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Abstract—Wireless reprogramming of sensor nodes is an essential requirement for long-lived networks because software

functionality needs to be changed over time. The amount of information that needs to be wirelessly transmitted during reprogramming

should be minimized to reduce reprogramming time and energy. In this paper, we present a multihop incremental reprogramming

system called Hermes that transfers over the network the delta between the old and new software and lets the sensor nodes rebuild

the new software using the received delta and the old software. It reduces the delta by using techniques to mitigate the effects of

function and global variable shifts caused by the software modifications. Then it compares the binary images at the byte level with a

method to create a small delta that needs to be sent over the wireless network to all the nodes. For the wide range of software change

scenarios that we experimented with, we find that Hermes transfers up to 201 times less information than Deluge, the standard

reprogramming system for TinyOS, and 64 times less than an existing incremental reprogramming system by Jeong and Culler.

Index Terms—Sensor networks, incremental reprogramming, deluge.
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1 INTRODUCTION

LARGE scale sensor networks may be deployed for long
periods of time during which the requirements from

the network or the environment in which the nodes are
deployed may change. This may necessitate modifying the
executing application or retasking the existing application
with different sets of parameters, which we will collectively
refer to as reprogramming. Once deployed, it may be very
difficult to manually reprogram the sensor nodes because of
the scale (possibly hundreds of nodes) and the embedded
nature of the deployment since the nodes may be located in
places that are difficult to access physically. The most
relevant form of reprogramming is remote multihop repro-
gramming using the wireless medium which reprograms the
nodes as they are embedded in their sensing environment.

It is essential that the code update be 100 percent reliable
and reach all the nodes that it is destined for. Since the
performance of the sensor network is greatly degraded, if
not reduced to zero, during reprogramming, it is essential to
minimize the time required to reprogram the network. Also,
as the sensor nodes have limited battery power, energy
consumption during reprogramming should be minimized.
Since reprogramming time and energy depend chiefly on
the number of radio transmissions, a reprogramming system

should minimize the amount of information that needs to be
wirelessly transmitted during reprogramming. Reprogram-
ming is done recurrently and transfers much larger data
than that transmitted during regular communication of the
sensed data. Hence, resource consumption of reprogram-
ming is an important concern.

In practice, software running on a node evolves, with
incremental changes to functionality, or modification of the
parameters that control current functionality. So the differ-
ence between the currently executing code and the new code
is often much smaller than the entire code. This makes
incremental reprogramming attractive because only the
changes to the code need to be transmitted and the entire
code can be reassembled at the node from the existing code
and the received changes. The goal of incremental repro-
gramming is to transfer a small delta (difference between the
old and the new software) so that reprogramming time and
energy can be minimized.

The design of incremental reprogramming on sensor
nodes poses several practical challenges. A class of operating
systems, that includes the widely used TinyOS [1], does not
support dynamic linking of software components on a node.
This rules out a straightforward way of transferring just the
components that have changed and linking them in at the
node. The second class of operating systems, represented by
SOS [2] and Contiki [3], do support dynamic linking.
However, they do not allow changes to the kernel modules.
Also, the specifics of the position independent code strategy
employed in SOS-1.x limits the kinds of changes to a module
that can be handled. In Contiki and SOS-2.x, the requirement
to transfer the symbol and relocation tables to the node to
support runtime linking increases the amount of traffic that
needs to be disseminated through the network.

In [4], we presented an incremental reprogramming
system called Zephyr that supports fully functional incre-
mental reprogramming in sensor networks. It does not
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require dynamic linking on the node and does not transfer
symbol and relocation tables. Zephyr generates the delta by
comparing the two executables (called byte-level comparison)
using an optimized version of the Rsync algorithm [5]. In
order to increase the similarity between the two versions of
the software to produce small delta, Zephyr uses one level
of indirection for function calls to mitigate the effects of
function shifts. Each function call is redirected to a fixed
location in the program memory where the actual call to the
function is made.

In this paper, we identify two issues with Zephyr in
particular and incremental reprogramming in general—
1) Function call indirections decrease the program execu-
tion speed. Although one such indirection increases the
latency of a single function call by only few clock cycles
(e.g., 8 clock cycles on the AVR platform [6]), the latency for
each function call is experienced continually by a sensor
node because typical sensor network applications execute in
a loop, invoking a given function call repeatedly. Increase in
latency in performing processing tasks means less amount
of time for the sensor nodes to sleep causing the energy
consumption to increase (although this energy consumption
is small compared to that of radio communications).
Further, some sensor networks are deployed in applications
needing control and actuation. These typically have tight
bounds on the time by which the control or the actuation
commands need to be sent [7]. Therefore, the time saving
due to removing the indirection may be important in such
scenarios. Furthermore, by avoiding the indirection table,
Hermes reduces the program memory usage, which can be
an issue for some applications that need to run on devices
with little program memory. 2) Function call indirections do
not handle the increase in delta size due to movement of the
global data variables. As the user software is changed,
positions of the global variables may change and the
instructions which refer to those variables may change as
well between the two versions of the software. This causes a
huge increase in the size of the delta.

For a wide range of software change cases that we
experimented with, we found that the global variable shifts
increase the delta size by 1369.56 percent on average. The
increase in the size of the delta due to the relocation of the
global variables depends on the number of global variables
that are shifted in memory due to software modification and
the number of instructions that refer to the shifted variables.
From our experiments, we find that the practical software
changes generally cause many global variables to be shifted.
These problems exist in all protocols that use function call
indirections and in all existing reprogramming protocols.

In this paper, we present a fully functional incremental
reprogramming system called Hermes (messenger of gods,
in Greek mythology) which solves the problems mentioned
above. It uses indirection table to mitigate the effects of
function shifts and performs local optimizations at the node
to avoid the latency caused by such indirection. Thus,
function call indirections are used to reduce the size of the
delta that is transferred wirelessly, while efficient code,
without indirections, is executed, after some local transfor-
mations. Hermes also reduces the size of delta (and hence
reprogramming time and energy) significantly by using
techniques to eliminate the effects of global variable shifts.

