Computer Networks xxx (2010) XXX—XXX

Contents lists available at ScienceDirect

&‘{ﬁ:{s

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Secure neighbor discovery through overhearing in static multihop
wireless networks ™

Srikanth Hariharan®*, Ness B. Shroff®, Saurabh Bagchi ¢

2 Department of ECE, The Ohio State University, 205 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH 43210, United States
b Departments of ECE and CSE, The Ohio State University, 205 Dreese Laboratories, 2015 Neil Avenue, Columbus, OH 43210, United States
€School of ECE, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907, United States

ARTICLE INFO ABSTRACT

Article history:

Received 20 May 2010

Received in revised form 16 October 2010
Accepted 27 October 2010

Available online xxxx

Responsible Editor: LF. Akyildiz

In wireless ad-hoc and sensor networks, neighbor discovery is one of the first steps per-
formed by a node upon deployment and disrupting it adversely affects a number of routing,
MAG, topology discovery and intrusion detection protocols. It is especially harmful when
an adversary can convince nodes that it is a legitimate neighbor, which it can do easily
and without the use of cryptographic primitives. In this paper, we develop a secure neigh-
bor discovery protocol, SEDINE, for static multihop wireless networks. We prove that, in
the absence of packet losses, without using any centralized trusted node or specialized

Ilfl?i,;ot:gf—'discovery hardware, SEDINE prevents any node, legitimate or malicious, from being incorrectly added
Security to the neighbor list of another legitimate node that is not within its transmission range. We
Wireless networks provide simulation results to demonstrate the efficacy of SEDINE, in the presence of packet
Overhearing losses.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Wireless ad-hoc and sensor networks are increasingly
being used in a number of commercial, industrial and mil-
itary applications for data monitoring. The ability of nodes
to self-configure (without the assistance of a powerful base
station) allows these nodes to be deployed in inhospitable
and hostile environments that need to be monitored. Secu-
rity of the monitored data could be of great concern.
Neighbor discovery is one of the first steps performed by
a node before it starts monitoring. Neighbor discovery, as
the name suggests, is the process of identifying neighbor
nodes. A neighbor of a node X is defined as one that is with-
in the radio communication range of X.

An adversary intending to disrupt the neighbor
discovery protocol will try to make two non-neighboring

* This work has been supported in part by the NSF grants 0721236,
0626830, 0831060, and CNS-0626830.
* Corresponding author. Tel.: +1 859 285 0126.
E-mail addresses: harihars@ece.osu.edu (S. Hariharan), shroff@ece.
osu.edu (N.B. Shroff), sbagchi@purdue.edu (S. Bagchi).

1389-1286/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2010.10.021

nodes believe that they are neighbors, or will prevent
two neighboring nodes from becoming neighbors. By
launching the former attack, the adversary can in turn at-
tack protocols that need accurate neighbor information.
For example, an adversary can attack routing protocols
such as AODV [20] and DSR [9] by launching a wormhole
attack. In a wormhole attack, malicious nodes can either
falsely convince two non-neighboring nodes that they are
within communication range, or falsely convince the nodes
that the malicious nodes belong to the best possible route
between the source and the destination. This attack can be
launched even without requiring the cryptographic keys in
the network. The adversary, after inserting itself in the
false routes, can control the packets sent over those routes,
e.g., by selectively dropping packets and crypt-analyzing
them.

We now illustrate the importance of secure neighbor
discovery. Consider two legitimate non-neighboring nodes
A and B, and a malicious node M that is within the commu-
nication range of both A and B (Fig. 1(a)). If the neighbor
discovery protocol simply consists of broadcasting a HELLO
packet and receiving a response for the HELLO packet (as is

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021
mailto:harihars@ece.osu.edu
mailto:shroff@ece.osu.edu
mailto:shroff@ece.osu.edu
mailto:sbagchi@purdue.edu
http://dx.doi.org/10.1016/j.comnet.2010.10.021
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2010.10.021

2 S. Hariharan et al./ Computer Networks xxx (2010) xxx—-xxx

N

(a) M fools A and B into believing that
they are neighbors.

(b) X and Y fool A and B, which are far
away, into believing that they are neigh-
bors.

Fig. 1. Insecure neighbor discovery.

typical [20,9,10]), the malicious node M can relay the pack-
et sent by A to B and vice versa. A and B will then believe
that they are neighbors. If there exists two malicious nodes
X and Y with powerful antennas or out-of-band channels,
they can even make nodes that are multiple hops away
from each other to believe that they are neighbors
(Fig. 1(b)). By establishing these false links, the malicious
nodes can insert themselves on the path between A and
B. So, while the path that A should take to send a packet
to B be through the legitimate nodes C, D, E and F, A will
use the route A-X-Y-B.

Not only is it important to prevent two legitimate non-
neighboring nodes from becoming neighbors, but it is also
important to prevent a legitimate node from adding a mali-
cious non-neighboring node to its neighbor list. For exam-
ple, in Fig. 1(b), let X and Y be compromised malicious
nodes and let A and B be legitimate nodes. B can be fooled
into believing that X is its neighbor (since Y can relay pack-
ets between B and X). Hence, when B wants to send a pack-
et to A, B will believe that the route is B-X-A while the
actual route is B-Y-X-A. This may make the route through
X and Y look attractive to B. Thus, false routes can be estab-
lished. The goal of this work is to prevent a legitimate node
from adding a node that is not within its communication
range, to its neighbor list.

The disadvantages of insecure neighbor discovery are
now apparent. What is also significant is that if neighbor
discovery is made secure, the afore-mentioned wormhole
attack can be effectively mitigated by building on the guar-
antee that neighbor information is accurate [10,7]. This is
the key motivation for working on this problem.

We now overview related work. Typically, most work
(e.g., [10]) have assumed that neighbor discovery is se-
cure by reasoning that since neighbor discovery takes a
very short time (typically a few seconds) it is unlikely
for a node to get compromised before neighbor discovery
is completed. While this may be true, the adversary need
not compromise a node to disrupt the neighbor discovery
protocol. An external malicious node, i.e., a node that
does not possess cryptographic keys, can relay packets
between legitimate non-neighboring nodes and make
them believe that they are neighbors. The assumption
that no compromised node exists during neighbor discov-
ery also does not hold when nodes are incrementally
deployed.

A number of protocols have also managed to move
away from this assumption. Some of these protocols rely
on timing information [8,5,14]. Eriksson et al. [5] also uses
public key cryptography which may not be suitable for
sensor networks due to high computation and memory
requirements. These protocols use bounds on the delay be-
tween sending a message to the responder and receiving a
message from the responder to determine whether the re-
sponder is actually within communication range. The main
issue with these protocols is that characterizing delay is a
hard problem in wireless networks due to interference,
congestion, and link errors. Therefore it is hard to prove
that timing information actually guarantees secure neigh-
bor discovery. In fact, Poturalski et al. [22] show that tim-
ing information alone cannot guarantee secure neighbor
discovery.

Another class of protocols rely on specialized hardware
such as directional antennas [7] or advanced physical layer
features [23]. The directional antenna protocol [7] substan-
tially degrades network connectivity and does not consider
framing attacks. Rasmussen and Capkun [23] proposes a
technique called sensor fingerprinting in which a sensor
can be identified based on the signal it transmits. The sig-
nal thus acts as a fingerprint for the sensor. It is unclear
whether this approach would be practically feasible.

A location-based technique proposed by Zhang et al.
[26] assumes that nodes can accurately estimate their loca-
tion. But the location estimation protocol is itself subject to
attacks [15,11,14]. Also, it is not a good idea to incorporate
communication range into the protocol design since the
communication range usually has a skewed pattern in
practice. Lee and Choi [12] have proposed an approach
for securely discovering second hop neighbors after
assuming that the first hop neighbors can be securely
discovered.

