
Toward Optimal Sniffer-Channel Assignment for
Reliable Monitoring in Multi-Channel Wireless Networks

Dong-Hoon Shin∗, Saurabh Bagchi†, and Chih-Chun Wang†
∗School of Electrical, Computer and Energy Engineering, Arizona State University, USA

†School of Electrical and Computer Engineering, Purdue University, USA
Email: donghoon.shin.2@asu.edu, {sbagchi, chihw}@purdue.edu

Abstract—This paper studies the optimal sniffer-channel as-
signment for reliable monitoring in multi-channel wireless net-
works. This problem concerns how to deploy certain sniffers in
a network (and tune their channels) so that they can overhear
and verify communication among the other nodes, referred
to as normal nodes. Prior works have studied the optimal
sniffer-channel assignment, but they assume perfect sniffers.
However, in practice, sniffers may probabilistically make errors
in monitoring, e.g., due to poor reception and compromise by an
adversary. Hence, to maintain acceptable monitoring quality, a
node needs to be overheard by multiple sniffers. We show that
the optimal sniffer-channel assignment with sniffer redundancy
differs fundamentally from the previous works due to the absence
of a desirable property called submodularity. As a result, in
our problem, the prior approximation algorithms no longer
maintain their performance guarantees. We propose a variety
of approximation algorithms based on two approaches—greedy
strategy and relaxation-and-rounding approach. We present
an empirical performance analysis of the proposed algorithms
through simulations in practical networks. Our results suggest
that our two algorithms show a performance trade-off between
coverage and running time and are therefore suitable for different
kinds of deployment.

I. INTRODUCTION

Passive monitoring is a widely-used and effective technique
to monitor wireless networks. In this, sniffers (i.e., software
or hardware devices that intercept and log packets) are used
to capture and analyze traffic between other nodes in order to
estimate network conditions and performance. Such estimates
are utilized for efficient network operations including network
resource management, network configuration, fault detection
or diagnosis, and network intrusion detection.

Over the past few years, it has been extensively studied
to use multiple channels in wireless networks, especially in
wireless mesh networks (WMNs) (e.g., [1]–[3]). It has been
shown that equipping nodes with multiple radios tuned to
different non-overlapping channels can significantly increase
the capacity of the network. In these networks, a challenging
issue with passive monitoring is to capture as large an amount
of traffic or as large a number of nodes as possible, ideally the
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entire network, by judiciously assigning channels to sniffers’
radios. The model in all the works that are related to this paper
is that the network is comprised of two kinds of nodes—sniffer
nodes (“the monitors”) and normal nodes (“the monitored”).

In recent years, the issue of the optimal channel assign-
ment of sniffers has received increasing attention from the
literature. Our prior works [4], [5] have studied a problem of
how to optimally place sniffers and assign their channels to
monitor multi-channel WMNs. Chhetri et al. [6] have studied
two models of sniffers that assume different capabilities of
sniffers’ capturing traffic. The first, called the user-centric
model, assumes that frame-level information can be captured
so that activities of different users are distinguishable. The
second, called the sniffer-centric model, assumes that only
binary information is available regarding channel activities,
i.e., whether some user is active in a specific channel near a
sniffer. The works [4]–[6] assume that the prior knowledge of
the topology and the channel usages of nodes is given to, or
can be inferred by, sniffers. On the other hand, Arora et al.
[7] have studied a trade-off between assigning the radios of
sniffers to channels known to be busiest based on the current
knowledge, versus exploring channels that are under observed.
Also, some works [8], [9], including our work, have developed
distributed solutions that can scale to large networks.

However, all of the aforementioned works assume that
sniffers are perfect. This implies that once a node has at least
one sniffer within its transmission range operating on the same
channel, the node’s activity will be always monitored without
any error. In practice, however, sniffers may intermittently,
periodically, or permanently stop functioning or generate erro-
neous reports in monitoring. This may happen due to a variety
of reasons including poor reception (due to packet collisions
or poor channel conditions), compromise by an adversary,
operational failure and sleep mode for energy saving. Such
imperfect sniffers decrease the quality of monitoring, and
eventually lead to a degradation of the network performance.

In this paper, we allow for imperfect sniffers that may
probabilistically make errors in monitoring. In this scenario,
we wish to still maintain the accuracy of the monitoring
above a certain level. To this end, our approach is to provide
sniffer redundancy to each node. That is, each node has to
meet a coverage requirement, defined as the minimum number
of sniffers required for reliably monitoring the node. In this



approach, we are interested in the problem of how to assign
a set of channels to sniffers’ radios such that the coverage
requirements of all nodes are satisfied. We refer to this
problem as the Full-Coverage Reliable Monitoring (FCRM).
However, we show that it is NP-hard to find any feasible
solution to FCRM, with the complexity growing exponentially
with the number of sniffers.

