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ABSTRACT
Detecting and isolating bugs that arise in parallel programs
is a tedious and a challenging task. An especially subtle
class of bugs are those that are scale-dependent: while small-
scale test cases may not exhibit the bug, the bug arises in
large-scale production runs, and can change the result or
performance of an application. A popular approach to find-
ing bugs is statistical bug detection, where abnormal behav-
ior is detected through comparison with bug-free behavior.
Unfortunately, for scale-dependent bugs, there may not be
bug-free runs at large scales and therefore traditional sta-
tistical techniques are not viable. In this paper, we pro-
pose Vrisha, a statistical approach to detecting and localiz-
ing scale-dependent bugs. Vrisha detects bugs in large-scale
programs by building models of behavior based on bug-free
behavior at small scales. These models are constructed us-
ing kernel canonical correlation analysis (KCCA) and exploit
scale-determined properties, whose values are predictably
dependent on application scale. We use Vrisha to detect
and diagnose two bugs that appear in popular MPI libraries,
and show that our techniques can be implemented with low
overhead and low false-positive rates.

1. INTRODUCTION
Software bugs greatly affect the reliability of high perfor-

mance computing (HPC) systems. The failure data repos-
itory from Los Alamos National Lab covering 9 years till
2006, of data from 22 HPC systems, including a total of
4750 machines and 24101 processors, revealed that software
was the root cause of failures between 5% and 24% of the
time (depending on the system being considered) [27]. Since
then, the scale of HPC systems has increased significantly
and software has been asked to perform ever greater feats of
agility to keep the performance numbers scaling up. As an
illustrative example, consider that when the LANL data was
released, the 10th ranked computer on the list of top 500 su-
percomputers in the world had 5,120 cores and a maximum
performance (on the Linpack benchmark) of 36 TFlops. In
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the latest ranking, from November 2010, the 10th ranked
computer has 107K cores (an increase of 20 times) and a
maximum performance of 817 TFlops (an increase of 22
times). It is instructive to note that the individual pro-
cessor speed in this period has increased by a factor of only
2.4 for these two sample computers.1 Therefore, software,
both at the application level and at the library level, have
had to become more sophisticated to meet the scaling de-
mands. Therefore, while more recent evidence of software
failures affecting HPC systems is only for individual inci-
dents or small-sized datasets [14, 26], we believe that it is
safe to assume that software failures are playing a more im-
portant role today.

Many software bugs result in subtle failures, such as silent
data corruption, some of which are detected only upon ter-
mination of the application and the rest go undetected [24],
and degradation in the application performance [13]. These
are undesirable because they make the results of the HPC
applications untrustworthy or reduce the utilization of the
HPC systems. It is therefore imperative to provide auto-
mated mechanisms for detecting errors and localizing the
bugs in HPC applications. With respect to error detection,
the requirement is to detect the hard-to-catch bugs while
performing lightweight instrumentation and runtime com-
putation, such that the performance of the HPC application
is affected as little as possible. With respect to bug local-
ization, the requirement is to localize the bug to as small
a portion of the code as possible so that the developer can
correct the bug. These two motivations have spurred a sig-
nificant volume of work in the HPC community, with a spurt
being observable in the last five years [6, 22, 25, 11, 10, 17,
12]. Our work also has these two goals. However, we are
differentiated from existing work in the class of bugs that
we focus on, which we believe closely matches bugs that are
being experienced as software is being asked to scale up.

A common development and deployment scenario for HPC
systems is that the developer develops the code and tests it
on small(ish)-sized computing clusters. For purposes of this
paper, we will consider the abstraction that the applica-
tion comprises a number of processes, which communicate
among themselves using some standard communication li-
brary, and the processes are distributed among the different
cores in the computing system. The specific instantiation of

1We use the 10th-ranked computer rather than the top-
ranked one because of better representativeness of the num-
bers for supercomputing platforms, rather than considering
the outliers, which the top ones are by definition. We find
a similar message when we look at the 100th-ranked super-
computer.



the abstraction could be provided by MPI, OpenMP, UPC,
CAF, or others; in this paper we use MPI as the program-
ming model. The testing done by the developer at the small
scale is rigorous (for well-developed codes) in that different
input datasets, architectures, and other testing conditions
are tried. Both correctness and performance errors can be
detected through the manual testing as long as the error
manifests itself in the small scale of the testbed that the de-
veloper is using. For various reasons, the developer either
does not do any testing at the larger scale on which the
application is ultimately supposed to execute correctly, or
does such testing in a far less rigorous manner. The reasons
behind this include the unavailability of a large number of
cores in the computing environment for testing purposes,
the fact that it takes a significant amount of time for the
application to run at the large scale, or that it is difficult
from a human perception standpoint to keep track of execu-
tions on a large number of cores. As a result, increasingly
we see errors that manifest themselves when the application
is executed on a large scale. This difference in the behav-
ior of the application between what we will call the testing
environment and the production environment provides the
fundamental insight that drives our current work.

The most relevant class of prior work for error detection
and bug localization uses statistical approaches to create
rules for correct behavior. A template for this work is that
error-free runs are used to build models of correct behavior,
runtime behavior is modeled using monitoring data collected
at runtime by instrumenting the application or the library,
and if the runtime model deviates significantly from the cor-
rect behavior model, an error is flagged. The factor that
causes the difference between the two models is mapped to
a code region to achieve bug localization. In the cases where
error free runs are not available, the techniques make use of
the assumption that the common case is correct. The com-
mon case is defined either temporally, i.e., a given process
behaves correctly over most time slices, or spatially, i.e.,
most of the processes in the application behave correctly.
We believe that for the class of bugs that we mentioned
in the previous paragraph, neither of these assumptions is
valid—error-free runs are not available in the production en-
vironment, and the common case may be erroneous, i.e., the
bug affects all (or most of) the processes in the application
and for each process, the bug manifests itself as an error in
all the iterations (or equivalently, time slices).

To see an illustrative example, consider a bug in a pop-
ular MPI library from Argonne National Lab, MPICH2 [4].
The bug shown in Figure 1 is in the implementation of the
MPI Allgather routine, a routine for all-to-all communica-
tion. In MPI Allgather, every node gathers information
from every other node using different communication topolo-
gies (ring, balanced binary tree, etc.) depending on the total
amount of data to be exchanged. The bug is that for a large
enough scale an overflow occurs in the (internal) variable
used to store the total size of data exchanged because of
the large number of processes involved (see the line with the
if statement). As a result, a non-optimal communication
topology will be used. This is an instance of a performance
bug, rather than a correctness bug, both of which can be
handled by our proposed solution. This bug may not be ev-
ident in testing either on a small-scale system or with small
amount of data.