What is commonly lacking in many of these protocols is
that they do not provide any provable security guarantees
for neighbor discovery. Recently, Papadimitratos et al.
[19] have also explained the importance of providing secu-
rity guarantees for neighbor discovery in their survey pa-
per. Another interesting paper by Maheshwari et al. [17]
provides a theoretical foundation using connectivity infor-
mation to determine false links in wireless networks. How-
ever, their scheme works only when the wormbhole is
sufficiently long.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xXX-Xxx 3

We develop a new protocol called SEDINE to achieve se-
cure neighbor discovery. It does not require specialized
hardware and relies on the overhearing capability of nodes
to detect whether a packet is being relayed. Solutions that
involve overhearing have been proposed to increase the
reliability of data reports sent by sensor nodes [16,24]
and also to mitigate the effects of security attacks such as
the wormbhole attack [10]. The main contributions of this
paper are as follows:

e We develop a provably secure neighbor discovery
protocol that does not require any specialized hardware
such as directional antennas or highly accurate time
measurement.

We analytically guarantee that no two non-neighboring
legitimate nodes can be fooled into becoming neighbors,
in the absence of packet losses. Further, for the problem
of preventing two non-neighboring legitimate nodes
from believing that they are neighbors, we show that
guaranteeing security against packet relaying attacks
is equivalent to guaranteeing security against all
attacks.

We quantify our results by taking packet losses into
account and show through simulations that even in this
scenario, the fraction of non-neighboring nodes that
believe that they are neighbors is significantly smaller
when using SEDINE than when using the insecure
protocol.

We extend our protocol to allow for incremental node
deployment and also explain how we can improve some
of the security properties of SEDINE by combining it
with existing protocols (such as [17]).

The rest of this paper is organized as follows: we
present the system model and detail our assumptions in
Section 2. Section 3 describes the neighbor discovery pro-
tocol for static multi-hop wireless networks and an exten-
sion to allow for incremental node deployment. In Section
4, we provide analytical results with respect to security
and connectivity. In Section 5, we discuss our analytical re-
sults and provide examples to show the effectiveness of
SEDINE. In Section 6, we present our simulation results. Fi-
nally, we conclude our paper and discuss open problems in
Section 7.

2. System model and assumptions
2.1. System model

We assume that all links are bi-directional, i.e., if node A
hears node B, then node B also hears node A. We assume
omni-directional antennas on nodes. SEDINE does not re-
quire nodes to have specialized hardware such as GPS de-
vices or directional antennas. Further, SEDINE does not
require a trusted base station or time synchronization be-
tween nodes. SEDINE requires a pair-wise key management
protocol (for example, key pre-distribution techniques as
presented in [3,4,13] that will allow any two nodes to
establish a secure communication channel between them).
Key management protocols are fundamental in securing

wireless networks. Not only do neighbor discovery proto-
cols like SEDINE require key management but also any pro-
tocol that requires secure communication between nodes.
Therefore, we do not delve deeper into key management
in this paper since our focus is on securing neighbor discov-
ery. We initially assume that all nodes are static and that
there is no incremental deployment. We later explain in
Section 3 how SEDINE can be extended to allow incremen-
tal deployment. In our model, we allow packet losses to oc-
cur due to link errors or collisions.

2.2. Attack model

Malicious nodes may either be external nodes (that do
not possess the cryptographic keys) or insider nodes (that
have been compromised by the adversary). We relax the
general assumption that no malicious nodes exist during
the neighbor discovery process and instead assume that
malicious nodes (both external and compromised) do not
possess specialized hardware such as out-of-band chan-
nels or power controlled transmission (including using
directional antennas) during neighbor discovery. Note that
this assumption is not typically required in many of the
wormbhole detection papers. We reiterate that this paper
is concerned with neighbor discovery and not with worm-
hole detection. We recognize that our neighbor discovery
protocol is shown to provide provable guarantees under a
certain class of attacker models. While these attacker mod-
els are not required for various security related works (e.g.,
wormbhole detection), these works circumvent the problem
by assuming a neighbor discovery mechanism that cannot
provide any provable security guarantees. Thus, this work
can be seen as foundational to the development of other
more sophisticated security related works that rely on se-
cure neighbor discovery.

The adversary can try to make two non-neighboring
nodes believe that they are neighbors. Malicious nodes,
both compromised and external, can collude with other
malicious nodes. Essentially, the main intention of a mali-
cious node would be to expand its neighbor list as well as
the neighbor lists of its neighbors. By doing so, the adver-
sary can establish false routes by possibly launching a
wormbhole attack in the future. We do not consider attacks
that prevent two neighboring nodes from becoming neighbors.
Examples of such attacks include denial of service attacks,
physical layer jamming attacks, and physical destruction of
nodes.

3. The neighbor discovery protocol

In this section, we develop a new protocol called SE-
DINE, for secure neighbor discovery in static multi-hop
wireless networks. SEDINE consists of two phases:

1. The Neighbor Discovery Phase
2. The Neighbor Verification Phase

We first provide an overall idea of the protocol. During
the Neighbor Discovery Phase, the expected neighbors of a
node are discovered. The expected neighbor list of a node

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

4 S. Hariharan et al./ Computer Networks xxx (2010) xxx—-xxx

A consists of nodes that are its actual neighbors and also
nodes that are not within the communication range of A
but have been made to believe that A is their neighbor by
a malicious node in the network. During the Neighbor Ver-
ification Phase, we propose a technique to filter out those
nodes that are not within the communication range of A
from the expected neighbor list of A using verifiers. A verifier
of alink A < B is a node that is in the expected neighbor list
of both A and B. In order to perform link verification, each
node requires the following.

e Each node needs to find its expected neighbors.
e Each node needs to know the expected neighbors of
each of its expected neighbors.

Each node then determines the verifiers for each of its
links and also determines the links for which it is a verifier.
Each verifier of a link, during the Neighbor Verification
Phase, checks whether a packet sent on that link is being
relayed to the next hop. Depending on whether the packet
is being relayed, each verifier takes an independent deci-
sion on whether the link is legitimate. Verifiers then ex-
change their responses between themselves and between
the source and destination.

3.1. The Neighbor Discovery Phase

3.1.1. Determining the expected first hop neighbors

In this phase, each node determines the nodes that
claim to be its first hop neighbors. Upon deployment,
each node broadcasts a HELLO packet and its node ID.
Every node that hears this HELLO packet sends back its
ID and a reply containing a nonce which is authenticated
using the key that is shared between the nodes. This key,
for example, could be pre-distributed between the two
nodes [3,4,13]. The initiating node accepts all replies that
arrive within a timeout and then authenticates itself to
each of its neighbors by sending a hash value of the nonce
that it received from them and adds them to its neighbor
list. We call this neighbor list as the expected neighbor list.
This list may include nodes that are not actually within
the communication range of the initiating node. This is
because a malicious node or a set of malicious nodes
could have relayed these packets between the initiating
node and another node that is not within the communica-
tion range of the initiating node to make them believe
that they are neighbors. The subsequent Neighbor Verifi-
cation Phase provides a mechanism to filter out the non-
neighboring nodes from the expected neighbor list of a
node.

3.1.2. Determining the expected second hop neighbors

Once each node has determined its expected list of
neighbors, it needs to know the expected neighbors of each
of the nodes in this list to determine the verifiers of each of
its own claimed links. The verifiers will be used in the
Neighbor Verification Phase to decide whether two nodes
are actually neighbors. We now propose a simple tech-
nique to determine the verifiers.