This paper is an extended version of our previous
conference paper [8] with following major differences. First,
we introduce a problem associated with any incremental
reprogramming approach, which, to the best of our knowl-
edge, has not been considered by any previous work. In
practical wireless sensor network deployments, a sensor
node (or a group of nodes) may miss one or more
incremental code updates. In such cases it will not be able
to receive any future code update because the most recent
previous version of the code is required by the sensor node
to build the latest version of the code. This is a correctness
issue, and thus even more serious than a performance
degradation. We present a solution to this problem in this
paper. Second, we analyze of the performance of Hermes,
specifically the benefit of keeping global variables at the
same addresses, between the old and the new versions of
the software. One of the principal design techniques of
Hermes is to eliminate the effects of relocation of global
variables in memory due to software modification. We
quantify this effect through a newly introduced metric. We
provide values for this metric for a range of practical
software update cases to show that Hermes provides a
significant advantage. Third, we provide a more compre-
hensive comparison of Hermes with previous approaches.

We implement Hermes in TinyOS [1] and demonstrate it
on real multihop testbeds as well as using simulations. Our
experiments show that Deluge [9], Stream [10], protocol by
Jeong and Culler [11], and Zephyr [4] need to transfer up to
201.41, 134.27, 64.75, and 62.09 times more bytes than
Hermes, respectively.

Our contributions in this paper are as follows:

. Hermes avoids the latency in the user program due
to the use of indirection table. The technique used
for this demonstrates a new design approach for
reprogramming sensor networks—optimize delta
for the wireless transfer as radio transmissions are
the most expensive operations in the sensor network
and let the sensor nodes perform some local
inexpensive optimizations to achieve execution
efficiency.

. Hermes eliminates the effect of global variable shifts
on the size of the delta script.

. We provide quantitative comparison among the
existing protocols to show improvement of two
orders of magnitude.

The rest of the paper is organized as follows: Section 2
surveys the related work. Section 3 gives a brief overview
of various stages of Hermes. Section 3.2 discusses the byte-
level comparison and explains why such comparison alone
is not sufficient. Section 3.3 presents the application-level
modifications, including the techniques to eliminate the
effects of shifts in the memory locations of global variables.
Section 3.4 discusses the delta distribution method.
Section 3.5 explains image rebuild and load stage and
explains how the latency due to function call indirections
can be avoided. Section 3.6 explains how transient link or
node failures can be handled. Section 3.7 explains some
optimizations. Section 4 explains the testbed and the
simulation setups and results. Section 5 analyzes the
performance of Hermes in terms of reduction in the size
of the delta script. Section 6 concludes the paper.
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2 RELATED WORK

The question of reconfigurability of sensor networks has
been an important theme in the community. We discern
three streams of work in this regard. First, is the class of
work that provides virtual-machine abstractions on sensor
nodes. Second, is the design for reconfigurability in sensor
operating systems that do not support dynamic linking and
loading. Third, is reconfigurability in systems that do
support dynamic linking and loading. We discuss these
three streams in order here.

Systems such as Mate [12], VM* [13], Darjeeling [14], and
ASVM [15] provide virtual machines that run on resource-
constrained sensor nodes. They enable efficient code
updates, since the virtual machine code is more compact
than the native code. However, they trade off, to different
degrees, less flexibility in the kinds of tasks that can be
accomplished through virtual-machine programs and less
efficient execution than native code. Hermes can be
employed to compute incremental changes in the virtual
machine byte codes and is thus complementary to this class.

TinyOS [1] is the primary example of an operating
system that does not support loadable program modules.
There are several protocols that provide reprogramming
with full binaries, such as Deluge [9], Stream [10], Freshet
[16], MOAP [17], and MNP [18]. For incremental repro-
gramming, several researchers have computed deltas
between existing and new images and send just the delta
over the air to the nodes. Jeong and Culler [11] use Rsync to
compute the difference between the old and new program
images. However, it can only reprogram a single hop
network. Furthermore, it does not mitigate the effects of
function and global-variable shifts causing the delta to be
large. [19] focuses on encoding and decoding of the delta
and does not consider the function and global variable
shifts. In [20], the Reijers and Langendoen modify Unix’s
diff program to create an edit script to generate the delta.
They identify that a small change in code can cause a lot of
address changes resulting in a large size of the delta. Since
they also do not consider the function and global variable
shifts, the size of the delta is very large.

Koshy and Pandey [21] have the design goal of keeping
address patches to a small number. They reduce the effects
of function shifts by using slop regions after each function
in the application so that the function can grow. However,
the slop regions lead to fragmentation and inefficient usage
of the Flash and the approach only handles growth of
functions up to the slop region boundary. Also, this work
does not consider the effect of shifts in the positions of the
global variables in memory. Marron et al. [22] present a
mechanism for linking components on the sensor node
without support from the underlying OS. This is achieved
by sending the compiled image of only the changed
components along with the new symbol and relocation
tables to the nodes for dynamic linking on the nodes. This
has been demonstrated only in an emulator and makes
extensive use of Flash. Also, the symbol and relocation
tables can grow very large resulting in large updates. To the
best of our understanding, no previous work handles the
issue of increased delta size due to global variable shifts.
Previous works on incremental reprogramming have

focused on one or some stages of the process while here
we present the results of the complete multihop reprogram-
ming process that executes on a testbed.

Reconfigurability is simplified in OSes like SOS [2], and
Contiki [3] that support linkable modules. In these systems,
individual modules can be loaded dynamically on the
nodes. Specific challenges exist in the matter of reconfigura-
tion in these systems. SOS-1.x uses position independent
code and due to architectural limitations on common
embedded platforms, the relative jumps can be only within
a certain offset (such as 4 KB for the AVR platform). Contiki
disseminates the symbol and relocation tables, which may be
quite large (typically these tables make up 45 to 55 percent of
the object file [21]). SOS and Contiki do not allow kernel
changes. Hermes allows updates to any part of the software.
Low-level comparison between files for determining their
differences is achieved by several tools, including Rsync
(which we compare here), Vdelta, and Xdelta.

