Probabilistic Diagnosis of Performance Faults in
Large-Scale Parallel Applications

ABSTRACT

Debugging large-scale parallel applications is challeggi ; X
Most existing techniques provide mechanisms for process tasks from their root causes, so we introduce progress
control, but they provide little information about the cags ~ dependence to diagnose performance faults in parallel
of failures. Most debuggers also scale poorly despite penti aPPlications. We create a progress dependence. graph
ued growth in supercomputer core counts. We have devel-(PDG) to capture wait chains of non-faulty tasks whose
oped a novel, highly scalable tool to help developers under- Progtess depends on the faulty task. We use these
stand and fix correctness problems at scale. Our tool proba-chains to find the LP task in parallel. Once we find
bilistically infers the least progressed task in MPI progga ~ the LP task, PDI then applies program slicing [33] on
using Markov models of execution history and dependence the task’s state to identify code that may have caused
analysis. This analysis guides program slicing to find code it to fail. . o

that may have caused a failure. In a blind study, we demon- L0 ensure scalability, we use a novel, fully distributed
strate that our tool can isolate the root cause of a partic- 2180rithm to create the PDG. Our algorithm uses mini-
ularly perplexing bug encountered at scale in a molecular nflal per-task information, a.nd 1t Incurs only slight run-
dynamics simulation. Further, we perform fault injections time overhead for the applications we tested. Our im-
into two benchmark codes and measure the scalability of thePlementation of PDI'is non-intrusive, using the MPI
tool. Our results show that it accurately detects the leastp ~ Profiling interface to intercept communication calls, and
gressed task in most cases and can perform the diagnosis it does not require separate daemons to trace the appli-

model lets us tie faults to locations in the code. How-
ever, in parallel applications, faults may lie on separate

a fraction of a second with thousands of tasks.

1. INTRODUCTION

Debugging errors and abnormal conditions in large-
scale parallel applications is difficult. While High Per-
formance Computing (HPC) applications have grown
in complexity and scale, debugging tools have not kept
up. Most tools cannot scale to the process counts of the
largest systems. More importantly, most tools provide
little insight into the causes of failures. The situation
is particularly challenging for performance faults (e.g.
slow code regions and hangs), which may manifest in
different code or on a different process from their causes.

We present PDI (Progress-Dependence Inference), a
tool that provides insight into performance faults in
large-scale parallel applications'. PDI probabilistically
identifies the least progressed (LP) task (or tasks) in
parallel code. PDI uses a Markov Model (MM) as a
lightweight, statistical summary of each task’s control-
flow history. MM states represent MPI calls and com-
putation, and edges represent transfer of control. This

LA failure is a deviation from specification, while a fault may
cause failures. A hang is a failure, while a fault is a code
segment that sends an incorrect message.

cation as do other tools (e.g., TotalView [25], STAT [5]).
This paper makes the following contributions:

e The concept of progress dependence between tasks
and its use for diagnosing performance faults;

e A scalable, distributed, probabilistic algorithm for
creating a progress dependence graph and discov-
ering the least progressed task;

e A practical way to apply backward slicing to find
the origin of a fault from the state of the least
progressed task in a faulty execution.

We evaluate PDI by performing fault injection on
AMG2006 and LAMMPS, two of the ASC Sequoia bench-
marks. PDI finds a faulty task in a fraction of a second
on up to 32,768 tasks. PDI accurately identifies the LP
task 88% of the time, with perfect precision 86% of the
time. We show that PDI can diagnose a difficult bug
in a molecular dynamics code [27] that manifested only
with 7,996 or more processes. PDI quickly found the
fault — a sophisticated deadlock condition.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of our approach and Sec-
tions 3 and 4 detail our design and implementation.
Section 5 presents our case study and fault injection
experiments. In Section 7 we state our conclusions.

Sample code Progress dependence graph

10 // Computation code ...

11 MPI_Bcast(.., MPI_COMM_WORLD); Task a Computation
13 if (...) {

14 /]

15 MPI_Reduce(..., comm_1); Task group B

17 MPI_Barrier(comm_1);

18 } else {

g /. Task group C

20) MPI_Bcast(..., comm_2); Line: 15

21

2 // ... Reduce Task group E
Line: 20
Tasks group D

Barrier

Figure 1: Progress dependence graph example.

2. OVERVIEW OF THE APPROACH

2.1 Progress Dependence Graph

A progress-dependence graph (PDG) represents de-
pendencies that prevent tasks from making further ex-
ecution progress at any given point in time. A PDG fa-
cilitates pinpointing performance faults that cause fail-
ures such as program stalls, deadlocks and slow code re-
gions, and in performance tuning the application (e.g.,
by highlighting tasks with the least progress).

A PDG starts with the observation that two or more
tasks must execute an MPI collective in order for (all
of) them to move forward in the execution flow. For
example, MPI_Reduce is often implemented in MPT us-
ing a binomial tree for short messages [29]. Since the
MPI standard does not require collectives to be syn-
chronizing, some task could enter and leave this state
— the MPI_Reduce function call — while others remain
in it. Tasks that only send messages in the binomial
tree enter and leave this state, while tasks that receive
(and later send) messages block in this state until the
corresponding sender arrives. These blocked tasks are
progress dependent on other (possibly delayed) tasks.

