Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi
Purdue University

ABHRANTA: Locating Bugs that
Manifest at Large System Scales

Scale of Computing, Circa 2012

Number of Processors
PC~8 cores
Workstation ~256 cores

Supercomputer ~1.5 mil cores
Size of Data

Single Hard Drive ~4 TB
Hadoop HDFS ~21 PB
Lustre FS ~55 PB

Scale-dependent Bug

Testing Production
(Bug-free) (Buggy?)
o"%\nﬂ'«:’ Is there anything

wrong in the
production runs?

How do you detect and localize bugs on a
scale that you have seen before?

Behavioral Feature

You need a model to predict scaling trend.

Scale of Execution

Vrisha: Using Scaling Properties for Bug

Detection [HPDC '11]

Kernel Canonical Correlation Analysis takes
observational feature X and control feature Y to find
fand g such that f(X) and g(Y) is highly correlated

V.; -
L ;
0
- .
H

Behavioral Feature | 8(*)

> corr(f(), 9() <o
o ~ BUG!

f(*)

DL et
3 X g f(X)

fwdelnt T

Scale of Execution

Vrisha: Bug Localization through Scaling

Trend Extrapolation

What is the “correct” behavior at large scale?
Extrapolate large-scale behavior of each individual feature

from a series of small-scale runs

|

%

|

I Through
Manual
Analysis

Behavioral Feature

(as in Vrisha)

Small-scale Runs

Scale of Execution

ABHRANTA: a Predictive Model for

Program Behavior at Large Scale

g *(f (x))

I

Observational
Feature Y

g'(*)

f(x)

)

f(X)

F(*)

= R
X R

. ooy ww .
NI
S mERAL
., @k
2 k ettt
=5 A .
Tand A W

Control
Feature X

ABHRANTA replaced
non-invertible transform
g used by Vrisha with a
linear transform g’

The new model provides
an automatic way to
reconstruct “bug-free”
behavior at large scale,
lifting the burden of
manual analysis of
program scaling behavior

ABHRANTA: Localize Bugs at Large

Scale

Bug localization at a large scale can be
automated by contrasting the reconstructed
oug-free behavior and the actual buggy
behavior

dentify the most “erroneous” features of
orogram behavior by ranking all feature by:

ly — g *(f(x))|

ABHRANTA’s Workflow

ficy | =2 Oq | =2

(:d

0,

Feature Projection
matrices functions

i

Oy g0y g‘l (fiCy)

‘n=64

Deployment
runs

Training

n=4
n==8 I B

Training runs

(ii) Modeling
i

(iii) Detection

(iv) Diagnosis
¥

Deployment

Feature Projected Re-
matrices matrices construction

(i) Instrumentation
¥

(i) Instrumentation
¥
O

Training Phase (A Series of Small-scale Testing Runs)
Instrumentation to record observational features

Modeling to train a model that can predict observational
features from control features

Deployment Phase (Large-scale Production Runs)
Instrumentation to record the same features
Detection to flag production runs with negative correlation

Localization
Use the trained model to reconstruct observational feature
Rank features by reconstruction error o

Case Study 1:

Integer Overflow in MPICH2

allgather is an MPI function that allows a set of
processes to exchange data with the rest of the group
MPICH2 implemented 3 different algorithms to
optimize the performance for different scales

The integer overflow can make the function choose a
suboptimal algorithm

P1 P1

P> allgather P>

P3 P3

Case Study 1:

Integer Overflow in MPICH2

Built a test application to trigger the bug at
exactly 64 processes

Instrumented Socket API calls in MPICH2 with Pin

Control feature: the number of processes in a run and
the rank of each process

Observational feature: the amount of data sent at
every unique calling context of Socket API

Trained the model with the data collected from
4~ 15 process runs, localized the bugina 64
process run

Case Study 1:

Integer Overflow in MPICH2

L3}
- o |y
3 feature g feature 18
=
-
b=
©
— @
: =
7 [e e O
[-—
o
L]
L
o
LS
o
o o
S T o L U b] e b
- L]
m -—
=
L}
+ —
L1k}

12 3 4 5 6 ¥ 8 89 10 11 12 13 14 15 16 17 18 19 20

Feature ID

11

Case Study 1:

Integer Overflow in MPICH2

int MPIR_Allgather (recvcount*comm_size*type size

int recvcount . .y
can easily overflow a 32-bit integer on a
MPI_Datatype Fecvtype, Y 3 9

MPID_Comm *comm_ptr) large-scale run

int comm size, rank;
int curr_cnt, dst, type size, left, right, jnext, comm _size is pof2;

if ((recvcount*comm_size*type size < MPIR_ALLGATHER_ LONG_MSG
)

- e s

(comm_size is pof2 ==1)) {
feature 18

else if (recvcount*comm size*type size < MPIR_ALLGATHER SHORT MSG) {

else {

feature g

12

Open Questions

Feature selection
Correlated with scale

Related to the bug’s manifestation
Non-deterministic behavior

Aggregate low-level features sharing the same prefix
in their calling contexts

Discontinuity in scaling trend

Require that the same scaling trend holds for all runs
Generality

Verify with synthetic scale-dependent faults

Survey a large number of bugs that are scale-
dependent

Conclusion

We developed ABHRANTA, which leverages
novel statistical modeling techniques to
automate the detection and diagnosis of
scale-dependent bugs

With case studies of two real-world bugs, we
showed that ABHRANTA is able to
automatically and effectively diagnose bugs

