
Using Big Data for Improving Dependability: A Cellular Network Tale

Nawanol Theera-Ampornpunt, Saurabh Bagchi
Purdue University

Kaustubh Joshi, Rajesh Panta
AT&T Labs Research

Abstract

There are many large infrastructures that instrument ev-
erything from network performance metrics to user activ-
ities. However, the collected data are generally used for
long-term planning instead of improving reliability and
user experience in real time. In this paper, we present
our vision of how such collections of data can be used
in real time to enhance the dependability of cellular net-
work services. We first discuss mitigation mechanisms
that can be used to improve reliability, but incur a high
cost which prohibit them to be used except in certain con-
ditions. We present two case studies where analyses of
real cellular network traffic data show that we can iden-
tify these conditions.

1 Introduction

There are many examples of large infrastructures that in-
strument everything from regular network performance
metrics to detailed user activities. For example, cellu-
lar networks collect information about bandwidth usage,
handovers, signal strength, connection/disconnection
events, etc. Web analytics record user clicks, location,
page visit time, page dwell time, etc. The collection of
these large quantities of analytics from large infrastruc-
tures and their use for understanding user behaviors and
trends has been called “big data”.

Unfortunately, today, these measurements are not used
in meaningful ways online, if at all. Instead, they are of-
ten used to do offline analysis to drive marketing cam-
paigns in the long term. As an example, Google An-
alytics Premium only guarantees that the data will be
refreshed and made available to the end user within 4
hours, while the standard free version has a lag of more
than 24 Hours [1]. In this paper, we explore whether
real-time data collected from detailed instrumentation of
large scale infrastructures can be used to provide real-
time services that improve the dependability of the in-

frastructures and through this, the experience for users
using them.

Specifically, this paper presents our vision of how big
data analytics can be used in real time to enhance the
dependability of cellular network services. We demon-
strate how big data can help in the design of adaptive
techniques to reduce the incidence of voice or data dis-
connections in cellular networks and mitigate their effect
when they do occur. We show that such mitigation mech-
anisms come with a cost that prohibits them from being
turned on all the time. In order for them to be beneficial,
real-time data analysis is necessary because network dis-
connections depend not only on static factors (such as
user locations that are prone to bad network connectiv-
ity), but also on dynamic factors (such as current level
of congestion in the cell, available radio resources, etc.).
We analyze real data collected by a major cellular net-
work and show that we can build a model that identifies
conditions that are likely to lead to network disconnec-
tions where real time mitigation mechanisms are benefi-
cial.

2 Background

2.1 Network Architecture
Figure 1 shows our proposed architecture for the LTE
network. The mobile device, called User Equipment
(UE), is connected to a cell sector (which we will re-
fer to as cell) in a base station, called eNodeB. A phys-
ical base station can have multiple sectors, potentially
covering different regions. Cellular traffic from the eN-
odeB passes through Serving Gateway (S-Gateway) and
Packet Data Network Gateway (PDN-Gateway) to exter-
nal network (e.g., the Internet).

In order to identify (dynamic) conditions that can pre-
dict voice or data drops with sufficient confidence, we
add two components in the proposed architecture as
shown in Figure 1: offline training and online predic-

1



ISP

Backbone

eNodeB

MME

PDN Gateway

IMS Core

Online
predictor

Service 
API

Offline
(Re)TrainingMachine Learning

Classifier

S-Gateway

Real-time Data

Apps

User Equipment (UE)

Figure 1: Diagram of the proposed architecture.

tor. The offline training component takes data from eN-
odeBs and construct a machine learning classifier for a
specific prediction task. Due to changing network condi-
tions over time, this offline training needs to be repeated
often (e.g., every day). The learned classifier becomes
the online predictor, which makes predictions using real-
time data from the eNodeB. When the event of interest
occurs (e.g., probability of a drop exceeds the threshold),
the online predictor sends a notification to the compo-
nent(s) responsible for initiating the mitigation actions.
This could be the mobile device itself (e.g., to initiate
precaching), or a component in the network (e.g., switch
to older technology) or both. In case of the device, the
notification is first sent to the Service API in the device,
which dispatches it to applications that have registered to
receive that particular type of notifications.