This definition formalizes progress dependence: Let
the set of tasks that participate in a collective operation
be X. If a task subset Y C X has reached the collective
operation while another tasks subset Z C X, where X =
Y U Z has not yet reached it at time t such that the
tasks in'Y blocked at t waiting for tasks in Z then'Y is

progress-dependent on Z, which we denote as'Y LNy
Figure 1 shows an example PDG in which task a
blocks in (computation code) line 10. Task a could
block for many reasons, such as a deadlock due to in-
correct thread-level synchronization. As a consequence,
a group of tasks B block in MPI_Bcast in line 11 while
other tasks proceed to other code regions — tasks group
C, D and E block in code lines 15, 17, and 20. No
progress-dependence exists between groups C and F be-
cause they are in different execution branches.
Point-to-Point Operations: In blocking point-
to-point operations such as MPI_Send and MPI_Recv,

the dependence is only on the peer task which we for-
malize as follows: If task = blocks when sending (re-
ceiving) a message to (from) task y at time t then x

is progress dependent on y, i.e., x LiiN y. This def-
inition also applies to nonblocking operations such as
MPI_Isend and MPI_Irecv. The main difference is that
the dependence does not apply directly to the send
(or receive) operation, but to the associated completion
(e.g., a wait or test operation). If a task x blocks on
MPI_Wait, for example, we infer the task y, on which x is
progress dependent, from the request on which = waits.
Similarly, if = spins on a test, for example by calling
MPI_Test, we infer the peer task on which x is progress
dependent from the associated request. On the receiv-
ing end, we can also infer the dependence from other
test operations such as MPI_Probe or MPI_Iprobe. In

any case, we denote the progress dependence as x LiiN Y.

PDG-Based Diagnosis: A PDG can intuitively
pinpoint the task (or task group) that originates a per-
formance failure. In Figure 1, task a can be blamed for
originating the program’s stall since it has no progress
dependence on any other task (or group of tasks) in the
PDG. It is also the least progressed (LP) task.

From the programmer’s perspective, the PDG pro-
vides useful information in debugging, testing and per-
formance tuning. First, given a performance failure
such as the one in Figure 1, the PDG directly shows
where to focus attention, i.e., the LP tasks. Thus, de-
bugging time is substantially reduced, as the program-
mer can now focus on the execution context of one (or a
few) task(s) rather than on possibly thousands of tasks.
Second, we can efficiently apply static or dynamic bug-
detection techniques based on the state of the LP tasks.
PDI applies program slicing [33] using the state of the
LP task (e.g., stack variables and program counter) as
initial criterion, which substantially reduces the search
space of program slicing when compared to slicing the
execution context of each task (or representative task
group) separately and then combining this information
to try to find the fault.

PDG Versus Other Dependency Graphs: A
PDG is different from the dependency graph used in
MPT deadlock detection [17, 18, 30]. A PDG hierarchi-
cally describes the execution progress of MPI tasks. It
addresses questions such as: What is the task with the
least progress? Which tasks does the LP task prevent
from making progress? In contrast, traditional depen-
dency graphs can detect real and potential deadlocks by
searching for knots in the graph. We do not detect dead-
locks by checking for knots in a PDG. However, since
a PDG combines dependencies arising from MPI oper-
ations, it can indicate that a deadlock caused a hang.
Performance failures are a superset of hangs; deadlocks
or other causes can lead to hangs. Our case study with
a real-world bug in Section 5.1 shows an example in

2. Distributed

1. Model PDG creation 3.PDG
creation Error RS reduction
Tasks Detection Q 1 5 100K
12 1001(# N
io-0
O« /Oﬁ ' Current & ¢ % }
g \’g (§B ‘ @ state

[4-8]

4. LP task

detection 5. Backward slicing

* 6. Visualization

MPI_Send
,81[2] ' Wioo flag = 1; DG Callstack
p120 flag = 0; 2l
[13]

Slice

100 flag = 1;
120 flag = o;

[1,3]

199 if (flag==1)

<-—205

MPI_Send();

[4-8] [8-100K]

[8-100K]

Figure 2: Overview of the diagnosis work flow.

which we use a PDG to identify that a deadlock was
the root-cause of a hang.

2.2 Workflow of Our Approach

Figure 2 shows the steps in PDI to diagnose perfor-
mance problems. Steps 1-3 are distributed while steps
4-6 are performed in a single task.

(1) Model creation. PDI captures per-MPI-task
control-flow behavior in a Markov model (MM). MM
states correspond to two code region types: communica-
tion regions, i.e., code executed within an MPI function;
and computation regions, i.e., code executed between
two MPI functions. Other work uses similar Markov-
like models (in particular semi-Markov models) to find
similarities between tasks to detect errors [9, 22]. PDI
instead uses MMs to summarize control-flow execution
history. To the best of our knowledge, no prior work
uses MMs to infer progress dependencies.

(2) Distributed PDG creation. When a system
detects a performance fault (either PDI or a third-party
system), PDI uses a distributed algorithm to create a
PDG in each task. First, we use an all-reduce over
the MM state of each task, which provides each task
with the state of all other tasks. Formally, if a task’s
local state is sjocal, this operation provides each task
with the set Sothers = S1,...,5;4,...,5N, Where s; #
Slocal- Next, each task probabilistically infers its own
local PDG based on Sjgcar and Sothers-

(3) PDG reduction. Our next step reduces the
PDGs from step (2) to a single PDG in a distributed
manner. The reduction operation is the union of edges
in two PDGs, i.e., the union (in each step of the reduc-
tion) of progress dependencies.

(4) LP task detection. Based on the reduced PDG,
we determine the LP task and its state (i.e., call stack
and program counter), which we use in the next step.

(5) Backward slicing. We then perform backward
slicing using Dyninst [3]. This step finds code that could
have led the LP task to reach its current state.

(6) Visualization. Finally, PDI presents the pro-
gram slice, the reduced PDG and its associated informa-
tion. The user can attach a serial of parallel debugger
to the LP task based on the PDG. The slice brings pro-
grammers’ attention to code that affected the LP task,
and allows them to find the fault.

Sample code
foo () {
can Wrapper
101 MPI_Gather(); PMPI_Gather {
102-120 // computation code traceBeforeCall();
121 for (...) { /PMPI_Gather()
122-125 // computation code traceAftercall();
126 MPI_Send(); L
127-130 // computation code 3}
131 MPI_Recv();
132 /7 compui(:;tiun code Call stack
133 } foo(offset) [return addr]
bar(offset) [return addr]
. main(offset) [return addr]

Representation of States Markov
Code Line State Name

[101]

Gather

[102-125] Comp 1
[126] Send
[127-130] Comp 2
[131] Recv

[132], [121-125] | Comp 3

Figure 3: Markov model creation.