R2 [23] is a recent incremental reprogramming system
that generates delta using relocatable code. R2 optimizes the
data structures for storing the relocation information for
micro embedded devices. Unlike Hermes which uses
different techniques to handle function shifts and global
variable shifts, R2 uses a unified relocation entry approach
for all types of data and code references. Hermes is designed
to handle function and global variable shifts whereas R2 can
also handle other reference instructions, e.g., call, mov, br, etc.
However, unlike Hermes which is evaluated using an
extensive set of experiments, R2 is evaluated using a small
number of software change cases. One of the disadvantages
of using relocatable code is that the relocation entries, that
need to be sent along with the delta script, can be very large if
there are large number of function calls and global variable
references. In R2, a relocation entry needs to allocated for
each function call and global variable reference. As we
explain in the next section, Hermes needs to allocate a table
entry for each function, not for each function call. Thus,
generally the number of table entries for Hermes is
significantly less than the number of relocation entries for
R2. In systems where each function is called multiple times,
the size of relocation entry and thus the delta can be very
large in R2. Furthermore, Hermes does not require extra
memory allocations for global variables, whereas R2 requires
relocation entry for each reference to a global variable.

3 HERMES DESIGN

In this section, we first present an overview of the various
components of Hermes followed by their descriptions.

3.1 Overview of Hermes

Fig. 1 is the schematic diagram showing various stages of
Hermes. First, Hermes performs two application-level mod-
ifications on the old and new versions of the software—one
to mitigate the effect of function shifts and the other to
eliminate the effect of global variable shifts. Then the two
executables are compared at the byte level using an
optimized Rsync algorithm [4]. This produces the delta
script which describes the difference between the old and
new versions of the software. Next the delta script is
transmitted wirelessly to all the nodes in the network using
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the delta distribution stage. Once the nodes download the
delta script, they rebuild the new software using the old
software and the received delta script. The sensor nodes run
the newly rebuilt software by using bootloader to load it in
the program memory. The stages shown in Fig. 1 are
described in the following individual sections. Before
explaining the application-level modifications, we first
describe byte-level comparison and show why it is not
sufficient and why we need application-level modifications.

3.2 Byte-Level Comparison

Hermes uses Zephyr’s approach for byte-level comparison
to generate the delta script. For the sake of completeness,
here we provide a very brief description of this stage.
Hermes computes the delta script between the two versions
of the executables using modified Rsync algorithm. The
delta script basically consists of COPY and INSERT
commands. COPY commands tell which parts of the old
software need to be copied to the new software (and where)
and INSERT commands contain the bytes that are not
present in the old software but need to be inserted in the
new software. A complete description of Rsync algorithm
and our modifications to it are explained in [4]. But the delta
script produced by byte-level comparison is much larger
than the actual amount of change made in the software. To
see this, let us consider two software change cases.

. Case I: Changing Blink application from blinking a
green LED every second to blinking it every 2 seconds.
Blink is an application in TinyOS distribution that
blinks an LED at the specified rate. The delta script
produced with byte-level comparison is 23 bytes
which is small and congruent with the amount of
change made in the software.

. Case II: We added 4 lines of code to Blink. The delta
script between Blink and the one with these few
lines added is 2,183 bytes. The actual amount of
change made in the software for this case is slightly
more than that in Case I, but the delta script
produced is disproportionately larger.

When a single parameter is changed in the application as
in Case I, no part of the already matching binary code is
shifted. All the functions start at the same location as in the
old image. But with the few lines added to the code as in
Case II, the functions following those lines are shifted. So all
the calls to those functions refer to new locations resulting
in the large delta script. Thus, we need application-level

modifications to make the size of the delta script propor-
tional to the actual amount of change made in the software.

3.3 Application-Level Modifications

Hermes uses Zephyr’s approach of function call indirec-
tions to mitigate the effects of function shifts. Hermes
changes the linking stage during the program compilation
to redirect the function calls to the indirection table (placed
at the fixed location in program memory). For example, let
the application shown in Fig. 2a be changed to the one
shown in Fig. 2b where functions fun1, fun2, funn are
shifted from their original positions b, c, and a to b0, c0, and
a0, respectively. Hermes modifies the linking stage of the
executable generating process to produce the code shown in
Fig. 2c (for old image) and Fig. 2d (for new image). Here
calls to functions fun1, fun2, . . . , funn are replaced by
jumps to fixed locations loc1, loc2, . . . , locn, respectively.
The segment of the program memory starting at the fixed
location loc1 acts as an indirection table where the actual
calls to the functions are made. When the call to the actual
function returns, the indirection table directs the flow of
control back to the line following the call to loc-x
(x ¼ 1; 2; . . . ; n). In Hermes, the functions that exist in both
the new and old versions of the software are assigned the
same slots in the indirection table. As a result, if the user
program has n calls to a particular function, they refer to the
same location in the indirection table and only one call in
the indirection table differs between the two versions. On
the other hand, if no indirection table were used, all the n
calls would refer to different locations in old and new
applications. Due to the use of indirection table, the delta
script produced by Hermes is only 280 bytes for Case II
compared to 2,183 bytes when only byte-level comparison is
used. Function call indirections have been used in some
wireline and wireless systems but not to reduce the delta or
reprogram the sensor networks.

3.3.1 High-Level Idea

The basic idea behind application-level modifications is to
mitigate the structural changes in the user program caused
by the modification of the software so that the similarity
between the old and new software is preserved and a small
delta script is produced. Apart from function shifts, the
other structural change caused by software modification is
the global variable shifts. These result in all the instructions
that refer to those variables to change between the two
versions of the software. Note that local variables can also
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get shifted due to change in the software, but this does not
cause the instructions that refer to these variables to change.
To understand this, let us see how different variables are
stored in RAM. As shown in Fig. 3a, initialized global
variables are stored as .data variables in RAM followed by
uninitialized global variables which are stored as .bss
variables. The local variables are stored in stack which
grows upward from the end of RAM. Since the local
variables are referred to using the addresses relative to the
stack pointer, their exact locations in RAM do not affect the
size of the delta script.

