Automatic Fault Characterization via Abnormality-Enhanced Classification

Abstract

Enterprise and high-performance computing systems
are growing extremely large and complex, employing many
processors and diverse software/hardware stacks [1]. As
these machines grow in scale, faults become more frequent
and system complexity makes it difficult to detect and
diagnose them. The difficulty is particularly large for faults
that degrade system performance or cause erratic behavior
but do not cause outright crashes. The cost of these errors
is high since they significantly reduce system productivity,
both initially and by time required to resolve them. Current
system management techniques [2], [3] do not work well
since they require manual examination of system behavior
and do not identify root causes.

When a fault is manifested, system administrators need
timely notification about the type of fault, the time period in
which it occurred and the processor on which it originated.
Statistical modeling approaches can accurately character-
ize normal and abnormal system behavior [4]. However,
the complex effects of system faults are less amenable to
these techniques. This paper demonstrates that the com-
plexity of system faults makes traditional classification and
clustering algorithms inadequate for characterizing them.
We design novel techniques that combine classification
algorithms with information on the abnormality of appli-
cation behavior to improve detection and characterization
accuracy significantly. Our experiments demonstrate that
our techniques can detect and characterize faults with
85% accuracy, compared to just 12% accuracy for direct
applications of traditional techniques.

Keywords-fault detection, root cause analysis, statistical
modeling, autonomic management

I. Introduction

Global computing demands lead to complex systems
with up to hundreds of thousands of cores, terabytes of
RAM and diverse software and hardware components.
This vast scale increases the probability of component
failure. The complex interactions between the components
increases the likelihood that single component failure leads
to cascaded failures. Overall, the estimates of economic
loss in the US due to faulty software are just under 1%
of the national GDP [5]. Further, their frequency and
complexity will increase with required increases in system
capabilities. The costs of these failures will also increase
unless we develop tools that can quickly detect problems
and localize their root causes.

Increasing system complexity is making today’s system
administration tools inadequate. These tools provide vast
amounts of data about the systems and mechanisms to
search and to filter system logs and health reports from
system nodes and resources [2], [3]. However, they require
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humans to interpret this data to detect errors and they pro-
vide little insight into their root causes. These limitations
arise from the complex impact of faults, which propagate
across components until they cause subtle problems such as
service degradation. To overcome this challenge, we need
models of system behavior that accurately characterize
how this behavior deviates when faults occur.

Prior research has developed techniques to generate
models of specific systems based on manual system speci-
fications. Although such models can predict the root causes
of faults [6], [7], they are labor intensive and may miss
complex interactions in which one component influences
distant components without affecting intervening ones [8].
Alternatively, fully automated techniques infer the impact
of faults on key system behaviors based on statistical
models and empirical observations [4]. These models can,
in the best case, classify the system’s behavior as normal
or abnormal and identify the source of the abnormality.

In this paper, we make two fundamental contributions.
First, we study the limitations of baseline machine learning
models to detect and to characterize system faults. We
show that intuitively applying supervised statistical models
to complex system faults fails to characterize fault type,
time, and location accurately. Second, we design a method
that improves model accuracy by combining traditional
supervised classifiers with an unsupervised model based
on event probabilities that computes the abnormality of
individual events. We focus on the most critical capabilities
for fault analysis: identification of the type of fault, the
time period when the fault is manifested and the system
component(s) in which it originates. We target detection
and characterization of faults that cause performance
degradations, which are more complex than easy-to-detect
fail-stop failures. These faults include errant OS daemons
or worker threads, poor network performance due to un-
expected congestion or cable degradation, and resource
exhaustion (e.g. excessive paging and cache churn).

This rest of the paper is organized as follows. Section II
contrasts our work with traditional statistical machine
learning-based failure detection. Section III describes the
applications and statistical methods that our behavior mon-
itoring infrastructure uses. Section IV presents our general
approach to model application behavior and shows that
the intuitive approach achieves poor accuracy. Section V
shows how combining event abnormality information with
classification algorithms can significantly improve detec-
tion accuracy while Section VI explores the details of
how abnormality information should be incorporated into
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a model to achieve accurate fault characterization. Sec-
tion VII then shows how to aggregate individual fault pre-
dictions to identify the fault’s location, type, and starting
and ending times.

II. State of the Art and Our Approach

Current techniques create a statistical model for an
application through a training phase during which the
application is executed and generates a set of observations,
or events, such as, which component communicates with
which other component, or the amount of time a function
takes. To build its model, a supervised algorithm uses
faulty/nonfaulty labeling of the training observations as
well as context information such as the code region that
was being executed and the type of fault. In contrast,
unsupervised machine learning does not require labeled
observations. Instead, these techniques use a priori as-
sumptions about the structure of the data (e.g., non-faulty
observations are common and similar to each other, while
faulty observations are abnormal and rare) to build the
model. Either kind of training leads to a classification
algorithm (e.g. Naive Bayes or Decision Trees) that uses
the generated model to identify individual events and
production application runs as faulty or non-faulty and
even to localize the fault’s source and type.