Each node generates a random key, K, and uses this
key to encrypt its expected neighbor list and the list of

hash values of the nonces that were used when discov-
ering neighbors (Table 2, Steps 6 and 7). Each node
then broadcasts this encrypted expected neighbor list.
After broadcasting, each node waits until a timeout to
receive the corresponding expected neighbor list of
each of its expected neighbors. Nodes that do not send
their expected neighbor list within the timeout period
are discarded from the expected neighbor list of the
initiating node. When the timeout expires, each node
broadcasts key K and the set of discarded nodes. At
this point, each node knows its expected neighbors
and the expected neighbors of each of its expected
neighbors.

Note that delaying the process of revealing the key K
serves two purposes.

(1) It ensures that packets exchanged between legiti-
mate nodes cannot be tampered by a malicious
node. We provide examples for this in Section 5.

(2) It utilizes the broadcast nature of the wireless med-
ium, thus saving energy spent on communication.

Here, it is interesting to note that if public key cryptog-
raphy can be used, this step becomes much simpler. A node
can simply sign and broadcast its expected neighbor list.
Nodes that receive this expected neighbor list can verify
the signature, and thus authenticated broadcast can be
performed.

This protocol can be extended so that a node can also
determine the verifiers of the link between its expected
neighbor (say X) and any expected neighbor of X. By doing
this, the node can verify whether the nodes that X claims to
be its neighbors, are actually the neighbors of X. This is
important for protocols that require accurate information
of second-hop neighbors as well. We now explain this
extension.

After having received the expected neighbor list of each
of its expected neighbors, instead of revealing the key K
and the dropped neighbors, each node generates a new
key K'. The expected neighbor lists acquired are now en-
crypted with K’ and broadcasted as described in Steps 10
and 11 in Table 2. If a node does not send this set of ex-
pected neighbor lists within a timeout, it will be dropped
from the corresponding expected neighbor list. After
receiving these two lists, each node reveals keys K, K’, the
dropped neighbors, and the keys revealed by each of its ex-
pected neighbors.

We now provide some notations in Table 1, and sum-
marize the Neighbor Discovery Phase in Table 2.

At the end of this phase, each node S knows
N(S), N(T) VT € N(S) and N(V) WV € N(T).

Table 1

Notations.
N(S) The expected neighbor list of node S
Kxs The key shared by node X and node S
h(-) A hash function
Ks peast A key used by S to broadcast
Tout A timeout

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xXX—-Xxx 5

Table 2
The Neighbor Discovery Phase.

Determining the one hop expected neighbors

S — One hop broadcast: HELLO, IDs

X — S: IDy, Kxs(HELLO reply, nonce Nxs)

S — X: Kxs(Ack, h(Nxs))

S: Adds the ID of X to its expected neighbor list, N(S)

S: Repeats steps 2, 3 and 4 for every HELLO reply received

GAWwN =

Determining the expected two hop neighbors

6. S: Generate key Ks peast

7. S - One hop broadcast: Kspes (IDs, {(h(Nxs),X) VX € N(S)})

8. s: Wait for min(Teu, N(T) VT € N(S))

9. S: Drop nodes that do not send their expected neighbor list
within T,y from N(S)

10. S: Generate key K& o5

11. S - One hop broadcast:
K% peast (IDs, { (R(N1.5), K1 peast (N(T))) VT € N(S)})

12. s: wait for min(T,,,, N(V) VT € N(S) and WV € N(T))

13. S: Drop nodes that do not send their neighbors’ neighbor list
within T,,, from N(S)

14. S — One hop broadcast: Kspcase(IDs, Dropped Neighbors)

15. S: Wait until a timeout to receive Krpeqs(ID7, Dropped
Neighbors) VT € N(S)

16. S — One hop broadcast: Kspcase

17. 5. Wait to receive Kr gease VT € N(S)

18. 5 - One hop broadcast: K& g, K peast VT € N(S)

3.2. The Neighbor Verification Phase

Once each node has completed the Neighbor Discov-
ery Phase, it can determine the verifiers for each of its
links. Furthermore, each node can also determine the
links for which it is a verifier. For example, consider
two nodes A and B that are in the expected neighbor lists
of B and A, respectively. Then the verifiers of the claimed
link A < B are those nodes that are present in both the
expected neighbor list of A and the expected neighbor
list of B. Since each expected neighbor of A and B knows
the expected neighbor lists of A and B, each can deter-
mine the verifiers of the claimed link A < B. All the ver-
ifiers may not be within the communication range of
both A and B. We will take this into account before each
verifier provides a final response for the claimed link
A< B.

We now describe the Neighbor Verification Phase.
Throughout this phase, each node explicitly announces
the destination to which it is sending a packet. Also, each
node can transmit a particular packet only once to each
destination during a single round of this phase. Since the
wireless medium is inherently prone to packet losses, this
phase can be repeated for a number of rounds for those
links over which verification packets were lost. Note that
the round is repeated in its entirety rather than individual
messages from the round.

Each node checks whether each of its links has at least
k verifiers. If there does not exist at least k verifiers for a
link, the link is dropped. Every verifier of a link also per-
forms this operation. Let N; and N, be two expected
neighboring nodes with at least k verifiers. Ny initiates
the link verification process by sending an authenticated
packet to N> and explicitly announcing the address of

N,. N; waits until a timeout to receive an authenticated
reply from N,. When this communication happens be-
tween N; and N,, no other node within the communica-
tion range of Ny, N, and the verifiers of the link N; and
N, should transmit. A similar operation is performed for
the link N, — Nj.

The verifiers that hear the verification packet from N,
can next hear one of three kinds of packets: a reply from
N, to N; or the same packet from N; being relayed or some
arbitrary packet being sent. Some legitimate verifiers
might not actually hear either the transmission from N;
or the transmission from N, or both. This is because the list
of verifiers is obtained from the expected neighbor lists of
N; and N, and not their actual neighbor list. Therefore,
some verifiers may not be within the communication
range of Ny or N, or both. These verifiers mark themselves
as Dropped verifier for that particular link. If a legitimate
verifier hears the same packet from N; being relayed, it
marks Packet Relayed for the link N; — N,. If the next pack-
et that a legitimate verifier hears after hearing the verifica-
tion packet from Ny, is a reply from N5, it marks Link Correct
for N; —» N,. If a legitimate verifier hears some arbitrary
packet being sent before the reply from N, comes, it does
not mark anything at this time. If N; hears some arbitrary
packet being sent before the reply from N, comes, it will
repeat the phase for that link. Similar actions are taken
when N, sends its verification packet to N;. The phase will
be repeated at most a predefined number of times in order
to reduce the number of links that get dropped because of
collisions and link errors. If at the end of these repetitions,
a legitimate verifier has not marked anything for a partic-
ular link, it marks itself as Dropped verifier for that link. If
either N; or N, have not marked Link Correct for Ny <» Ny,
the link is dropped.

The Neighbor Verification Phase is summarized in
Table 3.

Table 3
The Neighbor Verification Phase.

S: Determine verifiers, V.1, VT € N(S)

2. S:VT,Ue N(S),if T e N(U) and U € N(T),
SeVreu

3. $ 5 T: Ksi(Nonce N) VT € N(S)

4. Vs_r: Hear whether the same packet is relayed to T

If yes, mark Packet Relayed

Else, donot mark anything at this point

T - S: Ks7(h(N))

6. Vs_1: Hear whether the same packet is relayed to S
If yes and if S was heard in Step 4, mark Packet Relayed
Else if S was heard and the packet sent by T is not heard or if T is
heard and S was not heard in Step 4, mark
Dropped Verifier. Else, donot mark anything at this point

7. Vs_r: If Dropped Verifier has been marked in Step 6, mark
Dropped Verifier
Else, if Packet Relayed has been marked in Step 4 and Dropped
Verifier has not been marked in Step 6, or if Packet Relayed has
been marked in Step 6, mark Packet Relayed
Else, if after hearing S, the next packet heard was the reply sent
by T, and only these two packets are heard during the
communication between S and T, mark Link Correct
Else, donot mark anything at this point

8. If S or T have not marked anything for S « T, repeat the phase
for this link

v

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

6 S. Hariharan et al./ Computer Networks xxx (2010) xXx-xxx

3.3. The response algorithm

After the Neighbor Verification Phase, each node would
have either marked Dropped Verifier or Link Correct or Pack-
et Relayed for every link for which it is a verifier.