To see the severeness of the global variable shifts,
consider an example where a global variable is added to
the Blink application. In this case, the size of the delta script
produced by using only indirection table is 6,090 bytes.
This is disproportionately larger than the actual amount of
change made in the software. The size of the delta script
depends on the number of global variables that are shifted
and the number of instructions that refer to those shifted
variables. So, a mechanism to mitigate the effects of global
variable shifts should be a very important component of
application-level modifications to make the delta script size

proportional to the actual amount of change made in the
software.

It should be noted that the actual order of the global
variables in RAM is determined by the compiler imple-
mentation, not by the order in which they are declared in
the user program. So, the programmer has no control over
the placement of the global variables in RAM. Since the
location of global variables in RAM is dependent on the
compiler specifics, one solution is to change the compiler
itself and place the global variables such that the similarity
in positions of the variables between the old and the new
versions is maximized. But this calls for a complex
modification to the core of a compiler, which in turn makes
the solution difficult to port.

3.3.2 Placement of Global Variables

Since we desire a compiler-independent solution, Hermes
uses the fact that members of a structure are placed in the
same order in RAM as they are declared within the structure.
Hermes adds one more stage (Structure generator) to the
executable building process. If this is the first time software is
being installed on the sensor nodes (i.e., no old software
exists), this stage scans through the application source files
and transforms the initialized global variables into members
of one structure, called iglobStruct, and uninitialized global
variables into members of another structure, called uglob-
Struct. This stage also replaces instructions that refer to the
global variables by the instructions that refer to them as the
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Fig. 3. Baseline RAM structures for (a) old and (b) new applications.
RAM structures for corresponding (c) old and (d) new applications using
Hermes.

Fig. 2. (a) Old and (b) new images without indirection table (current
state). Note that positions of the functions (fun1, etc.) have changed
leading to changes in the call instructions. (c) Old and (d) new images
with indirection table in Hermes. Note that due to the indirection table,
the call instructions do not change.



corresponding members of these structures. When the
software is modified, the structure generator scans through
the new software to find the global variables. When such
variable is found, it checks if that variable is present in the old
software. If yes, it places that variable as a member of the
corresponding structure (iglobStruct or uglobStruct) at the
same slot in that structure as in the old software. Otherwise, it
makes a decision to assign a slot in the corresponding
structure for that variable (call it a rootless variable), but does
not yet create the slot. After assigning the slots for the existing
global variables, it checks if there are any empty slots in the
new structure. These would correspond to variables which
were present in the old software, but not in the new software.
If there are empty slots and the size of the rootless variable is
less than or equal to the size of the slot, Hermes assigns those
slots to the rootless variables. If there are still some rootless
variables without a slot, then the corresponding structure is
expanded to accommodate the rootless variables. Thus, both
these structures are naturally garbage collected and the
structures expand on an as-needed basis.

The above method is illustrated in Fig. 3. Let default RAM
structures for old and new applications be as shown in
Fig. 3a and Fig. 3b, respectively. The old application has
initialized global variables iv1; iv2; . . . ; ivn in the .data section
and uninitialized global variables uv1; uv2; . . . ; uvn in the .bss
section. Let a single initialized global variable ivnþ1 be added
to .data section due to the modification in the software and
the compiler places it after iv1 (Fig. 3b). As a result, global
variables iv2; iv3; . . . ; ivn; uv1; uv2; . . . ; uvn are shifted to new
positions in RAM causing all the instructions in program
memory that refer to these shifted variables to vary between
the two versions of the application. This results in a large
delta script. Hermes uses the two structures, iglobStruct and
uglobStruct, to put .data and .bss variables, respectively as
shown in Fig. 3c for the old application. Hermes also leaves
some space between .data and .bss sections to allow the
former to grow with less chance of the latter being straddled
which would cause an undesirable shift in the uninitialized
global variables. In Section 3.7, we discuss how Hermes
avoids this gap. In the new application (Fig. 3d), Hermes
places the added variable ivnþ1 at the end of the .data section
so that the variables which are common between the two
versions of the application are located at the same locations
in RAM. So the instructions referring to the global variables
that exist in both the versions do not change resulting in a
small delta script.

The problem of filling free slots with rootless variables of
various sizes is similar to knapsack problem, which is
known to be NP-Complete [24]. Hermes uses a greedy
approach to tackle this problem. It is possible to achieve
better performance in terms of reduction in the number or
size of free slots by replacing the greedy approach with
clever alternative schemes. Our current implementation
uses the greedy approach because it is simple and easy to
implement and the performance is good enough for our use
cases. If an alternative approach is used, the tradeoff
between performance gain and complexity of implementa-
tion should be considered.

These changes in Hermes are transparent to the user. She
does not need to change the way she programs. Hermes

applies these changes during the executable generation
process when the user invokes program compilation.

With this approach, the size of the delta script produced
by Hermes for the case where one global variable was added
to Blink application is 156 bytes compared to 6,090 bytes
when only indirection table is used (as in Zephyr). In other
words, with the addition of the structure generator to the
application-level modification stage, the size of the delta
script is significantly reduced making it proportional to the
actual amount of change made in the software.

It should be noted that function and global variable shifts
require different solutions. The former is handled by calling
functions through a level of indirection; the latter is handled
by preserving the similarity in the order in which the
variables are placed in RAM. Static placement of functions
would waste some memory for interfunction space. Global
variable access through indirection would result in code
expansion and runtime overhead.

3.4 Delta Distribution Stage

For wirelessly distributing the delta script, Hermes uses the
approach from Stream [10] with some modifications. The
core data dissemination method of Stream is the same as in
Deluge. Deluge uses a monotonically increasing version
number, segments the binary code image into pages, and
pipelines the different pages across the network. The code
distribution occurs through a three-way handshake of
advertisement [25], request, and code broadcast between
neighboring nodes which ensures reliability in the face of
wireless link failures. Unlike Deluge, Stream avoids
transferring the entire reprogramming component every
time code update is done. The reason behind this require-
ment in Deluge is that the reprogramming component
needs to be running on the sensor nodes all the time so that
the nodes can be receptive to future code updates and these
nodes are not capable of multitasking (running more than
one application at a time). Stream solves this problem by
storing the reprogramming component in the external flash
and running it on demand—whenever reprogramming is to
be done.