In this study, we focus on one type of failures: ab-
normal disconnections (also referred to as “drops”). In
this work, abnormal disconnections are defined as abnor-
mal release of Radio Access Bearer (RAB) or Radio Re-
source Control (RRC) connection [6]. Before perform-
ing any voice call or data communication, a phone first
needs to establish an RRC connection. This is followed
by a RAB connection, which assigns essential network
resources to the user device based on the quality of ser-
vice required by the specific application. Since different
applications can have different QOS requirements, a sin-
gle device may have multiple RAB connections, but only
a single RRC connection at any given time. Our first case
study focuses on predicting the failures, while the second
case study focuses on predicting how long the failure will
last (referred to as “drop duration”), given that a failure
has occurred.

2.2 Mechanisms that Improve Reliability

Before describing the offline training and online predic-
tor components, we show that the various techniques that
can be used to mitigate the effects of possible data or
voice disconnections incur some cost. Hence it is im-

portant to update offline classifier regularly and perform
prediction using real time data to identify conditions that
can lead to abnormal connection drops as accurately as
possible.

Switching to Older Technology: Since newer Radio
Access Technologies (RATs) provide higher bandwidth
and/or new features, users tend to prefer them over older
technologies. This leads to higher congestion, as each
RAT uses its own base stations and other infrastructures.
Thus, older RATs generally have higher reliability than
newer ones. The cost of using older technology is the
lower available bandwidth, which could be more impor-
tant than the reliability of the connection, depending on
the application. For example, a video streaming applica-
tion may be able to mask a disconnection by buffering the
video before it occurs. On the other hand, when making
a voice call in a congested region, it may be better to use
an older, less congested RAT despite the drop in audio
quality.

Prefetching: Prefetching can be done for web brows-
ing (link prefetching) as well as audio/video streaming
(downloading the stream at maximum capacity). If used
early enough before a degradation of service, and the
degradation does not last very long, it can mask the
disconnection completely. Otherwise, it still allows the
user to access more content before being affected by the
degradation of service. This method carries a cost of
wasted bandwidth and energy if left on longer than nec-
essary or all the time.

Voice Call Auto-Reconnecting: Currently, if a dis-
connection occurs during a voice call, the call is simply
dropped. It is straightforward to add a functionality of
automatic reconnection to voice calls, which will make
reconnection more seamless for both parties. However,
because most of the time, a drop lasts rather long, this
would inconvenience the user as well as the other party
of the call while he or she waits.

While the mechanisms mentioned above do improve
reliability and/or user experience, they all come with a
cost that prohibits them from being used all the time.
What we need is a way to determine the conditions (e.g.,
how likely a drop is going to occur in the immediate fu-
ture), the temporal nature of the failure (e.g., how long
the drop is expected to last), take into account the device
specific information (e.g., type of applications the user is
running), and use one of the mechanisms only when the
benefits outweigh the costs. In the next section, we will
show how big data analytics can be used to identify these
conditions.

3 Case Studies

In this section we explore how we can identify condi-
tions needed by the mitigation mechanisms described in

2



Section 2.2 with enough confidence. We focus on two
specific problems: predicting drops and predicting drop
duration.

3.1 Data Source

We use real-world 3G cellular traffic data from a tier-
1 U.S. cellular network collected on or after June 5,
2012. Although the 3G network has slightly different
architecture from LTE as described in section 2.1, the
prediction mechanism described here can be applied for
LTE networks as well. Data are collected at the NobeB
(which is analogous to LTE’s eNodeB), and aggregated
at the Radio Network Controller (RNC), which manages
multiple NodeB’s. All devices and user identifiers are
anonymized for our analysis. The dataset contains var-
ious events, each of which contains common metrics as
well as its own set of metrics. Common metrics include
timestamp, user’s International Mobile Subscriber Iden-
tity (IMSI), cell IDs of the cells the device is connected
to.