A verifier, V, that has marked Link Correct or Packet Re-
layed for a link A« B during the Neighbor Verification
phase, now determines whether it has marked Link Correct
for the links V< A and V « B. If V has marked anything else
for these two links, then it changes its response to Dropped
Verifier for A < B. It is possible for both A and V to not be
within communication range of each other and for V to
mark V<« A as Link Correct. This is possible if there is a
malicious node or a chain of malicious nodes between V
and A that had relayed the neighbor verification packets
between V and A and V did not overhear the relay either
because of collisions or link errors. Therefore the response
of a legitimate verifier for a link may be incorrect. This is
why we consider the response of multiple verifiers. Our
simulations suggest that SEDINE performs well even in
the presence of such collisions and link errors.

For each link A+ B, A, B, and the verifiers of the link
A < B communicate their response for that link to each
of the expected neighbors of A and B. Now A, B and each ex-
pected neighbor of A and B determines that the link A < B
exists only if all of the following conditions hold:

(1) Both nodes claim that their link is correct.

(2) After removing verifiers that have marked them-
selves as Dropped Verifier, there still exists at least
k verifiers for that link.

(3) Out of the k verifiers, there exists less than y verifiers
that have marked Packet Relayed for that link.

3.4. Incremental deployment of nodes

3.4.1. Assumptions

Our attack model is the same as that of the static net-
work model. For the system model, we make the additional
assumption that any node can distinguish between an
incrementally deployed node and a node that was already
present before incremental deployment. ID based authen-
tication protocols, for instance, [6,2] can achieve this.

3.4.2. The protocol

With the additional assumption that we have made, the
same neighbor discovery and neighbor verification protocol
could be directly used for incrementally deployed nodes as
well. When nodes are incrementally deployed, some nodes
in the neighborhood of the newly deployed nodes would
have been deployed much earlier and would have already
built their neighbor lists while others would have been
deployed along with the newly deployed nodes. Those nodes
that have already built their neighbor lists only need to send
these lists and verify that the link between them and the
newly deployed nodes exist. Newly deployed nodes would
build expected neighbor lists and would verify each and
every link in order to build their first and second hop neigh-
bor lists. To summarize, the protocol consists of the follow-
ing steps.

(1) A newly deployed node will perform neighbor dis-
covery and neighbor verification as described in Sec-
tion 3.

(2) An already existing node that is present in the
expected neighbor list of the newly deployed node
will broadcast the expected neighbor list of the
newly deployed node to its neighbors and will send
the neighbor lists of each of its neighbors to the
newly deployed node.

(3) An already existing node that is two hops away from
the newly deployed node will send its neighbor list
to the newly deployed node.

(4) An already existing node that is present in the
expected neighbor list of the newly deployed node
will perform neighbor verification in order to deter-
mine if the link between them is legitimate.

4. Analysis
4.1. Security analysis

We start by defining certain terms and notations.

Malicious Path. A malicious path between two nodes is a
path that consists solely of malicious nodes, except possi-
bly, the two end-points.

False Verifier. A false verifier of a link between two
nodes claiming to be neighbors, is a node that is present
in the expected neighbor list of both the nodes but is not
within the communication range of at least one of the
nodes.

True Verifier. A true verifier of a link between two nodes
claiming to be neighbors, is a node that is within the com-
munication range of both the nodes.

We now define the following notations.

e N(X): expected neighbor list of X

o N(X): actual neighbor list of X

e L: set of all legitimate nodes in the network.

e M: set of all malicious nodes in the network.

e R(A,B,V): response of verifier V for the link A — B. We
define the values taken by R(A,B,V) as follows.

0, V marks Dropped Verifier
RA,B,V)={ 1,
—1, V marks Packet Relayed

V marks Link Correct

¢ Y(A,B,X,p): we define Y(A,B,X,p) as follows.

1, X € M relays packet p sent by
AtoB

0, otherwise

Y(A,B,X,p) =

e H(A,B,V,p): the number of times V (e N(A)n N(B))
hears packet p sent from A to B.
e ((A,B): we define C(A,B) as follows.
1, A and B are within communication
C(A,B) = range of each other

0, otherwise

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xXX-Xxx 7

e Py(A,B): set of malicious nodes forming a malicious
path between non-neighboring nodes A and B. Formally,
Py(A,B) = {{M,My,....Mp}: M;eM Vi and C(A,M,)=
C(M],Mz) == C(MH,B) =]}

e Sy(A,B): set of all malicious paths between A and B.

e V(A,B): set of all verifiers of the link A <> B. V(A,B) = {X:
for Ac N(B) and Bc N(A), X € N(A) and X € N(B)}.

o VH{A,B): set of all false verifiers of the link A<« B.
VHA,B)={X:X € V(A,B) and ((A,X)=0 or C((B,X)=0 or
both}.

e Vi{A,B): set of all true verifiers of the link A<« B.
VHA,B)={X:X e V(A,B) and C(A,X)=C(B,X)=1}.

Theorem 4.1. SEDINE prevents two non-neighboring nodes, A
and B, from believing that they are neighbors, in the absence of
packet losses, if at least one of the following conditions hold:

(1) Both A and B are legitimate nodes or
(2) At least one of A and B is a legitimate node and there
are no Sybil attacks.

Proof. The proof follows from the following Lemmas. O

Lemma 4.2. In the absence of packet relaying attacks, an
adversary cannot fool two non-neighboring legitimate nodes
into believing that they are neighbors.

Proof. Consider any two non-neighboring legitimate
nodes, L; and L,. In order for these two nodes to believe that
they are neighbors, there must be a malicious path connect-
ing L, and L, over which the adversary needs to relay the
neighbor discovery and verification packets sent by L; to
Ly, and vice versa. Therefore, in the absence of packet relay-
ing attacks, an adversary cannot fool two non-neighboring
legitimate nodes into believing that they are neighbors. [

Remark. The implication of Lemma 4.2 is that two legiti-
mate non-neighboring nodes cannot be fooled into believ-
ing that they are neighbors in the absence of packet
relaying attacks. While other attacks could assist this
attack, they alone are not sufficient to make two non-
neighboring legitimate nodes believe that they are neigh-
bors. Thus, guaranteeing security against packet relaying
attacks is equivalent to guaranteeing security against all
attacks for the problem of preventing two non-neighboring
legitimate nodes from becoming neighbors. The following
results prove that SEDINE guarantees security against
packet relaying attacks through overhearing. Thus, it fol-
lows that SEDINE guarantees security against all attacks
that try to fool two non-neighboring legitimate nodes into
believing that they are neighbors.

Lemma 4.3. In the absence of packet losses, SEDINE prevents
two non-neighboring legitimate nodes from becoming
neighbors.

Proof. The idea of the proof is simple. Consider any two
non-neighboring legitimate nodes, L; and L,, that have a
malicious path connecting them. Assume that after the
Neighbor Discovery Phase, they have been made to believe
that they are neighbors. During the Neighbor Verification
Phase, when L; sends a verification packet to L,, in order

for L, to receive this packet, it has to traverse through
the malicious path between L; and L,. For this to happen,
the malicious nodes in the malicious path have to replay
the verification packet sent by L;. Since L, is a verifier of
its own links, in the absence of packet losses and collisions,
L, will hear the replay. Since the next packet that L, hears
is not the reply from L,, it will not accept that the link
Li < L, exists.

