Lilliput meets Brobdingnagian: Data Center Systems Management through
Mobile Devices

Saurabh Bagchim, Fahad Arshad!
U Purdue University
Jan Rellermeyerz, Thomas Osiecki?, Michael Kistler?, Ahmed Gheith?
2 IBM Research Austin

Abstract

In this paper, we put forward the notion that systems
management for large masses of virtual machines in data
centers is going to be done differently in the short to
medium term future—through smart phones and through
controlled crowdsourcing to a variety of experts within an
organization, rather than dedicated system administrators
alone. We lay out the research and practitioner challenges
this model raises and give some preliminary solution
directions that are being developed, here at IBM and
elsewhere.

1. Introduction

Systems management of virtual machines and the vir-
tualization infrastructure (hypervisor, virtual LAN, etc.)
is a crucial element of running data centers. Such sys-
tems management has two broad elements within it—
monitoring for detecting any anomalies, be they security
failures, correctness failures, or performance problems;
and, then taking corrective action if any anomalous pat-
tern is detected. The monitoring is done at various levels
of the stack in the virtualized environment, from the
chassis-level (using an advanced management module on
the server), the hypervisor level, the networking level, and
all the way up to the application level. A plethora of such
monitoring tools exist, which together generate a wealth
of data about the target system. Then, the monitored
data is aggregated and visualized (through infrastructure
such as Splunk [1]), and system administrators inspect
this to determine if mitigation action needs to be taken.
There is an urgency in acting on monitored information
if it indicates that a failure is imminent or has already
happened and hence, control mechanisms have been de-
veloped, most rather application-specific.

In this paper, we hypothesize that a significant change
is happening in the way such systems management is done
for virtualized environments and that the pace of change
will accelerate in the immediate future. The change is
in two dimensions — the first dimension is the platform
that is being used for the management and the second
dimension, enabled by the first, is the number of people
involved in the systems management activity. Regarding
the first dimension, we see that it will become increas-
ingly convenient to perform these actions from mobile
devices. This trend is being driven by the continuing
increase in the penetration of smart phones in the market,

978-1-4799-0181-4/13/$31.00 ©2013 IEEE

the increase in their compute power and visual rendering
capability, the mobility of the workforce (such as, increas-
ing prevalence of telecommuting), and the desire to access
the systems management information from geographically
anywhere. Regarding the second dimension, we believe
that virtualization brings in an unprecedented level of
interaction among the vertical layers of the software stack
as well as among the horizontal layers. Thus, as an
example, cache usage pattern of one VM can affect the
performance of application running in a different VM
on the same physical machine [2]. With this comes the
need to tap into a diverse knowledge base because one
system administrator cannot be expected to be an expert
in performance tuning of a web server (application level)
to security to guard against resource leaks among VMs
(infrastructure level). Rather, it will become necessary for
multiple people within an IT organization to cooperate
in a loosely structured manner to determine a mitigation
action.

The first dimension raises three important research and
practitioner challenges:

1. We need to ingest large amounts of data on small form
factor and resource constrained (relative to a traditional
desktop-class machine) devices. An important constrained
resource is the wireless bandwidth between the servers
and the mobile clients and another is the amount of energy
available to the device.

2. There is a mismatch in terms of the dependability
characteristics of the servers and the mobile clients. The
servers are often very secure while the mobile clients are
not — security vulnerabilities and dependability flaws
in the software architecture of these systems are being
discovered routinely [4], the clients roam outside the
comforting periphery of the company firewalls, and the
clients are not always-available, always-on devices.

3. There is a need for sophisticated visualization tech-
niques for displaying the large amounts of data from the
large number of managed servers on the small form factor
mobile clients. The display must be actionable so that
the administrators can initiate timely mitigation actions
in case they are needed.