Distinct from Stream, Hermes divides the external flash
as shown in the right side of Fig. 4. The reprogramming
component and delta script are stored as image 0 and
image 1, respectively. Images 2 and 3 are the user
applications—one old version and the other current version
which is created from the old image and the delta script as
discussed in Section 3.5. The protocol works as follows:

1. Let image 2 be the current version (v1Þ of the user
application. Initially, all nodes in the network are
running image 2. At the host computer, delta script
is generated between the old image (v1) and the new
image (v2).

2. The user gives the command to the base node (node
physically attached to the host computer) to reboot
all nodes in the network from image 0 (reprogram-
ming component).

3. The base node broadcasts the reboot command and
itself reboots from the reprogramming component.

4. The nodes receiving the reboot command from the
base node rebroadcast the reboot command and
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themselves reboot from the reprogramming compo-
nent. This is controlled flooding because each node
broadcasts the reboot command only once. Finally,
all nodes in the network are executing the repro-
gramming component.

5. The user then injects the delta script to the base
node. It is wirelessly transmitted to all nodes in the
network using the usual three-way handshake of
advertisement, request, and code broadcast as in
Deluge. Note that unlike Stream and Deluge which
transfer the application image itself, Hermes trans-
fers the delta script only.

6. All nodes receive the delta script and store it as
image 1. Reprogramming a heterogeneous network
can be supported relatively easily on top of Hermes
by storing multiple application image pairs (old and
new) one for each class of nodes. The instruction to
reboot from a specific image is sent separately to
each class of nodes.

3.5 Image Rebuild and Load Stage

After the nodes download the delta script, they rebuild the
new image using the script (stored as image 1 in the
external flash) and the old image (stored as image 2 in the
external flash). The image rebuilder stage consists of a delta
interpreter which interprets the COPY command by copying
the specified number of bytes from the specified location in
the old image to the specified location in the new image. All
these locations are specified in the COPY command of the
delta script. The interpreter inserts the bytes present in the
INSERT command at the specified location in the new
image. The new image is stored as image 3. The bootloader
then loads the new software from image 3 of the external
flash to the program memory (Fig. 4). In the next round of
reprogramming, image 3 becomes the old image and the
newly rebuilt image is stored as image 2.

Next, we describe the processing at the bootloader when
creating the executable image.

Avoiding latency due to indirection table. As mentioned
earlier, Hermes uses Zephyr’s approach of function call
indirections to mitigate the effects of the function shifts. Use
of one extra level of indirection increases the latency of the
user program.

To solve this problem, we observe that there are two
conflicting requirements: we need indirection table to
reduce the size of the delta script and we need to remove
any indirection for optimized execution speed. We solve
this by having the sensor nodes store the application with
indirection table in the external flash, but we change the
bootloader to avoid using indirection table. As shown in
Fig. 4, when the bootloader loads the new image (image-3)
from external flash to program memory, it eliminates the
indirection by using the exact function address from the
indirection table. For example, in Fig. 4, when the boot-
loader reads call loc1, it finds from the indirection table that
the actual target address for this call instruction is fun1. So
when writing to program memory, it writes call fun1 instead
of call loc1. Thus as shown in Fig. 4, the application image in
program memory (v02) is different from that in the external
flash (v2) in that it does not use indirection table. In this
way, the sensor nodes still possess the program image with
the indirection table in the external flash which helps to
rebuild the new image in future, and yet the currently
running instance of the program image does not use the
indirection table and is thus optimized for execution speed.
With this, we put forward a new idea for reprogramming
sensor nodes—since radio transmissions are the most
expensive operations, optimize for the transfer and let the
sensor nodes perform some inexpensive local operations to
optimize for execution speed.

3.6 Failure Handling

In this section, we discuss one of the problems associated
with all incremental reprogramming approaches, which, to
the best of our knowledge, has not been considered by any
previous work. Let us consider a situation where a node n1

(or a set of nodes) goes into a disconnection state for some
time. A disconnection state means all the links of a node
have failed, in a transient manner. In practical sensor
network deployments, nodes may get disconnected from
the rest of the network for some time due to various
reasons, such as time-varying nature of wireless channels,
changing environmental conditions, transient software or
hardware failures, battery outages, etc.

Let �i;iþ1 represent the delta script that can be used to
build the application code of version viþ1 from the code of
version vi, i.e., vi þ�i;iþ1 ¼ viþ1. Before going to the
disconnection state, let us suppose that the node n1 had vj
version of the application code. When n1 comes out of
disconnection state, let us suppose that it missed �j;jþ1; . . . ;
�k�1;k versions of the delta script, where k� j � 1. In other
words, n1 missed one or more incremental code updates
while it was in the disconnection state. After coming out of
disconnection state, n1 needs vk�1 version of the application
code and �k�1;k version of the delta script to build the code of
version vk (vk�1 þ�k�1;k ¼ vk). It can download �k�1;k from
its neighbors. However, n1 does not possess vk�1 version of
the user application. Thus it cannot build the latest version of
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the application. Note that this is a correctness problem, not
only a performance issue.

Hermes provides the following intuitive solution to this
problem. Note that the actual dissemination of the delta
script occurs using three-way handshake of advertisement
request data as in Deluge [9]. Nodes periodically advertise
their metadata consisting of the version number of the
images that they currently possess. When a node receives
an advertisement message with �i�1;i version of the delta
script, it checks if it has �i�2;i�1 version of the delta script. If
yes, then as usual it requests the �i�1;i version of the delta
script (i.e., image-1), downloads it, and rebuilds the new
image using the downloaded delta script and the old image
(version vi�1). Otherwise, if it has �j�1;j version of the delta
script and i� j > 1, then instead of requesting the delta
script, it requests the entire image of the new application.
Note that this approach works well even if a cluster of
nodes in a geographical vicinity misses one or more recent
delta script downloads. Some of those out-of-date nodes may
not have any up-to-date neighbor. But as long as at least one
out-of-date node has a functioning link with at least one up-
to-date node, all the out-of-date nodes will eventually get
the latest version of the entire image.

