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Abstract 

 
In this paper, we present an approach for detection of 

spam calls over IP telephony called SPIT in VoIP systems. 
SPIT detection is different from spam detection in email in 
that the process has to be soft real-time, fewer features are 
available for examination due to the difficulty of mining 
voice traffic at runtime, and similarity in signaling traffic 
between legitimate and malicious callers. Our approach 
differs from existing work in its adaptability to new 
environments without the need for laborious and error-
prone manual parameter configuration. We use clustering 
based on the call parameters, using optional user feedback 
for some calls, which they mark as SPIT or non-SPIT. We 
improve on a popular algorithm for semi-supervised 
learning, called MPCK-Means, to make it scalable to a 
large number of calls and operate at runtime. Our 
evaluation on captured call traces shows a fifteen fold 
reduction in computation time, with improvement in 
detection accuracy. 
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1. Introduction 
 
 As the popularity of VoIP systems increases, they are 

being subjected to different kinds of security threats [1]. A 
large class of the threats such as call rerouting, toll fraud, 
and conversation hijacking incur deviations in the protocol 
state machines and can be detected through monitoring the 
protocol state transitions [2],[3]. Additionally, 
cryptographically secure versions of the common VoIP 
protocols, such as Secure SIP and Secure RTP, address 
many of the attacks presented in the literature. However, 
spam calls in VoIP [4], commonly called SPIT, are 
becoming an increasing nuisance. The ease with which 
automated SPIT calls can be launched can derail the 
adoption of VoIP as a critical infrastructure element. 
Existing monitoring and cryptographic solutions are not 
immediately applicable to SPIT detection. In this paper, we 
address the problem of detection of SPIT calls.  

Detection of spam emails is a mature field and there 
are some similarities to our problem. In both domains, 
users can provide feedback about individual email or call, 
for the latter, through a built-in button in some 
commercially available VoIP phones. However, there exist 
significant differences⎯VoIP traffic is real-time and the 
detection should ideally be real-time as well; some features 
are expensive to extract in real-time, especially those in 
voice traffic; the signaling patterns are likely similar in 
legitimate and malicious calls rendering content-based 
filtering on signaling traffic ineffective; and features from 
multiple protocols used in VoIP may be relevant.  

In this paper, we present the design of a system that 
uses semi-supervised machine learning for detection of 
SPIT calls. It builds on the notion of clustering whereby 
calls with similar features are placed in a cluster for SPIT 
or legitimate calls. Call features include those extracted 
directly from signaling traffic, those extracted from media 
traffic, such as proportion of silence in the call, and those 
derived from calls. However, previous approaches that use 
thresholds [5] on the call features are difficult to use in 
practice since the nature of SPIT calls varies widely. 
Therefore, we learn the features to use and their relative 
importance in clustering through runtime observations, 
which include user feedback.  

The popular semi-supervised clustering algorithm 
called MPCK-Means [6] scales as O(N3) where N is the 
number of calls. This would generally be too expensive for 
real-time operation. We modify this to create our algorithm 
called eMPCK-Means, using VoIP specific features to 
reduce it to O(N). Such specialization includes the early 
use of user feedback and prior knowledge of the number of 
clusters. Additionally, we create an incremental protocol 
called pMPCK-Means, that can perform the detection as 
soon as the call is established.  

We evaluate the protocols using four call traces with 
different characteristics of SPIT and non-SPIT calls, over 
different proportions of user feedback and accuracy of the 
user feedback. With a batch of 400 calls, eMPCK-Means is 
15 times faster than MPCK-Means, while achieving better 
detection coverage in terms of true and false positives. 
Since pMPCK-Means can examine a limited set of call 
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features, it works well only with a large fraction of calls 
with accurate user feedback. 

 
2. Related work 

 
Rosenberg [4] details the problem of VoIP SPIT and 

gives various high-level conceptual solutions. The 
solutions can be placed in three categories [7]: (1) Non-
intrusive methods based on the exchange and analysis of 
signaling messages; (2) Interaction methods that create 
inconveniences for the caller by requesting them to pass a 
checking procedure before the call is established; (3) 
Callee interaction methods that exchange information with 
the callee on each call. An example work in category 1 is 
[8] where the authors look at the SIP signaling traffic 
pattern to detect SPIT. However, they do not provide 
quantitative data on the detection accuracy. Our 
experimental results indicate solely relying on SIP message 
patterns will give low detection coverage. The work by 
Quittek [7] generates a greeting sound or faked ring tone to 
the caller right after the call is established and monitors the 
response voice patterns from the caller to differentiate 
between human caller and a SPIT generator. This falls in 
category 2. In comparison, our work encompasses 
categories 1 and 3. 

Kolan [9] presents an approach which maintains the 
trust information for each caller. The information can be 
automatically built up through user feedback, or through a 
propagation of reputation via social networks. The 
approach can be used in our system where we can embed 
the caller’s trust as one of the call features. However, the 
reputation database may grow large and a reputation 
system can be gamed by false praise or false blame.  

Clustering is a way to learn a classification from the 
data [10], especially with unlabeled data. Clustering 
techniques have been used for detecting e-mail spam in 
[11],[12]. On the other hand, classification techniques such 
as SVM [13] are popular for data classification. However, 
they typically require labeled data and do not take 
unlabeled data into consideration. Recent developments in  
semi-supervised classification techniques [14], such as 
semi-supervised SVM [15], incorporate both labeled and 
unlabeled data.  