Traditional techniques fail because system faults affect
different code regions within the same application differ-
ently. While some regions may be significantly affected,
others may behave normally. For example, suppose that
a chip overheats due to an internal defect or an unusually
hot machine room. Modern processors react to such events
by reducing the chip’s operating frequency. While this
change affects CPU-intensive code regions, it has less im-
pact on memory-intensive regions. Similarly, suppose the
problem arises due to a problematic interaction between
software components. For example, an errant daemon or
a utility thread may degrade the application’s performance
by polluting the cache whenever it is scheduled. Because
operating and runtime systems schedule software in coarse
time slices (in Linux this is typically 100 ms), the cache
pollution only impacts the code regions executed soon after
the errant software component runs.

The above effects, illustrated in Figure 1, complicate
differentiation of normal and abnormal behavior and iden-
tification of the type of fault. To train a classification
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algorithm, we must label as faulty all observations from
when the fault is occurring. However, if most code regions
during this time period behave normally then the statisti-
cal algorithm has insufficient information to differentiate
(mostly normal) faulty behavior from (completely normal)
non-faulty behavior. While observation data includes infor-
mation on the type of fault and executed code regions, it
does not characterize the vulnerability of a given execution
of a code region to that fault. The lack of key context
information makes the classification problem challenging.
We use this insight to design a new classification algorithm
that recovers this missing information to classify correctly
the type of fault based on its effect on application behavior,
without requiring any additional information about the
application, the system or the hardware.

Our novel solution builds a secondary unsupervised
model that captures the probability distribution of each
code region’s normal behavior, making it possible to
identify the events when it behaves abnormally. We use
this abnormality information to filter the labeling presented
to the classification algorithm to focus it on the abnormal
observations. Thus, the classifier can correctly identify
many more faulty events with fewer false negatives at the
cost of a few false positive predictions. Figure 2 shows a
diagram that compares the nave classification approach to
our refined approach.

The naVe approach provides a classification algorithm
with execution data that labels each event with the type
and location of any fault occurring at the time, if any.
The approach then applies the classifier to events from a
new execution to label events. Labels that indicate faults,
including the fault type and location, are presented to
the administrator for further review. This approach has
low accuracy and frequently reports many events that
correspond to the same fault, which can overwhelm system
administrators.



In contrast, our approach first applies an unsupervised
model to identify the events that are abnormal and removes
the fault labels from all other events. It then presents
this filtered training set to the classification algorithm,
which results in improved accuracy. Finally, our approach
aggregates fault detections to provide just one notification
for each system fault, thus reducing the reporting to system
administrators. By focusing the classifier’s attention on the
low probability events, our approach improves the fault
detection and classification accuracy from 12% to 85% on
faulty runs, while maintaining a 5% false positive rate.

ITII. Experimental Setup

We focus on detecting faults in High-Performance Com-
puting (HPC) systems during the execution of scientific
applications. HPC systems are large: Top 500 systems can
sustain 96 to 10,000 TeraFlops of computational power [9].
Even though these systems use high-quality components,
they fail regularly due to their large scale and the complex
interactions between components. For example, the ASCI
Q machine experienced 26.1 CPU failures per week [10],
and the 100,000 node BlueGene/L machine at Lawrence
Livermore National Laboratory averages one L1 cache bit
flip every 4 hours. From the perspective of applications,
HPC systems fail 10-20 times each day due to failures in
system hardware and software [11].

HPC systems primarily run large-scale scientific ap-
plications that use MPI (Message Passing Interface). We
use P"MPI [12] to capture the calling stack, time and
performance counters at the start and end of each MPI
operation. Individual MPI operations and code between
adjacent operations are thus denoted “events”. Further, we
denote each observed call stack and operation arguments
as an event context and model all events with the same
context. Intuitively, these events exhibit similar runtime
behavior. Our experiments explore various techniques to
model these behaviors to detect and to localize faults.

We use the NASA Advanced Supercomputing (NAS)
Parallel Benchmarks [13] to represent typical scientific
applications. Of the 8 benchmarks in the suite, we focus
on BT, CG, LU, MG and SP; we omit EP, FT and IS
because their use of MPI is too simplistic or infrequent to
capture their behavior accurately at the granularity of MPI
calls. These applications have setup, main computation and
shutdown phases. Since only the main computation phases
represent long running application behavior, we focus on
faults that manifest during those phases. We conduct our
experiments on 4-socket quad-core Opteron 8356 nodes
(10h microarchitecture) that have 32GBs of RAM. We
execute each application with 16 processes on an input
that results in a 10-60 second execution time (class “A”
for BT, LU and SP, class “B” for CG, and MG). Each
machine has 16 cores so we run all all processes on a

single node (one process per core).

Since real system faults are rare, we rely on several
synthetic faults that model resource exhaustions and slow-
downs. Our test harness starts a thread that interferes
with the concurrent execution of the main computation.
Table I shows the types of faults that we inject. These
faults represent slowdowns or interference problems that
affect different system resources on HPC nodes, focusing
on CPU, memory and socket problems. Our fault injector
thread repeatedly executes the code that Figure 3 shows.
We do not consider disk faults since nodes in most
large HPC systems do not have disks due to power and
reliability concerns. Also, we do not consider soft faults
(e.g., erroneous computations and data) because they affect
application values and, thus, require different detection
strategies.