Obviously downloading the entire new image is more
costly than downloading just the delta script. But Hermes
compromises performance for correctness. However, it
should be noted that the excessive radio transmissions for
downloading the entire program image are localized only in
the neighborhood of the node(s) which has missed n recent
code updates. An alternative solution would be to send the
last n deltas. However, this poses several problems and is
generally more energy expensive than downloading the
new image because of the following reason. In this
alternative scheme, each node needs to decide the number
of previous deltas that it needs to store in case some node
needs the set of deltas from itself. Obviously, it cannot store
all past deltas and since the node disconnection period can
be arbitrarily large, the finite number of deltas stored in the
nodes may not be sufficient. In such cases, the last n deltas
will have to be delivered from the base station to the
required sensor node through a series of intermediate
nodes. This can be more expensive in terms of energy
consumption than just downloading the entire new image
from an immediate neighbor.

3.7 Avoiding Empty Space between .data and .bss
Sections

One drawback of the scheme outlined above is that we need
to leave some empty space between .data and .bss variables
in RAM to allow for .data variables to grow in future. If this
space is too small, the probability of .data variables
extending beyond the empty space when the software is
modified becomes high, causing the .bss variables to shift.
As a result, the delta script becomes large. To avoid this
situation, we need to leave sufficiently large space between
.data and .bss variables in RAM. But RAM is a limited
resource on the sensor nodes. For example, mica2, and
micaz motes have 4 KB RAM. Next, we explain how we
solve this problem in Hermes.

One possible solution is to leave a large space between
.data and .bss sections while compiling the application on

the host computer, generate the delta script on the host
computer, distribute the delta script to all the sensor nodes
in the network and change the bootloader running on the
sensor nodes to avoid that space. When the bootloader
loads the application from external flash to the program
memory, it can change the instructions that refer to .bss
variables by subtracting gapSize from the addresses used by
these instructions where gapSize is the size of the empty
space between .data and .bss variables. Because of the
complex addressing schemes on the common sensor node
platforms, an algorithm with some control flow analysis is
needed. Given the tight computational and memory
constraints of the sensor nodes, this may not be feasible.

To solve this problem, Hermes uses two different
approaches for Von-Neumann (e.g., msp430 platform [26])
and Harvard (e.g., AVR platform [6]) architectures, respec-
tively. In Von-Neumann architecture, a single bus is used as
the instruction and the data bus. Program memory (where
program code is stored) and RAM (where global variables,
stack, and heap are stored) share the same logical address
space and therefore the same mode for addressing the two
kinds of memory. As a result, we can move .bss variables
from RAM to program memory and avoid the space
between the .data and .bss variables in RAM. We
implemented this approach on TMote [27] (msp430 plat-
form) sensor nodes. Note that program memory is larger
than RAM on the sensor nodes (e.g., TMote has 10 KB RAM
and 48 KB program memory). The reprogramming system
that we use occupies only about 25 KB of program memory
and hence enough space is available for .bss variables in
program memory. However, it should be noted that for
nonread-only variables, writing to program memory in-
volves time and energy overhead. Furthermore, writing to
flash memory may require bloc erase and thus extra energy
overhead. Also, there is a practical limit on the number of
flash erase/write cycles for such memory. The scheme that
we describe next for the Harvard architecture does not
suffer from these problems and can also be used for the
Von-Neumann architecture. This scheme leaves a small
bounded space (10 bytes in our current implementation)
between .data and .bss sections.

In Harvard architecture, program memory and RAM lie
in separate address spaces. So, if we move .bss variables to
program memory, we need to change all the instructions
that use data bus to refer to .bss variables with different
addressing modes to use the instruction bus instead. This
increases the complexity of the implementation. Further-
more, even if .bss variables are stored in program memory,
we can write to those locations only from restricted areas of
the program memory (e.g., bootloader section) due to
memory protection. This would disallow references to the
.bss variables from general-purpose user programs. Thus
for Harvard architecture, when the application is compiled
on the host computer, Hermes leaves a small space between
the two sections in RAM. If .data section expands beyond
this space, we move only those .bss variables which are
straddled by the .data section expansion to the end of the
.bss section. For our mica2 [28] experiments, we leave an
empty space of 10 bytes between .data and .bss sections.
This is not a significant number because mica2 (and also
micaz) nodes have 4 KB RAM.
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4 EXPERIMENTS AND RESULTS

To evaluate the performance of Hermes, we considered
following software change scenarios for TinyOS applications.

. Case 1: Blink to Blink with a global variable added.

. Case 2: Blink to CntToLeds.

. Case 3: Blink to CntToLedsAndRfm.

. Case 4: CntToLeds to CntToLedsAndRfm.

CntToLeds is an application that displays the lowest 3 bits
of the counting sequence on the LEDs. In addition,
CntToLedsAndRfm transmits the counting sequence over
the radio. To evaluate the performance of Hermes with
respect to natural evolution of the real world software, we
considered a real world sensor network application called
eStadium [29] deployed in Ross Ade football stadium at
Purdue. eStadium applications provide safety and security
functionality, infotainment features such as coordinated
cheering contests among different parts of the stadium using
the microphone data, information to fans about lines in front
of concession stands, etc. We considered a subset of the
changes that the software had actually gone through, during
various stages of refinement of the application.

. Case A: An application that samples battery voltage
and temperature from MTS310 [28] sensor board to
one where few functions are added to sample the
photo sensor also.

. Case B: We decided to use opaque boxes for the
sensor nodes. So, few functions were deleted to
remove the light sampling features.

. Case C: In addition to temperature and battery, we
added the features for sampling all the sensors on
the MTS310 board except light (e.g., microphone,
accelerometer, magnetometer).