 
3. Design 
 
3.1 Structure of VoIP calls 

 
There are typically three phases involved in a VoIP 

phone call [16]. The first phase is call establishment 
through a three-way handshake, which involves (i) the 
caller sending a SIP INVITE message to the proxy server 
and the server forwarding the INVITE message to the 
callee, (ii) the callee replying with a SIP OK message, and 
(iii) the caller sending SIP ACK message to complete the 
call establishment phase. The second phase is the 
conversation, which contains the media stream (voice) 

transmitted between the caller and the callee typically 
using RTP/RTCP [17]. The last phase is the call tear down 
phase, which can be initiated by either the caller or the 
callee sending a SIP BYE message followed by SIP OK 
and SIP ACK messages. 

 
3.2 Characteristics of VoIP SPIT calls 

 
A blacklist-based approach can be used at the call 

establishment phase based on source IP or From URI to 
drop calls from known SPIT sources. In the media stream 
phase, a typical pattern one can imagine for SPIT calls is 
that the caller speaks more than the callee. Another pattern 
is that the length of the media stream phase, i.e., the call 
duration, is shorter in the case of calls answered by a live 
person since SPIT calls are generally undesirable. Also, 
one can assume that it is more likely that for a SPIT call, a 
call termination will be initiated by the callee, i.e., the 
callee sends the SIP BYE message.  

Since SPIT calls are usually large volume calls made 
by some spitter within a period of time, we found that it is 
also useful to look for patterns in a batch of calls. Certain 
features are available when looking at the collective set of 
calls, such as the inter-arrival time between calls. Also 
statistical learning can only occur with a batch of calls.  

 
3.3 Detection scheme 

 
A VoIP environment typically consists of multiple 

domains with each domain composed of a few proxy 
servers and phones belonging to end users. Figure 1 shows 
an example VoIP environment consisting of two domains. 
In a VoIP environment, a proxy server’s main function is 
to route the signaling messages. For the specific example 
we show, here Proxy #1 is used to route the signaling 

Figure 1. Detecting Spit Calls in a VoIP Environment
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messages among phones {A,B,C}. And similarly, Proxy #2 
is used to route the signaling messages among phones 
{E,F}. Cross domain phone calls {A,B,C}R {E,F} are 
collaboratively handled by Proxy #1 and Proxy #2. Once a 
phone call is established, subsequent messages (signaling 
and voice) can travel directly between phones without 
involving the proxies. However, an ISP can mandate all 
traffic pass through the proxies, which is often the case for 
billing and security purposes.  

Our approach in detecting SPIT calls involves placing 
local detectors at the SIP proxies and the phones in the 
managed domain. The domains that have our detection 
mechanism are called managed domains and others are 
called unmanaged domains. Essentially, the detectors 
require observability of the signaling and the media 
streams within the managed domain. A spitter can exist as 
any phone in a VoIP environment, whether within a 
managed (phone B) or an unmanaged domain (phone E).  

The embedded detectors collect the information of the 
phone calls and send them to the SPITDetector, where the 
logic for differentiating SPIT calls from non-SPIT calls 
executes. The decoding of the traffic and calculation of the 
call features are handled by the respective server-
side/client-side detectors and only a digest of the necessary 
information is forwarded up to the detector, thus 
minimizing network traffic.   

SPITDetector supports two modes of detection:  
Mode A: Look at each phone call with early detection: 
In this mode, the SPITDetector has to determine whether a 
call is a SPIT or not before the media stream of the call is 
established. This means that the detection has to be 
completed before the callee picks up the phone. This mode 
is useful from an end-user’s point of view since SPIT calls 
can be potentially blocked without further annoyance.  
Mode B: Look at the whole batch of phone calls: With 
Mode B, we assume received calls are kept in a collection 
which are then presented in a batch to our semi-supervised 
clustering algorithm. This mode provides higher detection 
accuracy than Mode A due to the availability of complete 
call feature information. Mode B is attractive to a service 
provider, rather than to an end user.  

 
4. SPIT Detection using Semi-Supervised 
Clustering 
 
4.1 Background 
 

In our problem context, each VoIP call is regarded as 
one data point. We are interested in clustering call data 
points into two clusters, one containing the SPIT calls, and 
the other containing the non-SPIT calls. In general, there 
may be multiple sub-clusters within each cluster 
corresponding to radically different kinds of SPIT or non-
SPIT calls. We explore this approach of multiple sub-
clusters further in Sec. 4.7.  

Semi-supervised clustering [18], [19], [6] is a recent 
development in the data clustering research community 
that aims to address the issue of selecting the proper 
criteria for clustering. Semi-supervised clustering allows 
the use of optional labeled data for a subset of the runtime 
observations to progressively modify the clustering 
criteria. This means that one does not need to determine a 
priori which features of the data points should be used for 
clustering. The clustering criteria will be trained into 
generating clusters that obey the user-labeled data as 
faithfully as possible [6]. The implicit assumption is that 
user feedback is perfectly accurate. In our work here, we 
evaluate the impact of noise in the user feedback.  

