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Abstract—Over the last three years, Android has established
itself as the largest-selling operating system for smartphones. It
boasts of a Linux-based robust kernel, a modular framework
with multiple components in each application, and a security-
conscious design where each application is isolated in its own
virtual machine. However, all of these desirable properties
would be rendered ineffectual if an application were to deliver
erroneous messages to targeted applications and thus cause the
target to behave incorrectly. In this paper, we present an empir-
ical evaluation of the robustness of Inter-component Commu-
nication (ICC) in Android through fuzz testing methodology,
whereby, parameters of the inter-component communication
are changed to various incorrect values. We show that not only
exception handling is a rarity in Android applications, but also
it is possible to crash the Android runtime from unprivileged
user processes. Based on our observations, we highlight some of
the critical design issues in Android ICC and suggest solutions
to alleviate these problems.

Keywords-android, fuzz, security, smartphone, robustness,
exception
I. INTRODUCTION

As of December 7, 2011, a lot of incidents related to
smartphones have appeared as headlines in the media over
the past two weeks. A Youtube video posted by a security
researcher received more than 1.5 million views after he
exposed a contentious logging program in a “reputed” net-
work intelligence program [1] for smartphones. An iPhone
exploded on board an Aussie flight causing temporary panic
among the passengers and the crew [2]. In another part of
the world, the authors of this paper had their fair share of
extraordinary experiences as well. One of the authors of
this paper found his newly purchased smartphone magically
bypass the screen lock after pressing the power key twice in
succession [3]. The list does not end here as the authors had
to pull out the batteries from their experimental phones time
and again to un-“freeze” them! How robust are smartphones
of today? This is the question we answer in this paper.
Specifically, we evaluate how robust are Android’s built-in
and best-seller applications to malformed Inter-component
Communication messages.'

We selected Android as the mobile platform for our
study for obvious reasons: it has the leading market share
in smartphones and its codebase is open. In three years
since its release, Android has become the leading smart-
phone OS in the world with a staggering sales figure of

'In this paper, we use the term Inter-component Communication to cover
both intra and inter-application messages.
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60 million phones in the third quarter of 2011 alone [4].
A software with such large customer base needs to be
very robust and secure, otherwise even minute defects may
overshadow its myriad desirable features. Android has also
received significant attention from research and developer
communities. Its modular approach to application devel-
opment allows mutually untrusting applications to share
their functionality. To protect these applications from one-
another, Android assigns different user IDs (UID) to each
application and runs them in isolated virtual machines.
However, in a collaborative environment, applications need
to share data which is supported by Android with a flexible
communication mechanism. Communication, traditionally,
introduces new vulnerabilities and exposes applications to
a variety of stressful conditions, a classic example being
noisy data from sensor equipment. Unexpected input also
has the potential to break the security measures employed by
a system and expose sensitive data. In case of smartphones,
sources of inputs can be significantly diverse—these include
touchscreen, keyboard, radio, microphone, sensors, untrusted
third-party applications, or data from one of many network
drivers—and therefore it has great potential for receiving
unexpected data. Given the unorthodox techniques people
employ to bypass password locks on their smartphones [5],
receipt of unexpected data is not a rarity. Our objective in
this paper is to see how well Android reacts to unexpected
data, and more specifically to test its Inter Process Com-
munication primitives. We define robustness as the ability
to handle unexpected data gracefully, therefore, lack of
robustness would imply an application crashing in response
to an IPC message. In the context of Android applications,
these crashes manifest as uncaught exceptions in the stack
trace.

Inter Process Communication in Android takes place in
one of two ways—DBinders, where an application creates
a proxy for a remote object (having known interface) and
can invoke remote methods, and Intents, a data container
which is passed from one application component to another
through mediation of the Android Runtime. Of these, Intents
allow dynamic target selection and runtime binding, i.e.,
the sender of an Intent does not need to know anything
about the receiver. Due to its dynamic nature, Intents have a
flexible structure. It is easy to generate Intents, and therefore,
can become a simple tool for an adversary who wants to
compromise a system. For all these reasons, we generated



random and semi-valid Intents and tested how Android
reacts to these. Traditionally, researchers have used fuzz
testing for testing the robustness of software systems. In
fuzz testing, random input is fed to an application, e.g.,
sending random parameter values to the system calls. Fuzz
testing has been used with considerable success to evaluate
the robustness of various operating systems [6], [7], [8], [9].
More intelligent test case generation for robustness testing
can be seen in [10]. However, such evaluation of mobile
OSes is rare in the research literature.

Our objectives in this study are threefold—to test how
robust Intent handling is, to discover vulnerabilities through
random (or crafted) Intents, and to suggest recommendations
for hardening of Android IPC.

With these goals, we developed our Android robustness
testing tool, JarJarBinks (in remembrance of the Gungan
warrior of Star Wars fame, whose unusual accent created
significant problems for the Droid). JarJarBinks includes
four Intent generation modules—semi-valid, blank, random,
and random with extras, and the ability to automatically
send a large number of Intents to all the components.
JarJarBinks runs as a user level process, it does not require
knowledge of source codes of the tested components, and
can be easily configured for the robustness testing on any
Android device. During our experiments we sent more than
6 million Intents to 800+ application components across 3
versions of Android (2.2, 2.3.4, and 4.0) and discovered
a significant number of input validation errors. In gen-
eral less than 10% of the components tested crashed; all
crashes are caused by unhandled exceptions. Our results
suggest that Android has a sizable number of components
with unhandled NullPointerExceptions across all
versions. Though Android’s exception handling capability
has improved significantly since v2.2, its latest version (4.0)
displays a larger number of environment-dependent failures.
These failures do not happen predictably in time and are
therefore insidious from the point of view of testing.

The most striking finding that we have is the ability to
run privileged processes from user level applications without
requiring the user-level application to be granted any special
permission at install time. We found three instances, where
we could crash the Android runtime from JarJarBinks. Such
a crash makes the Android device unusable till it is rebooted.
This has huge potential for privilege escalation, denial-of-
service, and may even lead to more security vulnerabilities,
if an adversary could figure out how to have these malformed
(or “fuzzed”) Intents be sent out in response to some external
message. To improve software design from the point of view
of reliability, we found that subtyping combined with Java
annotations can be used very effectively to restrict the format
and content of an Intent. Through this mechanism, the attack
surface of Android can be reduced significantly.