We will now formalize this proof based on the frame-
work that we developed.

LetLi el and L, eLs.t. C(L1,L2) =0.

If |Sm(L1,L2)| = O, then Ly ¢ N(Ly) and L ¢ N(Ly). There-
fore, L1 ¢ N(L,) and L, ¢ N(L,).

Let |Sm(Lq,L;)| >0 and let Ly € N(Lz) and L, € N(L1) after
the Neighbor Discovery Phase.

We have the following cases.

Case 1: |Sp(Ly,Ly)| = 1.

There are now two possibilities.

First, let |Py(Lq,L3)| = 1. This means that L; and L, are
within two hops of each other and there exists M; € M such
that Py(L,,L;) = {M;} and that there exists no other mali-
cious path between L; and L.

During the Neighbor Verification Phase, let L; send a
verification packet, p, to L,. For L, to receive this packet,
Y(Ly,Ly,My,p) =1 since C(L,,L;) =0.

But in this case, H(L,L,,L1,p) > 1, since by our assump-
tions L; can hear any packet sent by M;. Therefore,
R(Ly,Ly,Ly) = —1. Since L, is the source and it detects packet
relaying, it drops the link. Therefore, L, ¢ N(L;).

Now, consider the other case in which |Py(Ly,Ly)| > 1.
This means that there exists a chain of malicious nodes My,
M,,...,M; € M s.t. PM(Ll,Lz) = {Ml,Mz,. . .,M,‘}, i>1 and that
there exists no other malicious path between L; and L;.

Here, C(L1,M1) =1 and C(M;,L;) = 1. During the Neighbor
Verification Phase, let L; send a verification packet, p, to L.
For L, to receive p, Y(L1,L,M; p) = 1. But for M; to receive p,
either Y(L,Ly,M;_1,p)=1 or Y(L,Ly,M;_1,E(p))=1 where
E(p) is an encrypted version of packet p and M; has the key
to decrypt it. Applying this iteratively, for L, to receive
packet p, either Y(Lq,Ly,M1,p) =1 or Y(Lq,Lo,M1,E(p)) = 1.

If Y(Li,Ly,My,p)=1,H(Ly,Ly,L1,p) > 1. Therefore, R(Ly,Ly,
Li)=-1. So L, drops the link. On the other hand, if
Y(Ly,L,My,E(p)) =1, then L; does not mark anything and
repeats the Neighbor Verification Phase for L; < L,.

When the phase is repeated, the same procedure
follows. If Y(L1,Lp,My,p) =1 during any of the phase repe-
titions, then R(L;,L,L{)=-1. On the other hand, if
Y(L,,Lo,M1,E(p)) =1 for every repetition of the Neighbor
Verification Phase, then R(L;,L,,L;) = 0. Since L, has to have
R(Ly,Ly,Ly) =1 for Ly < L, to be validated, L, drops the link.

Case 2: |Sm(Lq,Ly)| > 1.

This means that there exists multiple malicious paths
between L; and L. Irrespective of the malicious path taken
by the verification packet, R(L{,L,,L;)# 1 by Case 1.
Therefore, L, drops the link. Therefore, L, ¢ N(L;) and
Li¢ N(L,). O

Lemma 4.4. SEDINE prevents two non-neighboring nodes,
one legitimate and the other malicious, from becoming neigh-
bors, in the absence of packet losses and Sybil attacks.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

8 S. Hariharan et al./ Computer Networks xxx (2010) xXx-xxx

Proof. Let L, € L and M; € M s.t. C(L{,M;)=0.

The proof is similar to the proof of Lemma 4.3, except
that in the absence of Sybil attacks (the effects of which
are described at the end of this proof), only the legitimate
node will now mark that the link between itself and the
malicious node does not exist. The malicious node might
or might not mark that the link does not exist.

But since we assume that the links are bi-directional, it
is enough for one node to claim that the link does not exist,
in order to drop the link.

Thus, SEDINE prevents two non-neighboring nodes
from becoming neighbors even when one of them is
malicious. Therefore, M; ¢ N(L;) and so M; cannot convince
any of its actual neighbors that L; € N(M;). O

We briefly explain the significance of Sybil attacks in
Lemma 4.4. Let AcL and M; € M such that C(A,M;)=0
but there exists M, € M such that ((A,M,) = C(M,M;)=1.
M; and M, can collude and exchange identities. So, when
A tries to find its neighbors, M, would pose both as M,
and M; and fool A into believing that both M, and M, are
its neighbors. However, here A is only adding a node that
is within its communication range but possessing multiple
identities. Newsome et al. [18,21,25] suggest approaches to
detect nodes possessing multiple identities in sensor and
mobile ad-hoc networks. However, protecting against Sybil
attacks is still an open problem. It is important to note that
Sybil attacks cannot fool two non-neighboring legitimate
nodes into believing that they are neighbors. The correctness
of SEDINE is affected by the Sybil attack when a malicious
node takes multiple identities and creates a spurious link
between a legitimate node and a node with one of the false
identities.

From the above lemmas, Theorem 4.1 directly follows.

Theorem 4.1 guarantees that irrespective of any security
attack launched against SEDINE other than those mentioned
in our assumptions, two legitimate non-neighboring nodes
cannot be fooled to become neighbors, in the absence of pack-
et losses and collisions. In Section 5, we will provide a num-
ber of examples to understand this result better.

In addition, it can be observed from the proof of Theo-
rem 4.1 that in the absence of packet losses and collisions,
in order to guarantee that two non-neighboring legitimate
nodes do not get fooled into believing that they are neighbors,
the decision taken by the corresponding two legitimate nodes
is sufficient. The decisions taken by the other verifiers or even
the availability of other verifiers do not matter. This implies
that when packet losses are negligible and the network is
so sparsely distributed that collisions are negligible, it is
easy for two legitimate non-neighboring nodes to ensure
that they do not believe that they are neighbors. The same
results hold when Sybil attacks are absent and one of the
nodes is legitimate and the other malicious.

Note that the results in Theorem 4.1 do not hold in the
presence of packet losses. Therefore, though Theorem 4.1
suggests that verifiers are not necessary to determine
whether a link is legitimate, this is only true in the absence
of packet losses, and hence we collect decisions from multi-
ple verifiers (in Section 3) in order to account for packet
losses. We show through simulations that SEDINE performs
well even in the presence of packet losses and collisions.

Corollary 4.5 (Corollary to Theorem 4.1). In the absence of
packet losses and Sybil attacks, SEDINE guarantees:

1. The neighbors of a legitimate node, S, will only be those
nodes that are within the one-hop communication range
of S. The legitimate nodes that are neighbors of a malicious
node, X, will only be those nodes that are within the one-
hop communication range of X.

2. For a legitimate node, S, let T N(S) and V € N(T). If
either of T or V are legitimate, S will accept the link
T « V to exist, only if V is within the one-hop communica-
tion range of T.

Thus, apart from securely determining its one-hop
neighbors, a node can also verify the neighbors of each of
its neighbors using SEDINE.

4.2. Connectivity analysis

We now analyze how the protocol performs in the ab-
sence of attacks, in terms of the number of legitimate
links dropped because of the absence of k verifiers, so
that we can empirically find a good value of k that will
provide the desired connectivity required by the
application.

We abstract the communication range of each node by a
circle of radius r. Let two neighboring nodes, A and B, be
separated by a distance d. Then, the verifiers of A <~ B are
those nodes that are present in the shaded region in
Fig. 2(a). The area of this shaded region is given by

Afopni = 212 cos™! (&) —4v/4r2 — d*>. Aromni is minimum
when B is on the edge of the communication range of A.

This area is given by Aropmn = r? (23—“ — ?)