The following sections describe how to train a
model to detect faults and to characterize their fault
class: CPU, MEM or SOCK. We have two use cases.
KnownFault represents situations in which administra-
tors must detect recurrences of previously observed faults
for which they have code examples. The UnknownFault
use case represents situations in which we must de-
tect new faults that are similar but not identical to
the example faults. We train the model on three
emulators for each class. CPU_incr, CPU_powlog
and CPU_mmm represent CPU faults; MEM_1MB_All,
MEM_1GB_All and MEM_1GB_Walk represent MEM
faults; while SOCK_1KB_1Mesg, SOCK_1KB_10Msg
and SOCK_32KB_10Msg represent SOCK faults. We use
the model to detect and to characterize faults that affect
CPU_incr, MEM_1GB_All and SOCK_1KB_1Mesg
(marked in light gray in Table I) to evaluate the its
effectiveness for the KnownFault use case. We eval-
uate its effectiveness on UnknownFault by analyz-
ing faults affecting CPU_rankl, MEM_1MB_Walk and
SOCK_1KB_10Mesg (marked in dark gray in Table I).
The analyses in Sections IV, V and VI focus on
KnownFault; our observations for UnknownFault are
similar. We evaluate both use cases in Section VII.

We use hardware performance counters to measure
software and hardware behavior. Modern microprocessors
provide hundreds of counters; the Opteron 10h microar-
chitecture has 272 major counters, many with multiple
options. However, this architecture imposes a constraint
that only four counters can be monitored simultaneously
(most architectures impose similar constraints), so we must
choose them carefully to ensure that different fault types
have a different effect on each counter. Since we had
little intuition about which counters would be the best to
monitor, we used observations from fault-free runs and
runs with each of the three fault types to select them. We
repeated this experiment 20 times to compute the range
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Table l. Types of injected faults

CPU_incr
for (int j =0; 3§<100000; j++) nt+;
CPU_powlog
for (int j=0; j<100000; j++) val+=pow(x+j, y+j) + log(x);
CPU_mmm

cblas dgemm (100,100,100, mtx0, mtxl, mtx2) ;

CPU_rank1
cblas dger(100,100,vecO,vecl,mtx) ;

MEM_*MB_All
for(int i=0; i <1000; i++)
buf [randInt64 () $size] += buf[randInt64 () %size];
MEM_*MB_Walk
for (int i=0; 1i<1000; i++) {
// BAccesses offset nlOff/n20ff from nl/n2
int nlOff=randIntl6(), n20ff=randIntl6();
buf[ (n1*32768 + nlOff ) % size] +=
buf [ (n2*32768 + n20ff) % size];
// Advance current location of walk nl/n2
nl = (nl + sizeof(int)) % 32768;
n2 (n2 + sizeof (int)) % 32768;

}
// numMesgs = 1 or 10
// mesgSize = 1KB or 32KB
// mesg[] is a buffer of size mesgSize
for (int j=0; j < 10; j++) {
// Establish socket from thread to itself
outSock = socket(...); connect(outSock, ...);
select(...); inSock = accept(...);
// Communicate on the socket
for (int i=0; i<numMesgs; i++) {
write (outSock, mesg, mesgSize);
read(inSock, mesg, mesgSize);

}

Figure 3. Pseudocode of injected fault threads

of each counter and fault combination: [average value +/-
100 standard deviations]. We select counters with non-
overlapping ranges in each of these four execution sce-
narios since this helps to differentiate these fault types. In
this study we used the following counters [14], which our
experiments showed are the most useful for differentiating
the injected faults:

¢ INSTRUCTION_FETCH_STALL - “The number of
cycles the instruction fetcher is stalled.”

e X87_FLOPS_RETIRED MULT - “The number of
multiply operations (uops) dispatched to the FPU
execution pipelines.”

¢ BRANCH_TAKEN_RETIRED - “The number of taken
branches retired.”

e DATA_CACHE_ACCESSES - “The number of ac-
cesses to the data cache for load and store references.”

IV. Modeling Approach

This section describes our approach for creating statis-
tical models of application behavior. Models are trained
on example non-faulty application runs as well as runs
with various types of faults injected. When applied to
new runs they classify individual events as non-faulty or
faulty and if faulty, indicate the fault’s type and location.
This initial approach represents a naive application of
classification algorithms to the problem of fault detection
and classification.

Figure 2 illustrates our modeling procedure, which
begins by collecting a set of training and evaluation runs
for each application. Our training set consists of 16 non-
faulty runs and 16 faulty runs of each type, giving us
a total of 160 runs of each application. During the i‘"
faulty run, we inject the fault into the i*” process of the
MPI application (recall that each run uses 16 processes)
to capture the effect of faults on each process. In each
faulty execution, the fault thread’s execution is overlapped
with most of the application’s main computation phase.
Our evaluation set is similar, except that we draw the
faults from either the KnownFault or UnknownFault
use cases (depending on the experiment) and execute the
fault thread for 1 second at a random point in the main
computation phase. Further, we evaluate the techniques on
40 additional non-faulty runs.