The rest of our paper is organized as follows. We begin
with an overview of Android and explain key terminology

in Section II. Section III presents the design of JarJarBinks
and explains our Intent generation methodology. The next
Section presents results obtained from our experiments and
suggests some guidelines for secure Android application de-
velopment. Section V presents ICC design recommendations
for securing Intents followed by discussion of Future Work.

II. ANDROID OVERVIEW
A. Android Architecture

Android is an open source platform for mobile system
development with a standard Linux operating system, a
customized runtime, a comprehensive application framework
and a set of user applications. Based on Linux kernel, it
provides a robust driver model, security features, process
management, memory management, networking assistance
and drivers for a large set of devices. The runtime comprises
of core libraries and Dalvik [11], a register based [12]
virtual machine optimized to run under constrained memory
and CPU requirements. Application framework provides
developers APIs for building user applications (popularly
called apps).

B. Android Application Components

Here we first explain the different kinds of application
components in Android and then explain how the differ-
ent components coordinate among themselves to achieve a
task. This background would be essential to understand the
experimental methodology that we have developed because
we choose the inter-component messages (called Intents in
Android) as the target of our fuzz testing. To understand how
Android application components co-ordinate to achieve a
task, consider two sample applications (Email and Contacts)
shown in Figure 1, that co-operate in replying to an email.
Consider, a user launching an email application from home
screen. This starts an Activity (user interface (UI)) showing
the user’s Inbox. She then clicks on an email she wants
to read which starts another Ul showing a particular Email
message. To reply, she clicks Reply button to invoke a third
activity where she can type her response. Consider, she
wants to copy her reply to more recipients, so she hits
the “cc” button to find the address of the recipient. This
invokes a fourth activity, i.e., Select Contact in Contacts
application showing the available email addresses. This
fourth activity to user appears as a part of email application
but in reality it is from a separate application (Contacts)
which runs in a separate process. Further, the main activity
in Contacts application, i.e., Select Contact calls a Content
Provider, another application component for data storage, to
retrieve the recipient’s email address. The sequence of called
activities, Inbox, Email, Reply, Select Contact to achieve a
given task involves inter-component communication which
can be either inter-application or intra-application.

Each user application in Android (a *.apk file) typi-
cally runs in a separate process and can be composed
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Figure 1. Android Application Components

of Activities, Services, Content Providers and Broadcast
Receivers. These four components communicate through
messages called Intents that are routed through Android
runtime and the Kernel. The underlying runtime manages the
Inter-component Communication. At application installation
time, the contract with the runtime is specified in Android-
Manifest.xml. This contract details on type of components,
application permissions, etc. Here we briefly define each of
the component types.

Activities: An Activity is a graphical component, which is
used to provide the client with a user interface. It is invoked
when a user launches an application. An activity can send
and receive Intents to and from runtime. It is implemented
by extending the Activity class while its life cycle is managed
by a module in application framework layer called Activity
Manager.

Services: A Service is used when an application task
needs to run in background for a longer time period. For
example, a user can run music player in background. Also,
a component can bind to a Service to send a request, e.g.,
a music player Activity can bind to a music player Service
to stop the current song that is being played.

Content Providers: A Content Provider is used to man-
age access to persistent data. The data can be shared between
multiple Activities in different applications. Contacts appli-
cation, as an example, can use the content provider to get a
person’s phone number.

Broadcast Receivers: A component that is solely respon-
sible to receive and react to event notifications is called a
Broadcast Receiver. For example, in SMS application, the
Broadcast Receiver component receives an SMS message
and displays an alert.

C. Android IPC

The inter-process communication (IPC) in Android oc-
curs through a kernel space component called Binder
(/dev/binder), a device driver using Linux shared mem-
ory to achieve IPC. The higher level user space components
know how to use the binder, i.e., how to pass data rep-
resented by Intents to Binder. Specifically, when a given
component, e.g. Activity Manager, wants to do IPC (either
an IPC send or an IPC receive) at OS boundary, it opens the
driver supplied by the Binder kernel module. This associates
a file descriptor with the thread that called binder, and this
association is used by the kernel module to identify the
caller and callee of Binder IPCs. All IPC at OS boundary

takes place through this descriptor. At the higher level,
application-runtime boundary, the application components
send Intent messages, e.g., an Activity sends Intents to
Activity Manager.

D. Intents

Intent, a data container, is an abstraction for an
action to be performed and forms the core of Android’s
IPC mechanism. An Intent encapsulates action, data,
component, category and extra fields in its object. As
an example, an action can be dial, with data as phone
number and component as phone application’s main activity.
Category and extra fields give extra information on action
and data respectively. An Intent message can be specifically
(Explicit Intent) sent to a target component by naming
it or it could be resolved by runtime to find a target
component. When the target is not explicitly specified in
Intent message (Implicit Intent), the Android runtime
resolves the target component to be invoked by looking
up the Intent message and matching it against components
that can handle the Intent. A given target component can
handle an Intent, if it is advertised in a tag called Intent-
filter in AndroidManifest.xml. Different ways in which
Intents are sent by application components are: (1). By
launching an Activity using startActivity (Intent)
type of methods; (2). By sending to Broadcast
Receivers using sendBroadcast (Intent) type
of methods; (3). By communicating with a service using
bindService (Intent, ServiceConnection,
int) type of methods; (4). By accessing data through
Content Providers.

E. Android Security

Android provides two important security mechanisms that
are different from traditional Unix systems, i.e., application
sandboxing and permissions. Sandboxing means each An-
droid application (*.apk) is given its own unique UID at
install time that remains fixed throughout its lifetime. This
is different from traditional desktop systems where a single
user ID is shared among different processes. In Android,
since two applications run as two different users, their code
may not be run in the same process, thus requiring the need
of IPC. Moreover, applications are also assigned separate
directories where they can save persistent data. Applications
can specify explicitly whether it will share its data with other
applications in AndroidManifest.xml.

Application permissions is a Mandatory Access Con-
trol (MAC) mechanism for protecting application com-
ponents and data. To use resources, an application re-
quests permissions through AndroidManifest.xml file us-
ing the uses-permission tag at installation time. For ex-
ample an application that needs to monitor incoming
SMS messages would explicitly specify permission of
“android.permission.RECEIVE_SMS”. To protect



or share an application’s own components, an application
can define and specify a certain permission for a caller. This
mechanism gives fine-grained control of different protected
features of the device but fixes these permissions to install
time as opposed to runtime.