3.2 Methodology

Because different events have different reporting inter-
val, we need to combine them by computing aggregate
functions (e.g., average, count, last report value) of the
values within a sliding time window. Specifically, for
each window and each metric, we compute 10 aggregate
functions of that metric values within the window. If no
value is reported within the window, we report it as a
special missing value. Aggregated values across all met-
rics corresponding to the same window form a data point,
used to train and evaluate classifiers. For the task of pre-
dicting drops, a data point is assigned the “failure” class
label if the window it corresponds to precede a failure
by up to 20 seconds. It is assigned the “normal” class
label otherwise. For the task of predicting drop dura-
tions, since we are only making predictions when a drop
has just occurred, we only include windows that lead up
to, but not including, the drop. We use window size of
10 seconds. We select 12 events with 250 metrics al-
together, leading to 2,500 attributes after computing the
aggregates.

We use two machine learning algorithms for our data
analysis: AdaBoost and Support Vector Machine (SVM).
We use Weka’s implementation of AdaBoost, with de-
cision stump as the base classifier [5]. For SVM, we
use LIBSVM implementation [3]. All prediction accu-
racy results are generated using separate train and test
datasets, each corresponding to one day of operation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0X 1X 2X 3X 4X 5X 6X 7X 8X 9X 10X

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 

Cell Drop Rate (relative to the median) 

Figure 2: Cumulative distribution plot of cell drop rate.

3.3 Predicting Drops

In the first case study, we look at whether we can iden-
tify conditions correlated with disconnections. For this
purpose we consider disconnections of both voice calls
and data connections. There are many ways to parti-
tion the models; we can build a single global model,
or train a separate model for each cell sector, or build
a personalized model for each user. We found that ac-
curacy of personalized models suffer from the lack of
sufficient amount of data, because for most users, there
is not enough failure data to build a good model.

The question then becomes, are the reliability charac-
teristics of each cell different from each other enough to
justify partitioning the models by cell? To answer this
question, we look at the drop rate of each cell from the
same time window. For this study, we define the drop
rate to be the number of drops during a period divided by
the amount of data traffic used across all users during the
same period.

Figure 2 shows the cumulative distribution of cell drop
rate from the operational period of April 5 to June 24,
2013. Each cell’s drop rate is shown relative to the me-
dian drop rate among these cells. The drop rate ranges
from zero to 107 times the median. 26% of all cells have
no drop at all during this period. From the figure, we can
see that there is a high variation among the cells. Thus,
it is reasonable to partition the models by cell sector.

We separate the data by cell and use AdaBoost to train
a model for each cell. Due to the amount of data, we need
to sample and include only a fraction of users for each
cell. Figure 3 shows the prediction accuracy in terms of
precision and recall. The weight parameter is a tunable
parameter that controls the relative cost of a false pos-
itive versus the cost of a false negative (higher weights
mean false negatives cost more). Recall and precision
have their conventional meaning. Recall is the propor-
tion of actual failure cases that the classifier is able to
predict. Precision is the fraction of actual failure cases
to the number of predicted failures. Thus, recall is the

3



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.07 0.1 0.15 0.2 0.25 0.3 0.4 0.6 0.8 1

weight parameter 

recall

precision

Figure 3: Drop prediction accuracy as a function of
weight parameter.

A1 A2 Fraction of failure data points
not greater not greater 0.51X
not greater greater 2.04X

greater not greater 1.82X
greater greater 40X

Any Any X

Table 1: Class distribution of data points from one cell
given top two attributes compared to the overall frac-
tion of failure data points (labeled X). ‘greater’ and ‘not
greater’ refers to the outcome of the comparison between
the value and the learned threshold.

complement of false negative rate and precision is the
complement of false positive rate.

While the precision of roughly 25% might seem low, it
is enough for applications where maintaining a connec-
tion is essential. Specifically, when the classifier predicts
that a drop will occur, there is a probability of 25% that
a drop will actually occur. If we initiate a mitigation ac-
tion based on this prediction, 25% of the time it would
be the correct course of action, while 75% of the time the
costs of the mitigation action are incurred unnecessarily.
Depending on the action, the costs may be lower avail-
able bandwidth, wasted energy and bandwidth, or some-
thing else. Our experience shows that prediction accu-
racy varies based on the operational period from which
the data used to train and evaluate the models are col-
lected. Also, there is potential for the accuracy to be im-
proved, for example by using a better sampling method,
including more types of logged events in the data analy-
sis, or extracting better features. Next, we illustrate how
the attributes used by the classifier correlate to the fail-
ures.

