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 Number of Processors 

 PC~8 cores 

 Workstation ~256 cores 

 Supercomputer ~1.5 mil cores 

 Size of Data 

 Single Hard Drive ~4 TB 

 Hadoop HDFS ~21 PB 

 Lustre FS ~55 PB 
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Scale of Execution 
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Testing 
(Bug-free) 

Production 
(Buggy?) 

Is there anything 
wrong in the 
production runs? 

How do you detect and localize bugs on a 
scale that you have never seen before? 

You need a model to predict scaling trend. 
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Control
Feature X

Observational 
Feature Y

g(*)

f(*)

corr(f(       ), g(       )) < 0 

y 

x 

BUG! 

Kernel Canonical Correlation Analysis takes 
observational feature X and control feature Y to find 
f and g such that f(X) and g(Y) is highly correlated 
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Behavioral Feature 

Scale of Execution 



Feature 1 

Feature 2 

Feature 3 

Feature 4 

Scale of Execution  
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Through 
Manual 
Analysis 
(as in Vrisha) 

 What is the “correct” behavior at large scale? 
 Extrapolate large-scale behavior of each individual feature 

from a series of small-scale runs 
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scale 1 

scale 2 

scale 3 
…… 

scale N 

Small-scale Runs 



Control
Feature X

Observational 
Feature Y

g(*)

f(*)

g’-1(f (x)) 

 ABHRANTA replaced 
non-invertible transform 
g used by Vrisha with a 
linear transform g’  

 The new model provides 
an automatic way to 
reconstruct “bug-free” 
behavior at large scale, 
lifting the burden of 
manual analysis of 
program scaling behavior 

g’(*) 
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 Bug localization at a large scale can be 
automated by contrasting the reconstructed 
bug-free behavior and the actual buggy 
behavior 

 Identify the most “erroneous” features of 
program behavior by ranking all feature by: 

|y – g’-1(f(x))| 
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 Training Phase (A Series of Small-scale Testing Runs) 
 Instrumentation to record observational features 

 Modeling to train a model that can predict observational 
features from control features 

 Deployment Phase (Large-scale Production Runs) 
 Instrumentation to record the same features 

 Detection to flag production runs with negative correlation 

 Localization 
▪ Use the trained model to reconstruct observational feature 

▪ Rank features by reconstruction error 8 



 allgather is an MPI function that allows a set of 
processes to exchange data with the rest of the group 

 MPICH2 implemented 3 different algorithms to 
optimize the performance for different scales 

 The integer overflow can make the function choose a 
suboptimal algorithm 
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allgather 
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 Built a test application to trigger the bug at 
exactly 64 processes 
 Instrumented Socket API calls in MPICH2 with Pin 

 Control feature: the number of processes in a run and 
the rank of each process 

 Observational feature: the amount of data sent at 
every unique calling context of Socket API 

 Trained the model with the data collected from 
4- 15 process runs, localized the bug in a 64 
process run 
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int MPIR_Allgather ( 
    int recvcount, 
    MPI_Datatype recvtype, 
    MPID_Comm *comm_ptr ) 
{ 
    int comm_size, rank; 
    int curr_cnt, dst, type_size, left, right, jnext, comm_size_is_pof2; 
 
  
 
    if ((recvcount*comm_size*type_size < MPIR_ALLGATHER_LONG_MSG) && 
        (comm_size_is_pof2 == 1)) {  
 
 
 
    } 
    else if (recvcount*comm_size*type_size < MPIR_ALLGATHER_SHORT_MSG) { 
 
    } 
    else { 
 
 
    } 
 
} 

recvcount*comm_size*type_size 
can easily overflow a 32-bit integer on a 
large-scale run 
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feature 18 

feature 9 



 Feature selection 
 Correlated with scale 
 Related to the bug’s manifestation 

 Non-deterministic behavior 
 Aggregate low-level features sharing the same prefix 

in their calling contexts 
 Discontinuity in scaling trend 
 Require that the same scaling trend holds for all runs 

 Generality 
 Verify with synthetic scale-dependent faults 
 Survey a large number of bugs that are scale-

dependent 
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 We developed ABHRANTA, which leverages 
novel statistical modeling techniques to 
automate the detection and diagnosis of 
scale-dependent bugs 

 With case studies of two real-world bugs, we 
showed that ABHRANTA is able to 
automatically and effectively diagnose bugs 
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Question? 
bzhou@purdue.edu 