ITI. EXPERIMENTAL SETUP

Of the two Inter Component Communication (ICC) prim-
itives in Android—Intent and Binder—we use Intent as the
subject of our robustness study due to its flexibility. Intents
are used for a variety of purposes in Android applications
which include but are not limited to—starting a new activity,
sending and receiving broadcast messages, receiving results
from another activity, starting and stopping a service etc.
To support these operations across a myriad applications
from multiple vendors over many versions, Intent messages
have a flexible structure and therein lies the potential for
vulnerability. In a vulnerability analysis of Android IPC,
Chin et al. [13] argued that it is easy to spoof, snoop,
and target Intents to specific application components unless
these are protected by explicit permissions, which is a
rare occurrence. Our experimental results concur with this
analysis and show that the attack surface can go even deeper
(i.e. up to the framework layer or lower as shown in [14]).
Due to these reasons we chose Intents as the primary focus
of our study. In essence, we try to answer the following
questions:

(A) How well does an Android component behave in the
presence of a semi-valid or random Intent?

(B) How robust are Android’s ICC primitives? Can the
Android runtime contain exceptions within an application?
(C) How can we refine the implementation of Intents so that
input validation can be improved?

To evaluate (A), we sent explicit Intents to each Activity,
Service, and Broadcast Receiver registered in the system.
We evaluate (B) by sending a set of implicit Intents and
answer (C) by presenting a qualitative assessment in Section
V.

A. Testing Tool

We built our robustness testing tool, JarJarBinks, from
Intent Fuzzer at [15]. The initial codebase contained basic
functions like displaying set of components registered in the
system, and sending blank Intent messages to Broadcast Re-
ceivers, and Services. However, it did not support testing Ac-
tivities. We added this key feature in JarJarBinks along with
an Intent generation module described in Section III-B. Fig.
2 shows the location and operation of JarJarBinks (JJB) with
reference to Android architecture [14]. It queries Android
PackageManager to get a list of components (Activities,
Services, and Broadcast Receivers) registered in the system
and then uses ActivityManager to send Intents to these com-
ponents. We use the following methods from Android API to
send Intents: startActivityForResult for Activities,
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Figure 2. JarJarBinks: Interaction with Android Layers

startService for Services, and sendBroadcast for
Broadcast Receivers.

One of the major challenges in automated testing of
Android Activities is to close a callee Activity after
sending an Intent. Typically, once a new Activity
is displayed, it expects some interaction from the
user and pauses the caller Activity. We resolved
this by  using startActivityForResult ()
and finishActivity () APIs in Android. Unlike
startActivity (), startActivityForResult ()
can force-finish a child activity by using its requestCode
as a handle. This way we could avoid manual intervention
in most cases. Another design issue with automated testing
of ICC in Android is to avoid resource exhaustion in the
system (e.g., sending a continuous stream of Intents very
fast would create a large number of Activities (windows)
causing WindowManager to run out of resources). For this
purpose, we used a pause of 100ms between sending of each
successive Intent. This was sufficient to launch and finish
a new Activity (or Service) in our testing environment.
Though we did not explicitly test Content Providers in
JarJarBinks, semi-valid content URIs were specified in
some of our fault injection campaigns triggering parsing of
these content URIs and corresponding permission checks.

It may be highlighted that one of our goals was to
keep the implementation of JJB simple and less intrusive,
thereby, not introducing new bugs in the firmware. We,
instead, focus on a rigorous analysis of the results obtained
from our experiments. Despite its simplicity, the volume
and severity of failures generated through JJB is truly
astonishing. One shortcoming of JIB is its semi-manual
approach—our strategy of killing a child Activity (by calling
finishActivity) did not work well in two situations:
first, when a system alert was generated due to applica-
tion crash, this could not be closed programmatically (we
consider this as a good security design; JJB being a user-
level application cannot hide system alerts), second, when an
activity was started as a new task the caller could not close
it by calling finishActivity () (this mostly happened
while launching login screens of applications like Skype,
Facebook, Settings etc.). Both these cases required manual
intervention and will be addressed in our future work. In



the following section, we present an overview of our Intent
generation module.

B. Generating Intents

An Intent message is essentially a data container having
a set of optional fields—{Action, Data, Type,
Package, Component, Flags, Categories,
and Extras}—which can be specified by a caller. Of
these, Action (an action to perform, e.g. to view or edit
a contact) and Data (a URI for a data item, e.g. URI for
a contact record on phone) are most frequently specified
by a caller. Component specifies the target component,
Flags control how an Intent is handled, Category
specifies additional information about the action to execute,
and Extras include a collection of name-value pairs to
deliver more inputs to the target component. Type (content
mime-type) is usually determined from Data (when it
is specified), while, Package can be determined from
Component if one is specified.

In JarJarBinks, we modify the fields Action, Data,
Component, and Extras in a structured manner as
part of a fault injection campaign and keep the other
fields blank (we select Extras since this can potentially
include random or malicious data from users). For most
experiments Action is selected from a set of Android-
defined action strings found at [16]. Generation of data
URIs is a non-trivial operation due to the presence of
a multitude of URI schemes. A URI consists of three
parts URI := scheme/path?query, where scheme
denotes URI type, path gives the location to the data,
and query is an optional query string. At present we
support the following URI schemes—"content://",
"file://", "folder://", "directory://",
"geo:", "google.streetview:", "http://",
"https://", "mailto:", "ssh:", "tel:",
and "voicemail:" in JarJarBinks. For each of these
except "content://", we created a predefined set of
semi-valid URIs. For "content://" URIs, JarJarBinks
first queried the PackageManager to get a list of registered
Content Providers in the system and then randomly selected
one of them to build a content ://provider URI Our
Intent generation can be broadly classified into two types.

1) Implicit Intents: Components in the system can ad-
vertise their ability to handle Intents by specifying Intent-
filters in their manifest file. Implicit Intents do not specify
a target, but are delivered to the best matching component
in the system. The matching between sender and receiver
is the responsibility of the Intent delivery mechanism of the
platform. Intent-filters can restrict the Act ion of the Intent,
the Category, or the Data (through both the URI and the
data type fields) or any combination of the three. The test
set for implicit Intents is therefore any Intent that matches
at least one Intent-filter in the system. In order to generate
Intents, we collect all Intent-filters of all applications and

all restrictions of either the Action or the Category. On
our target platform, we could not find components using the
Data in Intent-filters. For each application and each of its
Intent-filter, the following experiments were performed:

(A) Valid Intent, unrestricted fields null: We gener-
ate an Intent that matches exactly all the restricted at-
tributes of the Intent-filter but leave all other fields
blank. For example, if the Intent-filter specifies <action
android:name="ACTION_EDIT" />, only this infor-
mation is used to populate the Intent fields.