Suppose there are a total of N nodes uniformly and ran-
domly distributed in a field of area, Ar. For the link between
A and B to exist, we need at least k verifiers in the shaded
region in Fig. 2(a). The probability that at least k verifiers
are present in this shaded area (Ar,mn;) is given by

. N
PO (?) (’M)l (1 - %) . Assuming 100 nodes and

Ar

varying the average number of neighbors of a node be-
tween 5 and 15 (by varying the area in which the nodes
are deployed) and with a communication range of 30 m,
Fig. 2(b) shows the probability of having at least k verifiers
in this minimum area, for varying k. Since the source of a
link is a verifier, there always exists one verifier for a link
when we use SEDINE. For a typical density of 10 neighbors
a node, there exists at least two verifiers for a link with a
probability >0.95, and there exists at least three verifiers
for a link with a probability >0.9. Since this minimum area
occurs when the two nodes are at the edge of each other’s
communication range, this probability is actually a lower
bound.

5. Discussion

We will now consider a number of sample attacks
against SEDINE and discuss how they are countered.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xXX-Xxx 9

PN
/N
[\
N
N/
N
v

(a) At least k nodes need to be
neighbors of both A and B

Probability that there exists

at least k verifiers for a link

1 Py
=%-5 neighbors

0.8 -8 10 neighbors
=~ 15 neighbors

0.6

0.4

0.2

0 H—k
0 2 4 6 8 10

Number of verifiers

(b) Probability that there exists at least
k verifiers for a link

Fig. 2. Connectivity analysis.

5.1. Attacks against the Neighbor Discovery Phase

5.1.1. Attacks against the discovery of expected neighbors

During this phase, the adversary can replay HELLO
broadcasts and make two non-neighboring nodes add each
other in their respective expected neighbor lists. However
such attacks are countered during the Neighbor Verifica-
tion Phase. The adversary cannot tamper with authenticity
verification between two legitimate nodes during this
stage since they share a key.

5.1.2. Attacks against determining verifiers

Each node, after finding its expected neighbors, finds
the verifiers for each of its links using the procedure in Ta-
bles 2 and 3. Now, consider two non-neighboring legiti-
mate nodes L; and L, and a malicious node M such that
there is a path L; < M «< L,. M can fabricate a neighbor list
for L; and L, encrypt them with randomly generated keys,
broadcast them to L, and L, respectively and reveal the
keys that it generated later. However, since M does not
possess h(N,,) and h(Ny, 1), L, and L; will immediately
detect the malicious activity and not accept the neighbor
lists.

Now suppose that one of the non-neighboring nodes is
malicious. For instance, let us replace L, by M, which is
malicious. If M, colludes with M, then M can fabricate
the expected neighbor list of M,. Then L; would form a
wrong verifier list for the claimed link L; < M,. However,
this is not enough for the adversary to make L, and M, be-
lieve that they are neighbors.

Remember that in the absence of Sybil attacks, packet
losses and collisions, we can observe from the proof of The-
orem 4.1 that only the decision of L; is required in order to
identify whether a link exists. This is because L; is a verifier
of its own links (and this fact cannot be manipulated by a
malicious node) and therefore it would overhear M’s relay
to M, during the Neighbor Verification Phase.

Even in the presence of packet losses or collisions, in or-
der for the adversary to ensure a successful attack, the
neighbor list fabricated by M must contain at least k veri-
fiers out of which at least k — y must be colluding compro-
mised malicious nodes and L; must be prevented from
overhearing M’s relay. From the point of view of the adver-
sary, any legitimate node in this list has the potential to be-

come a Dropped Verifier or could reportPacket Relayed
during the Neighbor Verification Phase. Since at least k ver-
ifiers are required for each link to be verified and less than
y verifiers can reportPacket Relayed, the adversary requires
at least k — y compromised and colluding malicious nodes
to launch this attack. This is a sophisticated attack and has
to occur during the Neighbor Discovery Phase.

5.2. Attacks against the Neighbor Verification Phase

During this stage, the adversary can tamper with the
verification packet, launch wormhole relaying attacks or
encrypt verification packets and launch wormhole attacks.
The proof of Theorem 4.1 clearly shows that SEDINE is
resilient to the latter two attacks. Tampering with the ver-
ification packet cannot affect SEDINE since the source node
and the destination will both detect this attack as the pack-
et has been encrypted with the secret key shared between
them.

5.3. Out-of-band channel and directional antenna attacks

We now briefly describe how to handle out-of-band
channel and attacks using high powered transmission
(including directional antennas). For a directional antenna
attack, one malicious node is sufficient. SEDINE can ac-
count for the directional antenna attack if there are verifi-
ers in the direction of relay. Depending on the number of
orientations of the directional antenna, it may be unlikely
that a verifier is present in that direction. Therefore, SE-
DINE, by itself, cannot provide any provable guarantees
against this attack.

In order to launch an out-of-band channel attack, at
least two malicious nodes with out-of-band channels
are required. We now show how the technique in [17]
can be used in conjunction with SEDINE in order to fur-
ther secure neighbor discovery. In [17], Maheshwari et al.
use connectivity information to form connectivity maps
at each node. Using these maps, the authors propose an
algorithm to detect false links in the network. This algo-
rithm requires that the two non-neighboring nodes are
located sufficiently far so that their communication
ranges do not intersect. Otherwise, it may not work.
Since both out-of-band channel attacks and attacks using

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

10 S. Hariharan et al./ Computer Networks xxx (2010) xxx—-xxX

high powered transmission are most useful to the adver-
sary when the wormhole is sufficiently long, this tech-
nique can be used to mitigate such attacks. However,
the criticality of securing neighbor discovery still lies in
the fact that the adversary does not need these powerful at-
tacks to disrupt neighbor discovery, and therefore it is
important to provide security guarantees even in the ab-
sence of these attacks.

5.4. Sybil and jamming attacks

As we saw in Theorem 4.1, Sybil attacks cannot make
two non-neighboring legitimate nodes believe that they
are neighbors. However, they can make a malicious node,
and a non-neighboring legitimate node believe that they
are neighbors. In order to do this, the malicious node must
first collude with another malicious node. Also, the mali-
cious nodes must be located such that one of them is a
neighbor of both the legitimate node and the other mali-
cious node.

Jamming attacks are generally easy to launch. However,
in the absence of packet losses and collisions, they cannot
disrupt the functioning of SEDINE. In order to launch a
jamming attack against SEDINE, at least two colluding
malicious nodes are required. Not only must these mali-
cious nodes be positioned appropriately, but also they have
to synchronize with each other. The jammer must be
placed such that it only jams all the verifiers, and not the
receiver. However, even if the adversary successfully man-
ages to achieve this, during the verification phase, SEDINE
will accept a link to be valid only if the next message re-
ceived is a response to the verification message. Therefore,
jamming attacks cannot make two non-neighboring nodes
believe that they are neighbors. They can however be used
to disconnect the network. When this happens, one can use
techniques to detect the presence of jammers, and report
them to a base station.

6. Simulations

We have performed three numerical experiments to
quantify the performance of SEDINE. We explain them in
this section.

1
3 -1 verifier
208 =2 verifiers
o -3 verifiers
3 0.6 4 verifiers|
20
£
‘5 0.4
c
i)
T 0.2
o
w
0 A —% —%)
60 80 100

20 40
Number of nodes
(a) Fraction of links dropped

6.1. Fraction of links dropped

This experiment identifies the effect of topology on the
fraction of links dropped by SEDINE and compares it with
that of the directional antenna protocol [7]. In order to per-
form this comparison, we use the same settings as used in
[7]. The purpose of this experiment is also to determine a
suitable value for k. This experiment is performed using
MATLAB. Nodes are uniformly and randomly deployed in
a 100 x 100 square field. The number of nodes in the field
varies from 10 to 100.