Solution Approach.
To handle the problem of error detection and bug local-

ization under the conditions identified above, we observe
that as parallel applications scale up, some of their proper-
ties are either scale invariant or scale determined. By scale
invariant, we mean that the property does not change as
the application scales up to larger numbers of cores, and by
scale determined, we mean that the property changes in a
predictable manner, say in a linearly increasing manner. As
an example of a scale-invariant property, we have the num-
ber of neighbors that a process communicates with and the
distribution of volume of communication with its neighbors
(we mention this as properties that may be present in some
applications, not as a ground truth that will be present in
all applications). As an example of a scale-determined prop-
erty, we have the amount of data that is exchanged by a pro-
cess with its communication neighbors. This observation has
been made in the HPC context by previous researchers [29,
31], albeit no one has used it for error detection.

We leverage the above observation to build our system
called Vrisha.2 In it, we focus on bugs that have the above
characteristic—manifest themselves at large scales—and fur-
ther, the bugs affect communication behavior. For example,
the bug may result in no communication with some neigh-
bors, sending incorrect volumes of data to some, sending
incorrect data types to some, sending data to a legitimate
neighbor but from an incorrect context (an unexpected call
site, say), etc. This is an important class of bugs because
bugs of this kind are numerous, subtle, and importantly, for
the distributed nature of the computation, can result in er-
ror propagation. As a result of error propagation, multiple
processes may be affected, which will make it difficult to
detect the failure and to perform recovery actions.

Next, we give a high-level operational flow in Vrisha. Vr-
isha builds a model of the application running on a small
scale in the testing environment. The model is built per
process and consists of communication-related parameters,
such as, volume of communication with each of its neigh-
bors, indexed by the call site. The model also includes the
parameters that should determine the behavior of each pro-
cess, such as, the command line arguments, the rank of the
process, the total number of processes. We refer to the first
part of the model as the observational part and the second
part as the control part. For a deterministic application
(which is our target), the premise is that there is a correla-
tion between the control and the observational parts of the
model. Such correlation may be quite complex and different
for different pairs of control and observation variables. We
do not make a priori assumptions on the nature of the cor-
relation, e.g., we do not assume a linear relationship exists
between the two parts. When the application is run at a
large scale on the production testbed, the correlation should
be maintained in the case of correct execution. However,
in the case of an error, the correlation will be violated and
Vrisha uses this as the trigger for error detection. Next, for
bug localization, Vrisha determines which part of the obser-
vational model causes the correlation to break. Since the
model parts are indexed by the call site, one (or a few) call
site(s) can be flagged as the code regions to investigate for
the purpose of fixing the bug.

For the above example of the real bug, Vrisha is able to

2From the Sanskrit word for the gate keeper of righteous-
ness.



int MPIR_Allgather (void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype, MPID_Comm *comm_ptr)

{
int comm_size, rank;
int mpi_errno = MPI_SUCCESS;
int curr_cnt, dst, type_size, left, right, jnext, comm_size_is_pof2;
MPI_Comm comm;
...
if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG) && (comm_size_is_pof2 == 1)) {
/* BUG IN ABOVE CONDITION CHECK DUE TO OVERFLOW */

/* Short or medium size message and power-of-two no. of processes. Use
* recursive doubling algorithm */

}
...

}

Figure 1: Example of a real bug. This bug appears in the MPICH2 library implementation and manifests
itself at a large scale.

handle it because the communication topology has a pre-
dictable evolution with scale. The bug causes the evolution
pattern to be disrupted and Vrisha is able to detect it and
identify the communication call where the bug lies. The di-
agnosis will not be down to the finest granularity of the line
of code, which is not a target of our work, but to a small re-
gion of code around the communication call, whose size will
depend on how frequently communication calls are present
in the application. In practice, for the two case studies, this
is about 20 lines of C code.

Challenges.
The above high-level approach raises several questions,

which we seek to answer through the rest of the paper.
What model should we use to capture the correlations in
a general and yet efficient manner; we use a machine learn-
ing technique called Kernel Canonical Correlation Analy-
sis (KCCA) [7, 28]. What communication-related features
should Vrisha consider so as to handle a large class of bugs
and yet not degrade the performance due to either collect-
ing the measurement values at runtime or executing its algo-
rithms for error detection and bug localization. Several er-
rors manifest themselves in a process different from the one
where the bug lies. How does Vrisha handle such non-local
anomalies. This is challenging because if the fault-tolerance
protocol requires coordination among multiple processes, that
makes it likely to have a high overhead.

Thus, the contributions of this work are as follows.
1. We are the first to focus on bugs that are increasingly
common as applications have to scale to larger-sized sys-
tems. These bugs manifest themselves at large scales and at
these scales, no error-free run is available and the common
case execution is also incorrect. This appears to be a real
issue since the application will ultimately execute at these
large scales and at which exhaustive testing is typically not
done.
2. Our work is able to deduce correlations between the scale
of execution and the communication-related properties of
the application. We make no assumption about the nature
of the correlaton and it can belong to one of many different
classes. Violation of this correlation is indicative of an error.
3. We can handle bugs at the application level as well as
at the library level because our monitoring and analysis are
done at the operating system socket level, i.e., beneath the
library.
4. We show through experimental evaluation that our tech-
nique is able to detect errors and localize bugs that have been

reported and manually fixed prior to our work and that can-
not be handled by any prior technique. We also show that
in achieving this, our performance overhead is minimal (less
than 8%).

The rest of the paper is organized as follows. Section 2
gives a high level description of the approach taken by Vr-
isha to detect and localize bugs. Section 3 describes the
particular statistical technique used by Vrisha, KCCA, and
explains why other statistical approaches are less suitable to
our problem. Section 4 discusses the features used by Vr-
isha to detect errors, while Section 5 lays out the design of
Vrisha in more detail, including the heuristics used to de-
tect and localize bugs. Section 6 shows how Vrisha can be
used to detect real-world bugs in MPI libraries. We wrap
up with Section 7 describing prior work in fault detection,
and conclude in Section 8.

2. OVERVIEW
A ten-thousand foot overview of Vrisha’s approach to bug

detection and diagnosis is given in Figure 2. As in many sta-
tistical bug finding techniques, Vrisha consists of two phases,
the training phase, where we use bug-free data to construct
a model of expected behavior, and the testing phase, where
we use the model constructed in the training phase to detect
deviations from expected behavior in a production run. We
further subdivide the two phases into five steps, which we
describe at a high level below. The phases are elucidated in
further detail in the following sections.