 
4.2 VoIP call features for clustering 

 
We construct a data point from each VoIP call based 

on 17 features: 1-2. From/To URI, 3. Start time, 
4.Duration, 5. # of SIP INVITE messages, 6. # of ACK 
messages, 7-8. # of BYE messages from caller/callee, 9. 
Time since the last call from the originator of the current 
call, 10-15. # of 1xx, 2xx, 3xx, 4xx, 5xx, and 6xx SIP 
Response messages, 16. Call frequency of the originator of 
the current call, 17. Ratio of non-silence duration of the 
callee to the caller media streams.  

For Mode A early detection, only features 1, 2, 3, and 
9 are available. Feature 17 is derived from the RTP media 
stream by client-side detectors if the media streams are 
configured to flow directly between clients [20] or it can 
be provided by the server-side detector if the media 
streams are configured to flow through the SIP Proxy. We 
select the universe of features using our domain 
knowledge, to cover different facets of a VoIP call and to 
limit the number of features so that online clustering is 
feasible.  

 
4.3 Labeled data via user feedback 

 
Phone calls received in the managed domain can have 

optional user feedback information indicating whether a 
call is a SPIT call or a non-SPIT call. The corresponding 
data point will be labeled with a SPIT or a non-SPIT tag 
and fed into the semi-supervised clustering process. Such a 
data point will be used for adjusting the clustering criteria.  

 
4.4 Extended K-Means for semi-supervised 
clustering: MPCK-Means 

 
For this work, we select the semi-supervised 

clustering algorithm called MPCK-Means [6].  
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Eq. (1) is the objective function that MPCK-Means 
minimizes. li is the cluster that point xi is associated with. 
The main idea is the same as K-Means where intra-cluster 
distance is being minimized. However the Euclidean 
distance metric in MPCK-Means is weighted by a cluster-
specific matrix Ali (one can also use the same A matrix 
across all clusters)[6]. Ali is modified based on user 
feedback and points in cluster li  following Eq.(5).  

The user labeled data in MPCK-Means is supplied in 
the form of clustering constraints M (must link sets) and C 
(cannot link set). Here the M set specifies pairs of data 
points that should be put in the same cluster while the C set 
specifies those pairs of data points that should not be put in 
the same cluster. In Eq. (1), the last two terms are used to 
add penalty to the objective function from the violation of 
these constraints. The function fM returns a value 
proportional to the distance between the two points that are 
in different clusters. The function fC returns a value that is 
inversely proportional to the distance between two points 
that are in the same cluster. The points xli′ and xli′′ 
represent the two farthest data points in Xli with respect to 
their distance computed using Ali. The pseudo code for 
MPCK-Means is listed as Algorithm 1 below. 

 
Input: Set of data points { } 1

N
i i

X x
=

= , Set of must-link constraints 
( ){ },i jM x x=  , Set of cannot-link constraints ( ){ },i jC x x=  , 

# of clusters K, Sets of constraints costs W  and W , 0t ← . 
Output: Disjoint K-partitioning { } 1

K
h h

X
=

of X  such that objective 
function mpckmτ  is locally minimized.  

Method: 
1. Initialize clusters: 
1.1. Create the λ  neighborhoods { } 1P PN λ

=
 from M and C. 

if Kλ ≥  
Initialize { }(0)

1

K

h h
μ

=
 using weightiest farthest-first traversal 

starting from the largest NP. 
Else 

Initialize { }(0)

1h h

λ
μ

=
 with centroids of { } 1P PN λ

=
 

Initialize remaining clusters at random 

2. Repeat until convergence 
2.1. For each data point ix X∈   

*h = ( )( )( 2( )

A
argmin log det A

h

t
i h h

h
x μ− −  

( ) [ ] ( ) [ ])( , ) ( , ), 1 , 1M i j j C i j ji j i jij ijx x M x x Cw f x x h l w f x x h l∈ ∈+ ≠ + =∑ ∑  

Assign ix  to *
1t

h
X +  

2.2. For each cluster Xh, { ( ) 1
1

( 1) t
t

hx X h
X

t
h xμ +

+
∈

+ ← ∑ } 

2.3. Update_metrics Ah for all clusters { } 1

K
h h

X
=

 (Eq. (5)) 

2.4. 1t t← +  
Algorithm 1. MPCK-Means (Adapted from [6]) 

 
4.4.1 Mapping user feedback to pair-wise constraints 
in MPCK-Means 

The system keeps two sets: FS (data points of SPIT 
calls from feedback) and FN (data points of non-SPIT calls 
from feedback). For a data point xi, which has user 
feedback, the user indicates xi ∈ FS or xi ∈ FN. With 
respect to the MPCK-Means algorithm, must-link 
constraints M are derived online from pairs of points (xi, xj) 
∈ FS or (xi, xj) ∈ FN. Similarly, cannot-link constraints C 
are created online from (xi, xj), where xi∈FS and xj∈FN.  

For ease of exposition, we initially discuss the case 
with 2 clusters—one each for SPIT and non-SPIT calls. 
We discuss the extension to multiple clusters in Sec. 4.7. 
4.4.2 Building detection predicate  

Given a cluster Xh from the clustering algorithm,  we 
use the number of data points with different user feedback 
in the cluster to determine the association of the cluster. If 

h S h NX F X F∩ > ∩ , the calls in Xh will be considered 
SPIT calls; else, they will be considered non-SPIT calls.  