Given a set of training runs, we analyze the observed
events and annotate them as follows:

e NO_FAULT: No fault executed during the event;

¢ THIS_PROCESS - CPU/MEM/SOCK: A fault thread
of the given type (CPU/MEM/SOCK) executed at the
same time and on the same process as the event;

e OTHER_PROCESS - CPU/MEM/SOCK: A fault thread
of the given type executed at the same time as the
event but on a different process.

We then train a supervised classifier on the event’s feature
vector: (i) unique ID of its starting and ending MPI call
stacks, (ii) execution time, and (iii) elapsed values of the
four performance counters. We used the Weka 3.6.2 [15]
implementations of the following supervised classifiers:
Random Forest, C4.5 Decision Tree, Logit Boost and
Random Committee. Since the large event counts in the
training runs (from 7e+5 for MG to 2e+7 for LU) make
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Figure 4. Prediction accuracy in the KnownFault use
case using naive training. Note that in this use case too,
not all windows are faulty and likewise, the classifier does
not flag every window as faulty. This explains the labels
“Fault” and “Non-fault” in the figure.

training on all events too expensive, we trained classifiers
on 500 randomly chosen events in each of the 160 runs,
for a total of 80,000 events.

We use each classifier to label each event in the eval-
uation runs. To make a statement about the health of the
overall application at a given point in time we then aggre-
gate events across all processes into 50ms non-overlapping
time windows and use the labels of the events in each
window to label the window itself. A window is labeled
NO_FAULT if no faults were detected or the only fault
labels are for OTHER_PROCESS. If the window does have
events with THIS_PROCESS fault labels, it is given a fault
label. The type of the fault (CPU/MEM/SOCK) is chosen to
be the the most common fault type among the individual
event labels. The fault’s location is computed by looking at
which processes have events with THIS_PROCESS fault
labels. The process that has the largest fraction of such
labels is identified as the fault’s location.

Figure 4 shows the accuracy of this approach with
the Logit Boost and Random Committee classifiers when
KnownFault injections are used in the evaluation phase.
The Real Fault bars indicate, of the windows during which
there really is a fault, the percentage of these did the
technique flag with the correct fault type and location/
The Real Non-Fault bars represent, of the windows during
which there is no fault, the percentage of these did the
technique correctly flag as non-faulty. These therefore
correspond to the traditional machine learning notion of
Recall. The Classification Fault bars indicate, of the win-
dows the classifier flagged as faulty, the percentage of these
really had a fault of the correct type and location. The
Classification Non-Fault bars indicate, of the windows the
classifier flagged as a non-faulty, the percentage of these
really did not have a fault. These therefore correspond to
the traditional machine learning notion of Precision. The
results are similar for UnknownFault and the Random
Forest and Decision Tree algorithms perform similarly to
Random Committee.
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Figure 5. Prediction accuracy on non-faulty runs using
naive training.

The most important insight from these experimental
results is that all classifiers perform poorly on windows
with faults. LogitBoost is slightly better when it classifies
a window as faulty, but in all the faulty cases, the perfor-
mance of the classifiers is such that they will be unusable in
practice. On the encouraging side, the data shows that the
supervised classifiers are usually correct when they label
windows as non-faulty. However, the Random Committee
classifier can mislabel windows in which no fault occurred.
This message is reaffirmed from Figure 5, which shows the
performance of the classifiers when no fault is injected
in the evaluation runs. Because it is more selective in
its classifications, Logit Boost performs best on most of
our experiments, especially as part of the fault clustering
algorithm that we describe in Section VII. Therefore, our
remaining results focus on the Logit Boost classifier.

To understand the source of the classifiers’ poor per-
formance, we considered the possibility that the classifiers
were simply not provided with sufficient information about
the application’s behavior at the time of the fault. As such,
we expanded the feature vectors that are given to the clas-
sifiers to consist of the counter values of sequences of five
preceding events, as opposed to the original experiment
where each feature vector corresponds to one event. Each
feature vector was five times larger and was labeled using
the label of the last event in the sequence. Figure 6(a) and
(b) show the accuracy of this model on labeling 50ms time
windows in the KnownFault faulty runs and non-faulty
runs with Logit Boost. The data shows that the resulting
classifier misses all faults, indicating that additional history
information does not help and indeed reduces accuracy.
This is likely due to model overfitting which affects models
with too many parameters.

V. Abnormality-Enhanced Classification

The naive approach performs poorly because system
faults do not affect applications consistently. For example,
faults that affect CPU performance have little effect on
memory-intensive code. Software problems are even more
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injected with CPU_incr (top sub-figure) and with no
injected fault (bottom sub-figure)

irregular because they are subject to OS scheduling. Fig-
ure 7 illustrates this effect in a run of the BT application
with an injected CPU-intensive thread. The horizontal axis
shows individual events ordered in time and the vertical
axis shows the abnormality value of the event, measured as
—log(probability of event’s counter values). These abnor-
mality values, defined precisely below, are larger for more
unlikely events; the logarithm focuses the view on the most
unlikely events. The figure shows that most events during
the non-faulty time period behave normally (abnormalities
< 1E+2) and even when the fault is injected most events
still behave normally; only a few events are significantly
affected (abnormalities ~ 1E+6). The reason for this is that
the CPU intensive fault only affects some code regions in
BT and only events corresponding to those code regions
have high abnormality values.