. Case D: Same as case C but with the addition of a
feature to reduce the frequency of sampling battery
voltage.

. Case E: Same as case D but with the addition of a
feature to filter out microphone samples (consider-
ing them as noise) if they are greater than some
threshold value.

Case 1, Case D, and Case E are small changes; Case 2 is a
moderate change; Case A, Case B, and Case 4 are large
changes; Case 3 and Case C are huge changes in the software.

4.1 Size of Delta Script

Fig. 5 shows the number of bytes required to be transmitted
for reprogramming by Deluge, Stream, Rsync, Zephyr, and
Hermes for the software change cases mentioned above. For
Deluge and Stream, the size of the information to be
transmitted is the size of the binary image while for the
other schemes it is the size of delta script. A small delta
script translates to smaller reprogramming time and energy
due to less number of packet transmissions over the
network and less number of flash writes on the node. For
small changes in software (like Case 1, Case D, and Case E),
the incremental reprogramming protocols perform much
better. Note that Rsync is the approach by Jeong and Culler
[11]. We find that Hermes significantly reduces the size of
the delta script compared to other approaches. Deluge,

Stream, Rsync, and Zephyr take up to 201, 134, 64, and
62 times more bytes than Hermes, respectively.

Koshy and Pandey [21] use slop region after each
function to avoid the effects of the function shifts. Hence
the delta script for their best case (when none of the
functions expand beyond the assigned slop regions) will be
same as that of Zephyr. But even in their best case scenario,
the program memory is fragmented and the ratios of
Hermes to [21] would be identical to that of Hermes to
Zephyr. Fig. 5b shows that [21] requires to transmit 1.79 to
62.09 times more information than Hermes for reprogram-
ming. This huge advantage shows the importance of our
approach to eliminate the effects of global variable shifts.
The exact amount of advantage of Hermes over Zephyr is
directly proportional to the number of global variables that
are shifted in Zephyr due to change in the software and the
number of times those shifted variables are referred to in
the program code. For example, the addition or deletion of
.data variables results in more reduction in the size of the
delta script by Hermes compared to Zephyr than the .bss
variables. We refer to Jeong and Culler [11] as Rsync
because their approach is to generate the difference using
Rsync. Their approach compares the two executables
without any application-level modifications. The ratios of
Rsync to Hermes greater than 1 show the importance of the
Rsync optimization [4] and the application-level modifica-
tions (both function call indirections and global variable
placements). Rsync [11] approach needs to transfer 3.14 to
64.75 times more bytes than Hermes.

4.2 Testbed Experiments

We perform testbed experiments using Mica2 [28] nodes for
grid and linear topologies. For each network topology, we
define neighbors of a node n1 as those nodes which are
adjacent to that node n1 in the specific topology. For the
grid network, the transmission range Rtx of a node satisfies
ffiffiffi

2
p

d < Rtx < 2d, where d is the separation between the two
adjacent nodes in any row or column of the grid. The linear
networks have the nodes with the transmission range Rtx

such that d < Rtx < 2d where d is the distance between the
adjacent nodes. Due to fluctuations in transmission range,
occasionally a nonadjacent node will receive a packet. In
our experiments, if a node receives a packet from a
nonadjacent node, it is dropped. This kind of software
topology control has been used in other works also [30],
[31]. For the grid network, a node situated at one corner of
the grid acts as the base node while the node at one end of
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the line is the base node for linear networks. We provide
quantitative comparison of Hermes with Deluge [9], Stream
[10], Rsync (Jeong and Culler [11]), and Zephyr [4]. Note
that Jeong and Culler [11] reprogram only nodes within one
hop of the base node, but we used their approach on top of
multihop reprogramming protocol to provide a fair
comparison. We perform these experiments for grids of
size 2� 2 to 4� 4 and linear networks of size 2 to 10 nodes.
The results presented here are the average over these grid
and linear networks.

4.2.1 Reprogramming Time and Energy

Time to reprogram the network is the sum of the time to
download the delta script and the time to rebuild the new
image. We used the approach of [31] to measure the network
reprogramming time. Fig. 6 compares reprogramming time
and total number of bytes transmitted by various approaches
for Case 1. Fig. 7a compares the ratio of reprogramming
times of other approaches to Hermes for all software change
cases. As expected, Hermes outperforms the nonincremental
reprogramming protocols Deluge and Stream significantly.
Hermes is also 2.88 to 29.51 times faster than Rsync [11]. This
illustrates that application-level modifications that Hermes
applies are very important in reducing the time to reprogram
the networks. As mentioned above, the best case scenario for
Koshy and Pandey [21] is same as that of Zephyr. Hermes is
2.01 to 17.93 times faster than Zephyr. This shows how
Hermes’ technique to eliminate the effects of the global
variable shifts translates into speeding up the reprogram-
ming process. To see the significance of these improvements,
let us consider Case E. Deluge, Stream, Rsync, Zephyr, and
Hermes took 648.68, 347.19, 299.78, 196.06, 195.06, and
14.24 seconds, respectively to reprogram the 4� 4 grid.

Note that Hermes is most effective for small or moderate
software change cases (like Case 1, Case 2, Case D, and Case
E) which are more likely to happen in practice. The time to
rebuild the new image at the sensor node depends on the size
of the delta script, but is small compared to the total
reprogramming time. In all these experiments, the image
rebuild time even on the resource-constrained sensor nodes
is less than 6 seconds which is small compared to the total
reprogramming time (in the order of several minutes).

Among the various factors that contribute to the energy
consumed during reprogramming, two important ones are
the amount of radio transmissions and the number of flash
writes (the downloaded delta script is written to the
external flash). Since both of them are proportional to the
number of packets transmitted in the network during
reprogramming, we take the total number of packets
transmitted by all nodes in the network as the measure of
energy consumption. Fig. 6b compares the total number of
packets transmitted by all nodes in the network using
Hermes with other schemes for the above mentioned grid
and linear networks. Like reprogramming time, Hermes
reduces the number of packets transmitted during repro-
gramming significantly compared to other approaches. As
indicated by the ratios of Zephyr to Hermes, the elimination
of the global variable shifts results in a very large savings
(2.01 to 35.12 times) in energy.