 
4.5 Efficient MPCK-Means 

 
In the cluster assignment step of MPCK-Means (Step 

2.1) the time complexity on iterating through the must-
link/cannot-link peers of point xi is a O(N) operation. X is 
the whole set of data points supplied to the clustering 
algorithm. N=|X| is the number of data points. The 
determination of the maximally separated points 

'
hx and ''

hx used in fc(.) (Step 2.1 of Algorithm 1) and 
update_metrics (Step 2.3) has time complexity O(N2). This 
implies MPCK-Means is O(N3) since the operation has to 
be done for each data point (actually O(cN3) where c is a 
small fixed number of iterations till convergence). Thus, 
MPCK-Means does not scale well with large data sets. For 
our application, where N can be hundreds for a small-sized 
domain or thousands for a mid-sized domain, it turns out to 
be prohibitive time-wise to apply the original MPCK-
Means directly. 

Therefore, we adapt MPCK-Means into the eMPCK-
Means (efficient MPCK-Means) algorithm (Algorithm 2). 
In it, the maximally separated points are estimated through 
an O(1) approximation algorithm. We use an O(N) 
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implementation for the neighborhood creation process in 
the cluster initialization step of MPCK-Means. 
Additionally, the general practical experience with a K-
Means based algorithm is that it converges within a small 
number of iterations for the main loop (Step 2 in MPCK-
Means). Combined these make eMPCK-Means O(N) and 
the constant is small for a range of VoIP call traces. 
4.5.1 eMPCK-Means : Initialize clusters 

The eMPCK-Means algorithm creates the initial 
neighborhoods directly from the user feedback FS and FN 
sets. Specifically, it creates w neighborhoods {FS, FN , xn3, 
xn4, …, xnw}, where  {xn3, xn4, …, xnw} = X-FS-FN is the set 
of data points not covered by the user feedback. The 
complexity of this step is O(N). We use the same 
weighted-farthest-first traversal as in MPCK-Means, 
which is O(N) when the number of clusters is a constant. 
Overall, the initialize clusters in eMPCK-Means has O(N) 
complexity. 
4.5.2 eMPCK-Means : efficient estimation of 
maximally separated points ( )' '',h hx x  

In MPCK-Means, to find the exact maximally 
separated points ( )' '',h hx x  used in Eq. (4) and Ah matrix 

updating[6], it requires evaluating the distance 
2

Ah
i jx x− for every pair of points (xi, xj)∈X, which is an 

O(N2) operation. Since the matrix Ah is updated in each 
iteration of the loop of step 2 in Algorithm 1, this 
evaluation has to be repeated as well.  

In eMPCK-Means, we estimate the maximally 
separated points by first putting data points from X into an 
array R[1..N] in a random ordering. We then iterate 
through consecutive elements R[i] and R[i+1] in the array. 
We set ( )' '',h hx x  to (R[i’], R[i’+1]) that gives the maximal 

value of 2

A
R[ '] R[ ' 1]

h
i i− + . This operation (Step 2 in 

Algorithm 2) is performed once right after the cluster 
initialization step and is done K times, once for each 
cluster h. The time complexity of this step is O(N). 

However, since the Ah matrix is updated in each 
iteration of MPCK-Means (Step 2.3, Algorithm 1), the 
estimate ( )' '',h hx x has to be updated accordingly as well. We 

embed the updating process into the calculation of the 
parameterized Euclidean distance 2

Ah
i jx x−  (Eq. (2)). The 

parameterized Euclidean distance is calculated in Eq. (3) 
and Eq. (4) as well. The idea here is that when a pair of 
points (xi, xj) is found to have a greater distance than the 
current estimate ( )' '',h hx x at the time of evaluating the 

parameterized Euclidean distance, we will set the 
maximally separated points estimate to (xi, xj). The 
advantage of this approach is that it is an O(1) operation 
and does not increase the order of complexity of eMPCK-
Means. However, this is an approximation because 

suppose, in the loop to iterate through all the points, we are 
at point xA and are calculating ||xA-xB||2. The point xC is to 
be considered in a later iteration and (xA, xC) happens to be 
the farthest pair of points. Then, the computation for point 
xA will not have the accurate distance for the farthest pair 
of points. Hereafter, when we refer to Euclidean distance 
computation, we mean that it has maximally separated 
point estimation embedded within it.  

To insure that fC(.) function (Eq. (4)) does not evaluate 
to negative values with our approximated estimation of 
( )' '',h hx x , we enforce that the second term is always 

evaluated before the first term so that there is an 
opportunity to update ( )' '',h hx x . 