Drawback of fault classification with traditional
classifiers: Traditional classifiers perform poorly on this
problem because the probability distribution from which
event behaviors are sampled depends on information that
is not available as part of training. This is illustrated in
Figure 8. A given application execution may be fault-free
or may be affected by one of several types of faults at
some point(s) in the execution. An execution is a sequence
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Figure 8. Hierarchical Probability Distribution of Appli-
cation Vulnerability to Faults

of events, which correspond to various code regions. The
values of performance counters observed during each event
depend on its code region, the type of fault (if any) affect-
ing the application and whether the current execution of the
code region is vulnerable to this fault. The model training
procedure runs the application, chooses the faults to inject
(if any) and observes which code regions are executed
and their associated performance counter values. However,
the training procedure cannot determine how vulnerable
a given execution of a code region is to the given fault
because this requires a very detailed understanding of both
the program and the infrastructure on which the program is
executing, (e.g., how a code region uses the hardware and
the OS scheduler’s state during the region’s execution). In
fact, if this analysis could be performed for arbitrary code
regions, there would be no need for a statistical model.
Since this key piece of information cannot be provided by
the training procedure to the classifier being trained, it is
necessary to approximate this information by labeling all
the events that occur during a fault as faulty.

Unsupervised learning as a preprocess step before
training: This choice of labeling produces a very noisy
training set that consists of the “Normal” events - almost all
behave normally with a few outliers, and “Faulty” events
- most behave normally and some behave abnormally. The
significant overlap in behaviors of the two sets makes
it very difficult for most classifiers to differentiate them.
Because this problem occurs due to a lack of information
about the vulnerability of code region executions to faults,
a possible approach to improve model accuracy is to
design an additional analysis that infers this property from
the available information. A code region’s execution is
vulnerable to a fault if its behavior is significantly affected
by it. As such, we need an analysis that determines whether
a given event represents normal or abnormal behavior of
its code region within its associated execution context. The



resulting Normal/Abnormal labels can be used before the
the traditional classifiers are trained. The hypothesis is that
this will allow the classifiers to achieve significantly higher
fault detection and classification accuracy.

We evaluate this hypothesis through a simple unsuper-
vised algorithm. This algorithm builds for each code region
and event context (call stack) a separate probability distri-
bution for each of the five observed quantities (execution
time and the four performance counters) over all non-
faulty events in training executions that share this context
(a total of five 1-dimensional distributions per context).
A given event is Normal if there is a high probability of
observing its time and counter values given the distribution
of its code region and context. It is deemed Abnormal
otherwise. Since the true probability distributions of the
time and performance counters are not known in advance,
we approximate them using normalized histograms, which
is a non-parametric density estimator.

We implement normalized histograms through an algo-
rithm used in the AutomaDeD tool [16]. This algorithm,
which does not require an a priori range of values, consists
of several steps. First, we remove the top and bottom
10% of the observed data values to eliminate outliers.
We then assign the remaining values to a fixed number
of clusters and create a histogram bucket for each cluster.
We derive a continuous probability distribution from these
buckets as follows. We linearly interpolate between adja-
cent buckets and attach the upper and lower halves of a
Gaussian distribution to the largest and smallest bucket
to model probabilities outside the observed region. We
then normalize the resulting function so the area under the
curve is 1, as required for a probability distribution. Our
experiments use histograms with 30 clusters, which as our
experiments show are appropriate for most of the data sets.
They result in density models that faithfully capture the
underlying distributions, balancing between models that
are too smooth and too noisy.
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Figure 9. Improvement in prediction accuracy of
abnormality-enhanced Logit Boost classifier over the
vanilla Logit Boost classifier on KnownFault faulty runs

The simplest way to use these probability distributions
is to refine the existing faulty/non-faulty label within the

training inputs provided to the classification algorithms
in Section IV. For each event in the training runs we
compute the probabilities of its observed quantities (time
and performance counters) to compute its abnormality
value, which is the negative logarithm of its probability. We
use this measure because the logarithm function provides
greater resolution for the small probabilities of abnormal
events and the negation ensures that higher values imply
greater abnormality, which is more intuitive. The abnor-
mality value of an entire event is the Euclidean aver-
age of the abnormality values of its observed quantities:

E;;l(_l‘;g(p robi))* , where prob; is the probability of
quantity ¢ within the event given the observed distribution
of that quantity, and n = 5 for our work.

In training, we label as “faulty” all events that occur
while the fault thread executes and have abnormality values
above a given threshold. Any event is tagged with the fault
type that was injected and the fault’s location. We label as
“non-faulty” all events that occur while there is no fault
or that have abnormality values below the threshold. The
threshold is the maximum abnormality value observed dur-
ing the non-faulty training runs value plus three standard
deviations. This clearly differentiates abnormal events from
the normal ones. Further, since the raw abnormality value
—log(prob;) of each event with respect to the distribution
of each observable i is available and can help point to the
type of fault that is occurring, these five probabilities (time
and 4 counters) are included as additional features in the
training set. Thus, for each event, we have 11 features: the
event context, 5 observables (time and 4 counters), and 5
abnormality values. Finally, while we trained our original
model on 80,000 randomly chosen events, we train the
abnormality-enhanced model on 40,000 normal events and
15,000 abnormal events (divided evenly among training
runs) to ensure that it is trained on both event types. These
event counts ensure that the comparison between the naive
and abnormality-enhanced models is not biased against the
naive by constraining the latter to train on fewer events
than the naive model.