The second dimension (larger number of people ingest-
ing the systems management information and a subset of
these acting on them) will introduce two significant re-
search and practitioner challenges: 1. Current procedures

for handling failures often focus diagnostic efforts on one
layer or system component at a time, with transfers to
other layers/components handled in a serial fashion. This
increases the time to resolve the problem. We believe a
better approach is to enable coordinated, simultaneous in-
vestigation of problems by multiple administrators or even
domain experts within the organization, that are not offi-
cial sysadmins. Mobile systems management applications
can play a key role in this mode of operations by reducing
communication time among administrators and helping in
exchange of problem context among the involved people,
which is needed for the problem resolution.

2. Can we leverage the overlap between the interests of
multiple mobile end points and their geographical prox-
imity to efficiently use the restricted cellular bandwidth
available going out to the mobile devices. So it may be
possible to reduce this contention by using near field
communication (Bluetooth, Wi-Fi, etc.) between multiple
close-by mobile devices that share interest or using an
aggregator server that serves multiple mobile clients. This
has to be done in a manner that is cognizant of the
mobility of the clients, and security implications.

We believe that the challenges raised above are not
solvable with a gradual evolution of today’s solutions. To-
day’s solutions for systems management for dependability
rely on the information being consumed by resource rich
platforms, and in tightly controlled settings — privileged
user accessing information from well provisioned, and
perfectly well known, execution environment. What we
anticipate will negate both of these assumptions. Further,
systems management work with mobile devices so far has
looked at the opposite picture to what we are describing
here. Existing work has shown how to manage a large
number of mobile devices from servers, such as, how
to push out a software patch to multiple smart phones,
possibly using peer-to-peer dissemination among close-
by phones.

II. Management from Resource-Constrained
Mobile Devices

A. Optimizing for Communication

Carrol and Heiser have identified communication to
be one of the dominating factors of power consumption
on smartphones (for applications that require network
connectivity) [5], which is consistent with the experi-
ence from earlier battery-powered embedded systems like
sensor network nodes (e.g., [6]). Mobile systems man-
agement is inherently communication-intensive since the
mobile client requires periodical status updates from the
monitored machines and the fidelity of the systems man-
agement application is a function of the sampling rate.
One of the key challenges is therefore to minimize the
number of messages that need to be received to still reli-
ably detect failures and receive other relevant information

at the mobile device. In this regard, communication pat-
terns like publish-subscribe (using a push paradigm) are
clearly preferable to periodic polling. Unfortunately, most
hardware management modules (Advanced Management
Module (AMM) [7], Baseboard Management Controller
(BMC) [8]) only support protocols that inherently require
polling, a problem that we hope to see addressed by
the hardware vendors when mobile systems management
gains traction. Clearly, more research is needed to develop
alternative systems management protocols which allow
the mobile client to express sophisticated filters to the
hardware management module. Alternatively, a proxy in
the cloud could act as a middle box, perform the constant
polling of the managed machines, and then serve as a
publish-subscribe server for multiple clients, an option
that we further elaborate on in Section III.

The problem of systems management can in broad
terms be seen as a specific instance of the rare event
detection problem: it can be expected that non-events
(e.g., system parameters that show no abnormal patterns)
occur with a much higher frequency than events of interest
(e.g., system failures). In akin problem domains, much
effort has been put into avoiding high sampling rate
while still detecting the rare event with high likelihood
or within predictable time bounds (e.g., [9], [10]). Many
of these approaches, however, require a model of the
distribution of the events or a precise understanding of
their correlations—Ilittle of this is known currently in the
managed systems. Finally, given that a certain number
of messages per time period cannot be avoided to keep
the application up to date, system-level optimization like
traffic shaping [11] can help to minimize the power
consumption to transmit and receive these messages.