(a) The first step in Vrisha is to collect bug-free data
which will be used to construct the model. Vrisha does this
by using instrumented training runs to collect statistics de-
scribing the normal execution of a program (see Section 5.1).
These statistics are collected on a per-process basis. Be-
cause we are interested in the scaling behavior of a program,
whether by increasing the number of processors or the in-
put size, our training runs are conducted at multiple scales,
which are still smaller than the scales of the production runs.
The difficulties of doing testing or getting error-free runs at
large scales that we mentioned in the Introduction, also ap-
ply to the process of building correct models and hence our
training runs are done at small scales. The executions at
multiple scales is meant to provide enough data to the mod-
eling steps to allow us to capture the scaling properties of
the program.

(b) After collecting profiling data from the training runs,
Vrisha aggregates that data into two feature sets, the control
set and the observational set. The characteristics of a par-
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ticular process in a particular training run can be described
using a set of control features. Conceptually, these control
features are the “inputs” that completely determine the ob-
served behavior of a process. Examples of these features
include the arguments to the application (or particular pro-
cess) and the MPI rank of the process. Crucially, because
we care about scaling behavior, the control features also in-
clude information on the scale of the training run, such as
the number of processes in the run, or the size of the input
used for the run. Each process can thus be described by
a feature vector of these control features, called the control
vector.

The control vector for a process captures the input fea-
tures that determine its behavior. To describe the processes’
actual behavior, Vrisha uses observational features that are
collected at runtime through lightweight instrumentation
that it injects at the socket layer under the MPI library.
Example observational features for a process might include
its number of neighbors, the volume of data communicated
from a single call site, or the distribution of data commu-
nicated of different types. The selection of observational
features constrains what types of bugs Vrisha can detect: a
detectable bug must manifest in abnormal values for one or
more observational features. Section 4 discusses our choice
of features. The feature vector of observations for each pro-
cess is called its observation vector.

(c) The third, and final, step of the training phase is to
build a model of observed behavior. Vrisha uses KCCA [7,
28] to build this model. At a high level, KCCA learns two
projection functions, f : C → P and g : O → P, where C is
the domain of control vectors, O is the domain of observation
vectors, and P is a projection domain. The goal of f and
g is to project control and observation vectors for a partic-
ular process into the same projection domain such that the
projected vectors are within some tolerance ε of each other.
These projection functions are learned using the control and
observation vectors of bug-free runs collected in step (b).

Intuitively, if an observation vector, o ∈ O, represents the
correct behavior for a control vector, c ∈ C, f and g should
project the vectors to nearby locations in P; if the observa-
tion vector does not adhere to expected behavior, f(c) will
be farther than ε from g(o), signaling an error. Crucially,
because the control vectors c include information about the
program’s scale, KCCA will incorporate that information
into f , allowing it to capture scaling trends. Further back-
ground on KCCA is provided in Section 3. The construction
of the projection functions concludes the training phase of

Vrisha.
(d) To begin the testing phase, Vrisha adds instrumenta-

tion to the at-scale production run of the program, collecting
both the control vectors for each process in the program, as
well as the associated observation vectors. Note that in this
phase we do not know if the observation vectors represent
correct behavior.

(e) Finally, Vrisha performs detection and diagnosis. The
control vector of each process, c, accurately captures the
control features of the process, while the observation vector,
o, may or may not correspond to correct behavior. Vrisha
uses the projection functions f and g learned in the train-
ing phase to calculate f(c) and f(o) for each process. If
the two projected vectors are within ε of each other, then
Vrisha will conclude that the process’s observed behavior
corresponds to its control features. If the projections are
distant, then the observed behavior does not match the be-
havior predicted by the model and Vrisha will flag the pro-
cess as faulty. Vrisha then performs further inspection of the
faulty observation vector and compares it to the observation
vectors in the training runs, after they have been scaled up,
to aid in localizing the bug. Vrisha’s detection and localiza-
tion strategies are described in further detail in Sections 5.3
and 5.4, respectively.

3. BACKGROUND: KERNEL CANONICAL
CORRELATION ANALYSIS

In this section, we describe the statistical techniques we
use to model the behavior of parallel programs, kernel canon-
ical correlation analysis (KCCA) [7, 28].

3.1 Canonical Correlation Analysis
KCCA is an extension of canonical correlation analysis

(CCA), a statistical technique proposed by Hotelling [19].
The goal of CCA is to identify relationships between two
sets of variables, X and Y, where X and Y describe differ-
ent properties of particular objects. CCA determines two
vectors u and v to maximize the correlation between Xu
and Yv. In other words, we find two vectors such that
when X and Y are projected onto those vectors, the results
are maximally correlated. This process can be generalized
from single vectors to sets of basis vectors.

In our particular problem, the rows of X and Y are pro-
cesses in the system. The columns X describe the set of
“control” features of process; the set of characteristics that
determine the behavior of a process in a run. For example,
the features might include the number of processes in the



overall run, the rank of the particular process and the size
of the input. The columns of Y, on the other hand, capture
the observed behavior of the process, such as the number of
communicating partners, the volume of communication, etc.
Intuitively, a row xi of X and a row yi of Y are two different
ways of describing a single process from a training run, and
CCA finds two functions f and g such that, for all i, f(xi)
and g(yi) are maximally correlated. We can also think of
CCA as finding two functions that map X and Y to nearby
points in a common space.

3.2 Kernel Canonical Correlation Analysis
A fundamental limitation of CCA is that the projection

functions that map X and Y to a common space must be
linear. Unfortunately, this means that CCA cannot capture
non-linear relationships between the control features and the
observational features. Because we expect that the relation-
ship between the control features and the observational fea-
tures might be complex (e.g., if the communication volume
is proportional to the square of the input size), using linear
projection functions will limit the technique’s applicability.

We turn to KCCA, an extension of CCA that allows it to
use kernel functions to transform the feature sets X and Y
into higher dimensional spaces before applying CCA. Intu-
itively, we would like to transform X and Y using non-linear
functions ΦX and ΦY into ΦX(X) and ΦY (Y), and apply
CCA to these transformed spaces. By searching for linear
relations between non-linear transformations of the original
spaces, KCCA allows us to capture non-linear relationships
between the two feature spaces.

Rather than explicitly constructing the higher dimensional
spaces, KCCA leverages a “kernel trick” [7], allowing us to
create two new matrices κX and κY from X and Y, that im-
plicitly incorporate the higher dimensional transformation.
In particular, we use a Gaussian, defining κX as follows:

κX(i, j) = e
−
‖xi−xj‖

2

2σ2

with κY defined analogously. Because we use a Gaussian to
construct the κs, when we apply CCA to κX and κY , we
effectively allow CCA to discover correlations using infinite-
degree polynomials. The upshot of KCCA is that we can
determine two non-linear functions f and g such that, for all
i, the correlation between f(xi) and g(yi) is maximized. We
can thus capture complex relationships between the control
features and the observed features.