3. DESIGN

3.1 Summarizing Execution History

A simple approach to save the control-flow execution
history directly might build a control-flow graph (CFG)
based on executed statements [19]. Since large-scale
MPI applications can have very large CFGs, PDI in-
stead captures a compressed version of the control-flow
behavior using our MM with communication and com-
putation states. The edge weights capture the frequency
of transitions between two states. Figure 3 shows how
PDI creates MMs at runtime in each task. We use the
MPI profiling interface to intercept MPI routines. Be-
fore and after calling the corresponding PMPI routine,
PDI captures information such as the call stack, offset
address within each active function and return address.
We assume that the MPI program is compiled using
debugging information so that we can resolve function
names.

3.2 Progress Dependence Inference

In this section, we discuss how we infer progress de-
pendence from our MMs. For simplicity, we restrict the
discussion to dependencies that arise from collective op-
erations. The process is similar for point-to-point oper-
ations although the MM states in the following discus-
sion must reflect send/receive relationships. PDI prob-
abilistically infers progress dependence between a task’s

Figure 4: Sample MM with five blocked tasks.

local state and the states of other tasks. Intuitively,
our MM models the probability of going from state z
to state y via some path x ~» y. If a task ¢, in x must
eventually reach y with high probability then we can
determine that a task ¢, in state y could be waiting for

t, in which case we infer that y LGN

Figure 4 illustrates how we infer progress dependence
from our MMs. Five tasks (a,b,c,d and e) are blocked
in different states (1, 3, 5, 8, and 10 respectively). To
estimate the progress dependence between task b and
task ¢, we calculate that the path probability P(3,5),
the probability of going from state 3 to state 5 over all
possible paths, which is 1.0. Thus, task c is likely to be
waiting for task b, since according to the observed execu-
tion, if a task is in state 8 it always must reach state 5.
To estimate progress dependence more accurately, we
consider the possibility of loops and evaluate the back-
ward path probability P(5, 3), which in this case is zero.
Thus, task ¢ cannot reach task b, so we can consider it

to have progressed further than task b so ¢ LiNY
Resolving conflicting probability values. When
a backward path probability P(j,7) is zero, a task in
state j has made more progress than a task in state .
However, if the forward path probability P(i,) is 1.0
and the backward path probability is nonzero then the
task in state j might return to ¢. For example, for tasks
d and ¢ in Figure 4, P(8,5) = 1.0 but P(5,8) = 0.9.
In this case, task d must eventually reach state 5 to
exit the loop so we estimate that c LiN d; our results
demonstrate that this heuristic works well in practice.
The dependence between task b and task e is null,
i.e., no progress dependence exists between them. They
are in different execution branches so the forward and
backward path probabilities between their states, i.e.,
P(3,10) and P(10,3), are both zero. The same holds
for the dependencies between task e and task c or d.
General progress dependence estimation. To
estimate the progress dependence between tasks t; and
t; in states ¢ and j, we calculate two path probabilities:

2For simplicity, we also represent progress dependencies in
terms of the states in which the tasks are.

Table 1: Dependence based on path probabilities.

P(i, j) P(j,1)
0[0<P<1|1[0]|0<P<1]| 1 |Dependence? Type
v v No
v v Yes t 2
v v Yes t; ﬂ tj

v v Yes &,

v v ?

v v Yes t 2
v v Yes ti <p—d tj
v v Yes t; (p—d t;
v v ?

(i) a forward path probability P(i,j); and (ii) a back-
ward path probability P(j,7). A path probability is the
likelihood of going from one state to another over all
possible paths. We use Table 1 to estimate progress de-
pendencies. If both probabilities are zero (i.e., the tasks
are in different execution branches), no dependence ex-
ists between the tasks. When one probability is 1.0 and
the other is less than 1.0, the first predominates the
second. Therefore, the second probability determines
the dependence. For example, if the second is P(j,1)

we determine ¢; rd, t; since execution goes from i to
4. If one probability is zero and the second is nonzero,
then the second predominates the first. Therefore, the
first probability determines the dependence. For exam-

ple, if the first is P(4,j) we determine ¢; pd, t; because
execution could go from j to ¢ but not from 7 to j.

We cannot determine progress dependence for two
cases: when both probabilities are 1.0; and when both
probabilities are in the range 0.0 < P < 1.0. The first
case could happen when two tasks are inside a loop
and, due to an error, they do not leave the loop and
block inside it. In this case both backward and forward
path probabilities are 1.0, so it is an undefined situa-
tion. The probabilities in the second case simply do
not provide enough information to decide. For these
cases, PDI marks the edges in the PDG as undefined
so that the user knows that the relationship could not
be determined. These cases occur infrequently in our
experimental evaluation. When they do, the user can
usually determine the LP task by looking at tasks that
are in one group or cluster. Section 5 gives examples of
how the user can resolve these cases visually.

Algorithm. Figure 5 shows our local PDG con-
struction algorithm, which takes an MM and statesSet,
the states of all other tasks as input. We compute the
dependency between the local state and statesSet. We
represent dependencies as integers (0: no dependence; 1:
forward dependence; 2: backward dependence; 3: unde-
fined). We save the PDG in an adjacency matrix. The
function dependence determines dependencies based on
all-path probabilities (calculated in probability) and
Table 1 (captured in dependenceBasedOnTable).