4.2.2 Execution Speed

In order to demonstrate latency improvement for Hermes
due to the use of the technique to avoid the indirection
table, we considered a typical sensor network application
which operates in a loop with each run of the loop
consisting of work and sleep periods. In the work period, a
node samples all the sensors on MTS310 sensor board [28],
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Fig. 7. Average ratio of (a) reprogramming time and (b) total packets transmitted by other approaches to Hermes.



processes the sampled data (calibrate the sensor readings,
filter out noisy microphone readings, etc.) and sends the
data to the cluster head. In the sleep period, the node goes
to sleep to save energy. All function calls happen in the
work period. We find that Hermes reduces the work period
by about 3.7 ms per run of the loop compared to Zephyr.
More importantly, the savings in latency increases linearly
with the number of loop iterations. However, it should be
noted that the exact savings depend on the number of
function calls executed by a given application during the
work period.

4.3 Simulation Results

We perform TOSSIM [32] simulations on grid networks of
varying size (up to 14 � 14) to demonstrate the scalability of
Hermes and to compare it with other schemes. Fig. 8 shows
the reprogramming time and number of packets transmitted
during reprogramming for Case E. We find that Hermes is
up to 94, 70, 54, 34 times faster than Deluge, Stream, Rsync,
and Zephyr, respectively. Also, Deluge, Stream, Rsync, and
Zephyr transmit up to 149, 97, 74, and 46 times more
number of packets than Hermes, respectively. Hermes is as
scalable as Deluge since none of the changes in Hermes
affects the three-way code dissemination handshake or
changes with the scale of the network. All application-level
modifications are performed on the host computer and the
image rebuilding on each node does not depend upon the
number of nodes in the network. These simulation results
also show that as the network grows larger, Hermes’
advantage over existing protocols increases. This happens
because with the increase in the network size, the existing
protocols face more contention and collisions as they need to
transfer more bytes than Hermes.

5 ANALYSIS

A principle design technique of Hermes is to make sure that
if a global variable is present in both the old and the new
versions of the software, it is placed at the same location in
memory. As a result, the instructions in the program code
that refer to these common variables do not change between
the two versions of the software. In existing incremental
reprogramming approaches, these common variables may
not be placed in the same memory location, causing the
delta script to be large. Thus, the effectiveness of Hermes
depends on the number of global variables that are shifted

in the new version of the software (without the use of
Hermes) and the number of times those shifted variables
are referenced in the program code.

In this section, we analyze the performance of Hermes in
terms of reduction in the size of the delta script by keeping
the common global variables in the same memory location
in the new version of the software as in the old one. First,
we define a few terms. Let two instructions—one in the old
and the other in the new version of the software—referen-
cing the same global variable be called identical references.
Note that in the baseline case, which may not place a
common global variable at the same memory location, the
actual variable addresses in the identical instructions may
be different. But in Hermes, the variable addresses in the
identical references are made identical. We use an attribute
called Preserved Similarity Index (PSI) to quantify the amount
of similarity preserved by Hermes in the new version of the
software with respect to the old version. We define PSI as

PSI ¼ RS

R
; ð1Þ

where RS is the number of identical references in the new
software that would have different variable addresses than
those in the old software if Hermes were not used. R is the
total number of identical references in the old and the new
images. Note that RS � R and hence, the PSI value lies
between 0 and 1.

A high PSI value means that the amount of similarity
preserved by Hermes is also high. For example, if PSI ¼ 1,
then without Hermes, all the identical references in the old
and new images use different global variable addresses,
whereas with Hermes, they have the same address. This
translates to a large advantage due to the use of Hermes.
Note that PSI ¼ 0 means that even without Hermes, the
identical references would have same global variable
address because the memory locations of the corresponding
global variables are not changed by the software modifica-
tion. Hence, in this case, there is no advantage due to
Hermes. Fig. 9 shows the PSI values for different software
change cases discussed in Section 4. Note that for many
cases, PSI > 0:9. This suggests that many software change
cases cause a lot of global variables to be shifted. Hence,
without avoiding the effects of such shifts, the number of
identical references with different global variable addresses
in the two versions of the software is high. This causes the
delta script to be large. This also explains the observation
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that byte-level comparison alone is not sufficient, and we
need to enhance the structural similarity between the two
versions of the software by keeping locations of global
variables identical to create a small delta script.

Next, we quantify the effect of global variable shift on the
size of the delta script. As shown in Fig. 10, let us consider
two code segments in the old and the new versions of the
software, which are identical except that the global variable
address of n identical references are different. Without
Hermes, we need nþ 1 COPY commands and n INSERT
commands to describe the difference between these code
segments. The delta script would therefore be ðnþ 1Þ � 7þ
nþ 7 ¼ 14nþ 7 bytes long (since each COPY and INSERT
command takes 7 bytes assuming that the address of a
global variable is 2 bytes). With Hermes, only one COPY
command is required, which is 7 bytes long. In other words,
Hermes decreases the size of the delta script by (approxi-
mately) 14 times the number of times that the shifted global
variables are referenced in the new program code. Note that
this analysis only quantifies the reduction in the size of the
delta script due to the shifted global variables.

6 CONCLUSION

In this paper, we presented a multihop incremental
reprogramming system called Hermes that minimizes the
reprogramming overhead by reducing the size of the delta
script that needs to be disseminated through the network.
To the best of our knowledge, we are the first ones to use
techniques to mitigate the effects of global variable shifts
and avoid the latency caused by function call indirections

for incremental reprogramming of sensor networks. Our
scheme can be applied to systems like TinyOS which do not
provide dynamic linking on the nodes. Our experimental
results show that for a large variety of software change
cases, Hermes significantly reduces the volume of traffic
that needs to be disseminated through the network
compared to the existing techniques. This leads to reduc-
tions in reprogramming time and energy. As part of our
future work, we plan to use multiple code sources and
multiple channels to speed up reprogramming.
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