(B) Semi-valid Intent: We pick all Intent-filters that have
at least one degree of freedom and set these fields sequen-
tially to each of the valid literals we discovered in any other
Intent-filter. For the above example, the Category field
would be subject to fuzzing since only Action is restricted
through the filter. Thus, the fuzzed fields are individually
valid for some component in the system, but not their
combination. Since each individual field in the generated
Intent is valid, there is still a high chance that it is routed
to a component.

2) Explicit Intents: Our goal here is to find how well
the receiver of an Intent behaves after getting unexpected
data. At a high level, our fuzz campaign on explicit In-
tents is distributed over three component types—Activities,
Services, and Broadcast Receivers. For each component
type, JarJarBinks first queries PackageManager to retrieve
a list of components of that type in the system (e.g. all
the Services, or Activities). After this, for each selected
component (e.g. Calender Activity) JarJarBinks runs a set
of four fuzz injection campaigns (FIC).

FIC A: Semi-valid Action and Data: Here a semi-valid
Action string, and Data URI are generated as described
earlier (refer Section III-B). However, the combination
of the two may be invalid. For example, an Intent of
this category may be Intent {act=ACTION_EDIT
data=http://www.google.com cmp=com.
android.someComponent}. During this FI, the
Action and Data sets are combined to generate all known
{Action, Data} pairs each generating a new Intent.
Total number of Intents generated are |Action| X |Datal
for each component. Fields other than Action and Data
are kept blank.

FIC B: Blank Action or Data: In this experiment,
we specified either Action OR Data in an Intent
but not both together. Other fields are left blank.
Intent {data=http://www.google.com
cmp=com.android. someComponent} is an example
of this FI. This campaign generates |Action| + |Data|
Intents for each component.

FIC C: Random Action or Data: Here either Action
OR Data is specified as described earlier, and the other is
set to random bytes. An example of this type of Intent may
be Intent {act=ACTION_EDIT data=alb2c3d4
cmp=com.android. someComponent}.



FIC D: Random Extras: For this FI, we first created a set
of 100 valid {Action, Data} pairs following Android
documentation. For each of these pairs, 1-5 Extra fields
were added randomly. The name of an Extra was
selected from the set of Android defined Extra strings,
while its value was set to random bytes. An example
Intent can be shown as, Intent {act=ACTION_DIAL
Data=tel:123-456-7890 cmp=com.andro—
id.someComponent has Extras}.

Our choice of experiments is justified by the fact that an
application component may get a malformed Intent either
due to error propagation from other applications or from an
active adversary. While FICs A and B verify the robustness
of a callee component against null objects and incompatible
actions, FICs C and D emulate the behavior of a potential
adversary.

C. Machines and Firmware

We conducted our robustness test on three versions of
Android, distributed on three phones and three computers—
two of the phones (Motorola Droid) had Android 2.2 as its
firmware (release date: June 2010 and nicknamed “Froyo”),
while one (HTC Evo 3D) had Android 2.3.4 (release date:
April 2011 and nicknamed “Gingerbread”); the computers
all ran Emulators loaded with Android 4.0 in Linux envi-
ronments (release date: October 2011 and nicknamed “Ice
Cream Sandwich”, the image of which was useful during
long late night experiments with it). The HTC Evo was used
for running experiments on implicit Intents. Experiments
on explicit Intents, where we sent a large number (9000)
of Intents to each Android component, being more time
consuming, was run in parallel on two Droid phones (having
identical hardware and firmware). The emulators were used
for testing Android 4.0, the latest version of Android, for
which a physical device has been available only in late
November 2011, clearly not enough time for us to carry
out experiments. Android 4.0 is a promising target of the
study since it has been widely hailed as “the biggest Android
update in ages” (PC Magazine) and is touted to bring real
improvements to the Android platform. Initially, it was noted
that the devices as well as the emulator had nearly 800
components (Activities, Services, and Broadcast Receivers
combined) per version of Android which include a large
number of third-party applications. In this paper, we focus
our attention to Android framework and common applica-
tions that are pre-loaded into every Android distribution
(e.g. contacts, calendar, messaging etc.). These application
are also used by third-party application in implementing
common functionalities. Hence, rigorous evaluation of these
built-in applications are of prime importance. In Android
namespace hierarchy, these applications all share the pack-
age name prefix of com.android. After filtering the list
of components with this prefix we found 398 components
(297 Activities, 42 Services, and 59 Broadcast Receivers) in

Droid and 455 components (332 Activities, 54 Services, and
and 69 Broadcast Receivers) in Emulator.

In addition to built-in applications, we also tested 5
Most popular (as on 3 Dec, 2011) free apps from Android
Marketplace (recently renamed Google Play). These apps—
Facebook, Pandora Radio, Voxer Walkie Talkie, Angry
Birds, and Skype—had a total of 103 Activities and 11
Service components. Even though our set of Marketplace
apps is small, the large number of Activities (103 as opposed
to 294 in Droid) gives us a realistic comparison of their
robustness with that of Android. Our experiments started by
subjecting all these (Android and Marketplace) components
to a flow of Intents from JarJarBinks over a seven day period.
In the following section, we present our findings.

IV. EXPERIMENTAL RESULTS

During the course of our experiments, more than 6 million
Intents were sent to 800+ components across 3 versions of
Android. We define an experiment as follows:

Choose one particular component and inject all the Intents
targeted to that component. The injection is done according
to the Fault Injection Campaigns (thus, if we are doing FIC
A, the <Action, Data> pairs are changed to semi-valid
values).

We collected execution logs from the mobile phones and
emulators using logcat, a logging application in Android
platform tools. This generated more than 3GB of log data
which were later analyzed to gather information about the
failures and their root causes. We define a crash to be a user
visible failure, i.e., a system alert displaying the message
"Force Close" (in Android 2.2) or "Application
x stopped unexpectedly" (in Android 4.0). These
failure messages manifest in the log files as a log entry
stating "FATAL EXCEPTION: main" and are essentially
effects of uncaught exceptions thrown by the Android run-
time. It is to be noted that sending(receiving) of certain
Intents (e.g. <action=ACTION_SHUTDOWN> or Intents
with "content:" URIs in Data field) in Android are
protected by permissions and when JJB sends these Intents
SecurityExceptions are generated. JJB is able to han-
dle these exceptions gracefully and we discard these from
our results. At present we focus on crash failures as opposed
to thread hangs due to their visibility and negative user
experience.