4.5.3 Use only a fixed number of constraints in cluster 
assignment step 

In the cluster assignment step of MPCK-Means (Step 
2.1,  Algorithm 1), rather than iterating through the 
complete must-link/cannot-link peers of xi, which makes 
Step 2.1 O(N2), we choose a fixed-sized subset of them. 
This corresponds to Step 3.1 in eMPCK-Means. This 
optimization is hinted at by the fact that the must-
link/cannot-link information in our domain has significant 
redundancy. A set of k1 and k2 calls placed, through user 
feedback, in the SPIT and non-SPIT categories generates 
k1

2+k2
2 must-link and k1k2 cannot-link constraints. On the 

other hand, we see from experimental results in [6] that 
MPCK-Means can work reasonably well even with a 
limited numbers of constraints. The cluster assignment step 
thus becomes O(N). In general, this can negatively affect 
the clustering quality. However, we believe it is a trade-off 
that is necessary in an effort to make the detection scheme 
scalable.  
4.5.4 Pre metrics update on the starting cluster(s) 

In MPCK-Means, the first update metrics step (Step 
2.3) occurs only after the first iteration of the cluster 
assignment step (Step 2.1). In the first iteration of the 
cluster assignment, a default identity matrix is assigned to 
Ah, which directly affects the quality of the generated 
clusters from the first iteration and has a long-term effect 
on the quality of the eventual clusters as we see 
empirically. Therefore, in eMPCK-Means we conduct a 
metrics update (Step 1.2, eMPCK-Means, Algorithm 2) 
early on, right after the initial clusters are generated from 
the cluster initialization step. Intuitively, the user feedback 
is available at the outset and this optimization allows the 
Ah matrix to immediately adapt to the user feedback, 
which results in more accurate clustering. Additionally, it 
improves the convergence speed as we see later (Table 1). 

 
Input: Set of data points { } 1

N
i i

X x
=

= , Set of must-link constraints 

( ){ },i jM x x= , Set of cannot-link constraints ( ){ },i jC x x= , 

Number of clusters K, Sets of constraints costs W  and W , 
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Optional initial cluster centroids { }(0)

1

K

h h
μ

=
, 0t ←  

Output: Disjoint K-partitioning { } 1

K
h h

X
=

of X  such that objective 
function mpckmτ  is locally minimized.  

Method: 
1. If initial cluster centroids { }(0)

1

K

h h
μ

=
 is not given in the input 

1.1. Create the λ neighborhoods { } 1P P
N λ

=
 with steps from Sec. 4.5.1. 

if Kλ ≥  

Use weightiest farthest-first traversal to select K 

neighborhoods { }( ) 1

K
P h h

N
=

. 
Assign the data points   { }( 0 )

( ) 1

K

h P h h
X N

=
←  

Initialize { }(0)
1

K
h h

μ
=

 

Else 
{ }(0)

1h h h
X N

λ

=
←  

Initialize remaining clusters at random 
Initialize { }(0)

1

K
h h

μ
=

 
1.2. Update metrics Ah for all clusters { } 1

K
h h

X
=

 ([6]). 
2. Initialization of maximally separated points ( )' '',h hx x  with respect 

to each Ah.  
3. Repeat until convergence 
3.1. For each ix X∈   

Randomly select
{ }
{ }
( , )  , 

( , )  , 

i j size

i j size

M x x M M cts

C x x C C cts

∈ ∈ =

∈ ∈ =
. 

*h = ( )( )( 2( )

A
argmin log det A

h

t
i h h

h
x μ− −  

( ) ( ) )( , ) ( , ), 1 , 1
i j i jx x M x x Cij M i j j ij C i j jw f x x h l w f x x h l∈ ∈⎡ ⎤ ⎡ ⎤+ ≠ + =∑ ∑⎣ ⎦ ⎣ ⎦   

Assign ix  to *
1t

h
X +  

3.2. For each cluster Xh, { ( )1
( 1) 1

t
h

t tX hh x X xμ +
+ +← ∈∑ } 

3.3. Update_metrics Ah for all clusters { } 1

K
h h

X
=

 ([6]) 
3.4. 1t t← +  

Algorithm 2. eMPCK-Means 

Algorithm 2 shows the proposed eMPCK-Means with 
the above modifications to MPCK-Means. Step 1 decides 
the starting K centroids (means) for the clusters through 
the use of initial user feedback. For the specific case of the 
user flagging calls as SPIT or non-SPIT, K=2.  

Step 2 initializes the maximally separated points 
estimation. Step 3.1 performs the cluster assignment. Step 
3.2 updates the mean. Note that the mean can be updated 
in constant time by keeping the sum of the data points and 
performing an addition/subtraction when a data point is 
associated with/unassociated from a cluster. Step 3.3 
updates the matrix Ah for each cluster h. The goal of this 
process is to pick Ah’s such that the objective function (Eq. 
(1)) is minimized for the cluster assignment done in the 
current iteration of Step 3. Conceptually, this process will 
result in Ah’s that puts higher weights on those features 
which are consistent among data points in the same cluster 
and lower weights on those that are less consistent. 

 
4.6 Progressive MPCK-Means 

 

The eMPCK-Means algorithm assumes that the data 
points are available in a batch, and is thus suited for Mode 
B (batch mode) detection (Sec. 3.3). To support Mode A 
per-call early detection, we create a variant called 
progressive MPCK-Means (pMPCK-Means). The pseudo 
code is given as Algorithm 3. The idea here is that when a 
new call comes in, pMPCK-Means performs only the 
cluster assignment step and only for the new data point. 
The features “From URI”, “To URI”, “Start time”, and 
“Time from the last call by the same caller” are available at 
the beginning of the phone call and are used in pMPCK-
Means. For the features that are not available, pMPCK-
Means fills the data point xi with the mean values from the 
cluster to which this point’s distance is being computed. 
This is implicitly carried out in Step 4 of Algorithm 3.  