B. Mismatch in Dependability Characteristics

Platforms for systems management have traditionally
been considered as mission-critical as the managed sys-
tems themselves since ultimately failures on their side
could mask failures of the managed system or could
even compromise their security. However, mobile devices
are much harder to physically control since they can
easily leave access-controlled zones, can be stolen, or lost.
Once a mobile device is in the hands of an adversary,
OS-level protection can usually be easily circumvented
since the majority of the smartphones available today
have known vulnerabilities and tools exist to root these
devices. In times where employees bringing their own
mobile devices and using them for business work is an
increasingly common pattern, it is not even clear how
an enterprise can enforce policies on employee-owned
devices. Therefore, mobile devices need to be considered
unsafe environments and application-level security needs
to compensate for the lack of enforceable physical access
control and operating system protection.

Another problem is the reliability of the mobile de-
vice. Even when not considering the problem of network

connectivity and battery lifetime, mobile clients are of-
ten perceived (and justifiably so) to be more unreliable
than well-managed Linux-based desktop-class machines.
Reasons could be the lower maturity of the platforms or
the high pressure on the manufacturers due to shorter
development time. Little research beyond specific prob-
lems has been done so far to shed light on the question
how reliable mobile phones actually are in demanding
tasks such as systems management. We have done some
preliminary work in this regard for the Android and the
Symbian OS platforms [4] and more in-depth for inter-
process communication in Android [12]. Our preliminary
results have shown that some simple flaws in software
components reused over and over again (such as, the
web toolkit) contribute to a large fraction of user-visible
failures. Second, the lack of input validation for messages
received from external source (a user) or from other
software components leads to a significant source of
vulnerability.

C. Visualizing a Needle in a Haystack

Most systems management suites provide some means
for administrators to request and receive notifications or
alerts (“the needle”) of outages, failures, or behavior
that may be indicative of an imminent failure. With the
introduction of mobile systems management applications,
there is also the option of delivering alerts through
“push notifications” presented directly by the applica-
tion. This delivery method has a key advantage over
the traditional “out of band” channels, such as, text or
email messages, in that the mobile application can use
information from the alert to guide the administrator to the
appropriate dialogs within the application for diagnosing
and correcting the problem. However, the subsequent
processing for root cause analysis is best done on server-
class platforms. Some of the analysis is computationally
heavy, incorporating for example, pattern matching and
machine learning algorithms. Limited screen real estate
makes it challenging to display large amounts of data in
a comprehensible way, which is, however, a key aspect of
traditional systems management. As indicated before, the
majority of the data that can be collected from systems
management modules is informative, not essential, most
of the time, unless there is a condition which requires
action. Another design principle should be that alert data
needs to be shown in a summary view for all machines
in the data center as the central element of the appli-
cation. Starting from this view, the mobile application
can then selectively present more detailed data as well
as actionable items to the user in a drill-down fashion.
While this approach has been proven successful in our
ongoing work with IBM Remote, a fundamental problem
remains: relevance is a highly subjective classifier and
there remains the need to do much work in user-driven
mobile user interface design.

III. Crowdsourcing System Management

In this second dimension, we posit that crowdsourcing of
systems management is a desirable outcome and this is
enabled by systems management through mobile devices.
The term “crowd” should not be overconstrued to mean
just about anybody in the enterprise; rather, this will
refer to someone who is a domain expert in one of the
vertical layers in the system, such as, facilities expert
(HVAC, etc.), networking expert, hypervisor expert, vir-
tualization security expert, application expert, etc. The
diversification will help by allowing a parallel workflow
whereby multiple experts, each from their mobile device,
can examine the problem symptoms to triangulate the
problem. The different skills, independent thinking, ac-
cess to different resources, skills in multiple layers of
the stack, etc. are all expected to aid in timely systems
management. The mobile application, unified across all
these experts’ mobile devices, can bring them all together
into this kind of integrated system administration. The
geographic diversity that may result from the mobility of
the involved people can help in some investigations, such
as, troubleshooting network bottlenecks or firewall rules.