The overall complexity of the algorithm is O(sx (|V'|+

1| Input: mm (Markov model),closure (transitive closure
2| of the mm), statesSet (set of states)
Output: depMatrix (PDG adjacency-matrix representation)

>
1
5| progressDependenceGraph () { /* Builds PDG x/
6 State localState < getLocalState (mm)

for each State s in statesSet

8 if s is not localState {

9 d < dependence(localState , s)

10 depMatrix[localState , s] <« d

11 1

2]}

14| /* Calculates dependence between two states =/
15| dependence(State src, State dst) {
16 p < probability (src, dst)

17 d + dependenceBasedOnTable(p)

18 return d

19] }

20

21| /* Calculates reachability probability =x/
22| probability (State src, State dst) {

2! p <+ 0

if src can reach dst in closure {
for each Path p between src and dst
p < p + pathProbability(src, dst)
}

return p

[N V)
ot

0 NN N
o

[\

}

Figure 5: Algorithm to create the PDG.

|E|)), where s is the number of states in statesSet, and
|[V| and |E| are the numbers of states and edges of the
MM. In practice, the MMs are sparse graphs in which
|E| ~ |V, so the complexity is approximately O(s X
[E]).

Comparison to postdominance. Our definition
of progress dependence is similar to the concept of post-
dominance [12] in which a node j of a CFG postdom-
inates a node 4 if every path from 4 to the exit node
includes j. However, our definition does not require
the ezit node to be in the MM (postdominance algo-
rithms require it to create a postdominator tree). Since
a fault could cause the program to stop in any state, we
are not guaranteed to have an exit node within a loop.
Techniques such as assigning a dummy exit node to a
loop do not work in general for fault diagnosis because
a faulty execution makes it difficult (or impossible) to
determine the right exit node. In order to use postdom-
inance theory, we could use static analysis to find the
exit node and map it to a state in the MM. However, our
dynamic analysis approach is more robust and should
provide greater scalability and performance.

4. SCALABLE PDG-BASED ANALYSIS

PDI is implemented in C++4 and uses the Boost Graph
Library [2] for graph-related algorithms such as depth-
first search. In this section, we focus on the implemen-
tation details that ensure scalability.

4.1 Error Detection

We assume that a performance problem has been de-
tected, for example, because the application is not pro-

Table 2: Some examples of dependence unions.

No | Task x | Task y | Union | Reasoning OR operation
1 |i—7 | nul |i— j|first dependence dominates| 14 0=1
2 |i—j|i—j|i—j|same dependence 1+1=1
3|14 j |14« j|i< j|same dependence 2+2=2
4 1i—j|i<j| i7j |undefined 1+42=3
5 | null null null | no dependence 0+0=0

ducing the expected output in a timely manner. The
user can then use PDI to find the tasks and the associ-
ated code region that caused the problem. PDI includes
a timeout detection mechanism that can trigger the di-
agnosis analysis, and it can infer a reasonable timeout
threshold (based on the mean time and standard devia-
tion of state transitions). The user can also supply the
timeout as an input parameter. Our experiments with
large-scale HPC applications found that a 60 second
threshold is sufficient.

4.2 Distributed Inference of the PDG

Helper thread. PDI uses a helper thread to per-
form its analysis of the MM, which is built in the main
thread. Steps 2-3, which are shown in Figure 2 and are
the core of the dependence inference, are distributed
while Steps 4-6, are inexpensive operations that only
one task performs (MPI rank 0 by default). PDI uses
MPI_THREAD_MULTIPLE to initialize MPI so that mul-
tiple threads can call MPI. On machines that do not
support threads, such as BlueGene/L, we save the MM
to the parallel file system when we detect an error. PDI
then reads the MM of each process in a separate MPI
program to perform the analysis.

Distributed algorithm. The following steps pro-
vide more detail of steps 2-3 in the workflow:

(1) We first perform a reduction over the current state
of all tasks to compute the statesSet of all tasks.

(2) We next broadcast statesSet to all tasks.

(3) Each task uses the algorithm in Figure 5 to com-
pute its local PDG from its local state and statesSet.
(4) Finally, we perform a reduction of the local PDGs
to calculate the union of the edges (forward or back-
ward). Table 2 shows examples of some union results.
In case 1, a dependence is present in only one task so
the dependence predominates. In cases 2 and 3, the de-
pendencies are similar so we retain it. In case 4, they
conflict so the resulting dependence is undefined. We ef-
ficiently implement this operator using bitwise OR since
we represent dependencies as integers.

We cannot use MPI_Reduce for our reduction steps
(for example, tasks can contribute states of different
sizes) so we implement custom reductions that use bi-
nomial trees. These operations have O(logp) complex-
ity where p is the number of tasks. Assuming a scalable
broadcast implementation, the overall complexity is also
O(logp). Our algorithm can therefore scale to the task
counts found on even the largest HPC systems.

4.3 Determination of LP Task

We compute the LP task (or task group) from the
reduced PDG. PDI first finds nodes with no outgo-
ing edges based on dependencies from collectives and
marked them as LP. If more than one node are found,
PDI discards nodes that have point-to-point dependen-
cies on other non-LP tasks in different branches. Since
PDI operates on a probabilistic framework (rather than
on deterministic methods [5]), it can incorrectly pin-
point the LP task, although such errors are rare ac-
cording to our evaluation. However, in most of these
cases, the user can still determine the LP task by vi-
sually examining the PDG (by looking for nodes with
only one task).

4.4 Guided Application of Program Slicing

Background. Program slicing transforms a large
program into a smaller one that contains only state-
ments that are relevant to a particular variable or state-
ment. For debugging, we only care about statements
that could have led to the failure. However, message-
passing programs complicate program slicing since we
must reflect dependencies related to message operations.

We can compute a program slice statically or dynam-
ically. We can use static data and control flow analysis
to compute a static slice [33], which is valid for all pos-
sible executions. Dynamic slicing [21] only considers a
particular execution so it produces smaller and more
accurate slices for debugging.

Most slicing techniques that have been proposed for
debugging message-passing programs are based on dy-
namic slicing [20, 24, 26]. However, dynamically slic-
ing of a message-passing program usually does not scale
well. Most proposed techniques have complexity at least
O(p). Further, the dynamic approach suffers high costs
to generate traces of each task (typically by code in-
strumentation) and to aggregate those traces centrally
to construct the slice. Some approaches reduce the size
of dynamic slices by using a global predicate rather than
a variable [24, 26]. However, the violation of the global
predicate may not provide sufficient information to di-
agnose failures in complex MPI programs.