3.3 Comparison to Other Techniques
A natural question is why we choose to use KCCA as

opposed to other model-building techniques, such as multi-
variate regression or principal component analysis (PCA).
Multivariate regression attempts to find a function f that
maps the input, independent variables X to dependent vari-
ables Y . We could consider the control features to be the
independent variables, and the observational features to be
the dependent variables. However, regression analysis typ-
ically requires that the input variables be independent of
each other, which may not be the case. More generally, the
problem with any model that simply maps the control vari-
ables to the observational variables is that such a mapping
must account for all the observational variables. Consider
an observational feature such as execution time, which is
not truly dependent on the control features (because, e.g.,
it is also dependent on architectural parameters that are not

captured by the control features). If the model attempts to
predict execution times, then it may be particularly suscep-
tible to false positives since two non-buggy runs with the
same control features may exhibit different execution times.
Because KCCA projects both the control features and the
observational features into new spaces, it is able to disregard
features that may not be related to each other.

Another approach to modeling is to use PCA build a pre-
dictive model for the observational features. Bug detection
can then be performed by seeing if the observational features
of the production run correspond to the model. Unfortu-
nately, a simple PCA-based model will not accommodate
different non-buggy processes that have different observa-
tional behaviors. In particular, such a model cannot take
into account scaling effects that might change the observed
behavior of a program as the system size or the data size in-
creases. Instead, additional techniques, such as clustering,
would need to be applied to account for different possible be-
haviors. For example, we could build separate PCA models
at varying scales and then apply another technique such as
non-linear regression to those models to infer a function that
predicts observational feature values at new scales. KCCA,
by contrast, incorporates scaling effects into its modeling
naturally and avoids having to separately derive a scaling
model.

4. FEATURE SELECTION
A critical question to answer when using statistical meth-

ods to find bugs is, what features should we use? To an-
swer this question, we must consider what makes for a good
feature. There are, broadly, two categories of characteris-
tics that govern the suitability of a feature for use in Vr-
isha: those that are necessary for KCCA to produce a scale-
determined model, and those that are necessary for our tech-
niques to be useful in finding bugs. Furthermore, because
Vrisha uses KCCA to build its models, we must concern our-
selves with both control features and observational features.

First, we consider what qualities a feature must possess
for it to be suitable for Vrisha’s KCCA-based modeling.

• The control features we select must be related to the
observational features we collect. If there is no re-
lation, KCCA will not be able to find a meaningful
correlation between the control space and the observa-
tion space. Moreover, because we care about scaling
behavior, the scale (system and input size) must be
included among the control features.

• The observational features should be scale-determined:
Changing the scale while holding other control features
constant should either have no effect on behavior or
affect behavior in a deterministic way. Otherwise, Vr-
isha’s model will have no predictive power.

Second, we consider what criteria a feature must satisfy
for it to provide useful detectability.

• The control features must be easily measurable. Our
detection technique (described in Section 5.3) assumes
that the control vector for a potentially-buggy test run
is correct.

• The observational features must be efficient to collect.
Complex observational features will require instrumen-



tation that adds too much overhead to production runs
for Vrisha to be useful.

• The observational features must be possible to collect
without making any change to the application. This
is needed to support existing applications and indi-
cates that the instrumentation must be placed either
between the application and the library, or under the
library. Vrisha’s instrumentation is placed under the
library.

• The observational features must reflect any bugs that
are of interest. Vrisha detects bugs by finding devia-
tions in observed behavior from the norm. If the ob-
servational features do not change in the presence of
bugs, Vrisha will be unable to detect faults. Notably,
this means that the types of bugs Vrisha can detect
are constrained by the choice of features.

Features used by Vrisha .
The features used by Vrisha consist of two parts corre-

sponding to the control feature set C and the observational
feature set O. The control features include (a) the process
ID, specifically Vrisha uses the rank of process in the default
communicator MPI_COMM_WORLD because it is unique for each
process in the same MPI task; (b) the number of processes
running the program, which serves as the scale parameter
to capture system scale-determined properties in communi-
cation; (c) the argument list used to invoke the application,
which serves as the parameter that correlates with input
scale-determined properties in the communication behavior
of application because it typically contains the size of the
input data set.

On the other hand, the observational feature set of the
ith process is a vector Di of length c, where c is the number
of distinct MPI call sites manifested in one execution of the
program.

Di = (di1, · · · , dic)

The jth component in Di is the volume of data sent at the
jth call site. The index j of call sites has no relation with
the actual order of call sites in the program. In fact, we
uniquely identify each call site by the call stack it corre-
sponds. The observational features capture the aggregated
communication behavior of each process.

The set of control and observational features we choose
has several advantages. First, they are particularly suitable
for our purpose of detecting communication-related bugs in
parallel programs. Second, it is possible to capture these
features with a reasonable overhead so they can be instru-
mented in production runs. These features are easy to col-
lect through instrumentation at the Socket API level. Fur-
ther, with these features, we can identify call sites in a buggy
process that deviate from normal call sites and further to
localize the potential point of error by comparing the call
stacks of the buggy process and the normal process.

We could also add to this, the features from previous solu-
tions. For example, the frequent-chain and chain-distribution
features from DMTracker [17] are good candidates to be
adapted into the observational variable set in Vrisha’s frame-
work. Also, the distribution of time spent in a function
used by Mirgorodskiy et al. [25] is also a good feature to
characterize timing properties of functions in a program and

can also be imported into Vrisha to diagnose performance-
related bugs as in prior work.

5. DESIGN
In this section, we explain the design of the runtime profil-

ing component, the KCCA prediction model, bug detection
method and bug localization method in Vrisha.

5.1 Communication Profiling
In order to detect bugs in both application and library

level, we implement our profiling functionality below the net-
work module of the MPICH2 library and on top of the OS
network interface. So the call stack we recorded at the socket
level would include functions from both the application and
the MPICH2 library. The call stack and volume of data in-
volved in each invocation of the underlying network interface
made by MPICH2 is captured and recorded by our profiling
module. This design is distinct from FlowChecker where,
though the instrumentation is at the same layer as ours, it
can only capture bugs in the library. Thus, application-level
calls are not profiled at runtime by FlowChecker.