In pMPCK-Means, the update metrics operation only 
occurs occasionally when the cluster means have changed 
significantly (exceeding a given threshold dthreshold). 
Estimating the mean is an O(1) operation for each new 
data point. This amortizes over many calls the cost of Ah 
computation and the cost of re-clustering all existing data 
points. However, a cost has to be paid in advance, which is 
that we require reasonably sized cluster(s) to be grown on 
the initial data points (|X| > tthreshold) through eMPCK-
Means. The reason is that we want the initial Ah matrix to 
be as accurate as possible. 

 
Algorithm: pMPCK-Means 

Input: A new data point xt. , Disjoint K-partitioning { }( 1)

1

Kt
h h

X −

=
of 

{ }( 1)
1 2 1, ,..,t

tX x x x−
−= .  

Output: The cluster association lt for the point xt. 
Disjoint K-partitioning { }( )

1

Kt
h h

X
=

of { }( )
1 2 1, ,.., ,t

t tX x x x x−= . 

Internal Variables: m{ }
1

K

h h
μ

=
 

Method: 
1. If t < tthreshold 

{ }( ) ( 1)t t
tX X x−← ∪  ; { }( )

1

Kt
h h

X
=

← ∅ ; Return 

2. If { }( )

1

Kt
h h

X
=

= ∅  (all clusters are empty) 
{ }( ) ( 1)t t

tX X x−← ∪ . 

Call eMPCK-Means to generate { }( )

1

Kt
h h

X
=

 from ( )tX . 

m{ }( )

1

K
t

h h h
μ μ

=
← ; Return 

3. Randomly select 
{ }
{ }
( , )  , 

( , )  , 

i j size

i j size

M x x M M cts

C x x C C cts

∈ ∈ =

∈ ∈ =
. 

4. *h = ( )( )( 2( )

A
argmin log det A

h

t
i h h

h
x μ− −  

( ) ( ) )( , ) ( , )
, 1 , 1

i j i j
ij M i j j ij C i j jx x M x x C

w f x x h l w f x x h l
∈ ∈

⎡ ⎤ ⎡ ⎤+ ≠ + =⎣ ⎦ ⎣ ⎦∑ ∑
 

5. { }( ) ( 1)

1

Kt t
h h h

X X −

=
←   ;  { }* *

( ) ( )t t
th h

X X x← ∪  

6. If n* * * *
* *

22 ' ''
thresholdA A

/ d
h h

h h h hx xμ μ− − >   
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/*  x′h*, x′′h* are the maximally separated points wrt Ah*  */ 

Call eMPCK-Means with initial centroids { }( )

1

Kt
h h

μ
=

 to generate 

{ }( )

1

Kt
h h

X
=

 on ( )tX ; m{ }( )

1

K
t

h h h
μ μ

=
← . 

Algorithm 3. pMPCK-Means 
 
4.7 Multi-Class eMPCK clustering 

 
We create a variant of eMPCK in which the initial 

clusters are split into sub-clusters based on the call types 
“calls going to voice mail”, “calls terminated immediately 
after the call is established”, and “the remaining calls”. 
These three types exhibit different patterns in the non-
silence call duration ratio (feature 17, Sec. 4.2). The sub-
clusters are formed for both SPIT and non-SPIT calls. This 
is an attempt to guide the clustering process through expert 
knowledge. The user feedback however is only able to 
differentiate between SPIT and non-SPIT calls, and not 
place a call into a sub-cluster. 

 
5. Experiments and Results 
 
5.1 Testbed 

 
We set up a two-domain testbed with a topology 

similar to Figure 1, one of the domains being protected by 
our detection technique. We use Asterisk as the VoIP 
proxy servers and MjSip for the phone clients. Each 
domain has 90 phones acting as non-spitters and 6 phones 
acting as spitters. We use the Poisson distribution to model 
call arrival times and the Exponential distribution to model 
call durations.  

The generation of call traces was done by only one of 
the co-authors without providing any information about the 
nature of non-SPIT and SPIT calls to the rest of the team. 
This was done by design so that the team working on the 
detection system does not have any prior knowledge of the 
call mix. Ideally we would have liked to perform the 
evaluation on third-party call traces. However, at the time 
of writing, no such call trace is publicly available. 

 
5.2 Summary of call trace dataset 

 
We collected four call traces from our testbed with 

varying call characteristics as follows (call trace name, 
Non-SPIT Call length average, Non-SPIT Call inter-
arrival time average, SPIT Call length average, SPIT call 
inter-arrival time average, Number of SPIT calls in trace, 
Number of non-SPIT calls in trace): (v4, 5, 30, 1, 2, 212, 
171), (v5, 5, 10, 1, 10, 45, 338), (v6, 5, 30, 1, 10, 94, 289), 
(v7, 5, 30, 5, 10, 81, 302). The time unit is minute. In terms 
of similarity between SPIT and non-SPIT calls, in 
decreasing order, the call traces are v5, v7, v6, and v4.  

There are other characteristics which are shared by the 
four call traces. Examples include a 60% chance of a call 
being hung up by the caller for a non-SPIT call and a 10% 

chance of being hung up by the caller (spitter) for a SPIT 
call. The media streams for a SPIT call are dominated by 
the spitter while for a non-SPIT call, the non-silence 
duration on the caller and the callee media streams are 
about the same on average. 

Other experimental parameter settings are: at most 15 
must-link and 15 cannot-link constraints are used. The 
pMPCK-Means algorithm uses 100 data points initially 
with eMPCK-Means before commencing incremental 
operation. Each data point in the experiment is based on 
the average from 50 runs with the same parameter settings. 