We can use static slicing if we allow some inaccuracy.
However, we cannot naively apply data-flow analysis
(which slicing uses) in message-passing programs [28].
For example, consider the following code fragment:

1 program () {

if (rank == 0) {

x = 10;

MPI Send(...,&x,...);
else {
MPI_Recv (..., &y ,...);
result =y % z;
printf(result);

S OO~ U R WN
—~

=

Traditional slicing on result in line 9 identifies state-
ments 7, 8, and 9 as the only statements in the slice,

but statements 3-9 should be in the slice. Statements
4-5 should be in the slice because the value z sent is re-
ceived as y which obviously influences z. Thus, we must
consider the SPMD nature of the program in order to
capture communication dependencies. The major prob-
lem with this communication-aware slicing is the high
cost of analyzing a large dependence graph [28] to con-
struct a slice based on a particular statement or vari-
able. Further, the MPI developer must decide on which
tasks to apply communication-aware static slicing since
applying it to every task is infeasible at large scales.
Approach. PDI progressively applies slicing to the
execution context of tasks that are representative of be-
havioral groups, starting with the groups that are most
relevant to the failure based on the PDG. PDI uses the
following algorithm:
(1) Initialize an empty slice S.
(2) Tterate over PDG nodes from the node correspond-
ing to the LP task to nodes that depend on it, and so
on to the leaf nodes (i.e., the most progressed tasks).
(3) In each iteration i, S = SJ s; where s; is the state-
ment set produced from the state of a task in node 3.
This slicing method reduces the complexity of man-
ually applying static slicing to diagnose a failure. The
user can simply start with the most important slice (i.e.,
the one associated with the LP task) and progressively
augment it by clicking the “next” button in a graphical
interface, until the fault is found.

5. EVALUATION

5.1 Case Study

An application scientist challenged us to locate an
elusive error in ddcMD, a parallel classical molecular-
dynamic code [27]. This was a hang that emerges in-
termittently only when run on Blue Gene/L with 7,996
MPI tasks. Although he had already identified and fixed
the error after significant time and effort, he hoped that
we could provide a technique that would not require
tens of hours. In this section, we present a blind case
study, in which we were supplied no details of the error,
that demonstrates PDI can efficiently locate faults.

Figure 6 shows the result of our analysis. Our tool
first detects the hang condition when the code stops
making progress, which triggers the PDG analysis to
identify MPI task 3,136 as the LP task — PDI first de-
tects tasks 3,136 and 6,840 as LP tasks and then elimi-
nates 6,840 since it is point-to-point dependent on task
0, a non-LP task, in the left branch. The LP task in
the a state, causes tasks in the b state that immedi-
ately depend on its progress to block, ultimately lead-
ing to a global stall through the chain of progress de-
pendencies. This analysis step reveals that task 3,136
stops progressing as it waits on an MPI_Recv within the
Pclose_forWrite function. Once it identifies the LP

Slice for task 3136 (highlighted)

File & line number Function -
almpi wrapper&h:1273 MPI_Recv 286 int flag = 1; int datawritten = ©;
pio.c:342 Pclose_forWrite o . . .
293 file->file = fopen(string, file->mode);
b|mpi_wrappers h:959 MPI Reduce 295 for (int id = groupBegin(..., file);
S E pio.c:346 Pclose_forWrite ZdAS groupEnd(...v, fllve); 1dv++) ¢
S // Check another writer is asking for
0 c[mpi_wrappers.h:8163 MPI_Barrier // this ;asﬁti daFa' _;f so, send lttl‘l -
PP mpiUtils.c:288 WAIT 299 r‘ﬂPI,Ipro e(file->io_id, goTag,.., &flag,..);
[O 2048 3072] N 300 if (flag == 1) {
4 > ﬂ d|mpi_wrappers 11273 MPLRecv 302 MPI_Recv(&flag, ..., file->io_id, goTag,..)

K routineManager.c:309 listenRouti
‘.3104 0 [6840] ﬂ 8 istenRoutine 305 datawritten = 1;
N ; b e|mpi_wrappers.h:4488 MPI_Bcast ?f i) o P)

B 1-2047 H routineManager.c:311 listenRoutine 308 i (ad == iiEio=>d)

P [g L .

3073-3135,..] 68417995 313 datawritten = 1;
16841-7955] d 339 if (datawritten == 0) { Y 4 315 } else {
. 341 MPI_Recv(&flag, ..., file->io_id, 317 MPI_Send(&flag, ..., id, goTag,..);
....... P From collective .
- === From point-to-point 342) goTag, file->comm, ...);) S}
346 MPI_Reduce(&error,&error_global,1,..); 332 fclose(file->file);

File: pio.c, Function: Pclose_forWrite

Figure 6: Output for ddcMD bug.

task, PDI applies backward slicing starting from the
a state, which identifies dataWritten as the data vari-
able that most immediate pertains to the current point
of execution. Slicing then highlights all statements that
could directly or indirectly have affected its state.

The application scientist verified that our analysis
precisely identified the location of the fault. ddcMD
implements a user-level, buffered file 1/O layer called
pio. MPI tasks call various pio functions to move their
output to local per-task buffers and later call Pclose_
forWrite to flush them out to the parallel file sys-
tem. Further, in order to avoid an I/O storm at large
scales, pio organizes tasks into I/O groups. Within each
group, one writer task performs the actual file I/O on
behalf of all other group members. A race condition in
the complex writer nomination algorithm — optimized
for a platform-specific I/O forwarding constraint — and
overlapping consecutive I/O operations causes the in-
termittent hang. The application scientist stated that
the LP task identification and highlighted statements
would have provided him with critical insight about the
error. He further verified that a highlighted statement
was the bug site.