We do not wish to be Pollyannaish in laying out
the above vision. There are many reasons for not hav-
ing crowdsourcing of the systems management tasks,
such as, possibility of conflicting updates and security
breaches. Also, we are aware that a lot of systems
management is automated, but we still have significant
human involvement for problem diagnosis, more so than
problem detection. First, we believe that the increasing
need for coordinated administrative actions will drive
systems management applications to appropriate features
of social media sites, such as “friending” of related sys-
tems, applications, and administrators, “feeds” of activi-
ties by systems or administrators, and ‘“circles” to allow
coordination and collaboration in problem solving. By
adopting features and patterns of group communication
similar to social media applications, systems management
applications will enable rapid adoption of these features
without special education or documentation. What comes
with the territory is a loose level of synchronization rather
than something on the lines of commit protocols. We
would argue that current practice is even looser levels
of synchronization. Second, we believe lessons from role-
based access control (RBAC) can be adapted to handle the
security implications. Fine-grained roles can be assigned,
say for experts in different layers of the stack, and
thanks to significant progress in RBAC, these roles can
be handled in a sophisticated manner allowing hierarchies,
overlaps, and transient existence.

With respect to the second aspect of this thrust, we
believe there will be commonalities of interests among
multiple mobile devices. Some of these commonalities
will be driven by proximal geographic location, such

as, two administrators in the lab, based on an initial
problem alert, may drill down requiring further data
near concurrently in time. Considering that direct data
connection between the mobile client and the managed
server is likely to be expensive (consumes more energy,
cellular data connection has contention, etc.), there is
scope for a middle tier that provides aggregation services
and feeds multiple mobile clients. There is some prior
work with this model [13], [14]. The unsolved challenges
in this are how timely can the updates be, what are the
security implications since different persons have different
access privileges to different pieces of information.

IV. Case Study

IBM Mobile Systems Remote (short IBM Remote) is an
iPhone and Android application developed by IBM Re-
search for managing IBM server systems, with a software
architecture that enables it to be generalized to other
server platforms. It has a View-Cache-Engine (VCE)
Architecture [15] in which the mobile application fetches
certain data items of interest to system management from
the servers, such as temperature of the chassis and speeds
of the different fans. Views express interest in certain data
items to a Cache, which in turn is updated asynchronously
by a communication Engine whenever it receives an
update. The cache in turn updates the views that have
subscribed to the new piece of data. How often a data
item gets updated is determined by the Freshness of the
data item, which is an intuitive way for the administrator
to specify how timely does a data item have to be. We
find that the freshness criterion varies from the relatively
static data items, such as the machine hostname and MAC
address, to slowly-varying dynamic information, such as
up/down status, to fairly dynamic information, such as
fan speed.

In Figure 1 we show two screenshots of IBM Remote.
The left image shows the main view of the application
where each cell is a different management endpoint. In
this case they are IBM BladeCenters managed by an
Advanced Management Module (AMM) — an AMM is
a hot-swap BladeCenter module that is used to configure
and manage all installed BladeCenter components [16].
The application talks a proprietary TCP-based protocol
to get data from the AMM. Each cell contains prioritized
information to give a high level overview of the machine,
such as name, label, and machine type, and its health
status — a cross indicates a critical error, an exclamation
mark some non-critical problem, and a check that every-
thing is fine with the machine. A timestamp for each data
item update is kept in the cache and the time of the last
update is displayed next to the connectivity symbol to
give the user an idea of the freshness of the data.

If a user clicks on an individual machine cell on

the main page they are taken to the front view of said
BladeCenter as shown in the right image. We see each of

the fourteen individual blades in the chassis and can click
on any one to get further information. Below each blade
is a power button which shows the current powered state
and which the user can click to power each blade on or
off, an example of the control part of system management.