We discuss our results from three perspectives: (i) preva-
lence of crashes caused in the application components due
to the fuzzed Intents for the various types of components
and different fault injection campaigns; (ii) distribution of
uncaught exceptions thrown by components in response to
the fuzzed Intents; and (iii) error propagation from a user-
level application to the Android framework.

In general, Android 2.2 displayed many more crashes
than Android 4.0 and components in all the versions were



vulnerable to NullPointerExceptions. It was pos-
sible to crash some components by sending them an im-
plicit Intent that matched exactly with their Intent-filter (i.e.
nothing other than the mandatory fields were specified).
In Android 2.2, three of the application crashes caused
cascading failures which eventually restarted the Android
runtime. The Android Emulator also showed signs of stress-
related failures, whereby, the system_server (the frame-
work component that coordinates interaction between Kernel
space and user space) restarted periodically after testing a
fixed number of components. The system_server is a
key part of the Android environment—it runs a host of
essential services (Power Manager, Device Policy, Search
Service, Audio Service, Dock Observer, etc.). A crash of
the system_server Kkills all user level application and
services and restarts the Android runtime.

Below we present our experimental results organized into
three discussions.

A. Results for Explicit Intents

In Section III-B2, we described how we generated explicit
Intents for four different fault injection campaigns. In FIC A
we sent an invalid <Action, Data> pair to components,
in FIC B we sent an Intent with either Action or Data
blank, in FIC C random bytes were assigned to either
Action or Data, and finally in FIC D random bytes were
assigned to Extras values. During our experiments we
found a large number of crashes—2148 in Android 2.2,
641 in Android 4.0, and 152 for Marketplace apps. One
may argue that a comparison between Android 2.2 on a
real phone and Android 4.0 on an emulator compromises
the validity of our results. To verify this, we conducted a
smaller-scale test of Android 2.2 on emulator and Droid and
did not find any major difference. Our choice of Android 4.0
on emulator was driven by the lack of a physical device in
a timely fashion. Even if results obtained from a physical
device change from its emulator (i.e. absolute numbers of
crashes change), it does not invalidate the general trends
described in our results. Below, we present an analysis of
the observed crashes.

1) Distribution of Failed Components: We define a failed
component to be a program that crashes at least once during
a fuzz injection campaign. Due to the nature of our Intent
generation it is possible that a component fails repeatedly
in one experiment where that component is targeted, e.g. an
activity that dereferences Data field without null check will
crash for all Intents that has a blank Data field. Counting
such repeated crashes masks the actual number of faults
at source code, therefore, for a fault injection campaign
like ours, a better metric of a framework’s reliability can
be obtained by finding how many failed components it
has. Table I presents the number of failed components for
various types (Activity, Broadcast Receiver, and Services) in
each of our experiments. The number at the top, under the

component type represents the total number of components
of that type, e.g., Android 2.2 has 297 Activities. The
number in the column ‘“#crash” denotes the number of
components that crashed.

It is encouraging to see that in all cases but two, the
percentage of failed components is less than 10. The per-
centage of failed components in Android 4.0 is generally
lower than in Android 2.2, with the exception of Services.
Across experiments, Activities display higher fraction of
failed components in FIC A than the rest. However, this
may also be due to the fact that FIC A sends nearly twice
as many Intents than FICs B, C, and D combined. The high
count of failed components across component types in FIC
B is another key finding of our experiments. This indicates
that many Android components do not perform null checks
before dereferencing a field from an Intent and, therefore,
are vulnerable to blank fields. This fact is also verified by
our data in the next section.

The failure percentages of Marketplace apps are nearly
identical to that of Android 4.0 components with the ex-
ception of FIC A for Activities and for Services, where
Marketplace apps are significantly more robust. However, it
was observed that 3 of the apps had at least one component
that failed one or more experiments. Though our sample size
for Marketplace apps (5) is too small to make any claims
about general robustness of third-party apps, we expected
the Top 5 to be more robust as they come from reputed
vendors. This intuition is only partially borne out by the
analysis results.

2) Distribution of Exception Types: To understand how
well the Android framework handles exceptional condi-
tions, we measured the distribution of exception types from
failure logs. Here, we are focused on uncaught excep-
tions, because they result in the crashes. Since we are
interested in measuring what percentage of all the crashes
are constituted by a given exception type, here we count
each crash individually. Thus, if in one experiment, 100
fuzzed Intents are sent to a component and the component
crashes 20 times, we will have 20 data points (unlike in
Section IV-Al where we would have counted the com-
ponent as having crashed and it would have resulted in
a single data point). It can be seen from Fig. 3 that
NullPointerExceptions (NPE) make up the largest
share of all the exceptions. Though the percentage of NPEs
in Android 4.0 (36.50%) has improved since Android 2.2
(45.99%), this is still significant and concurs with our
findings in Section IV-A1l. The results are given in terms of
percentage of all the exceptions, thus for a given Android
version, all the exceptions’ numbers should sum to 100%.
Other exceptions like ClassNotFoundException and
IllegalArgumentException are significantly lower
in Android 4.0 than in its previous version. Though excep-
tion types are sensitive to input data, we are applying similar
inputs to the two different versions of Android. Therefore,



Droid (Android 2.2) Emulator (Android 4.0) Marketplace Apps on Droid (Android 2.2)

Activities Services Broadcast Activities Services Broadcast Activities Services Broadcast

Receivers Receivers Receivers

297 42 59 332 54 69 103 11 10
#crash % #erash | % | #crash % #erash | % | #crash | % | #crash | % | #crash | % | #crash | % | #crash | %
A. Semi-valid 30 10.1 1 24 2 34 29 8.7 3 5.6 2 2.9 4 39 0 0.0 0 0.0
B. Blank 21 7.1 1 2.4 6 10.2 8 2.4 3 5.6 6 8.7 2 1.9 1 9.1 0 0.0
C. Random 18 6.1 1 2.4 4 6.8 9 2.7 3 5.6 2 29 2 1.9 0 0.0 0 0.0
D. With Extra 13 44 1 2.4 1 1.7 7 2.1 3 5.6 0 0.0 3 2.9 0 0.0 0 0.0
Table I

SUMMARY OF COMPONENT CRASHES IN DIFFERENT VERSIONS OF ANDROID IN RESPONSE TO FUZZED INTENTS IN FOUR DIFFERENT INJECTION
CAMPAIGNS. HERE ONE COMPONENT CRASHING ONE OR MORE TIMES IN RESPONSE TO ONE OR MORE MALFORMED INTENTS DIRECTED AT IT
COUNTS AS ONE CRASH.

our comparisons across the two versions are still valid.
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Figure 3.  Distribution of different types of (uncaught) exceptions in
Android 2.2 and 4.0. The bars represent percentage of all the exceptions,
thus will sum to 100 (for each Android version). Note that we do not
include Marketplace apps for this study.

