
Dependability as a Cloud Service - A Modular Approach

Jan S. Rellermeyer1
1IBM Research,

Austin Research Lab,
Austin, TX 78758

rellermeyer@us.ibm.com

Saurabh Bagchi1,2
2Purdue University,

School of Electrical and Computer Engineering,
West Lafayette, IN 47907

sbagchi@purdue.edu, sbagchi@us.ibm.com

Abstract—Failures of services on cloud platforms are only to
be expected. To deal with such failures, one is naturally inclined
to use the traditional measure of replication. However, repli-
cation of services on distributed cloud platforms poses several
challenges that are not well met by today’s Java middleware
systems. These challenges are the need to isolate state in the
application components so that easy migration and recovery
are possible and the requirement for client transparency
when dealing with different replicated service instances. For
example, Java Enterprise Edition (JEE) makes it difficult to
have transparent replication of services due to the above two
reasons plus the fine-grained nature of interactions between
its components (the Enterprise Java Beans). In this paper,
we show parts of the design of OSGi, a specification defining
a dynamic component system in Java, that make it suitable
for the above task. We then propose two extensions to OSGi
which will allow exposing and exporting application component
state and transparent invocation of service instances. These two
together can enable easy replication and recovery from failures
in cloud environments. We show through experiments that our
prototype can migrate a failed service quickly enough to a new
machine so that a client experiences only a moderate increase
in service invocation time during system recovery.

I. INTRODUCTION

A decision to move away from privately owned computer
resources and towards cloud computing is affected by a
variety of factors, dependability being one of them. Depend-
ability is usually defined through its attributes of availability,
reliability, safety, integrity, and maintainability [1]. In a
complex system, the overall dependability of the system
depends on the corresponding attributes of its components.
What changes in cloud computing is that one important
component—the platform—is no longer under one’s own
control. Depending on the type of the cloud service, the
platform may mean one of several things; at least it includes
the physical machine but may also include higher layers like
a complete runtime system. This arguably outsources part of
the maintenance problem while introducing new challenges.
Most importantly, the underlying physical resources (i.e.,
the machines and the network) are shared between multiple
customers and applications and cannot be actively managed.
This is often perceived to be a threat to the overall depend-
ability [2], [3], [4].

Typical ways of mitigating these threats in a cloud com-
puting environment revolve around introducing redundancy
into the system, especially for increased availability and
reliability. Since adverse incidents can always render a single
instance of a functional unit unusable, the hope is that
by creating multiple copies of the component a sufficient
number of copies always survive to deliver the service
without degradation. This idea is neither new nor specific
to cloud computing and has been successfully applied many
many times in earlier distributed systems such as clusters or
grids [5], [6]. In cloud computing, however, the effectiveness
of redundancy benefits from two particular factors. First,
the elasticity of the resource fabric makes redundancy more
agile and more affordable. This means that it is possible
to acquire additional resources for increasing the degree
of redundancy in response to perceived threats much more
easily than it can be done in traditional hosted environments.
Second, the resource fabric is typically globally distributed,
thereby allowing intelligent placement to guard against high-
impact outages that would be much harder to circumvent in a
hosted environment. By spanning multiple geographic zones,
a system can survive even an outage of an entire data center
that could be caused by a natural disaster or a far-reaching
power outage.

Unfortunately, not every component of a complex system
can easily profit from redundancy. Components that have
state in them cannot be easily split up for purposes of repli-
cating the parts to different replication degrees and executed
on different machines. There have been prior attempts to
address this by structuring web services such that most of
the components are stateless and the few stateful components
expose their state in an orderly manner. Thereby, it can be
handled through special, and more expensive, mechanisms
such as database replication. However, we discern that this
kind of structuring of applications is becoming harder to
do. Web services are becoming contextualized by various
factors including the user, the client environment, the results
of prior requests, and interactions with coordinating and
collaborating web services. For example, with the advent
of social networks, the services are contextualized by the
user profiles and for a rich interactive user experience, the

state (in this case, the profile) is driving the majority of
the functionality. Therefore, our position is that existing
mechanisms for structuring applications for purposes of
reliability will no longer work with emerging web services,
that are being hosted on the cloud.