5.2 Using KCCA to Find the Scaling Direc-
tion of Communication

5.2.1 Build KCCA Model
First, we need to construct the two square kernel matrices

from the values of the control and the observational variables
respectively. These matrices capture the similarity in the
values of one vector with another. Thus, the cell (i, j) will
give the numerical similarity score between vector (control
or observational) i and vector j. Since all our variables are
numerical, we use the Gaussian kernel function [28] to create
the kernel matrices, which is defined as follows:

κGaussian(yi, yj) = e
−
‖yi−yj‖

2

σ2y

where ‖yi − yj‖ defines the Euclidean distance and σy is
calculated based on the variance of the norms of the data
points. If two vectors are identical then the kernel function
will give a score of 1. Then we solve the KCCA problem
to find the projections from the two kernel matrices into
the projection space that give the maximal correlation of
the control and the observational variables in the training
sets. Finally, we can use the solution of KCCA to project
both control and observational variables to the same space
spanned by the projection vectors from KCCA.

5.2.2 Parameters in the KCCA Model
As done in previous work [15, 16], we set the inverse kernel

width σ in the Gaussian kernel used by KCCA to be a fixed
fraction of the sample variance of the norms of data points in
the training set. Similarly, we used a constant value as the
regularisation parameter γ throughout all our experiments.
We also give a preliminary study on the sensitivity of Vrisha
to the model selection of KCCA in Section 6.4 for the sake
of completeness.

5.3 Using Correlation to Detect Errors
To detect if there is an error, we use for each process the

correlation between control vector and the observational vec-
tor in the projected space spanned by the projection vectors
that are available from the solution of KCCA. The lack of



correlation is used as a trigger for detection and the quanti-
tative value of correlation serves as the metric of abnormal-
ity of each process. Since KCCA provides two projection
vectors that maximizes correlation between the control and
observational variables, most normal processes would have a
relatively high correlation between the two sets of variables.
Therefore, we can set a threshold on the deviation of cor-
relation from 1 (which corresponds to perfectly correlated)
to decide whether a process is normal or abnormal. Thus,
implicitly, our detection strategy achieves localization of the
problem manifestation to the process level.

5.4 Localization of Bugs

5.4.1 Bugs that do not Cause Application Crash
Our strategy for localization of bugs uses the premise that

the communication behavior in the production run should
look similar to that in the training runs, after normalizing
for the scale. The similarity should be observed at the gran-
ularity of the call sites, where the relevant calls are those
that use the network socket API under the MPI library. So
the localization process proceeds as follows. Vrisha matches
up the call sites from the training runs and the production
run in terms of their communication behavior and orders
them by volume of communication. For example, in Figure
3, the matches are (call site ID in training, call site ID in
production): (2, 3), (1, 2), (3, 1), (4, 4). The call site ID
order does not have any significance, it is merely a map from
the call stack to a numeric value. Now for the matching call
sites, the call stacks should in the correct case be the same,
indicating that the same control path was followed. A diver-
gence indicates the source of the bug. Vrisha flags the points
in the call stack in the production run where it diverges from
the call stack in the training run, starting from the bottom
of the call stack (i.e., the most recent call). The call stack
notation is then translated back to the function and the line
number in the source code to point the developer to where
she needs to look for fixing the bug.

Figure 3: Example for demonstrating localization of
a bug.

As would be evident to the reader, Vrisha determines an
ordered set of code regions for the developer to examine.
In some cases, the set may have just one element, namely,
where there is only one divergent call site and only one diver-
gence point within the call site. In any case, this is helpful
to the developer because it narrows down the scope of where
she needs to examine the code.

Retrieving Debugging Information. To facilitate the
localization of bugs, we need certain debugging information
in executables and shared libraries to map an address A in
the call stack to function name and offset. In case such
information is stripped off by the compiler, we also need
to record the base address B of the object (executable and
shared library) when it is loaded into memory so the offset
within the object A − B can be calculated and translated
into the function name and the line number. This is done
in an off-line manner, prior to providing the information to
the developer for debugging, and can be done by an existing
utility called addr2line.

5.4.2 Bugs that Cause Application Crash
It is trivial to detect an error caused by a bug that makes

the application crash. However, localization of the root
cause of such bugs is not as easy. For this, we use the lo-
calization technique for non-crashing bugs as the starting
point and modify it. For comparison with the communi-
cation behavior of the training runs, we identify the point
in execution corresponding to the crash in the production
run. We then eliminate all call sites in the training run af-
ter that point from further processing. Then we follow the
same processing steps as for the non-crashing bugs. One dis-
tinction is in the way we order the different call sites. The
call site which is closest to the point at which the applica-
tion crashed is given the highest priority. The intuition is
that the propagation distance between the bug and the error
manifestation is more likely to be small than large. Hence,
we consider the call stack from the crashed application (in
the production run) and compare that first to the call stack
from the closest point in the training runs and flag the points
of divergence, starting from the latest point of divergence.

5.5 Discussion
Our proposed design for Vrisha has some limitations, some

of which are unsurprising, and some of which are somewhat
subtle. The most obvious limitation is that Vrisha’s abil-
ity to detect bugs is constrained by the choice of features.
This limitation is imposed by the observational features and,
surprisingly, the control features. If a bug manifests in a
manner that does not change the value of an observational
feature, Vrisha will be unable to detect it, as there will be
no data that captures the abnormal behavior. Hence, the
observational features must be chosen with some care to en-
sure that bugs are caught. Interestingly, the control features
must be chosen carefully, as well. Our technique detects
bugs when the expected behavior of a process (as determined
by its control features) deviates from its observed behavior
(as determined by its observational features). If an observa-
tional feature (in particular, the observational feature where
a bug manifests) is uncorrelated with any of the control fea-
tures, KCCA will ignore its contribution when constructing
the projection functions and hence Vrisha will be unable to
detect the bug.

Another limitation that is unique to our choice of KCCA
as Vrisha’s modeling technique is that KCCA is sensitive to
the choice of kernel functions. As an obvious example, if the
kernel function were linear, KCCA would only be able to ap-
ply linear transformations to the feature sets before finding
correlations, and hence would only be able to extract linear
relationships. We mitigate this concern by using a Gaussian
as our kernel function, which is effectively an infinite-degree



polynomial.
Our localization strategy is also limited by the localization

heuristics we use. First, we must infer a correspondence be-
tween the features of the buggy run and the features of the
non-buggy runs. In the particular case of call-stack features,
this presents problems as the call stacks are different for
buggy vs. non-buggy runs. Our matching heuristic relies on
the intuition that while the volume of data communicated
at each call site is scale-determined, the distribution of that
data is scale invariant (i.e., is the same regardless of scale).
This allows us to match up different call sites that neverthe-
less account for a similar proportion of the total volume of
communication. While this heuristic works well in practice,
it will fail if the distribution of communication is not scale-
invariant. Another drawback of our localization heuristic is
that if several call sites account for similar proportions of
communication, we will be unable to localize the error to a
single site; instead, we will provide some small number of
sites as candidates for the error.