Results from using the unsupervised learning pre-
step: Figure 9(a) evaluates this algorithm, showing the
difference between the success rates of the new predic-
tor with abnormality information (denoted *‘Abnorm
Feature’’) and that of the original predictor (denoted
‘‘Plain Classifier’’) on KnownFault faulty
runs (similar results are seen for UnknownFault). As
before, we show accuracy for labeling 50ms time win-
dows, which describe the health of the overall application
rather than just a single event. The data shows that the
abnormality information increases the fraction of correct
classifications by approximately 60% and the fraction of
real faults windows by approximately 15%. Note that most
real faulty time windows are still classified incorrectly.
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Table Il. Models and their features

However, when a window is actually classified as faulty
these classifications in general consistently predict the
correct fault type and location (the application process that
was faulty). When windows are erroneously classified as
faulty, the assigned labels are erratic, with nearby windows
being labeled with different fault locations and types.
Section VII presents an algorithm that uses these insights
to detect faults by looking at clusters of frequent identical
fault classifications.

Figure 9(b) shows the difference between Abnorm
FeatureandPlain Classifier for non-faulty runs.
Although abnormality information improves fault detection
rates (Figure 9(a)), it also slightly increases the number of
non-faulty windows classified as faulty by approximately
.25%. As discussed in Section VII, these errors cause some
false positives in tools based on this model but do not
significantly degrade the technique’s overall utility.

VI. Managing Training Features

We have established that filtering the training set based
on event probabilities can improve model accuracy. We
now investigate how the way the new information is
used by the Abnorm Feature algorithm influences its
accuracy. Table II describes the models analyzed in this
section, detailing the number and type of feature they use.

First we explore the possibility of providing additional
features that further clarify the type of fault that is affecting
the application. This algorithm, denoted Abnorm Prob
Feature, computes probability distributions for the ab-
normal events for each fault type. The scheme is illustrated
in Figure 10. Probability distributions are created with
normalized histograms as before. In our experiments this
produces 15 distributions: 5 observables times 3 fault
types. Each event’s feature vector from the Abnorm
Feature training set is then extended with the probability

of its observables with respect to each of these distributions
(these are denoted “abnormality probabilities”). For a given
event the probability of some observable O with respect
to a distribution associated with fault type I’ measures
how similar this event’s observable O is to observable
O of abnormal events induced by fault F'. This training
type produces a training set with 26 features: the calling
context, 5 observables (time and 4 performance counters),
5 abnormality values and 15 abnormality probabilities.

Distributions of
Observables

Training Runs

cru AR A =

Faults [ W ] ﬂ]ﬂ\ 1}]:[}\ n]»ﬂ\

injected (AR AL Al A
Time Counter, Counter,

Other .
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Event i: =
Abnormality . b
Probabilities ‘ 1‘2‘ ‘n‘l‘ 2""‘”

CPU Faults Other Faults...

“:I Normal, FauIt-free‘ Normal, Fault ‘ & Abnormal, Fault ‘

Figure 10. Generation of probability distributions from

abnormal events for Abnorm Prob Feature

Since the above training set has a large number of
features, model accuracy may be poor due to overfitting.
Further, the combination of abnormality values and abnor-
mality probabilities obscures their relative utility. As such,
we also evaluate a variant of this algorithm that prunes the
features used by Abnorm Prob Feature by removing
the observables and the abnormality values, leaving only
each event’s calling context and its abnormality probabili-
ties (16 features). This approach, which we denote Only
Abnorm Prob Feature, is similar to a Naive Bayes
classifier. Note that just like Abnorm Feature, fault
labels in both these training sets are filtered such that only
abnormal events are given a fault label. Since we build
abnormality distributions using only abnormal events, they
correspond to far fewer events than the distributions of
non-faulty runs. Thus, if we do not observe any events for
a given event context, we set the probability of observables
of all events with this context to a dummy constant.

Figures 11(a,b) and 12(a,b) show the accuracy differ-
ence between these training sets and Abnorm Feature
on labeling 50ms time windows using the Logit Boost clas-
sifier on KnownFault faulty runs and non-faulty runs,
respectively (e.g. Abnorm Prob Feature - Abnorm
Feature). The introduction of new features (Abnorm
Prob Feature) reduces the accuracy of the classifier
both for windows during faulty runs that are classified
as faulty (23% reduction on average) and windows that
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Figure 12. Difference in accuracy on non-faulty runs us-
ing abnormality as a feature, relative to Abnorm Filter