The effectiveness of elasticity depends to a high degree
on the coupling of components. Systems with fine granular
components tend to suffer from a high degree of entangle-
ment, hence limiting the flexibility of selectively replicating
components since all tightly-coupled components usually
have to reside on the same host. Consider for example,
Enterprise Java Beans running on a JEE middleware are
typically structured to have final granularity and with fre-
quent invocations between them, both of which highlight
the challenges of replication for cloud environments.

In this paper, we discuss how a dependability service
can be built on the OSGi framework. OSGi is a set of
specifications [7] that defines a dynamic component system
for Java. These specifications enable a development model
where applications are dynamically composed of many dif-
ferent reusable components. The OSGi specifications enable
components to hide their implementations from other com-
ponents while communicating through services, which are
objects that are specifically shared between components. We
show why a module system for Java, like OSGi, makes our
goal simpler to achieve and then show how the dependability
service can be architected using features already provided by
OSGi. We propose an extension to the OSGi standard that
acts as a dependability service, which we call CLOUDDEP.
The service provides the following dependability properties:

1) Re-deployment: Migrating the application to a new
physical machine or a different data center when the
underlying platform fails.

2) Clustering: Eliminating single points of failure in the
system by replicating functional units.

3) Elasticity and Load-balancing: Distributing the load to
a flexible pool of resources to avoid overloading single
instances.

II. SOFTWARE MODULARITY AND DEPENDABILITY

Software modules are self-contained functional units of
encapsulation. They contain data and functions, objects,
or other entities of the programming languages used to
implement them. Ideally, the correctness of a modular sys-
tem depends only on the correctness of its modules and
the correctness of a single module does not depend on
other modules [8]. The requirement of being self-contained,
however does not automatically imply full isolation. Many
implementations of module technology allow modules to be
declaratively self-contained, i.e., they not only rely on their
own content but can additionally declare dependencies to
other modules and have access to their accessible content.
In such setups, the effects of errors occurring in a single
module are still restricted to cause faults in this module

or any module that has a declared dependency but not in
unrelated modules.

This property has been successfully exploited to increase
the fault-tolerance of systems. For instance, in the Actor
model [9] the modular units are fully isolated and can only
communicate through explicit message passing.

Micro Kernel Operating Systems [10] restrict themselves
to implement only the minimally necessary functionality in
the kernel and outsource the remaining responsibilities into
separate user-space modules. Thereby, faults in one module
cannot affect other modules or the privileged kernel.

Microreboots [11] describe a methodology for recovering
a system by rebooting only a subset of affected components,
in the concrete example Enterprise Java Beans (EJBs).
The design approach is to keep application state carefully
parceled away in separate state stores which are only ac-
cessed through well-defined interfaces. Thus, the application
components can be recovered by rebooting them (since the
rebooting is fast in the absence of state, it is called microre-
booting), while the state store can persist across reboots.
This approach shares some similarities with our proposed
approach. However, in order to be micro-rebootable, the
components need to be well-isolated and stateless except
for externalized application state kept in specialized state
stores. Such compartmentalization is non-trivial to do in the
context of JEE because of the reasons mentioned earlier
(tight coupling and fine granular decomposition).

III. OSGI

A. OSGi Background

OSGi is a set of standards for modularity on the Java
virtual machine released and maintained by the OSGi Al-
liance. Originally, it was developed by several major ven-
dors to solve an availability problem on embedded home
gateway machines [12]. The intention was that multiple
software components should be able to co-exist on the same
hardware while each of the software packages needs to
run continuously and over long periods of time, even in
scenarios that require periodic maintenance updates to the
software. To enable dynamic updates without stoppage, it
aimed at overcoming the traditional entanglement of small-
granular objects and formed larger modules that can be
managed individually and composed to form applications.
OSGi defines a unit of modularity as the Bundle, which is a
deployable Java JAR file enriched with additional meta-data.
Most importantly, this meta-data describes which packages
are exported, i.e., accessible to other bundles, and which
packages it needs to import from other bundles. Recently,
OSGi has successfully entered the domain of enterprise
software and most major Java application servers (e.g.,
IBM WebSphere, JBoss, Oracle WebLogic, Spring Dynamic
Module Platform) are by now internally based on the OSGi
technology.