 
5.3 Effect of proportion of user feedback  

 
We evaluate the effect of the proportion of calls that 

come with user feedback. We assume the same ratio for 
both SPIT and non-SPIT calls. We assume the feedback is 
perfectly accurate. 

Figure 2 shows the clustering quality with respect to 
four different algorithms proposed on call trace 4 in terms 
of the F-Measure [6]. A larger F-Measure value means 
better quality clustering. From Sec. 5.2, we know that call 
trace 4 exhibits a very clear distinction between SPIT and 
non-SPIT calls in terms of call duration and call inter-
arrival time. This makes eMPCK perform well with user 
feedback ratio as low as 0.1. The original MPCK-Means 
achieves the same level but with a higher user feedback 
ratio of 0.2. The improved result of eMPCK is due to the 
pre-metrics update (Sec. 4.5.4), which creates a more 
accurate weight matrix A based on user feedback, prior to 
iterating over the data points. The F-Measure from 
eMPCK Multi Class drops with increasing user feedback 
ratio because we break the cluster into sub-clusters based 
on the call types. As a result, eMPCK Multi Class will put 
different types of SPIT and non-SPIT calls into different 
sub-clusters. Both will hurt the F-Measure since by 
definition of F-Measure, these calls should be clustered 
into the same cluster. This negative effect grows stronger 
as the user feedback ratio increases.  

Figure 3 and Figure 4 show the true positive (TP) and 
false positive (FP) rates of SPIT detection on call trace v4. 
What we can see here is that eMPCK Multi Class actually 
performs well despite the poor F-Measure. eMPCK Multi 
Class  performs worse than eMPCK at low user feedback 
ratio because breaking the initial cluster into sub-clusters 
reduces the number of call data points with feedback in 
each sub-cluster. This results in poor clustering and hence 
low detection accuracy. Compared to eMPCK, MPCK’s 
detection accuracy lags behind due to the lack of pre-
metrics updating. pMPCK performs rather poorly even 
with call trace v4. However, it is still in the usable range 
(e.g. 0.63 True Positive with a user feedback ratio of 0.2). 
pMPCK’s poor performance is due to the limited features 
available before the media stream  is established. 
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Due to space constraints, we show only the True 
Positive curves for call traces v5, v6, and v7 in Figure 5, 
Figure 6, and Figure 7 respectively. All the algorithms 
perform worse with call trace v5 due to same inter-arrival 
time of SPIT and non-SPIT calls. This makes the time 
since last call from the same caller and call frequency 
(features 9 and 16 in Sec. 4.2) much less useful. Another 
factor is the number of SPIT calls in the call trace is 
decreased to 45 (compared to 212 in v4) which further 
lowers the clustering quality and detection accuracy. 
Figure 8 summarizes the True Positive rates from eMPCK 
across the four call traces. This basically corresponds to 
how salient the differences between SPIT calls and non-

SPIT calls in the call traces are. In order, the easiest one is 
v4, followed closely by v6, and then v7. The hardest is v5. 
In v5, SPIT calls are almost indistinguishable from short-
duration non-SPIT calls. 

We show error-bar ( ± 1 s.t.d.) for eMPCK in Figure 
2. They are omitted in the rest of the figures for 
presentation clarity. The general trend is that the errors 
diminish with increasing ratio of user feedback. We 
observe less than ± 5% error across the experiments on 
call traces 4, 6, and 7 when user ratio is set beyond 0.1. 
For call trace 5, the error is higher (up to ± 25% at 0.1 
ratio). 
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Figure 2. Call trace v4 / F-Measure 
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Figure 3. Call trace v4 / TP 
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Figure 4. Call trace 4 / FP 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
ratio of calls with feedback

Tr
ue

 P
os

iti
ve

 R
at

e

 
Figure 5. Call trace 5 / TP 
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Figure 6. Call trace 6 / TP 
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Figure 7. Call trace 7 / TP 
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Figure 8. Compare eMPCK True 

Positive Rate across call traces 
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Figure 9. TP vs. Noise in User Feedback 
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Figure 10. FP vs. Noise in User Feedback 
 

 
 

5.4 Scalability of execution time 
 
In this experiment we compare the running times of 

MPCK and eMPCK by varying the number of call data 

points. Call trace v7 is used for this experiment. For 
MPCK, we apply exact optimizations which do not cause 
loss of accuracy. For example, the maximally separated 
points evaluation is re-executed only when the A matrix 
gets changed. The results are based on code compiled with 
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 MPCK eMPCK 
v4 6.94 3.98 
v5 7.80 7.83 
v6 7.81 5.38 
v7 6.94 4.7 
Average 7.37 5.47 
Table 1. Number of iterations to 

convergence 

MS VC++ 8.0 with default optimization level running on 
Windows XP, Intel E6400 2.13 GHz CPU. 