However, the most significant finding from this study

is the introduction of unpredictable environment-
dependent errors in Android 4.0. Fig. 3 shows
that the second, third and fourth largest exception
types in Android 4.0 are android.view.Window
Manager$BadTokenException (26.83%),
java.lang. IllegalStateException (23.56%),
and java.lang.RuntimeException (3.12%).

These exceptions are almost non-existent in Android
2.2. A dominant reason for these crashes was garbage
collection, where resources allocated to activities were
released—a severe side-effect being restart of the Android
system_server. It was observed that the same fuzzed
Intent sent to the same component at a different time point
in the experiment did not always cause the failure, or
caused a different failure. The exact manifestation depended
on the state of the device (the Emulator of the device to be
more precise).

Another important point to note for Android 2.2

is the presence of exceptions that are typically
thrown by the framework to notify the calling
component of erroneous input or state, e.g.,

java.lang.IllegalArgumentException,
java.lang.SecurityException,

java.lang.UnsupportedOperationException
etc. It is the responsibility of the calling function to
implement proper exception handling, however such
behavior is often missing in standard Android components.
3) System Crash from User Level Applications: Another
significant discovery from our experiments was the cas-
cading failure of the Android runtime system. We found
a total of three Activities in the built-in applications that
caused Android’s system_server to restart. Due to the
sensitive nature of these bugs and their potential security
impact on millions of Droid users, we shall not disclose
the names of the applications or the Activities in this
forum. Instead, we use the generic name ActivityX for
purposes of explanation. All of the failures occurred due
to NullPointerExceptions. Upon inspection of the
configuration files of these activities, it was revealed that
all these activities run under the “system” process of An-
droid (i.e. system_server). When these activities tried
to access some fields inside an Intent, they did not catch
the NullPointerException, which crashed the current
thread and eventually sent Signal 9 (SIGKILL) to Android
system_server. A special concern is that to test these
components JarJarBinks did not need any extra permission
at install time. Thus, potentially, any user level application
is capable of sending the malformed Intents to these vul-
nerable Activities, causing the entire device to crash. Such
promiscuous use of privileged operations is a concern for
millions of customers using Android 2.2/2.3 handsets.

57 final Bundle extras = getIntent().getExtras();
58 mAccount = extras.getParcelable(EXTRAS ACCOUNT);

Figure 5. Code responsible for crash of ActivityX, which eventually causes
the entire device to crash

Let us take a look at the stack trace for one of
these crashes. This crash occurred when we sent an In-
tent {act:ACTION_PACKAGE_DATA_CLEARED cmp=
android/.ActivityX} to the Activity. The stack trace
for this crash (refer Fig. 4) showed an error at line
58 of the source file ActivityX.java. The relevant
code snippet is shown in Fig. 5. This code tries to
read the extra field EXTRAS_ACCOUNT. However, since
our Intent did not specify an Extras field, it raises a
NullPointerException. This uncaught NPE kills the



I/ActivityManager ( 62):
ndroid/.accounts.

Starting activity: Intent { act=ACTION PACKAGE DATA CLEARED cmp=a

}

W/dalvikvm( 62): threadid=7: thread exiting with uncaught exception (group=0x4001d800)
E/AndroidRuntime ( 62): *** FATAL EXCEPTION IN SYSTEM PROCESS: android.server.ServerThread
E/AndroidRuntime ( 62): Caused by: java.lang.NullPointerException

E/AndroidRuntime ( 62): at android.accounts .|| NG -

eate (I == : 56 )

E/AndroidRuntime( 62): . 6 more
I/Process (

I/Zygote |

62): Sending signal. PID: 62 SIG: 9
33): Exit zygote because system server (62) has terminated

Figure 4. Partial stack trace of crash of ActivityX, which eventually causes the entire device to crash

thread of this activity and eventually the process, which, in
this case, is system_server. The problem can be avoided
by verifying that the extras object in line 57 is not null
before accessing it, or by handling the exception gracefully.
The severity of this bug lies in its ability to crash Android
system_server, in other words, to render the device
unusable till the Android runtime is restarted.

B. Results for Implicit Intents

In experiment A, we sent implicit Intents that appli-
cations had opted in to receive but we left all unspec-
ified fields blank, e.g., when a filter only restricts the
Action, there is no Category, Data, or Extras field
set. Overall, the HTC phone had 211 applications regis-
tered from which we could derive 1910 Intent-filters. For
each Intent-filter, we sent out exactly one Intent matching
the filter through startActivity (). Note that some
of these Intent-filters are registered by Services, hence,
sending a matching Intent through startActivity ()
simply results in an ActivityNotFoundException.
Those Intents that were delivered to an application,
crashed 5 of the recipients. 12 unexpected exceptions oc-
curred during the experiment, which are exceptions other
than ActivityNotFound or any flavor of security ex-
ception. Most frequent exception was once again the
NullPointerException followed by IOException
and Resources$NotFoundException. All three are
the result of insufficient input validation either causing a
missing value to get dereferenced (NPE) or, even worse,
propagated as an argument to a IO or resource loading call.
At the end of the experiment, the phone crashed with a
system reboot in 50% of the cases due to cascading failures.
Even though the number of failures is not large relative to
the number of applications tested, it has to be pointed out
that all Intents we sent are completely valid according to
what a sender is able to find out through the Intent-filters.
The problem arises from the fact that there is a significant
amount of unspecified assumptions about the Intents that the
receivers take for granted and fail to verify (e.g., a specific
information in the Extras data being present).

Experiment B goes a step further by combining all valid
combination of Action and Category, thereby, signifi-

Table 11
FREQUENCY DISTRIBUTION OF CRASHES WITH IMPLICIT INTENTS BY
EXCEPTION TYPE

Exception Type #Crashes
NullPointerException 32
IOException 22
RuntimeException 13
ArrayIndexOutOfBoundsException 6
android.content.res.Resources$NotFoundException 4
ClassCastException 3
TimeoutException 1
com.sprint.internal.SystemPropertiesException 1
Illegal ArgumentException 1

cantly enlarging the number of Intents sent.