The OSGi runtime environment, the Framework, provides
the user with mechanisms for installing and controlling the
life-cycle of bundles at runtime. Applications are typically
composed out of many different bundles. These bundles can
interact in a tightly-coupled way by depending on packages
provided by other bundles. Tight coupling in this context
means that the dependencies are required to resolve the
bundle and failure to provide the dependencies renders the
bundle inoperable. Another way of interaction is through
loosely-coupled services. Loose coupling means that service
consumers only rely on the service interfaces under which
the service has been registered with the OSGi framework but
not on any knowledge of implementation details. Bundles
can consequently query the framework for available services
and retrieve the service instance, which is an ordinary Java
object in OSGi. The result of a query is either a reference,
a set of references from which the client can pick the
best matching service, or the information that no such
service is available. Since the consumers only rely on the
service interfaces but not on any concrete implementation,
bundles can potentially operate even in the absence of certain
services. OSGi applications are expected to actively deal
with dynamism in the setup. For instance, a service can
certainly fulfill its purpose in the absence of a log service but
if it has logging support, e.g., for debugging, it should enable
it whenever a log service becomes available and disable it
when the service becomes unavailable.

The modularity in OSGi solves a major issue with creating
elastic applications for the cloud. Cloud resources are inher-
ently dynamic in their nature and undergo frequent changes
either due to explicit management operations (adding and re-
moving resources) or due to their volatility (sharing effects,
failures). Therefore, we believe that monolithic software
incapable of dynamic adaptation cannot effectively run in
such an environment. In fact, the compositional approach
of modular software—traditionally applied to a single run-
time system—is key to building scalable and dependable
systems across a varying set of machines in the cloud [13],
[14]. OSGi particularly facilitates composition and localized
behavior by separating tightly coupled and loosely-coupled
interaction between modules into two different concepts:
package dependencies and services, respectively. Thereby,
when services are used as a design element, the resulting
systems are less entangled and more flexible.

OSGi was originally designed for managing software on
a single Java virtual machine. In prior work, we have shown
that the OSGi model can be used as an application model
for building distributed systems by turning the services into
potential boundaries of distribution [15] and adding simple
support for creating redundancy by clustering stateless ser-
vices on multiple machines [16]. However, little attention
has so far been paid to the problem of managing stateful
services in distributed deployments like clusters or clouds.

B. How OSGi Configuration Admin Enables Restarts

A traditional OSGi framework (running on a single JVM)
already supports restarts of the runtime systems as well as
a form of partial restart for bundle updates. This means
that whenever a bundle has been updated and the operator
of the framework requests a refresh of the system, only
those bundles immediately affected by the update (this is the
bundle itself and all bundles relying on the updated bundle
through tightly-coupled package dependencies) are restarted
whereas the remainder of the system is unaffected. However,
only the compositional state of the application is preserved
across restarts. This is the information about which bundles
have been installed when the framework was last running
and in which life-cycle state each individual bundle has been
in (installed, resolved, starting, active, stopping, uninstalled).
Every bundle then gets started again but is itself responsible
for restoring any internal state, which includes services that
it has bound to.

The only platform support in traditional OSGi for exter-
nalizing bundle state is the Configuration Admin service,
an optional service described in the OSGi Compendium
Specifications [17]. The configuration admin is a service in
the system capable of managing and persisting configuration
data in a central location. Services that want either to be
externally configurable or want to persist their configuration
data across restarts can register as a Managed Service. This
expresses its intent to receive configuration updates and
gives the system an interface through which it can push
updates to the service. Every managed service is expected
to identify itself though a persistent identifier (PID) and
announce this PID with its initial registration. The config
admin uses the PID of a service as a primary key for associ-
ating configuration data to services. Configuration events and
changes are signaled to the managed service asynchronously,
regardless of whether they are used by the service itself (as
illustrated in Figure 1) or an external bundle.

Bundle

registers ManagedService under PID

ConfigAdmin

persisted
configurations

 updates with persisted configuration

updates configuration

sends updated configuration

Figure 1. Interaction between Bundle and Configuration Admin

In the context of cloud computing, the most interesting
and relevant property of the config admin is the concept
of a service identity. When migrating a service to a new
machine, it has to be assured that the newly created ser-
vice instance can fully take over the role of the previous
instance. Therefore, stateful services implicitly build up
their own identity based on their internal state and their

history. Migration and failover can be considered a “micro-
reboot” of the service on a different machine. If all state
could be stored as configuration data then a distributed
version of the configuration admin would turn managed
services into migratable services just as the ConfigAdmin
allows stateful services to become restartable. In practice,
the storage capacity of the configuration admin and its
unclear consistency model are prohibitive to this approach.
For instance, a configuration update always fully overwrites
any previous configuration so that when two writers are
updating disjoint parts of the configuration concurrently the
last writer wins and the update from the earlier writer is lost.