Each classifier is different, but we found that many
classifiers have the same top two attributes that influ-
ence the prediction decision the most: 1) the number of
UE’s uplink throughput records with value of zero within
a window, and 2) the sum of the cell’s transmit power
across all records within a window. We will refer to them

0%

100%

200%

300%

400%

500%

600%

700%

5-Apr 12-Apr 19-Apr 26-Apr 3-May 10-May 17-May 24-May 31-May 7-Jun 14-Jun 21-Jun

D
ro

p
 R

at
e

 

Date 

Figure 4: Plot of drop rate of four randomly-picked cells
on each day from April 5 to June 24, 2013, compared to
the median drop rate.

as A1 and A2, respectively. Table 1 shows the class dis-
tribution of data points from the test dataset from one cell
for each combination of outcomes of comparisons be-
tween the attribute value and the threshold learned by the
Decision Stumps corresponding to A1 and A2. The frac-
tion of failure data point for each combination is shown
in relative to the overall fraction of failure data points.
We can see that when either If either A1 or A2 (but not
both) exceeds its threshold, the fraction roughly doubles.
However, when both A1 and A2 exceed its threshold, the
fraction becomes 40 times higher. Since the throughput
is reported every 2 seconds, even if it is zero, the fact
that there are many records with upload throughput of
zero indicates that there is some problem with the com-
munication. The cell’s transmit power is related to the
current load on the cell, which is correlated with drops.

Next, we explore how the conditions change over time,
as this will determine how often the classifiers need to
be retrained. We randomly pick four cells and plot their
drop rate relative to the median drop rate during the pe-
riod from April 5 to June 24, 2013 in Figure 4. We can
see that the drop rate of some cells change significantly
over time, and at different time from other cells. In order
to capture these changes in conditions, the models need
to be retrained frequently.

3.4 Predicting Drop Duration
Although related, predicting drop duration is a separate
problem from predicting connection drops. The question
we ask here is, given that a drop has occurred, what is
the earliest time that the connection can be reestablished.
We will refer to the duration between these two events as
‘drop duration’. This could depend on the user’s mobility
pattern and environmental conditions, among other fac-
tors. This is important for guiding if a mitigation action
is likely to be useful — a short drop duration would mean

4



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

weight parameter 

SVM's recall

SVM's precision

AdaBoost's recall

AdaBoost's precision

Figure 5: Drop duration prediction accuracy as a func-
tion of weight parameter for SVM and AdaBoost. Higher
weight means false negatives cost more, relative to false
positives.

that it is acceptable to pause the call and then resume it
when the connection can be reestablished, while a long
drop duration would mean that it is better to simply drop
the call.

Unfortunately, we cannot directly determine the earli-
est time that a reconnection attempt would be successful
from our data source. Specifically, the data source only
reports successful reconnections (since the network does
not know about unsuccessful reconnections). The 3GPP
standard does not require the device to attempt to recon-
nect after a disconnection. Thus, an absence of success-
ful reconnection does not imply that an attempt would
have been unsuccessful. However, this is the best method
available to us to estimate the drop duration and we use it
with an understanding that this is an upper bound of the
true drop duration.

Since the goal of drop duration prediction is to make
a decision whether to hold the voice call while recon-
nections are being attempted, instead of predicting the
drop duration, we predict whether the drop will be short
or long, determined by a threshold t = 10 seconds. This
decision needs to be agreed on by both the network and
the disconnected party. However, no communication is
possible once a device is disconnected. Thus, during a
voice call, the online predictor needs to keep analyzing
real-time data and keep the devices updated about the de-
cision, so that once a drop occurs, they agree on whether
to hold the call and reconnect.

Due to variability of drop duration across cells, the
classifiers should ideally be partitioned by cell. How-
ever, due to time constraints, we only have results from a
single global classifier used for all cells. Figure 5 shows
the accuracy of drop duration prediction for SVM and
AdaBoost with different values of weight parameter. Be-
cause the two algorithms have different ranges of weight
parameter, the actual values are not shown on the axis.
Here, recall is the proportion of short drops that the clas-
sifier is able to predict correctly. Precision is the fraction

of actual short drops to the number of drops predicted to
be short. AdaBoost performs slightly better than SVM,
achieving both recall and precision of roughly 50%.