6. EVALUATION
In this section, we evaluate the performance of Vrisha

against real bugs in parallel applications. We use the MPICH2
library [4] and NAS Parallel Benchmark Suite [8] in these
experiments. We have augmented the MPICH2 library with
communication profiling functionality and reproduce reported
bugs of MPICH2 to test our technique. The NAS Parallel
Benchmark Suite 3.3 MPI version is used to evaluate the
runtime overhead of the profiling component of Vrisha.

The experiments show that Vrisha is capable of detect-
ing and localizing realistic bugs from the MPICH2 library
while its runtime profiling component incurs less than 10%
overhead in tests with the NAS Parallel Benchmark Suite.
We also compare Vrisha with some of the most recent tech-
niques for detecting bugs in parallel programs and illustrate
that the unique ability of Vrisha to model the communica-
tion behavior of parallel programs as they scale up is the
key to detect the evaluated bugs.

All the experiments are conducted on a 15 node clus-
ter running Linux 2.6.18. Each node is equipped with two
2.2GHz AMD Opteron Quad-Core CPUs, 512KB L2 cache
and 8GB memory.

6.1 Allgather Integer Overflow in MPICH2

6.1.1 Description
This bug is an integer overflow bug which causes MPICH2

to choose a performance-suboptimal algorithm for Allgather
(Figure 1). Allgather is a collective all-to-all communication
function defined by the MPI standard, in which each par-
ticipant node contributes a piece of data and collects contri-
butions from all the other nodes in the system. Three algo-
rithms [30] are employed to implement this function in the
MPICH2 library and the choice of algorithm is conditioned
on the total amount of data involved in the operation.

The total amount of data is computed as the product of
three integer variables and saved in a temporary integer vari-
able. When the product of the three integers overflows the
size of an integer variable, a wrong choice of the algorithm to
perform Allgather is made and this results in a performance
degradation, which becomes more significant as the system
scales up. The bug is more likely to happen on a large-scale
system, i.e., with a large number of processors, because one
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Figure 4: Communication behavior for the Allgather
bug at two training scales (4 and 8 nodes) and pro-
duction scale system (16 nodes). The bug manifests
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Figure 5: Correlation in the projection space using
the KCCA-generated maps for systems of different
scale. The low correlation value at scale 16 indicates
the error.

of the multiplier integer is the number of processes calling
Allgather. For example, on a typical x86 64 Linux cluster
with each process sending 512 KB of data, it will take at
least 1024 processes to overflow an integer.

The bug has been fixed in a recent version of MPICH2
[1]. However, we found a similar integer overflow bug in All-
gatherv, a variant of Allgather to allow varying size of data
contributed by each participant, still extant in the current
version of MPICH2 [2].

6.1.2 Detection and Localization
For the ease of reproducing the bug, we use a simple syn-

thetic application that does collective communication using
Allgatherv and run this application at increasing scales. The
test triggers the bug in the faulty version of MPICH2 if the
number of processes is 16 or more. Vrisha is trained with
the communication profiles of the program running on 4 to
15 processes where the bug is latent and the communication
distribution is not contaminated by the bug. We pictorially
represent in Figure 4 the communication behavior that is
seen in the application for two different sizes of the training
system (4 and 8 processes) and one size of the production
system where the bug manifests itself (16 processes). The
X-axis is the different call sites (the IDs do not have any
significance, they are numerical maps of the call stacks) and
the Y-axis is the volume of communication, which is used



Call Stack 9: Call Stack 16:
============================== ==============================
MPID_nem_tcp_send_queued+0x1cc MPID_nem_tcp_send_queued+0x1cc
MPID_nem_tcp_connpoll+0x3a3 MPID_nem_tcp_connpoll+0x3a3
MPID_nem_network_poll+0x1e MPID_nem_network_poll+0x1e
MPIDI_CH3I_Progress+0x2ab MPIDI_CH3I_Progress+0x2ab
MPIC_Wait+0x89 MPIC_Wait+0x89
MPIC_Sendrecv+0x246 MPIC_Sendrecv+0x246
MPIR_Allgatherv+0x6a2 <------> MPIR_Allgatherv+0x17fd
PMPI_Allgatherv+0x1243 PMPI_Allgatherv+0x1243
main+0x14c main+0x14c
__libc_start_main+0xf4 __libc_start_main+0xf4

Figure 6: Call stacks for the correct case (call stack
9, in the training system) and the erroneous case
(call stack 16, in the production system). The deep-
est point of the stack corresponding to the last called
function is at the top of the figure.

in this illustration as a representative of the communication
behavior normalized to the scale of the system. The diver-
gence in the communication behavior shows up with 16 pro-
cesses where the pattern of communication behavior looks
distinctly different. Vrisha successfully detects this bug as
the correlation in the projection space for the 16-node sys-
tem is low, as depicted in Figure 5. The Y-axis is the inverse
of the correlation, so a high value there indicates low corre-
lation. The cutoff is set such that there is no false positive in
the training set and that is sufficient for detecting the error.
Note that this bug affects all processes at systems of size 16
or higher and therefore, many previous statistical machine
learning techniques will not be able to detect this because
they rely on majority behavior being correct.

According to our bug localization scheme, Vrisha com-
pares the normal and the faulty distributions in Figure 4.
The call site 9 from the training run is matched up with call
side 16 from the production run and this is given the high-
est weight since the communication volume is the largest
(90% of total communication). We show the two call stacks
corresponding to these two call sites in Figure 6. The deep-
est point in the call stack, i.e., the last called function, is
shown at the top in our representation. A comparison of
the two call stacks reveals that the faulty processes take a
detour in the function MPIR_Allgatherv by switching to a
different path. The offset is mapped to line numbers in the
MPIR_Allgatherv function and a quick examination shows
that a different conditional path is taken for an if state-
ment. The condition for the if statement is the temporary
integer variable that stores the total amount of data to be
transmitted by Allgather. This is where the overflow bug
lies.

6.1.3 Comparison with Previous Techniques
This bug cannot be detected by previous techniques [25,

17, 11, 20] which capture anomalies by comparing the be-
havior of different processes in the same sized system. This
is due to the fact that there is no statistically significant
difference among the behaviors of processes in the 16-node
system. As the bug degrades the performance of Allgather
but no deadlock is produced, those techniques targeted at
temporal progress [6] will not work either. Finally, since
there is no break in the message flow of Allgather as all
messages are delivered eventually but with a suboptimal al-
gorithm, FlowChecker [12] will not be able to detect this
bug. Therefore, Vrisha is a good complement to these exist-
ing techniques for detecting subtle scale-dependent bugs in
parallel programs.
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Figure 7: Communication behavior for the large
message bug at two training scales (512 MB and 1
GB) and production scale system (2 GB). The bug
manifests itself in data sizes of 2 GB and larger.