However, just as systems like Zookeeper [18] are used
in cloud deployments to manage configuration, a cloud-
scale version of an OSGi ConfigAdmin can be used to
dynamically bind service instances to a richer instance of
storage to externalize the service state, e.g., a database
system or a key-value store. The challenge of building
such a distributed ConfigAdmin for cloud deployments is
to coordinate it with the distribution of services. It is not
feasible to have a single scope for configurations across all
nodes since this would prohibit multiple redundant copies
of the same service. When a service needs to be migrated
to a different machine, however, the configuration has to be
migrated with the service.

C. How OSGi Remote Service Admin Enables Non-local
Execution

The Remote Service Admin aims at integrating distribu-
tion into the OSGi platform and has been part of the OSGi
Enterprise Specifications [19]. This service encapsulates the
mechanism for importing remote services into the scope of
a local OSGi framework and exporting local OSGi services
through distribution providers. When a remote service is
imported, a local proxy for the remote service is created and
associated with the distribution provider. Some distribution
providers like our R-OSGi [15] system are able to operate
transparently, i.e., neither client nor service have to be
rewritten to operate in a remote setup.

The API of the remote service admin is entirely imper-
ative. Given a known URI or other identifier, the admin
provisions the local proxy and handles binding to the remote
service reachable through this address, as long as the service
is reachable. Finding a service in the network and re-binding
in the event of a failure is handled by different components.
All policy decisions are encapsulated in a Topology Manager
which, e.g., is able to detect clients that are querying
the local framework for services and make use of service
discovery protocols to find matching services. However, the
specifications do not mandate any particular functionality of
the topology manager but only specify the interfaces through
which a possible topology manager can interact.

For a cloud setup with dependability requirements, the
presence of an appropriate topology manager is paramount.

ID 1 ID 2

Client Client

ID 1 ID 1

Client

ID 1 ID 1'

Client Client

  
Figure 2. Different Use Cases for a Dependability Service. 1: Load
balancing, 2: Failover, 3: Elastic Scalability.

In the following section, we describe our service CLOUD-
DEP that implements policies to ensure availability of ser-
vices by acting as both a topology manager and a distributed
configuration admin.

IV. TOWARDS A DEPENDABILITY SERVICE

The new service (that we call CLOUDDEP) is designed to
turn OSGi services into elastic units of deployment which
can be migrated and replicated across multiple cloud nodes
to increase the availability and reliability of the administered
service. All that is required from the administered service
is that it persists all of its internal state either directly or
indirectly through configurations and listens to configuration
updates by implementing the Managed Service interface of
the configuration admin specification. CLOUDDEP acts as
a global entity in the system (which can be implemented
by a centralized backend or a distributed architecture) and
takes over the role of a local configuration admin and a local
topology manager on each node of the cloud deployment. It
also monitors the service invocations to detect failures. We
illustrate the features of CLOUDDEP through three usage
cases.

A. Load Balancing

We consider a simple setup with a set of identical (pos-
sibly stateful) remote service and a set of service clients
as illustrated by case Ê in Figure 2. Thanks to its facet of
being a topology manager, CLOUDDEP has knowledge of
the remote service relationship and was involved in the setup
of the binding. It had detected the local service requests
of the client bundles (e.g., through service lookup hooks as
described in the remote service admin specification) and has
instructed the distribution provider to create the binding to
one of the known remote service instances. Furthermore, it
has, either due to cooperation of the distribution provider
or by wrapping its created service proxy, instrumented the
local proxy to gather information about the frequencies of
service invocation and response times. In the event that one
remote service instance becomes overloaded, detectable by
an increase of invocations and an increase of the response
time, CLOUDDEP can re-bind a client to a different service

instance, thereby re-distributing the load among the service
instances.