OB 9%06AM| B & = S @S
- ibmremote.dyndns.org

AMM655922902
Up-to-date

6 7 8 5 1Moz
®

X 2 days, 21 hours (@)

Machines: 3/Critical: 2

Fig. 1. The main view on the left and front view of a
BladeCenter chassis on the right

B R OID403PM | > &
ibmremote.dyndns.org
AMM655922902
Up-to-date

iR @ O @ 402pm
ibmremote.dyndns.org
AMM®655922902
Up-to-date

Event Log Options ﬂ

Audit Tue Apr 24 2012
AMM655922902 16:19:49 CDT
Event log full

3 Item(s)

Audit Thu May 31 2012
ARCC-Master 07:52:23 CDT

SMI HdIr: 00151500 Excessive Single Bit Errors
Detected Socket=DIMM 03

Audit Thu May 31 2012

ARCC-Master 07:52:22 CDT
Correctable memory error logging limit reached
on DIMM 3

Audit Wed Mar 21 2012
16:49:36 CDT
Problem communicating with BSMP.

®
a
Health Front Health Front

Fig. 2. The health view on the left and event log on the
right for a BladeCenter chassis

Figure 2 shows the health view and the event log view.
The health view is broken down into critical, non-critical,
and system level health messages giving a comprehensive
look into the system. Due to the verbosity of event logs,
the right image is filtered only to show warnings and
errors. This is an example of the necessary level of
filtering before visualizing on a mobile device so that a
system administrator can take timely action.

Empirically, we find that our concept of Freshness
improved battery performance [15], since certain data
items now did not have to be refreshed as often, which
reduced communication, the greatest component of the

energy consumption. There was a 17% relative energy
saving compared to the case where no freshness criterion
is specified and the mobile device updates all data items
every 30 seconds. Notably, the freshness optimization
does not affect the time to detect a relevant event by
the administrator. We chose a publish-subscribe based
model, with the data cache being the publisher and the
view being the subscriber. This reduces network traffic
because several views have interest in overlapping sets of
data items.

A class of bugs that highlights the challenges of sys-
tems management in virtualized environments is config-
uration bugs. Consider that for a production data center
running KVM virtual machines we run an application — a
Web 2.0 benchmarl called Olio [17] and two interfering
workloads on two separate VMs. Olio is a benchmark
mimicking a social network application and has been
used widely for evaluating PHP web-based applications
and even made a part of other benchmark suites. Olio
runs on the Apache HTTP server (version 2.4, in multi-
threaded i.e., worker mode) and uses a PHP accelerator
for dynamic content called PHP Fastcgi Process Manager.
In Figure 3, we show the impact of three configuration
parameters on the application throughput, the first two
being Apache configuration parameters and the third a
PHP accelerator parameter. We find that the choice of best
configuration parameter for Apache not only depends on
workload intensity, but also on the amount of interference
arising from co-located VMs (the DCopy size quanti-
fies interference). Further, the configuration parameters
have non-linear dependencies among themselves and this
dependency also changes with interference (not shown
here). This result tells us that there will arise the need
for systems management tasks (such as, tuning these
parameters) due to unpredictable events—consider for
example, the complex relationships between performance
and interference. Also, proper mitigation action will re-
quire the administrators to ingest fairly complex data,
necessitating effective applications on mobile devices.

Design challenges and how we solved them. We faced
several design challenges in building IBM Remote and the
configuration engine and we list the three most important
ones. First, the real estate on smart phones is really
precious and therefore we found, through extensive trial
with system administrators, that it was best to provide
a summarized view of the health of a machine high-
lighting error conditions and the ability to drill down,
as desired by the admin, to investigate the cause of the
problem. Second, we found that the configuration param-
eters have dependencies, even non-linear dependencies,
among them. Therefore, we solved this partially through
having a table lookup of sets of parameter values for
different operational regions, such as, high number of
users and high amount of database load, high number of
users and lots of short requests. This can be improved

‘Throughput vs MaxClients
Deopy.
Dcopy OMB
~ Deopy 1525 88MB.
350~ = Doopy 4577.64M8
Deopy 7629.39M8

1000 1500 2000 2500
MaxCients

(a) Throughput vs. MaxClients

‘Throughput vs KeepaliveTimeout
ocopy
ome
- 1525 8808
- 45776408
7629.39M8

10 EY w©

(b) Throughput vs. KeepAliveTimeout

Throughput vs PhpMaxChildren

350 r/' Deop

T = .-
- AT

250) g% R &
+7 T .