Here, the fraction of legitimate links that get dropped
due to the absence of k verifiers for those links, is simu-
lated for different k. As assumed in [7], this simulation is
done without malicious nodes. The simulation is run
1000 times and the results are averaged. Since, in our pro-
tocol, each node, itself, is a verifier of the link that it is a
part of, no links get dropped when k = 1. This can be seen
in Fig. 3(a). For k>1, the fraction of links dropped
decreases as the node density increases since the probabil-
ity that k verifiers exist for a link increases as the node den-
sity increases. For a typical neighborhood density of 10
neighbors a node with an omni-directional antenna (corre-
sponding to approximately 33 neighbors with a directional
antenna [7]), the strict neighbor discovery protocol of the
directional antenna approach, with one verifier, drops
40% of the legitimate links [7] while SEDINE does not drop
any links with one verifier. Further, comparing the same
number of neighbors (33 for both SEDINE and the direc-
tional antenna protocol), SEDINE drops less than 4% of
the legitimate links even with two verifiers.

For a given network, the value of k should be chosen
based on the network density and the level of security that
is required by the application. For example, if we have a
circular topology (with total number of nodes > 3) in which
each node has exactly two neighbors, then we cannot
choose k > 1 (since, in this case, all legitimate links would
be dropped). However, since each node is itself a verifier
of each of its links, choosing k =1 still prevents two non-
neighboring nodes, at least one of which is legitimate, from
believing that they are neighbors, in the absence of colli-
sions and link errors. In a network where nodes are ran-
domly deployed, choosing a large value for k will result
in the exclusion of nodes with few neighbors. In applica-
tions where security is so critical that dropping of legitimate

50
+No wormhole nodes
©1 wormhole node
40 &2 wormhole nodes
o €3 wormhole nodes
T 30
ie]
@
Q
£ 20
)
8
10 ///
0
10 20 30 40 50 60

Number of nodes
(b) Overhead ratio

Fig. 3. Experimental results for fraction of links dropped and message overhead.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xxX-Xxx 11

links is not as crucial, for any network density, SEDINE guar-
antees that two legitimate non-neighboring nodes cannot be-
come neighbors, in the absence of packet losses (Theorem 4.1).

6.2. Communication overhead with and without verification

We now compare the communication overhead when
verification is used to the scenario in which verification
is not used. The metric used here is the ratio of the total
number of messages sent and received by a node, on aver-
age, using SEDINE and using an insecure protocol (that
consists only of a HELLO message and a reply to the HELLO
packet). We call this metric the “Overhead Ratio”. The total
number of messages sent and received by a node using SE-
DINE is the total number of messages sent and received in
both the Neighbor Discovery and the Neighbor Verification
Phases. Jist SWANS [1] has been used for this simulation.
The IEEE 802.11 MAC protocol has been used. Nodes are
deployed uniformly and randomly in a 100 x 100 m? field.
The number of legitimate nodes is varied from 10 to 60,
and the number of malicious nodes is varied from 0 to 3.
The simulation is run 100 times and the results are
averaged.

From Fig. 3(b), we observe that when we take overhear-
ing into account, the communication overhead ratio in-
creases linearly with the total number of nodes. This can
be understood as follows. If a particular node has N

30,

* Without verification
ek>0
Ok >2
8k>4

N
[4)]

N
o

-
o

links in the network
@

)]

Average # non-legitimate

1 2 3
Number of wormholes

(a) With v =0

neighbors and each of these neighbors has O(N) neighbors,
then the protocol without verification would only require
O(N) messages to be exchanged whereas SEDINE would re-
quire O(N?) messages to be exchanged since each node
overhears every packet sent by each of its neighbors as
well. We also see that as the number of malicious nodes in-
creases, the communication overhead ratio also increases.
This is because of a significant increase in the overheard
traffic caused by the packet relaying attack.

6.3. Number of non-legitimate links with \without verification

In this experiment, we show the advantage of using ver-
ification. We also consider the effect of packet losses due to
collisions and link errors. This experiment has been simu-
lated using Jist SWANS. The IEEE 802.11 MAC protocol has
been used. The simulation is run 25 times and the results
are averaged. We consider the worst-case scenario in
which malicious nodes relay whatever packet they hear.
50 legitimate nodes are uniformly and randomly deployed
in a 100 x 100 m? field. The number of malicious nodes is
varied from 0 to 4 and the communication range is roughly
32 m. Fig. 4 shows the results when there are only colli-
sions, and no packet losses. Fig. 5 shows the corresponding
results when there are both packet losses and collisions.
The packet losses in these results are independent over
time and across nodes. The probability of a packet loss over

30

Without verification X
25 Bk>1andy<2

*k>3andy<3

N
o

-
o

links in the network
>

(&)

Average # non-legitimate

1 2 3
Number of wormholes

(b) With v < k/2

Fig. 4. Only collisions.

w
o

—6-No verification
——k>0
—-B-k>2
——k>4

N
a1

N
o

o

links in the network
o

o

Average number of non-legitimate

(=}

No. of wormholes

(a) With y =0

w
o

—©—No verification
—B-k>1andy<2
——k>3andy<3

N
o

N
o

o

links in the network
o

o

Average number of non-legitimate

[=}

No. of wormholes

(b) With v < k/2

Fig. 5. Both collisions and packet losses.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

12 S. Hariharan et al./ Computer Networks xxx (2010) xxx—-xxx

a link is a random number between 0 and 0.3. In order to
account for packet losses, we allow the protocol to be rerun
multiple times.

Let k represent the minimum number of verifiers re-
quired to validate a link and let y represent the maximum
number of verifiers that can report Packet Relayed for a link
so that the link still gets validated. By increasing 7y, we can
prevent compromised malicious nodes from framing legit-
imate links. However, increasing y decreases the chance of
detecting a non-legitimate link. From Figs. 4(a) and (b),
5(a) and (b), we see that for the same k, increase in) re-
sults in a slight increase in the number of non-legitimate
links in the network.

We observe that the total number of non-legitimate
links in the network decreases as the number of verifiers
increases. There is a trade-off here since arbitrarily increas-
ing the number of verifiers results in an increase in the
number of legitimate links being dropped. We also observe
that even as we increase the number of malicious nodes,
the corresponding rate of increase of the number of non-
legitimate links is much lower when verification is used
than when verification is not used. Further, these results
are true whether there are packet losses or not. The reason
that the results are similar is that we rerun the protocol
multiple times when there are packet losses.

We also observe that increasing the number of verifiers
does not result in a significant decrease in the number of
non-legitimate links. However, there is a huge decrease
in the number of non-legitimate links when even one ver-
ifier is used compared to when there is no verification.
Since using one verifier does not result in any legitimate
links being dropped (Fig. 3(a)), there is a lot of incentive
to use verification.

7. Conclusion

Securing the neighbor discovery protocol is a critical
problem in wireless ad-hoc and sensor networks. SEDINE
not only tries to prevent legitimate non-neighboring
nodes from being fooled to believe that they are neigh-
bors, but also malicious nodes from becoming neighbors
to legitimate non-neighboring nodes. Further, SEDINE
supports incremental node deployment. Our simulation
results show that SEDINE is successful in preventing a
huge fraction of non-legitimate links from being formed
in a lossy wireless communication environment. Some of
the open issues include providing provable security
guarantees for out-of-band channel, power controlled,
and Sybil attacks, studying the effects of denial of ser-
vice attacks against neighbor discovery, and designing
secure neighbor discovery protocols for mobile
networks.

References

[1] Rimon Barr. Swans user guide, 2004.

[2] Haowen Chan, A. Perrig, Pike: Peer intermediaries for key
establishment in sensor networks, in: I[EEE INFOCOM 2005, 2005.