More specifically, on Blue Gene/L, a number of com-
pute nodes perform their file I/O through a dedicated
I/0 node (ION) so pio nominates only one writer task
per ION. Thus, depending on how MPI tasks map to the
underlying IONs, an I/O group does not always contain
its writer task. In this case, pio instead nominates a
non-member task that belongs to a different I/O group.
This mechanism led to a condition in which a task plays
dual roles: a non-writer for its own I/O group and the
writer for a different group.

Figure 6 shows the main loop of a writer. To receive
the file buffer from a non-writer, the group writer first
sends to each of its group members a request to send
the file buffer via the MPI_Send at line 317. The group
member receives that request via the MPI_Recv at line
341 and sends back the buffer size and the buffer. As

shown in the loop, a dual-purpose task has an extra
logic: it uses MPI_Iprobe to test whether it must re-
ply to its non-writer duty while it performs its writer
duty. The logic is introduced in part to improve per-
formance. However, completing that non-writer duty
frees its associated writer task to move on from MPI
blocking communications. The hang arises when two
independent instances of pio are simultaneously pro-
cessing two separate sets of buffers. This pattern oc-
curs in the application when a small data set is written
immediately after a large data set. Some tasks can still
be performing communication for a large data set while
others work on a small set. Because the MPI send/recv
operations use tags that are fixed at compile time, mes-
sages from a small set could be confused for those for
a large set of pio and vice-versa, leading to a condition
in which a task could hang waiting for a message that
was intercepted by a wrong instance.

This error only arose on this particular platform be-
cause the dual-purpose condition only occurs under Blue
Gene’s unique I/0 forwarding structure. We also the-
orize that the error emerges only at large scales be-
cause this scale increases the probability that the dual-
purpose assignments and simultaneous pio instances
occur. The application scientist had corrected the error
through unique MPI tags in order to isolate one pio
instance from another.

5.2 Faultinjections

Applications. To evaluate PDI, we inject faults
into two Sequoia benchmarks: AMG2006 and LAMMPS
[1]. These codes are representative of large-scale HPC
production workloads. AMG2006 is a scalable itera-
tive solver for large structured sparse linear systems.
LAM-MPS is a classical molecular dynamics code. For
AMG-2006, we use the default 3D problem (test 1) with
the same size in each dimension. For LAMMPS, we use
“crack”, a crack propagation example in a 2D solid.

Injections. We inject a local application hang by

[2,4,10-12,67]

[1,59,13,
17-21,56-57,...]
[2,4,10-12,67]

[0,6-8,14-16,
22-55,58-65,
69-73,..]

(a) hypre_ParVectorCopy

making a randomly selected process suspend execution
for a long period to activate the timeout error detec-
tion mechanism in PDI. We use Dyninst [3] to inject
the fault into the application binaries as a sleep call at
the beginning of randomly selected function calls (20
user, 5 MPI). Our injector first profiles a run of the
application so that we randomly choose from functions
that are used during the run. We use a higher pro-
portion of user function calls because more user func-
tions than MPI functions are used at runtime. These
function calls capture a wide range of program behav-
iors including calls inside complex loops as well as ones
at the beginning or end of the program. We perform
all fault-injection experiments on a Linux cluster with
nodes that have six 2.8 GHz Intel Xeon processors and
24 GB of RAM. We use 1,000 tasks in each run.
Coverage results. We use three metrics to evalu-
ate diagnosis quality: LPT detection recall, the fraction
of cases in which the set of LP tasks that PDI finds in-
cludes the faulty task; isolation, the fraction of cases in
which the faulty task is not detected but it is the only
task in a PDG node (i.e. a singleton task); and impreci-
sion: the percentage of the total number of tasks in the
LP task set that PDI finds that are not LP tasks; we
should have only one task in the set since we inject in a
single task. Figure 7(a)-(b) shows two cases of correct
LPT detections, which should have only the one task
into which we inject the error for these experiments. A
singleton task appears suspicious to a user so we con-
sider isolation as semi-successful. Figure 7(c) shows an
example of isolation — the PDG isolates faulty task (3).
PDI detects the LP task accurately most of the time
(for AMG2006, all 20 user calls and 2 MPI calls; for
LAMMPS, 19 user calls and 3 MPI calls). PDI iso-
lates the LP task in all cases that it is not detected.
PDI has very low imprecision: 43 (out of 50) injec-
tions resulted in no incorrect tasks in the LP set. Only
one AMG2006 case gives high imprecision (0.99) since
progress dependencies are undetermined (and the PDG
had only one node). Three remaining cases had low im-
precision of 0.01 to 0.05. LPT detection recall is higher
for user calls than MPI calls because if a task blocks in
a computation region, the remaining tasks are likely to
block in the next communication region, which follows
the computation region in our MM with probability one

[0-1,5-9,13-66,..]

(b) hypre_CSRMatrixMatvec

[1,5,9,13,
17-21, 56-57,66...
[2,4,10-12,67]

[0,6-8,14-16,22-55,
58-65,69-73,...]

(C) MPILIrecv
Figure 7: Examples of PDGs indicating LP tasks (highlighted) for AMG2006. Errors are injected in task 3.

AMG2006 LAMMPS
Time (sec) Time (sec)
0.000 0.010 0.020 0.030 0.000 0.010 0.020 0.030
, ! ! . ! !
512 512
1,000 1,024
" 2,744 2,048
X
3
~ 5,832 4,096
10,648 8,192
21,952 16,384
32,768 32,768
O outpPuT
B FIND_LP_TASK
B BUILD_PDG

Figure 8: Time to perform distributed analysis (steps 2—4
in workflow) on BlueGene/P.

and, thus, PDI is likely to detect the dependence. Al-
ternatively, if a task blocks in a communication region,
the other tasks likely block in another communication
region, which is necessarily not an adjacent MM state
so PDI has a lower probability of finding the LP task.
Nonetheless, PDI isolates the faulty task in all cases
that it does not correctly detect the LP task.