6.2 Bug in Handling Large Messages in MPICH2

6.2.1 Description
This bug [3] was first found by users of PETSc [9], a pop-

ular scientific toolkit built upon MPI. It can be triggered
when the size of a single message sent between two phys-
ical nodes (not two cores in the same machine) exceeds 2
gigabytes. The MPICH2 library crashes after complaining
about dropped network connections.

It turns out that there is a hard limit on the size of message
can be sent in a single iovec struct from the Linux TCP
stack. Any message that violates this limit would cause
socket I/O to fail as if the connection were dropped. The
most tricky part is that it would manifest in the MPI level
as a MPICH2 bug to the application programmers.

6.2.2 Detection and Localization
Since we have no access to the original PETSc applications

that triggered this bug, we compromise by using the regres-
sion test of the bug as our data source to evaluate Vrisha
against this bug. The regression test, called large_message,
is a simple MPI program which consists of one sender and
two receivers and the sender sends a message a little bit
larger than 2GB to each of the two receivers. We adapt
large_message to accept an argument which specifies the
size of message to send instead of the hard-coded size in the
original test so we can train Vrisha with different scales of
input. Here, ”scale” refers to the size of data, rather than
the meaning that we have been using so far—number of pro-
cesses in the system. This example points out the ability of
Vrisha to deduce behavior that depends on the size of data
and to perform error detection and bug localization based
on that. We first run the regression test program with 8MB,
16MB, 32MB, 64MB, 128MB, 256MB, 512MB, and 1GB to
get the training data set and then test with the 2GB case.
The distributions of communication over call sites of a rep-
resentative process in each case of 512MB, 1GB, and 2GB
are shown in Figure 7.

Since the bug manifests as a crash in the MPICH2 library,
there is nothing left to be done with the detection part. We
are going to focus on explaining how we localize the bug with
the guidance from Vrisha. First of all, as discussed in Sec-
tion 5.4.2, we need the stack trace at the time of the crash.



Call Stack 5 Crash Stack from MPICH2
============================== =============================
MPID_nem_tcp_send_queued+0x132 MPID_nem_tcp_send_queued
(Unknown static function) state_commrdy_handler
MPID_nem_tcp_connpoll+0x3d8 MPID_nem_tcp_connpoll
MPID_nem_network_poll+0x1e MPID_nem_network_poll
(Unknown static function) MPID_nem_mpich2_blocking_recv
MPIDI_CH3I_Progress+0x1d8 MPIDI_CH3I_Progress
MPI_Send+0x8ff MPI_Send
main+0x121)
__libc_start_main+0xf4)

Figure 8: Call stacks from a normal process (left)
and at the point of crash due to large-sized data.
Error message ”socket closed” reported by MPICH2
at MPID_nem_tcp_send_queued helps localize the bug.

This is shown on the right part of Figure 8. In fact, the
MPICH2 library exits with error message ”socket closed” at
function MPID_nem_tcp_send_queued. Comparing with all
the five normal call stacks shown in Figure 7 (i.e., obtained
from training runs), we find call stack 5 is almost a perfect
match for the crash stack trace from MPICH2 except for
two static functions whose names are optimized out by the
compiler. The first divergent point in the crash trace is at
MPID_nem_tcp_send_queued, which is where the bug lies.

To this point, we have localized the bug to a single func-
tion. The next step depends on the properties of each spe-
cific bug. In practice, most applications implement some
error handler mechanism that provide useful error messages
before exiting. In the case of this bug, one only needs to
search for the error message ”socket closed” inside the func-
tion MPID_nem_tcp_send_queued and would find that it is
the failure of writev (a socket API for sending data over
the underlying network) that misleads MPICH2 to think the
connection is closed. In this case, Vrisha only has to search
within a single function corresponding to the single point of
divergence. In more challenging cases, Vrisha may have to
search for the error message in multiple functions. In the
absence of a distinct error message, Vrisha may only be able
to provide a set of functions which the developer then will
need to examine to completely pinpoint the bug.

6.2.3 Comparison with Previous Techniques
Most previous techniques based on statistical rules will not

be helpful in localizing this bug because they lack the ability
to derive scale-parametrized rules to provide role model to
compare with the crash trace. All the processes at the large
data sizes suffer from the failure and therefore contrary to
the starting premise of much prior work, majority behavior
itself is erroneous. However, FlowChecker is capable of lo-
calizing this bug since the message passing intention is not
fulfilled in MPID_nem_tcp_send_queued.

6.3 Performance Measurement
This section studies the runtime overhead caused by Vr-

isha’s runtime profiling in five representative applications
from the NAS Parallel Benchmark Suite running on top of
the MPICH2 library. The five benchmarks used in this study
are CG, EP, IS, LU, and MG. Each application is executed
10 times and the average running time is used to calculate
the percentage overhead due to the profiling conducted at
runtime by Vrisha. All experiments are done with 16 pro-
cesses and class A of NAS Parallel Benchmarks. As shown
in Figure 9, the average overhead incurred by the profiling
of Vrisha in the five benchmarks are all less than 8%. Note

Benchmark

G
eo

m
et

ry
 M

ea
n 

of
 O

ve
rh

ea
d 

(%
)

0

1

2

3

4

5

6

7

cg ep is lu mg

Figure 9: Overhead due to profiling in Vrisha for
NASPAR Benchmark applications.

Table 1: Sensitivity of False Positive Rate to Model
Parameters in Vrisha

Parameter Range False Positive
Ncomps 1, · · · , 10 2.85%, 3.16%
γ 2−20, · · · , 20 2.32%, 3.25%
σx 2−20, · · · , 220 1.79%, 8.19%
σy 2−20, · · · , 220 2.18%, 4.01%

the overhead shown here does not include the off-line pro-
cedures of model building, error detection and localization
since the runtime overhead is the most important criterion
to decide whether a debugging technique is practical or not
while the cost of analysis can be tolerated by developers as
long as it can provide useful information to speed up the
process of debugging.

6.4 Model Selection and False Positive Rate
This section evaluates the impact of model selection of the

KCCA method on the false positive rate of Vrisha. Because
of the lack of a publicly-available comprehensive database
of bugs in parallel programs, we have no way to conduct a
study of false negative rate, therefore we follow the practice
of previous researchers of focusing on the fault positive rate
of our model by considering error-free applications.