are actually non-faulty during non-faulty runs (2% reduc-
tion). However, it is still better than the Plain clas-
sifier. Training using Only Abnorm Prob Feature,
which removes observables and abnormality values, also
reduces accuracy relative to Abnorm Feature but to
a smaller extent (average 11% less accurate on windows
classified as faulty in faulty runs, 1.5% less on actually
non-faulty windows during non-faulty runs). This indicates
that abnormality probabilities are less useful than abnor-
mality values but the reason for this is not clear. Since
Only Abnorm Prob Feature is more accurate than
Abnorm Prob Feature, the larger number of features
in the latter (26 compared to 16) must be confusing
the classifier. This may also explain the poorer accuracy
of Only Abnorm Prob Feature relative to Abnorm
Feature since the former has almost three times as
many features as the latter. If that is the case then a more
sophisticated classifier may be able to take advantage of
the additional features. Another explanation may be the
fact that abnormality distributions are constructed from just
the abnormal events, which are relatively few in number.
In contrast, the probabilities used by Abnorm Feature
come from distributions of normal events, which are much
more plentiful. If this is the reason for Only Abnorm
Prob Feature’s lower accuracy relative to Abnorm
Feature, then the use of more training runs should
improve it. We leave a more detailed evaluation of these
models to future work.

Since addition of features results in worse accuracy,
we also evaluate a variant of the algorithm that takes
the training set from Abnorm Feature and excludes
each event’s 5 abnormality values with respect to each
observable (time and 4 counters). This training approach is
denoted *‘*Abnorm Filter’’. Note that here too, the
abnormality probability has first been used to separate the
perceived abnormal events and the marked events are used
for training. Figures 11(c) and 12(c) show the accuracy of
the resulting classifier using Logit Boost on labeling 50ms
time windows in KnownFault runs and non-faulty runs,
respectively. These figures show the difference between
the accuracy of the two techniques (Abnorm Filter
- Abnorm Feature). The removal of the abnormality
features has little effect on overall model accuracy in
general and actually improves it for LU in faulty runs. This
means that these features do not provide any additional
power with respect to the original observation values, at
least not with the Logit Boost classifier. As such, the
main value of the probability distributions is in filtering
fault/non-fault labels rather than as serving as a feature in
their own right.

Another issue with applying statistical methods to ap-
plication behavior is that different code regions behave
very differently, with some significantly longer than oth-
ers. Thus, if a given number of cache misses (counters
provide the total count of misses, not the rate) is highly
abnormal for one code region may be perfectly ordi-
nary in another. Because this makes it more difficult for
classifiers to find general patterns that apply to different
code regions, we evaluated the use of relative rather than
absolute observations to train the models. Specifically, we
modified the training set from Abnorm Filter such
that instead of providing raw event counter values in the
training set we divided the value of each counter by the
event’s execution time. This training approach is denoted
‘‘Abnorm Filter Relative’’ and Figures 11(d)
and 12(d) show the difference between it and Abnorm
Feature in KnownFault runs and non-faulty runs.
The use of relative observations improves accuracy on
faulty windows during faulty runs by 2% and reduces it
for actually non-faulty windows during non-faulty runs
by .4%. Section VII shows that the improved accuracy
during faulty runs has a greater effect on our tools ultimate
effectiveness than the difference for non-faulty runs.

VIIL. Event Clustering Fault Detection

Fault detection and characterization at the level of
individual events or 50ms time windows is too fine-
grained and verbose for human consumption. To provide
usable information for system administrators, we need a
tool that concisely summarizes the time period when the
fault occurred, the portion of the system affected and the
fault’s type without excessive duplication. We now present
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Figure 11. Difference in accuracy on KnownFault faulty runs using abnormality as a feature, relative to Abnorm Filter

techniques that provide this level of information.

Our classification algorithms label individual events and
time windows with the type of fault that occurred, if any.
To aggregate these labels into a single report of a fault’s
time, location and type it is necessary to look for a dense
set of time windows that have the same fault classification
label. We do this via a simple one-pass algorithm that
identifies a time period as faulty if:

o Its starting and ending windows have fault labels; and

o In the intervening windows, those with fault labels
have the same fault type and location process and
remaining windows have the NO_FAULT label; and

« All adjacent time windows with a fault label are less
than 7 seconds away from each other.

The parameter 7 controls the fault density of the desired
clusters; our experiments use 7 = .5s. While simple, this
algorithm provides low-latency online fault detection. Our
experiments with more complex, less intuitive algorithms
yielded similar performance so this algorithm is preferred.

Figure 13 shows fault prediction accuracy on the
KnownFault faulty runs and non-faulty runs with our
algorithm and the Logit Boost classifier that was trained
using the Plain Classifier, Abnorm Filter and
Abnorm Filter Relative algorithms. We define
successful fault detection as identification of the correct
fault type and location for a single contiguous time period
that overlaps with the time when the fault was injected and
does not exceed the duration of the actual fault injection
by more than a factor of 2. This definition ensures that
we declare success in the case that for a real fault, the
tool identifies as faulty a single time region that closely
resembles the fault’s actual properties. We see that the
clustering algorithm has poor accuracy when it uses the
Plain Classifier, with only 9% of real faults de-
tected and only 32% of alerts being correct. However, it has
no false positives on the non-faulty runs. This is because
its predictions are very erratic. Since it is unlikely that
two adjacent predictions are identical, the result is that it
predicts no faults at all.
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Figure 13. Fault detection and classification accuracy of
clustering on KnownFault faulty and non-faulty runs

The accuracy of Abnorm Filter for real faults is
significantly higher, between 67% for CG and 99% for
BT. Fault classifications are accurate from 67% of the
time for SP to 90% for MG. On non-faulty runs it mis-
detects faults between 0% of the time for MG to 12.5% for
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Figure 14. Difference between fault detection and classi-
fication accuracy for UnknownFault and KnownFault

BT. Abnorm Filter Relative improves accuracy
further, detecting real faults between 76% of the time for
CG and 97% for BT. On non-faulty runs, its false positive
rate ranges from 0% for LU and 7.5% for BT.