As Figure 11 shows, MPCK exhibits non-linear 
growth in the running time as the number of call data 
points increases (error bars are  ±1 std.). eMPCK, on the 
other hand, exhibits a linear growth in the running time. 
Also, MPCK takes significantly longer to run compared 
with  eMPCK⎯15 times longer for a batch of 400 calls. 
Looking at the number of iterations that each algorithm 
takes to converge (Table 1), eMPCK fares better. The 
running time advantage of eMPCK comes from the lower 
number of iterations as well as the lower running time of 
each iteration. The lower number of iterations is explained 
by eMPCK’s update of Ah’s on the initialized clusters. For 
call trace v5, the similarity in SPIT and non-SPIT calls 
renders the Ah initialization ineffective and the number of 
iterations is roughly equal for both algorithms. 

 

5.5 Effect of 
noise in user 
feedback 

 
We evaluated 

different 
algorithms with 
various noise 
levels in the user feedback. When we say the noise level is 
c, it means that a fraction c of the user feedback is false, 
i.e., a SPIT call is reported as non-SPIT and vice-versa. 
We show the result with call trace 6 for this experiment. 
The user feedback ratio is fixed at 0.3. Figure 9 shows the 
true positive rate decreases as the noise level increases. 
Observing the false positive rates in Figure 10, we 
conclude that pMPCK is completely unusable through the 
whole noise level range while the other algorithms are 
usable at low noise levels. We conclude that pMPCK is 
usable only for a high proportion of accurate user feedback. 
Beyond noise level 0.5 eMPCK performance drops below 
that of MPCK due to our design of the detection predicate 
(Sec. 4.4.2), namely, considering the cluster that contains 
more calls marked by the user as SPIT than non-SPIT, to 
be the SPIT cluster. With noise level above 0.5, the user 
feedback is wrong more often than right and the negative 
effect is more pronounced in eMPCK than MPCK, since it 
did a “better job” of clustering on the user feedback than 
MPCK. As an example of a usable operating point, 
consider that at noise levels 0.2 or below, eMPCK has both 
true positive and true negative above 0.8. 
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Figure 12. MPCK (TP – FP) for call 

trace v6 
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Figure 13. eMPCK (TP – FP) for call 

trace v6 
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Figure 14. pMPCK (TP – FP) for call 

trace v6 
 
5.6 Evaluation with noise and feedback ratio 
 

Here we perform an evaluation of all four proposed 
algorithms with respect to the four call traces. Our 
evaluation methodology considers the combined effect of 
proportion of user feedback and the noise level and the 
results are shown in Figure 12, Figure 13, and Figure 14. 
In the 3D plot, the Z-axis corresponds to TP-FP, the 
difference between True Positive rate and False Positive 
rate, with respect to each pair of feedback ratio and noise 
level. Intuitively, if TP-FP is greater than zero, it means 
the detection gives more correct results than incorrect 

results and can be regarded as a valid operating point 
where the detection is useful. Due to page length limitation, 
we show the 3D plots only for call trace 6. A general trend 
we can see in the 3D plots is that when fixing the noise 
level, the TP-FP value climbs to a peak and then goes 
down when varying the feedback ratio from 0 to 1. There 
is no sharp breakdown of performance for any of the 
algorithms. If the user feedback is accurate, then even with 
low ratio of user feedback, the performance is good for 
MPCK and eMPCK. The performance of pMPCK on the 
other hand is acceptable only close to the extreme region 
of almost perfect user feedback for almost all calls. To 
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give an overall quantification of the detection quality, we 
define the volume metric based on the integral (Eq. (6)). In 
the ideal case where TP-FP is maintained at 1 through the 
entire range of noise levels and feedback ratio values, the 
volume will be 0.9. Table 2 shows the volume for each 
combination of algorithm and call trace. Call trace v5 gives 
the lowest volume corresponding to the worst performance 
for all algorithms. Averaged over the entire range, we see 
that eMPCK performs best followed by eMPCK (Multi 
Class), MPCK, and pMPCK. 

 ( )
1 1

0 0.1

: noise level,  :feedback ratio
n f

Volume TP FP df dn

n f
= =

= −∫ ∫ i i  (6) 

TP-FP 
Volume v4 v5 v6 v7 avg. 

MPCK 0.048 -0.595 -0.319 -0.388 -0.314 

eMPCK (Multi 
Class) 0.068 -0.590 -0.330 -0.402 -0.314 

eMPCK 0.042 -0.577 -0.272 -0.340 -0.287 

pMPCK 0.015 -0.596 -0.371 -0.411 -0.341 

Table 2. Summary of TP-FP volume comparisons 
 

6. CONCLUSION 
 

In this paper, we proposed a new approach to detect 
SPIT calls in a VoIP environment. We map each phone 
call into a data point based on an extendable set of call 
features, derived from the signaling as well as the media 
protocols. This converts the problem of SPIT detection 
into a data classification problem, where a classic solution 
is the use of clustering. We apply semi-supervised 
clustering, which allows for the optional use of user 
feedback for more accurate classification. This 
corresponds to users’ flagging some calls as SPIT and 
others as legitimate. We create a new algorithm called 
eMPCK-Means, based on a previous algorithm called 
MPCK-Means, which provides linear time performance 
with the number of calls. eMPCK-Means includes a pre-
metrics-update step, which contributes to high (> 90%) 
detection true positive rates with less than 10% user 
feedback data points for three of the four call traces used 
here. We found that it is difficult to attain high detection 
accuracy based only on features available in the call 
establishment phase, which would enable a SPIT call to be 
dropped without the user needing to answer the call. This 
algorithm pMPCK performs well only with accurate user 
feedback for a majority of calls.  
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