The following parameters in the KCCA model, Ncomps,
γ, σx, σy are measured using five-fold cross validation on
the training data from Section 6.1. The range of parame-
ters used in the study is shown in Table 1. Note here the
fractional factors instead of the actual values of σx and σy

are listed in the table. We test with all different combina-
tions of values of these parameters and calculate a curve of
average false positive rate for each individual parameter as
displayed in Figure 10. According to the results, Ncomps,
γ and σy do not significantly affect the false positive rate
while σx has more impact taking the false positive to 8.2%
in the worst case. Since this represents the worst case in
terms of the worst selection of all model parameters, 8.2%
is a pessimistic upper bound for the false positive rate of
Vrisha. Overall, the KCCA model is not very sensitive to
parameter selection which makes it more accessible to users
without solid background in machine learning.

7. RELATED WORK
One way of classifying existing work on error detection

and bug localization is whether invariants are expected to
hold in a deterministic manner or stochastically. In the first
class, some property to be validated at runtime is inserted
as an invariant and the invariant must hold true in all ex-
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Figure 10: Average False Positive Rate of KCCA
Models w.r.t. Each Parameter by 5-fold Cross Vali-
dation

ecutions [12, 18]. In the second class, the property must
hold statistically [22, 11, 22, 10, 11]. A typical example is
that if the behavior of a process over an aggregate is similar
to the aggregate behavior of a large number of other pro-
cesses, then the behavior is considered correct. Our work
adopts a statistics-based approach. Below we review related
work that is aimed at error detection and bug localization
for parallel applications, for different classes of errors.

The first work in this domain that illuminates our work is
that by Mirgorodskiy et al. [25], which applies to similarly
behaving processes in an application. The system creates a
feature vector for each process, where each element of the
vector is the fraction of time spent in a particular func-
tion. Under normal execution, all processes’ feature vec-
tors should be similar. Errors are detected using one of two
methods. In the first method, supervised data is available,
indicating correct behavior; a process is flagged as anoma-
lous if its vector is far from any normal trace. In the absence
of supervised data, processes are flagged as anomalous if its
distance from the kth nearest neighbor is too large. Lo-
calization is performed by determining which entry in the
anomalous vector contributed most to its distance, indicat-
ing a particular function responsible for the misbehavior.

The second relevant work in this domain is AutomaDeD
[11]. This work provides a model to characterize the behav-
ior of parallel applications. It models the the control flow
and timing behavior of application tasks as Semi-Markov
Models (SMMs) and detects faults that affect these behav-
iors. SMM states represent Given an erroneous execution
of the application, AutomaDeD examines how each task’s
SMM changes over time and relates to the SMMs of other
tasks. First, AutomaDeD detects which time period in the
execution of the application is likely erroneous. AutomaDeD
then clusters task SMMs of that period and performs cluster
isolation, which uses a novel similarity measure to identify
the task(s) suffering from the fault. Finally, transition iso-
lation detects the transitions that were affected by the fault
more strongly or earlier than others, thus possibly identify-
ing the buggy code region.

The third and fourth pieces of work — DMTracker [17]
and FlowChecker [12] — fall in the same class, namely, for
handling bugs related to communication. DMTracker uses

data movement related invariants, tracking the frequency of
data movement and the chain of processes through which
data moves. The premise of DMTracker is that these in-
variants are consistent across normal processes. Bugs are
detected when a process displays behavior that does not
conform to these invariants, and can be localized by identi-
fying where in a chain of data movements the invariant was
likely to be violated.

FlowChecker focuses on communication-related bugs in
MPI libraries. It argues that statistics-based approaches
have limitations in that they cannot detect errors which
affect all processes or only a small number of processes.
Therefore, it uses deterministic invariants, analyzing the
application-level calls for data movement to capture pat-
terns of data movement (e.g., by matching MPI Sends with
MPI Receives). At run-time, it tracks data movement to
ensure that it conforms to the statically-determined models.
Localization follows directly: the data movement function
that caused the discrepancy from the static model is the
location of the bug.

Our work builds on the lessons from the solutions surveyed
above. However, distinct from existing work, it squarely
targets the way parallel applications are being designed, de-
veloped, and deployed on large scales. Thus, we aim to de-
duce properties from executions of the application on a small
scale (as the developer may do on her development cluster)
and use those properties for bug detection and localization
at a large scale. Further, our work is geared to handling
bugs that affect many (or all) processes in the application,
as may happen in Single Program Multiple Data (SPMD)-
type applications. None of the approaches above except
FlowChecker are suitable for this class, while FlowChecker
targets a narrow bug class - only communication bugs in the
libraries and only correctness bugs rather than performance
bugs. Vrisha does not have these restrictions.

More tangentially related to our work is volumes of work
done in the area of general software bug detection, which
includes use of program assertions, static analysis, dynamic
checking, model checking, and formal verification. While
the lessons learned in these influence our work, they are not
directly relevant to large-scale parallel applications.

Problem diagnosis in large systems mainly focuses on iso-
lating the root causes of system failures or performance
problems and influences our design of the bug localization
algorithm. Most existing studies [5, 21, 23, 25] utilize ma-
chine learning or statistical methods to study error propaga-
tion or identify program anomalies. These methods provide
useful hints on diagnosing system problems. For example,
Maruyama and Matsuoka propose comparing function traces
from normal runs to those of failed runs for fault localization
[23]. Unlike these approaches, Vrisha exploits the semantics
of communication behavior as the system scales up to local-
ize the bugs.

8. CONCLUSION
In this paper, we introduced Vrisha, a framework for de-

tecting bugs in large-scale systems using statistical tech-
niques. While prior work based on statistical techniques re-
lied on the availability of error-free training runs at the same
scale as production runs, it is infeasible to use full-scale sys-
tems for development purposes. Unfortunately, this means
that prior bug-detection techniques are ill-suited to dealing
with bugs that only manifest at large scales. Vrisha was de-



signed to tackle precisely these challenging bugs. By exploit-
ing scale-determined properties, Vrisha uses kernel canonical
correlation analysis to build models of behavior at large scale
by generalizing from small-scale behavioral patterns. Vrisha
incorporates heuristics that can use these extrapolated mod-
els to detect and localize bugs in MPI programs. We stud-
ied two bugs in the popular MPICH2 communication library
that only manifest as systems or inputs scale. We showed
that Vrisha could automatically build sufficiently accurate
models of large-scale behavior such that its heuristics could
detect and localize these bugs, without ever having access
to bug-free runs at the testing scale. Furthermore, Vrisha is
able to find bugs with low instrumentation overhead and low
false positive rates. In further work, we will consider other
kinds of bugs beyond communication-related bugs, investi-
gate more fully the scaling behavior with respect to data
sizes, and evaluate the scalability of the detection and the
localization procedures.
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