From the Intent-filters, we were able to derive 643 distinct
Actions and 37 Categories that were used in at least
one of the filters. For each application, we now generated
all possible combinations of Action and Category that
were valid according to the filter. The experiment consis-
tently crashed the phone after 26 out of the 211 applications
tested. This happened even though we set the delay between
the Intents to 2 seconds to allow for manual interaction
(e.g., closing dialog boxes) and thereby avoiding resource
exhaustion.

From this small set of 26 tested applications, we
observed 83 exceptions. The distribution of the spe-
cific exception types is shown in Table II with
NullPointerException and IOException again
being the most frequent ones. Overall, 14 applications
crashed during the experiment and showed a dialog to the
user and only half of them were actually targeted directly,
i.e., were the applications from which the filter was derived.
The majority of the applications (including basic apps like
Clock, Internet, Gallery, etc.) were most likely affected due
to collateral failures, e.g., an Intent matching more than one
filter and getting routed to more than one component.

C. Discussions

Our experiments have so far revealed three important as-
pects of Android—first is the presence of many components
with poor exception handling code (most of these relate
to NullPointerExceptions), second is the prevalence
of environment-dependent errors in Android 4.0, and third
is the presence of privileged components with unrestricted



access. The first problem can be addressed by a methodical
training of developers on good exception handling practices.
Application developers should always check for exceptional
conditions when dealing with inputs (Intents) from external
sources. Resolution of the second and third problems need
more work at the Android framework level. The third issue
also exposes some potential problems with Android’s default
policy for process-assignment of an application component.
At present a component X in application A can run in the
process of application B if A and B are signed with the same
developer key. Despite signature-based permissions, this
may pose a problem for vendors that build custom ROMs.
If a component (C) of this custom build is permitted to run
as privileged process, it may wreak havoc like ActivityX in
a similar fashion (note that component C and the kernel of
this build are signed with the same key). A potential solution
is to restrict accessibility of component C with an explicit
permission, in other words, every component running in a
privileged process must be protected by explicit permissions.
JJB Limitations: Apart from its handling of new tasks
and alert dialogues (where a tester must manually close
these), JJB has another limitation—it cannot distinguish
between thread hang, resource exhaustion, and Ul wait.
Detecting thread hangs in response to a malformed Intent
would require knowledge of a component’s life cycle which
is currently not visible in logs generated by logcat. Our
future work would look into adding this capability in JJB.

V. ANDROID IPC DESIGN RECOMMENDATIONS

The key challenge in making Intents more robust is the
lack of a formal schema. Intents are effectively untyped;
their application-level type is only determined by a String
identifier but is not reflected by the Java type system.
Therefore, there is no explicit contract between a sender
and a receiver of an Intent and mutual agreement is expected
among the two about what format of data a specific Intent
needs to have and what an invalid message is. Additional
data is stored in a map-like data structure that is not fully
type safe either. The data structure keeps separate key spaces
for values of different types and provides typed methods
for adding and retrieving data but it is again not formally
specified what the expected additional values are and which
type they are supposed to have. It is up to the author of
the receiver code to perform the input validation, which is
a repetitive and error-prone task. To make matters worse,
primitive types are stored and retrieved as actual primitives,
which means that in the absence of the value the result is
the neutral element of the type, e.g., false in the case
of a boolean value. The absence of a primitive value in the
extra data is therefore not detectable by the receiver. Another
problem arises from software evolution. Implicit message
formats are hard to keep consistent across different versions
of the applications, especially within an ecosystem where
components are contributed by different sources. There is no
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way to version a specific Intent or to indicate compatibility
between a sender and a receiver.

A. Subtyping/POJO Approach

One way to make the message format more explicit and
therefore possible to capture for an automated message
verification system is to use subclasses for Intents instead of
a single flat type. Extra data belonging to a message would
be expressed as fields of the subtype. In the spirit of Plain
Old Java Objects (POJOs), there would be getters and setters
for the field. As a side effect, the Java compiler can now
do automatic type checking since the messages use a type
schema that the compiler is able to understand and enforce.
What this approach does not achieve is further constraints on
the values of data. For instance, there is no way to enforce a
certain reference-type value to be not null or a numeric value
to be always smaller than 10. Furthermore, there is currently
no way in Java to express version information of classes in
a standardized and accessible way. The cost for using the
subtyping approach is that the total footprint of the platform
is slightly increased since every Intent type now becomes a
separate class in a separate file.

With a little experiment we found that a single class
(subclass of Intent) with 3 fields (String, int, URL) having
bean-like setters and getters adds 273 bytes to the footprint
of an Android application, while the increase in size for a
class with 6 fields is 403 bytes. Considering a handset where
we have 200 Intent types, this implies a 80KB additional
footprint for turning all these Intents into Subtypes with 6
fields. We argue that this is, in fact, an upper bound on
footprint increase since we consider average 4-6 fields per
Intent. In reality, most Intents have only between 2-3 fields,
with few having a large number of fields (e.g., informative
Intents like Battery Status).

B. Java Annotations

One way to express additional constraints about the mes-
sage format when choosing the subtyping approach is the use
of Java Annotations. Annotations are fully embedded into
the language (since Java 1.5) and can be processed by the
Java compiler. Therefore, it is possible to use the annotations
already at compile time for criteria that are amenable to
static checking. For dynamic checks, the corresponding code
can either be realized as a common generic checker facility
implemented as part of the Intent delivery mechanism of the
platform or synthesized and injected into Intent receivers.

C. IDL and Domain Specific Language

Extended input validation requires additional knowledge
about the message format since the semantic gap between
the implicit message format and what can explicitly be
expressed by classes and the Java type system is still large.
For instance, an Intent responsible for a contact lookup
might want to be able to do approximate matching and return



the contact names together with a matching factor between
zero and one. In the Java type system, it would have to use
a float type for the latter data but thereby would extend the
range of permitted values to the entire IEEE 754 floating
point number range. Another example is the problem that
every reference type can always be set to null so that there
is no way to express mandatory data in messages. One way
to more expressiveness is to use a domain specific language
to express the schema of the Intents.

