
Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi
Purdue University

 Number of Processors

 PC~8 cores

 Workstation ~256 cores

 Supercomputer ~1.5 mil cores

 Size of Data

 Single Hard Drive ~4 TB

 Hadoop HDFS ~21 PB

 Lustre FS ~55 PB

 2

Scale of Execution

B
eh

av
io

ra
l F

ea
tu

re

Testing
(Bug-free)

Production
(Buggy?)

Is there anything
wrong in the
production runs?

How do you detect and localize bugs on a
scale that you have never seen before?

You need a model to predict scaling trend.

3

Control
Feature X

Observational
Feature Y

g(*)

f(*)

corr(f(), g()) < 0

y

x

BUG!

Kernel Canonical Correlation Analysis takes
observational feature X and control feature Y to find
f and g such that f(X) and g(Y) is highly correlated

4

Behavioral Feature

Scale of Execution

Feature 1

Feature 2

Feature 3

Feature 4

Scale of Execution

B
eh

av
io

ra
l F

ea
tu

re

Through
Manual
Analysis
(as in Vrisha)

 What is the “correct” behavior at large scale?
 Extrapolate large-scale behavior of each individual feature

from a series of small-scale runs

5

scale 1

scale 2

scale 3
……

scale N

Small-scale Runs

Control
Feature X

Observational
Feature Y

g(*)

f(*)

g’-1(f (x))

 ABHRANTA replaced
non-invertible transform
g used by Vrisha with a
linear transform g’

 The new model provides
an automatic way to
reconstruct “bug-free”
behavior at large scale,
lifting the burden of
manual analysis of
program scaling behavior

g’(*)

6

x

f(x)

 Bug localization at a large scale can be
automated by contrasting the reconstructed
bug-free behavior and the actual buggy
behavior

 Identify the most “erroneous” features of
program behavior by ranking all feature by:

|y – g’-1(f(x))|

7

 Training Phase (A Series of Small-scale Testing Runs)
 Instrumentation to record observational features

 Modeling to train a model that can predict observational
features from control features

 Deployment Phase (Large-scale Production Runs)
 Instrumentation to record the same features

 Detection to flag production runs with negative correlation

 Localization
▪ Use the trained model to reconstruct observational feature

▪ Rank features by reconstruction error 8

 allgather is an MPI function that allows a set of
processes to exchange data with the rest of the group

 MPICH2 implemented 3 different algorithms to
optimize the performance for different scales

 The integer overflow can make the function choose a
suboptimal algorithm

9

allgather

P1

P2

P3

P1

P2

P3

 Built a test application to trigger the bug at
exactly 64 processes
 Instrumented Socket API calls in MPICH2 with Pin

 Control feature: the number of processes in a run and
the rank of each process

 Observational feature: the amount of data sent at
every unique calling context of Socket API

 Trained the model with the data collected from
4- 15 process runs, localized the bug in a 64
process run

10

11

feature 9 feature 18

(l
o

g
)

int MPIR_Allgather (
 int recvcount,
 MPI_Datatype recvtype,
 MPID_Comm *comm_ptr)
{
 int comm_size, rank;
 int curr_cnt, dst, type_size, left, right, jnext, comm_size_is_pof2;

 if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG) &&
 (comm_size_is_pof2 == 1)) {

 }
 else if (recvcount*comm_size*type_size < MPIR_ALLGATHER_SHORT_MSG) {

 }
 else {

 }

}

recvcount*comm_size*type_size
can easily overflow a 32-bit integer on a
large-scale run

12

feature 18

feature 9

 Feature selection
 Correlated with scale
 Related to the bug’s manifestation

 Non-deterministic behavior
 Aggregate low-level features sharing the same prefix

in their calling contexts
 Discontinuity in scaling trend
 Require that the same scaling trend holds for all runs

 Generality
 Verify with synthetic scale-dependent faults
 Survey a large number of bugs that are scale-

dependent

13

 We developed ABHRANTA, which leverages
novel statistical modeling techniques to
automate the detection and diagnosis of
scale-dependent bugs

 With case studies of two real-world bugs, we
showed that ABHRANTA is able to
automatically and effectively diagnose bugs

14

Question?
bzhou@purdue.edu

