDI, 2004.

[8] P.Levis, N.Lee, M.Welsh, and D.Culler, “TOSSIM: Accurate and
scalable simulation of entire tinyos applications,” at the Proc. of
SenSys, 2003

[9] Ruggaber,T.P. and Talley,J.W., “Detection and Control of Combined
Sewer Overflow Events Using Embedded Sensor Network
Technology” Proceedings of the World Environmental and Water
Resources Congress, 2005

[10] Q. Wang, Y. Zhu, L. Cheng, “Reprogramming wireless sensor
networks: challenges and approaches,” Network, IEEE, Vol.20, Iss.3,
2006,

[11] D.S.J. De Couto, D. Aguayo, B. A. Chambers and R.
Morris,”Performance of multi-hop wireless networks: Shortest path is
not enough,” In Proceedings of the First Workshop on Hot Topics in
Networks, Princeton, New Jersey, October 2002.ACM.