5.3 Performance

Scalability We run AMG2006 and LAMMPS up to
32,768 MPI tasks on an IBM BlueGene/P system and
measure the time that PDI takes to perform the dis-
tributed part of its analysis (i.e., steps 2—4 in its work-
flow). In each code, we inject an error close to its final
execution phase in order to have the largest possible
MM (to stress PDI with the largest input graph). We
used BlueGene/P’s smp mode in which each node has
one MPI task with up to four threads.

Figure 8 shows the results of these experiments. In
each run, we measure three main steps: BUILD_PDG
(steps 2 and 3; FIND_LP_TASK (the first part of step 4 in
which the helper thread identifies the LP task); OUTPUT
(the second part of step 4, which post-processes the fi-
nal PDG). In OUTPUT, PDI eliminates duplicate edges
in the PDG that may result from the distributed merg-
ing process of PDGs. It also groups MPI task ranks
into ranges of the form [x—y] and adds these ranges to
the corresponding PDG nodes. Figure 8 shows that

Table 3: Slowdown and Memory usage.

Benchmark | Slowdown | Memory usage
LAMMPS 1.59 6.11
AMG2006 1.46 10.36
BT 1.08 3.75
SP 1.67 5.14
CG 1.14 2.21
FT 1.05 1.01
LU 1.39 5.37
MG 1.04 1.04

FIND_LP_TASK contributes the least to the analysis over-
head. Intuitively, finding the LP task is simple once
we have built the PDG. BUILD_PDG is the core of the
analysis and, so, accounts for the most overhead. Our
results demonstrate the scalability of PDI. The dis-
tributed analysis takes less than a second on up to
32,768 MPI tasks. The low cost of this analysis sug-
gests that we can trigger it at multiple execution points
with minimal impact on the application run.

Slowdown and memory usage. Table 3 shows
application slowdown and PDI memory usage for AMG-
2006, LAMMPS, and six NAS Parallel benchmarks: BT,
SP, CG, FT, LU and MG [7]. We omit EP because
it performs almost no MPI communication and IS be-
cause it uses MPI only in a few code locations. Since
their MPI profiles produce small MMs, monitoring at
the granularity of MPI calls does not suit these appli-
cations. Slowdown is the ratio of the application run
time with PDI to the run time without it. Memory us-
age shows the increase in program heap usage when we
use PDI. Since tasks can have different memory usage
(depending on their behavior), we used the task with
the highest memory usage. PDI incurs little slowdown
— the worst is 1.59 for LAMMPS — because the over-
head is primarily the cost of intercepting MPI calls and
updating the MM, steps that we have highly optimized.
For example, to optimize MM creation, we use efficient
C++ data structures and algorithms such as associative
containers and use pointer comparisons (rather than
string-based comparisons) to compare states. Memory
usage is moderate for most benchmarks; the largest is
AMG2006 (10.36), which has many (unique) states in
its execution.

6. RELATED WORK

The traditional debugging paradigm [6, 15, 25] of in-
teractively tracking execution of code lines and inspect-
ing program state does not scale to existing high-end
systems. Recent efforts has focused on improving the
scalability of tools that realize this paradigm [6, 10].
Ladebug [8] and the PTP debugger [32] also share the
same goal. While these efforts enhanced debuggers to
handle increased MPI concurrency, root cause identifi-
cation is still a time consuming, manual process.

Automated root-cause analysis tools have begun to
target general coding errors in large-scale scientific com-

puting. Research work includes probabilistic tools [13,
9, 22, 23] that detect errors through deviations of ap-
plication behavior from a model. AutomaDeD [22] and
Mirgorodskiy et al. [23] both monitor the application’s
timing behaviors and focus the developer on tasks and
code regions that exhibit unusual behaviors. More com-
mon tools target specific error types, such as memory
leaks [16] or MPI coding errors [13, 14, 17, 18, 30].
These tools are complimentary to PDI as they can de-
tect a problem and trigger PDI’s diagnosis mechanisms.

Assertion-based debugging also targets reduced man-
ual effort. Recent work addressed scalability challenges
of parallel assertion-based debugging [11] but it is not
well suited for localizing performance faults. Differen-
tial debugging [4] provides a semi-automated approach
to understand programming errors; it dynamically com-
pares correct and incorrect runs. While these tech-
niques have been applied at small scales [31], the time
and scale expenses are likely prohibitive at large scales.

The closest prior work to PDI is STAT [5], which pro-
vides scalable detection of task behavioral equivalence
classes based on call stack traces. Its temporal ordering
relates tasks by their logical execution order so a de-
veloper can identify the least- or most-progressed tasks.
However, STAT primarily targets assisting developers
in the use of traditional debuggers. In contrast, PDI
monitors the execution of the program to detect abnor-
mal conditions and locate the fault automatically.

Others have explored program slicing in MPI pro-
grams to locate code sites that may lead to errors. To
provide higher accuracy, most techniques use dynamic
slicing [20, 24, 26]. These tools tend to incur large
runtime overheads and do not scale. Also, techniques
must include communication dependencies into data-
flow analysis, which is also expensive, to avoid mislead-
ing results. PDI uses other information to limit the use
of slicing in order to limit overhead.

7. CONCLUSIONS

Our novel debugging approach can diagnose faults in
large-scale parallel applications. By compressing his-
toric control-flow behavior of MPI tasks using Markov
models, our technique can identify the least progressed
task of a parallel program by inferring probabilistically
a progress-dependence graph. Using backward slicing,
our approach pinpoints code that could have led the
offending task to reach its unsafe state. We design
and implement PDI, which uses this approach to di-
agnose the most significant root-cause of a problem.
Our analysis of a hard-to-diagnose bug and fault in-
jections in three representative large-scale HPC appli-
cations demonstrate the utility and significance of PDI,
which identifies these problems with high accuracy, where
manual analysis and traditional debugging tools have
been unsuccessful. The distributed part of the analy-

sis is performed in a fraction of a second with over 32
thousand tasks. The low cost of the analysis allows its
use at multiple points during program execution.