B. Failover

We now consider a setup with one or more clients and
a single remote service. In the event of a service failure
(e.g., an uncaught runtime exception or the node hosting
the remote service becoming unavailable) CLOUDDEP has
captured the identity of the faulty service through its configu-
ration admin facet. It can thereby instantiate a new service by
starting the corresponding bundle on a new node and inject
the identity from the failed service into the new instance, as
shown in case Ë. This process is akin to what a microreboot
would do on a single node but here applied to a distributed
setup. By applying the same rebinding as done for load
balancing, the existing client will be forced to now interact
with the new service instance. If the latency of service
migration is an issue, CLOUDDEP can be configured to keep
hot-spare instances of the service. These are running but
unconfigured instances that have not yet received an identity.
In the event of a service failure, CLOUDDEP can directly
inject the identity into a hot-spare instance and create a more
seamless failover.

C. Elastic Scalability

The third example combines the load balancing and the
failover scenarios to enable elastic scalability of a remote
service. In the event of a service over-utilization, CLOUD-
DEP can start a new instance of the service and bind some
of the clients to the new service (see Ì in Figure 2). A
new identity is forked by CLOUDDEP from an existing
configuration and can then develop independently from the
original sibling. Scaling back to a smaller number of service
instances can be achieved by applying the failover strategy:
moving all clients of a service to a different existing instance
and then dropping the service instance.

V. PROTOTYPE AND EXPERIMENTAL EVALUATION

We have implemented a prototype of CLOUDDEP that
replicates configuration and manages failover for OSGi
services in a cloud setup. The prototype uses R-OSGi as
a distribution provider and cooperates with the protocol
and the proxy handler to detect failures or service outages.
The detection of failure is done through either a simple
timeout or an exception caused by the termination of a
connection. Since we induce failures in the experiments
through terminating the connection, the latter detection is
triggered. CLOUDDEP can furthermore either proactively
start idle and unconfigured redundant instances of the service
on a backup machine or reactively start a new instance
of the service on demand. In either case, the identity of
the failed service is injected into the new instance and
the existing binding between the client and the no longer
available service is transparently altered to point to the new

Microreboot Migration
avg. inv. time (T) 7.23µs± 1.06µs 1.22ms± 0.15ms
avg. T during failover 266.29µs± 34.90µs 4.01ms± 0.66ms
relative overhead 3581% 229%

Table I
SERVICE INVOCATION LATENCIES OF THE TREND SERVICE

instance. The prototype blocks the failed service request and
replays the request to the new service instance as soon as
it becomes available. We therefore assume a fail-stop model
in our setup.

For the experiment, we use a trend service that updates
itself by periodically polling the most frequently used #hash-
tags from Twitter. The service is clustered by geographic
regions, each instance of the service is configured to handle
a specific region that is set through its configuration. Since
the service only handles the ten most relevant results, it can
afford to use the Configuration Admin interface to persist
its internal state and does not rely on, e.g., an external blob
storage. In a realistic setup, the service would process the
results and, for instance, enrich the data with context links
retrieved from Google Search or Wikipedia.

We use a single instance of the service and a single
client that polls the service every second to receive the latest
trends. After one minute, we take the service down and let
CLOUDDEP handle the failure based on a strategy that we
have pre-configured.

In the first experiment, we have both the client and the
service running in the same Java Virtual Machine and on
the same OSGi framework. Our failure recovery strategy
resembles a microreboot of the service, i.e., we stop the
running service and restart it. In the second experiment, we
run client and service in different cloud instances and on
different Java Virtual Machines and additionally keep a hot-
spare VM for the failover. When the original service fails,
we instantiate a new service instance on the hot-spare that
becomes enabled when CLOUDDEP injects the configuration
(i.e., geographic location and previously determined trends)
into the instance.

Table I summarizes the measured average service invoca-
tion time during normal operation and during the failover.
In the case of the microreboot, the invocation time during
failover increases by a factor of 35 during failover. The
reason for this high increase is that in OSGi clients get a
direct reference to the service object and thereby a regular
service invocation does not differ from any other method
call in terms of latency. Enterprise Java Beans, in contrast,
are called through reflection. Furthermore, a bundle restart
is potentially more expensive than a microreboot of a single
Enterprise Bean. However, the overall latency during failover
is still in the range of microseconds, which is very likely
acceptable for the large majority of applications.

In the distributed case the baseline of an average regular

service invocation is much higher and is in our setup in
the order of milliseconds. However, the failover increases
the invocation time by only a factor of three. In practice,
this factor will vary with the amount of configuration data
that needs to be migrated to restore the service identity and
the network used but more complex services are likely to
also have higher baseline invocation times. In both the local
and the distributed case, only a single service invocation
is temporarily blocked and experiences a higher latency.
Further invocations continue to operate at normal latency.