Historically, a similar approach has been taken with many
RPC systems which used an interface definition language
(IDL). This IDL describes exactly the format of a remote
invocation in enough detail so that the stub and skeleton
code can be synthesized from this description. Systems
like CORBA extensively used IDLs but arguably also web
services employ the same principle, e.g., through the WSDL
files. For instance, a type system like XML Schema allows
value restrictions and would be a viable candidate for a
domain specific language approach to specifying Intents.
A well-designed domain specific language can express any
type of constraint and therefore permit full input validation
including version checks.

There are two different possibilities to interface general-
purpose languages with domain-specific languages. External
DSLs are free-standing and independent of the host lan-
guage. IDLs, for instance, are external DSLs. As a result,
however, code written in the host language and the meta-data
written in the DSL have to be developed independently and
cannot easily be cross-validated by existing tools. Internal
or embedded DSLs are themselves implemented in the host
language and therefore agree much better with existing tools.
They are, however, restricted to what the host language can
express.

VI. RELATED WORK

Robustness evaluation of software systems is broadly cat-
egorized into functional and exceptional testing. Functional
testing [17] employs generation of expected test inputs with
the intention of checking the functionality of a software
module, while exceptional testing employs generation of
specially crafted test inputs to crash the system in order
to check its robustness. Generated input test data can be
random, a pure fuzz approach [6], or semi-valid (intelligent
fuzzing) [10], [18]. UNIX utilities were first fuzzed by
Miller et al. [6] by feeding random inputs to show that 25-
33% of utility programs either crashed or hanged on different
versions of UNIX. This simple technique has caught a
variety of bugs like buffer overflows, unhandled exceptions,
read access violations, thread hangs, memory leaks, etc.
A later work by the authors [7] showed that robustness
of UNIX utilities improved little over five years. A study
[8] of similar nature on Windows NT and Windows 2000
showed their weakness against random Win32 messages,
while, blackbox random testing on MacOS [9] reported a
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considerable lower failure rate (7%). Our research extends
these works to a mobile platform where we fuzz the ICC of
Android and show a variety of exception handling errors.
In terms of knowledge about the target application (i.e.
whitebox [18], [19] vs. blackbox testing [20]), our tool
takes a combined approach (blackbox for explicit Intents
and whitebox for implicit Intents).

Fuzz tools reported in literature can also be classified
based on their input generation techniques and their intru-
siveness. The input data produced by a fuzzer tool may be
either generation based or mutation based [21]. Generation
based fuzzers generate test inputs based on specification of
a protocol or an API to be tested while mutation based
fuzzers rely on capturing and replaying a mutated version of
valid input. Our tool (JJB) falls under generation-based fuzz
tools, as it generates input data, i.e., Intents conforming to
Android Intent API specifications. JIB is also intelligent in
that it has knowledge of Android APIs (e.g. known Action,
Category, and Extras strings) and partial knowledge
of the target applications (e.g. Intent-filters). Fuzzing tools
typically produce input received across trust boundaries [22],
i.e., Runtime-OS and Application-Runtime boundary. At a
lower layer, fuzzing can be done at Runtime-OS interface
as shown by [23]. Another similar work, Ballista [10],
identified ways to crash operating systems with a single
function call at Runtime-OS boundary. At a higher layer,
fuzzing can be done at Application-Runtime boundary where
runtime is responsible for validating data. In this work,
we fuzz at Application-Runtime boundary with the aim of
crashing Android runtime by fuzzing Intents that are passed
between application components.

Fuzz testing has been employed in other domains like
web applications, web servers, web browsers [24], Java-
based applications [25] and SMS systems [26]. Fu et al. [25]
presented an approach for compiler-assisted fault generation
for testing error recovery codes in Java server applications.
This is complementary to our work—the applications that
had exception handling codes may be further evaluated by
this tool, while in JarJarBinks, we found uncaught excep-
tions. Furthermore, JarJarBinks can additionally test Android
market apps, for which source codes may not be available.
We do not know any rigorous study of fuzz testing on smart-
phones. The closest work is [26], that fuzzes the messages
going through the mobile telephony stack. They provide a
fuzz based injection framework, that uncovers vulnerabilities
on SMS implementation in smartphones, and can be abused
for DoS attacks. In particular, the authors were able to
crash iPhone applications and disconnect Android devices
from mobile phone network. In our work, we evaluate a
wider range of applications in Android and focus on Inter-
component Communication.

A malformed Intent delivered to a receiver through ICC
exposes attack surfaces as pointed out by [13], example
vulnerabilities being triggering of components that are un-



intentionally exported by a developer (i.e., an Intent spoof)
or unauthorized receipt of an implicit Intent by malicious
component. ComDroid [13], a static analysis tool, detects
these two vulnerabilities in Android applications. We narrow
down these attack surfaces to a set of input validation errors
by runtime testing, however, actual exploit of these errors
may require combining these with other vulnerabilities (e.g.
improper permission assignment). Our approach discovers
vulnerabilities in the application components, but, we do
not provide exploits to use these vulnerabilities from an
external source, i.e., we do not show external requests that
will generate malformed Intents for actually exploiting these
vulnerabilities. That is part of our ongoing work.

Other work on Android security looked at permission
assignment of applications, misuse of sensitive information
[27], and provided future directions for application certifi-
cation [28]. Our work does not directly detect privacy leaks,
but can be used for giving insight to good application design
practices (specially input validation). These practices in turn
can be incorporated in an application certification process
that is geared towards improving application robustness.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have successfully conducted an extensive
robustness testing on Android’s Inter-component Communi-
cation (ICC) mechanism by sending a large number of semi-
valid and random Intents to various components across 3
versions of Android. Our learnings from this fault injection
campaign are many, most prominent ones being: 1) Many
components in Android have faulty exception handling code
and NullPointerExceptions are most commonly ne-
glected, 2) It is possible to crash Android runtime by sending
Intents from a user-level process in Android 2.2, 3) Across
various versions of Android, 4.0 is the most robust so far
in terms of exception handling; it, however, displays many
environment dependent failures.

Based on our observations, we have highlighted the
guideline that any component that runs as a thread in a
privileged process should be guarded by explicit permis-
sion(s). We have also proposed several enhancements to
harden implementation of Intents; of these, subtyping in
combination with Java annotations can be easily enforced.
Our experiments have so far looked at robustness of Android
components. In future we wish to explore whether any of
the detected failures can be exploited by attackers, more
specifically whether these failures can be triggered by an
adversary who does not have physical access to the phone.
Robustness evaluation of Binder IPC in Android is another
future goal.
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