4 Related Work

There are several proposals for managing faults in cel-
lular networks. However, much of the work focuses on
detection of failures [4, 7, 9, 10], and identification of
root cause of the failure [2, 11]. Their goal is different
from ours, which is to predict failures and proactively try
to prevent them, or lessen the effects of failures on user
experience in the short term.

Javed et al. propose a machine learning framework for
predicting handovers based on data available at the hand-
set [8]. The goal is to notify applications before a short-
term disruption in the service due to the handovers so
that they can modify their behavior to counter it. This is
similar in spirit to our work, although we are not limit-
ing ourselves to handovers. Furthermore, the wealth of
data collected at the network provides much more infor-
mation than data available at the handset. This enables
us to predict events that could not have been predicted
otherwise.

5 Conclusions and Challenges

This paper presents our vision of how big data analytics
can be used in real time to improve dependability and
user experience. We demonstrated this by analyzing real
cellular traffic data from a major cellular network and
showed that we can construct a model that predicts drops
and drop duration in real time with enough accuracy to
enable mitigation actions to be used.

Challenges There are several challenges that need to be
solved before such real-time data analysis and mitigation
actions within the domain of cellular network become
feasible:

Real-time Data Access: Real-time data access is still
not available for the majority of events logged by cellular
network due to various reasons such as privacy issues and
storage requirements

Data Volume: Due to the amount of data and number
of users involved, such real-time data analysis requires
efficient data streaming and processing systems close to
the data source.

Lack of unified framework: Because many mitiga-
tion actions are application-specific, and some must be
initiated by the device, there must be a standard way for
the network to send notifications to the device, and for
applications to express interests in receiving such notifi-
cations.

5



References
[1] http://www.google.com/analytics/premium/

features.html.

[2] BARCO, R., WILLE, V., D ÍEZ, L., AND TORIL, M. Learning of
model parameters for fault diagnosis in wireless networks. Wire-
less Networks 16, 1 (2010), 255–271.

[3] CHANG, C.-C., AND LIN, C.-J. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology 2 (2011), 27:1–27:27. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] CHEUNG, B., KUMAR, G., AND RAO, S. A. Statistical algo-
rithms in fault detection and prediction: Toward a healthier net-
work. Bell Labs Technical Journal 9, 4 (2005), 171–185.

[5] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B.,
REUTEMANN, P., AND WITTEN, I. H. The weka data mining
software: an update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009),
10–18.

[6] HOLMA, H., AND TOSKALA, A. Hsdpa/Hsupa For Umts. Wiley
Online Library, 2006.

[7] HONG, C.-Y., CAESAR, M., DUFFIELD, N., AND WANG, J.
Tiresias: Online anomaly detection for hierarchical operational
network data. In Distributed Computing Systems (ICDCS), 2012
IEEE 32nd International Conference on (2012), IEEE, pp. 173–
182.

[8] JAVED, U., HAN, D., CACERES, R., PANG, J., SESHAN, S.,
AND VARSHAVSKY, A. Predicting handoffs in 3g networks.
ACM SIGOPS Operating Systems Review 45, 3 (2012), 65–70.

[9] LIU, Y., ZHANG, J., JIANG, M., RAYMER, D., AND STRASS-
NER, J. A model-based approach to adding autonomic capabili-
ties to network fault management system. In Network Operations
and Management Symposium, 2008. NOMS 2008. IEEE (2008),
IEEE, pp. 859–862.

[10] RAO, S. Operational fault detection in cellular wireless base-
stations. Network and Service Management, IEEE Transactions
on 3, 2 (2006), 1–11.

[11] WATANABE, Y., MATSUNAGA, Y., KOBAYASHI, K.,
TONOUCHI, T., IGAKURA, T., NAKADAI, S., AND KA-
MACHI, K. Utran o&m support system with statistical fault
identification and customizable rule sets. In Network Operations
and Management Symposium, 2008. NOMS 2008. IEEE (2008),
IEEE, pp. 560–573.

6