The results illustrate the viability of our approach for a
large class of applications. Microreboots are an option for
recovery from failures, especially when the service is already
accessed from a different host. In this case, the latency
of the microreboot is within the noise of a remote service
invocation. When entire nodes fail or become unreachable,
migration of services to different machines are also feasible
and do not affect the client significantly. We have, however,
assumed that the cloud instance for failover is already
instantiated. In our setup, we used an Eucalyptus cluster that
requires in average 85 seconds to boot up a new instance
to the point where we can interact with it. This latency is
unlikely to be acceptable for cloud services but is a common
problem of IaaS solutions.

VI. CONCLUSION

We expect dependability to become an increasing problem
for cloud services. Our premise is that traditional ways of
structuring such systems provide insufficient flexibility and
cannot deal with failures or elasticity requirements as they
occur in cloud setups. We have therefore proposed a modu-
lar, loosely-coupled approach for building cloud services and
have illustrated the concrete challenges using the example
of OSGi, a widely used standard for modularity for the
Java language. The result of this effort is CLOUDDEP, a
dependability service for OSGi that takes care of countering
service failures by migrating the identity of the service to
a new machine. The experimental results of our prototype
implementation show that migration to an existing node is
feasible and the impact on the service invocation time is
acceptable for most applications.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[3] “Cloud Computing Incidents Database.” [Online]. Avail-
able: http://wiki.cloudcommunity.org/wiki/CloudComputing:
Incidents Database

[4] K. Joshi, G. Bunker, F. Jahanian, A. van Moorsel, and
J. Weinman, “Dependability in the cloud: Challenges and
opportunities,” in Dependable Systems Networks, 2009. DSN
’09. IEEE/IFIP International Conference on, 29 2009-july 2
2009, pp. 103 –104.

[5] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster,
and B. Tierney, “File and object replication in data grids,”
Cluster Computing, vol. 5, no. 3, pp. 305–314, 2002.

[6] J. Abawajy, “Fault-tolerant scheduling policy for grid com-
puting systems,” in Parallel and Distributed Processing Sym-
posium, 2004. Proceedings. 18th International. IEEE, 2004,
pp. 238–244.

[7] OSGi Alliance, OSGi Service Platform, Core Specification
Release 4, Version 4.2, 2009.

[8] B. Meyer, Object-Oriented Software Construction, 1st ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[9] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
ACTOR formalism for artificial intelligence,” in Proceed-
ings of the 3rd international joint conference on Artificial
intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1973, pp. 235–245.

[10] J. Liedtke, “On micro-kernel construction,” in Proceedings of
the fifteenth ACM symposium on Operating systems princi-
ples, ser. SOSP ’95. New York, NY, USA: ACM, 1995, pp.
237–250.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot - a technique for cheap recovery,” in Pro-
ceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, ser. OSDI’04,
2004.

[12] P. Kriens, “How osgi changed my life,” ACM Queue, vol. 6,
no. 1, Jan. 2008.

[13] C. Matthews and Y. Coady, “Virtualized recomposition:
Cloudy or clear?” Software Engineering Challenges of Cloud
Computing, ICSE Workshop on, vol. 0, pp. 38–43, 2009.

[14] J. S. Rellermeyer, M. Duller, and G. Alonso, “Engineering the
cloud from software modules,” in ICSE-Cloud 09: Proceed-
ings of the Workshop on Software Engineering Challenges in
Cloud Computing (in conjunction with ICSE 2009), Vancou-
ver, Canada, 2009.

[15] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: Dis-
tributed applications through software modularization,” in
Middleware 07: 8th ACM/IFIP/USENIX International Mid-
dleware Conference, Newport Beach, CA, USA, 2007.

[16] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “Building, de-
ploying, and monitoring distributed applications with eclipse
and r-osgi,” in ETX 07: Fifth Eclipse Technology eXchange
(ETX) Workshop (in conjunction with OOPSLA 2007), Mon-
treal, Canada, 2007.

[17] OSGi Alliance, OSGi Service Platform, Service Compendium
Release 4, Version 4.2, 2009.

[18] Apache Foundation, “Apache zookeeper,” http://zookeeper.
apache.org, 2008.

[19] OSGi Alliance, OSGi Service Platform Enterprise Specifica-
tions, Release 4, Version 4.2, 2010.