200 So-mmoo ot

1000 2000
PhpMaxChildren

. (c) Throughput vs. PhpMaxChildren .
Fig. 3. Choice of optimal parameter values with varying Dcopy

intensity. For all experiments, workload size is 2,000, chosen de-
fault values are MaxClients=2,000, KeepAliveTimeout=10, and
PHPMaxChildren=2,000. In each experiment, one of the parameters
is varied while others are kept constant at their default values.

through solving it in a rigorous optimization manner.
Third, for the mobile client, we needed it to work with
a variety of communication mechanisms available on
different platforms, such as, pull-based or push-based (the
latter is not efficiently supported in some platforms). Our
compromise is to provide a push-based interface through
Views and pull-based through the Cache.

V. Related Work

Prior work on system management in the mobile context
has focused on managing mobile devices, which is the op-
posite direction to the control flow that we are proposing
here. The limited amount of work in our direction has
focused on mobile agents for monitoring servers [18],
[19]. The sophistication in this work lies in having a
dynamic set of agents whose monitoring policies can be
changed flexibly and remotely. Some work has focused
on adapting the agent-based monitoring to the security
policies of enterprises [20]. UCSand [21] is the first
Android app with a GUI for the Cisco Unified Computing

Systems (USCs) monitoring and control. The app utilizes
the XML-API of the UCS-Manager but does not update
periodically like IBMRemote, the user must close the
app and open it again to refresh. PCMonitor [22] is a
commercial product designed by MMSOFT Design Ltd.
for the purpose of monitoring PCs running Windows and
major Linux distribution from a mobile device, including
the iPhone, Android, and Windows 7 mobile phones.
PCMonitor relies on middleware that monitors on behalf
of the mobile device, while IBMRemote does the actual
communication. VMWare vCenter Mobile Access [23]
(VCMA) is a fully configured and ready to run virtual
appliance that is required on the server side to manage
a datacenter from mobile devices. Administrators can
perform various activities in their VMware environments
using a mobile browser or the iPad application. The
application lacks a native application, unlike IBMRemote,
which causes it to not have as fluid of a user experience.
Hewlett-Packard recently announced a mobile application
for configuration, monitoring, and management for their
new HP Proliant-8 family of systems [24]. This announce-
ment shows that some vendors are already working to
address the points we have raised in this paper.

VI. Conclusion

In this paper, we have laid out a vision that we believe is
close at hand — mobile clients, such as smart phones,
being used to manage large masses of physical and
virtual servers. This turns some long-held practices and
principles of systems manegement on their head. We iden-
tify two fundamental ones. The first is that management
will now be done through multiple resource-constrained
mobile devices, which have a different dependability
characteristic than the managed devices. The second is
that systems management will take on a flavor of crowd-
sourcing, albeit one where “crowd” is narrowly defined
to be experts in one (or more) domains of the managed
systems and the management function is still loosely
controlled. For these two fundamental changes to be
beneficial rather than deleterious to the vision, we outline
solution directions and lay out a concrete case of a mobile
application for systems management called IBM Remote,
developed at IBM Research and being used in limited
engagements. We highlight some of the requirements
for systems management through mobile devices while
troubleshooting configuration-related bugs.

References

[1] Splunk Inc., “Splunk for Application Management,’
http://www.splunk.com/web_assets/pdfs/secure/Splunk_for_
Application_Management.pdf.

[2] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M.
Swift, “Resource-freeing attacks: improve your cloud performance
(at your neighbor’s expense),” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM,
2012, pp. 281-292.

[31

[4

=

[5

—

[6]

[71

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

D. Williams and B. Newton, “Dell-BMC Industry Insights: Data
Center Automation Your Path to the Cloud,” http://www.bmc.
com/products/documents/54/69/215469/215469.pdf, 2011.