[3] Haowen Chan, A. Perrig, D. Song, Random key predistribution
schemes for sensor networks, in: Symposium on Security and
Privacy, 2003.

[4] W. Dy,]. Deng, Y. Han, P. Varshney, A pair-wise key pre-distribution
scheme for wireless sensor networks, in: ACM CCS, 2003.

[5] J. Eriksson, S.V. Krishnamurthy, M. Faloutsos, Truelink: a practical
countermeasure to the wormhole attack in wireless networks, ICNP
(2006).

[6] L. Gong, D.J. Wheeler, A matrix key-distribution scheme, Journal of
Cryptology (1990).

[7] L. Hu, D. Evans, Using directional antennas to prevent wormhole
attacks, in: Network and Distributed System Security Symposium,
2004.

[8] Y.C. Hu, A. Perrig, D.B. Johnson, Rushing attacks and defense in
wireless ad hoc network routing protocols, in: ACM WiSe Workshop,
2003.

[9] D. Johnson, D. Maltz, J. Broch, The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks, in: Ad Hoc Networking,
Addison-Weasley, 2001.

[10] I. Khalil, S. Bagchi, N.B. Shroff, Liteworp: A lightweight
countermeasure for the wormhole attack in multihop wireless
networks, in: DSN, 2005.

[11] R. Poovendran L. Lazos, S. Capkun, Rope: Robust position estimation
in wireless sensor networks, in: IPSN, 2005.

[12] Suk-Bok Lee, Yoon-Hwa Choi, A secure alternate path routing in
sensor networks, Computer Communications (2006).

[13] D. Liu, P. Ning, Establishing pair-wise keys in distributed sensor
networks, in: ACM CCS, 2003.

[14] D. Liu, P. Ning, W. Du, Detecting malicious beacon nodes for
secure location discovery in wireless sensor networks, in: ICDCS,
2005.

[15] Donggang Liu, Peng Ning, W.K. Du, Attack-resistant location
estimation in sensor networks, in: IPSN, 2005.

[16] Hong Luo, Zengjun Zhang, Yonghe Liu, Recoda: reliable forwarding of
correlated data in sensor networks with low latency, in: IWCMC,
2007.

[17] R. Maheshwari, Jie Gao, S.R. Das, Detecting wormhole attacks in
wireless networks using connectivity information, in: IEEE
INFOCOM, 2007.

[18] J. Newsome, E. Shi, D. Song, A. Perrig, The sybil attack in sensor
networks: Analysis and defenses, in: [EEE/ACM IPSN, 2004.

[19] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin,
S. Capkun,]J-P. Hubaux, Secure neighborhood discovery: a
fundamental element for mobile ad hoc networking, IEEE
Communications Magazine (2008).

[20] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance vector routing,
in: [EEE WMCSA, 1999.

[21] Chris Piro, Clay Shields, Brian Neil Levine. Detecting the sybil attack
in ad hoc networks, in: Proc. IEEE SecureComm, 2006.

[22] Marcin Poturalski, Panos Papadimitratos, Jean-Pierre Hubaux. Secure
neighbor discovery in wireless networks: formal investigation of
possibility, in: ASIACCS, 2008.

[23] Kasper Bonne Rasmussen, Srdjan Capkun, Implications of radio
fingerprinting on the security of sensor networks, in: SecureComm,
2007.

[24] W. Yuan, S.V. Krishnamurthy, S.K. Tripathi, Improving the reliability
of event reports in wireless sensor networks, in: ISCC, 2004.

[25] Qinghua Zhang, Pan Wang, D.S. Reeves, Peng Ning, Defending
against Sybil attacks in sensor networks, in: 25th IEEE
International Conference on Distributed Computing Systems
Workshops, 2005.

[26] Y. Zhang, W. Liu, W. Lou, Y. Fang, Location-based compromise-
tolerant security mechanisms for wireless sensor networks, IEEE
Journal on Selected Areas in Communications (2006).

Srikanth Hariharan received his B.Tech.
degree from the Indian Institute of Technol-
ogy, Madras, in 2006, and his M.S. degree from
Purdue University, West Lafayette, IN, in
2007. He is currently a Doctoral candidate in
the Department of Electrical and Computer
Engineering at the Ohio State University. His
research interests include data aggregation in
wireless sensor networks, target tracking,
multi-hop wireless scheduling, and wireless
security.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

S. Hariharan et al./ Computer Networks xxx (2010) xXX-Xxx 13

Ness B. Shroff (F'07) received his Ph.D. degree
from Columbia University, NY, in 1994 and
joined Purdue University as an Assistant Pro-
fessor. At Purdue, he became Professor of the
School of Electrical and Computer Engineering
in 2003 and director of CWSA in 2004, a uni-
versity-wide center on wireless systems and
applications. In July 2007, he joined The Ohio
State University as the Ohio Eminent Scholar
of Networking and Communications, a
chaired Professor of ECE and CSE. He is also a

e guest chaired professor of Wireless Commu-
nications and Networking in the department of Electronic Engineering at
Tsinghua University. His research interests span the areas of wireless and
wireline communication networks. He is especially interested in funda-
mental problems in the design, performance, pricing, and security of
these networks.

Shroff is a past editor for IEEE/ACM Trans. on Networking and the IEEE
Communications Letters and current editor of the Computer Networks
Journal. He has served as the technical program co-chair and general co-
chair of several major conferences and workshops, such as the IEEE
INFOCOM 2003, ACM Mobihoc 2008, IEEE CCW 1999, and WICON 2008.
He was also a co-organizer of the NSF workshop on Fundamental
Research in Networking (2003) and the NSF Workshop on the Future of

Wireless Networks (2009). Shroff is a fellow of the IEEE. He received the
IEEE INFOCOM 2008 best paper award, the IEEE INFOCOM 2006 best
paper award, the IEEE IWQoS 2006 best student paper award, the 2005
best paper of the year award for the Journal of Communications and
Networking, the 2003 best paper of the year award for Computer Net-
works, and the NSF CAREER award in 1996 (his INFOCOM 2005 paper was
also selected as one of two runner-up papers for the best paper award).

Saurabh Bagchi joined the department of
Electrical and Computer Engineering at Pur-
due University in West Lafayette, Indiana as
an Assistant Professor in August 2002. Before
that, he did his Ph.D. from the Computer Sci-
ence department of the University of Illinois
at Urbana-Champaign with Prof. Ravishankar
Iyer at the Coordinated Science Laboratory.
His Ph.D. dissertation was on error detection
protocols in distributed systems and was
implemented in a fault-tolerant middleware
system called Chameleon.

Comput. Netw. (2010), doi:10.1016/j.comnet.2010.10.021

Please cite this article in press as: S. Hariharan et al., Secure neighbor discovery through overhearing in static multihop wireless networks,

http://dx.doi.org/10.1016/j.comnet.2010.10.021

	Secure neighbor discovery through overhearing in static multihop wireless networks
	Introduction
	System model and assumptions
	System model
	Attack model

	The neighbor discovery protocol
	The Neighbor Discovery Phase
	Determining the expected first hop neighbors
	Determining the expected second hop neighbors

	The Neighbor Verification Phase
	The response algorithm
	Incremental deployment of nodes
	Assumptions
	The protocol

	Analysis
	Security analysis
	Connectivity analysis

	Discussion
	Attacks against the Neighbor Discovery Phase
	Attacks against the discovery of expected neighbors
	Attacks against determining verifiers

	Attacks against the Neighbor Verification Phase
	Out-of-band channel and directional antenna attacks
	Sybil and jamming attacks

	Simulations
	Fraction of links dropped
	Communication overhead with and without verification
	Number of non-legitimate links with ?without ver

	Conclusion
	References