Figure 14 shows the difference in accuracy for detect-
ing faults that were similar to the training set but not
included in it (UnknownFault) and those that were in
the training set (KnownFault). It focuses on models
Abnorm Filter and Abnorm Filter Relative.
Not surprisingly, detection of faults that were anticipated
by administrators (KnownFault) is generally easier. Ac-
curacy with Abnorm Filter is 5-30% lower for BT,
CG, LU and MG but 5-10% better for SP. The performance
of Abnorm Filter Relative is more consistent the
two datasets, only significantly degrading in accuracy
for LU (21% worse for real faults and 28% worse for
fault classifications). Thus, our approach works best when
administrators understand fault types that may occur and
design synthetic faults that accurately represent them.

Figure 15 summarizes our conclusions. It shows ac-
curacy for three fault detection scenarios: (i) antici-
pated faults (KnownFault runs); (ii) unanticipated faults
(UnknownFault runs); and (iii) fault-free runs. All use
the Logit Boost classifier. Without abnormality information
real faults are detected on 1-39% of the runs (8% for
KnownFault and 12% for UnknownFault on average)
with the P1ain Classifier. In contrast, Abnorm Filter
is successful on 46-99% of runs (80/70% on average) and
Abnorm Filter Relative succeeds on 70-100% of
runs (87/85% on average). Similarly, classification of runs
as faulty improves from 10-67% (32/66% on average) with
Plain to 53-90% (80/63% on average) with Abnorm
Filter and 55-86% (76/77% on average) with Abnorm
Filter Relative.

On non-faulty runs, Plain never mistakenly detects
faults. Abnorm Filter incorrectly detect faults in O-
12.5% (6% on average) of non-faulty runs and Abnorm
Filter Relative makes such mistakes on 0-8.5%
(5% on average) of the runs.

Clustering based on Abnorm Feature results in
slightly worse accuracy than with Abnorm Filter.
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Figure 15. Summary of fault detection accuracy results
for all model types and sets of evaluation runs

While, accuracy improves if it is augmented with rel-
ative observations, much like Abnorm Filter the
rate of mistaken fault detections during non-faulty runs
grows worse. With Abnorm Prob Feature and Only
Abnorm Prob Feature, which use abnormality prob-
abilities, accuracy is significantly worse both in faulty and
fault-free runs, usually by tens of percentage points.

VIII. Related Work

We group automatic fault detection methods into
two categories. The first category, the probability-based-
classifier (or generative) approach, classifies events based
on their probability as derived from a probability model
(usually a distribution). Cohen et al. [17] build a Tree-
Augmented Naive (TAN) Bayesian network model to
predict Service Level Objectives (SLOs) violations by
capturing correlations of system metrics more efficiently
than in a Bayesian network. Guo et al. [18] use a mixture
of Gaussian distributions to capture the probability of per-
formance metrics. Other approaches [8] model probability
distributions with histograms to characterize deviations



from normal behavior. Hamerly and Elkan [19] predict
disk failures with Bayesian classifiers and mixture models.

The second method, the traditional-classifier (or dis-
criminative) approach, uses a classifier such as a decision
tree, neural network or a clustering algorithm to determine
whether events are normal or abnormal. Chen et al [20]
train a probabilistic context-free grammar on faulty and
non-faulty runs to identify abnormal web requests in large
e-commerce systems. Ozonat et al [21] detect performance
anomalies by clustering application traces and looking for
small clusters. Gao et al [22] use a Markov model to
identify abnormal changes of system metrics correlations.

Our work combines these approaches. We use abnor-
mality information (a generative approach) to filter input
for the traditional-classifier approach. We demonstrate that
the combination improves detection accuracy for common
faults. To the best of our knowledge, no previous work has
studied a similar hybrid technique.

IX. Summary

We examined the problem of detecting, localizing and
characterizing system faults using statistical modeling of
application and system behavior. We showed experimen-
tally that intuitive use of supervised statistical models with
this problem performs poorly. We identified the reason for
this disappointing performance to be the fact that system
faults affect application behavior inconsistently, strongly
affecting some application regions, and leaving most to
execute normally. We used this information to improve the
quality of fault detection by event abnormality information.
Our approach builds a secondary unsupervised model to
evaluate the probability that a given event will appear in
a non-faulty execution. We then labeled only the truly
abnormal events as faulty and used these probabilities as
model features. Our experiments showed that filtering sig-
nificantly improves the accuracy of detecting a fault’s type,
location and time period while probability features are
less useful. Specifically we demonstrate that the Abnorm
Filter Relative classifier works best, characterizing
faults that were anticipated by administrators with 87%
accuracy, un-anticipated faults with 85% accuracy and with
a 5% false positive rate on non-faulty runs
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