A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing
failures in mobile OSes: A case study with Android and Symbian,”
in [EEE 2lIst International Symposium on Software Reliability
Engineering (ISSRE), 2010, pp. 249-258.

A. Carroll and G. Heiser, “An analysis of power consumption in
a smartphone,” in USENIX ATC, 2010.

V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and
M. Welsh, “Simulating the power consumption of large-scale
sensor network applications,” in SenSys, 2004.

IBM, “Advanced Management Module,” http://publib.boulder.ibm.
com/infocenter/bladectr/documentation/index.jsp?topic=/com.ibm.
bladecenter.8886.doc/dw 1fs_c_advanced_management_module.
html.

Dell Inc., “Remote Management with the Baseboard Management
Controller in Eighth-Generation Dell PowerEdge Servers,” www.
dell.com/downloads/global/power/ps4q04-20040110-Zhuo.pdf.

P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random,
and ephemeral events,” in At the 4th International Symposium on
Information Processing in Sensor Networks (IPSN), 2005.

Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal
sleep scheduling in sensor networks for rare-event detection,” in
Proceedings of the 4th international symposium on Information
processing in sensor networks, 2005.

M. Hoque, M. Siekkinen, and J. Nurminen, “On the energy
efficiency of proxy-based traffic shaping for mobile audio stream-
ing,” in Consumer Communications and Networking Conference
(CCNC), 2011.

A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An
empirical study of the robustness of inter-component communica-
tion in android,” in DSN, 2012.

M. Pitkanen, T. Karkkainen, and J. Ott, “Opportunistic Web
Access via WLAN Hotspots,” in IEEE International Conference
on Pervasive Computing and Communications (PerCom). 1EEE,
2010, pp. 20-30.

B. Han, P. Hui, V. Kumar, M. Marathe, J. Shao, and A. Srinivasan,
“Mobile Data Offloading through Opportunistic Communications
and Social Participation,” IEEE Transactions on Mobile Comput-
ing, vol. 11, no. 5, pp. 821 —834, may 2012.

J. S. Rellermeyer, T. H. Osiecki, E. A. Holloway, P. J. Bohrer, and
M. Kistler, “System management with ibm mobile systems remote
- a question of power and scale,” in 13th International Conference
on Mobile Data Management (MDM), 2012, pp. 1-6.

IBM, “IBM BladeCenter blade server,” http://www.ibm.com/
systems/bladecenter/index.html.

Olio, “Olio: Web 2.0 application,” http://incubator.apache.org/olio,
2013.

A. Tripathi, T. Ahmed, S. Pathak, M. Carney, and P. Dokas,
“Paradigms for mobile agent based active monitoring of network
systems,” in Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP, 2002, pp. 65 — 78.

A. R. Tripathi, D. Kulkarni, H. Talkad, M. Koka, S. Karanth,
T. Ahmed, and I. Osipkov, “Autonomic configuration and recovery
in a mobile agent-based distributed event monitoring system,”
Software: Practice and Experience, vol. 37, no. 5, pp. 493-522,
2007. [Online]. Available: http://dx.doi.org/10.1002/spe.777

A. Koliousis and J. Sventek, “A trustworthy mobile agent infras-
tructure for network management,” in Integrated Network Man-
agement, 2007. IM °07. 10th IFIP/IEEE International Symposium
on, 2007, pp. 383 -390.

W. V. Schaik, “UCSand,” https://market.android.com/details?id=
net.ecliptic.ucsand, Aug 27, 2011.

MMSOFT Design Ltd., “PCMonitor,” http://mobilepcmonitor.
com/, 2011.

V. Labs, “VMWare vCenter Mobile Access,” http://labs.vmware.
com/flings/vema, 2011.

A. Shah, “HP to Release Server Management Apps for iOS,
Android,” February 2012.