8.
(1]
2]

3]
[4]

[5]

(6]

[7]

8]

[9]

(13]

(14]

REFERENCES

ASC Sequoia Benchmark Codes.
https://asc.1llnl.gov/sequoia/benchmarks/.

Boost C++ libraries. http://www.boost.org/.
Dynlnst - An Application Program Interface (API) for
Runtime Code Generation.
http://www.dyninst.org/.

D. Abramson, I. Foster, J. Michalakes, and R. Socic.
Relative Debugging: A New Methodology for
Debugging Scientific Applications. Communications of
the ACM, 39(11):69-77, 1996.

D. H. Ahn, B. R. D. Supinski, I. Laguna, G. L. Lee,
B. Liblit, B. P. Miller, and M. Schulz. Scalable
Temporal Order Analysis for Large Scale Debugging.
In SC ’09, 2009.

Allinea Software Ltd. Allinea DDT - Debugging tool
for parallel computing.
http://www.allinea.com/products/ddt/.

D. Bailey, J. Barton, T. Lasinski, and H. Simon. The
NAS Parallel Benchmarks. RNR-91-002, NASA Ames
Research Center, Aug. 1991.

S. M. Balle, B. R. Brett, C. Chen, and

D. LaFrance-Linden. Extending a Traditional
Debugger to Debug Massively Parallel Applications.
Journal of Parallel and Distributed Computing,
64(5):617-628, 2004.

G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski,
D. Ahn, and M. Schulz. AutomaDeD:
Automata-Based Debugging for Dissimilar Parallel
Tasks. In IEEE/IFIP Conference on Dependable
Systems and Networks (DSN), pages 231 —240, 2010.
J. DelSignore. TotalView on Blue Gene/L. Presented
at “Blue Gene/L: Applications, Architecture and
Software Workshop”, Oct. 2003.

M. N. Dinh, D. Abramson, D. Kurniawan, C. Jin,

B. Moench, and L. DeRose. Assertion based parallel
debugging. In IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID),
pages 63-72, 2011.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst.,
9(3):319-349, July 1987.

Q. Gao, F. Qin, and D. K. Panda. DMTracker:
Finding Bugs in Large-scale Parallel Programs by
Detecting Anomaly in Data Movements. In
ACM/IEEE Supercomputing Conference (SC), 2007.
Q. Gao, W. Zhang, and F. Qin. FlowChecker:
Detecting Bugs in MPI Libraries via Message Flow
Checking. In ACM/IEEE Supercomputing Conference
(5C), 2010.

GDB Steering Committee. GDB: The GNU Project
Debugger.
http://www.gnu.org/software/gdb/documentation/.
S. C. Gupta and G. Sreenivasamurthy. Navigating Cin
a LeakyBoat? Try Purify. IBM developer Works, 2006.
W. Haque. Concurrent deadlock detection in parallel
programs. International Journal of Computers and
Applications, 28:19-25, January 2006.

T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S.
Miiller. A graph based approach for mpi deadlock

detection. In International conference on
Supercomputing (ICS), pages 296-305, 2009.

M. Kamkar and P. Krajina. Dynamic slicing of
distributed programs. In International Conference on
Software Maintenance, pages 222 —229, oct 1995.

M. Kamkar, P. Krajina, and P. Fritzson. Dynamic
slicing of parallel message-passing programs. In
Proceedings of the Fourth Euromicro Workshop on
Parallel and Distributed Processing, 1996. PDP ’96.,
pages 170 177, jan 1996.

B. Korel and J. Laski. Dynamic slicing of computer
programs. Journal of Systems and Software,
13(3):187-195, Dec. 1990.

I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi,
G. Bronevetsky, D. H. Anh, M. Schulz, and

B. Rountree. Large scale debugging of parallel tasks
with automaded. In ACM/IEEE Supercomputing
Conference (SC), pages 50:1-50:10, 2011.

A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller.
Problem Diagnosis in Large-Scale Computing
Environments. In ACM/IEEE Supercomputing
Conference (SC), New York, NY, USA, 2006. ACM.
J. Rilling, H. Li, and D. Goswami. Predicate-based
dynamic slicing of message passing programs. In
Second IEEE International Workshop on Source Code
Analysis and Manipulation, pages 133 — 142, 2002.
Rogue Wave Software. TotalView Debugger. http:
//wwu.roguewave.com/products/totalview.aspx.

G. Shanmuganathan, K. Zhang, E. Wong, and Y. Qi.
Analyzing message-passing programs through visual
slicing. In International Conference on Information
Technology: Coding and Computing (ITCC),

volume 2, pages 341 — 346 Vol. 2, april 2005.

F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan,

R. K. Yates, B. R. de Supinski, J. Sexton, and J. A.
Gunnels. Simulating solidification in metals at high
pressure: The drive to petascale computing. Journal
of Physics: Conference Series, 46(1):254, 2006.

M. Strout, B. Kreaseck, and P. Hovland. Data-flow
analysis for mpi programs. In International
Conference on Parallel Processing (ICPP), pages 175
—184, aug. 2006.

R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of collective communication operations
in mpich. International Journal of High Performance
Computing Applications, 19:49-66, 2005.

J. S. Vetter and B. R. de Supinski. Dynamic software
testing of mpi applications with umpire. In
ACM/IEEE Supercomputing Conference (SC), 2000.
G. Watson and D. Abramson. Relative Debugging for
Data-Parallel Programs: A ZPL Case Study. IEEFE
Concurrency, 8(4):42-52, 2000.

G. Watson and N. DeBardeleben. Developing
Scientific Applications Using Eclipse. Computing in
Science & Engineering, 8(4):50-61, 2006.

M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439-449, 1981.