Many target applications of this problem have a consider-
able number of sniffers. Also, the problem has to be solved re-
peatedly whenever nodes move and their channel assignments
change. Hence, it is a reasonable goal to find approximate
solutions that will be agile and thus applicable to practical
networks. We thus turn our attention to an optimization
problem corresponding to FCRM, which is how to find a
sniffer-channel assignment that maximizes the number (or the
total weight) of nodes whose coverage requirement is met. We
call this problem the Maximum-Coverage Reliable Monitoring
(MCRM). It is also NP-hard, since one can find the answer
to FCRM, an NP-hard problem, by solving its corresponding
optimization problem, i.e., MCRM.

Our problem MCRM fundamentally differs from the pre-
viously studied problems in the literature [4]–[9] that assume
perfect sniffers and thus do not need to consider sniffer redun-
dancy. We show that a desirable property called submodularity
no longer holds in MCRM. Submodularity is known as an
important property in discrete optimization since it allows us
to efficiently find provably (near-)optimal solutions, similar to
convexity in continuous optimization. As a result, in MCRM-
MC, the performance guarantees of the prior approximation
algorithms do not apply.

In this paper, we propose a variety of approximation al-
gorithms to solve MCRM based on two approaches—greedy
strategy and relaxation-and-rounding approach. First, we de-
velop two variants of a look-ahead greedy algorithm, which
make a greedy decision looking a few steps ahead. Next,
we develop two relaxations and two rounding algorithms,
thus proposing four variants of a relaxation-and-rounding
algorithm. We present an empirical performance analysis
of the proposed algorithms through simulations in practi-
cal networks—random networks and scale-free networks—in
terms of coverage and running time. Our results show that
two algorithms based on the relaxation-and-rounding approach
outperform the others; one achieves coverage comparable to
the maximum coverage but with a relatively long running time,
while the other attains coverage slightly lower than that of the
former but at a lower running cost. Also, we empirically see
that the structure of MCRM becomes more complicated as the
coverage requirements of nodes increase by observing that the
gap between the highest coverage achieved by our algorithms
and the upper bound achieved by relaxation becomes larger.

II. PROBLEM FORMULATION

We are given a set N of nodes to be monitored, and
each node n ∈ N is tuned to a wireless channel chosen
from a set C of available wireless channels, where |C| ≥ 2.
The channels of nodes are chosen according to one of many

existing channel assignment algorithms in the literature (e.g.,
[1]–[3]). Each node n is given a coverage requirement rn
that is a positive integer and denotes the minimum number
of sniffers required to reliably monitor node n. The value of
the coverage requirements can be determined, e.g., as in [10],
by using the failure model of sniffers (i.e., false positives and
false negatives) and the desired accuracy of monitoring. We
say that node n is covered if it is overheard by at least rn
sniffers operating on the same channel as the node. Also,
each node n is given a non-negative weight wn indicating
the importance of monitoring the node n. These weights can
be used to capture various application-specific objectives of
monitoring. For example, one can assign a higher weight to
a node transmitting a larger volume of data. Or, for security
monitoring, one can assign the weights by taking into account
the trustworthiness of nodes computed based on the previous
monitoring results. Here, a node that has been found to be
compromised before (and repaired thereafter) will be assigned
a higher weight.

We are given a set S of sniffers, each of which needs to
determine a wireless channel from C to tune its radio to. We
are given a collection of coverage-sets K = {Ks,c ⊆ N :
s ∈ S, c ∈ C}, where a coverage-set Ks,c contains the nodes
that can be overheard by sniffer s being tuned to channel c.
We define a sniffer-channel assignment as a subset of K that
includes only one coverage-set for each sniffer. This constraint
is due to the limitation on sniffers’ radios that each sniffer has
a single radio and can thus tune its radio to only one channel
at a time.

A. Full-Coverage Reliable Monitoring

We first consider a decision problem to determine whether
or not there exists a sniffer-channel assignment that achieves
the full coverage, i.e., covers all nodes in N . We refer to this
problem as the Full-Coverage Reliable Monitoring (FCRM).
We denote the FCRM with k channels and a set ~r = (rn :
n ∈ N) of coverage requirements of nodes by FCRM(k,~r).

Theorem 1: FCRM(k, ~r) is NP-hard, even for k = 2 and
~r = (2, 1, . . . , 1).
To prove the theorem, one can show a polynomial-time re-
duction from FCRM(2,~1), which is an NP-hard problem [6,
Theorem 1], to FCRM(k, ~r) for any fixed k and ~r. We omit
the proof due to space limitation.

B. Maximum-Coverage Reliable Monitoring

Alternatively, we turn our attention to an optimization
problem corresponding to FCRM, which is how to find a
sniffer-channel assignment that maximizes the total weight
of nodes whose coverage requirements are met. We refer to
this problem as the Maximum-Coverage Reliable Monitoring
(MCRM). We denote the MCRM with k channels and a set
~r = (rn : n ∈ N) of coverage requirements of nodes by
MCRM(k, ~r). Also, we denote MCRM(k,~1) with k ≥ 2 by
MCRM-SC (MCRM with Single Cover) and MCRM(k, ~r)
with k ≥ 2 and rn ≥ 2 for some nodes n ∈ N by MCRM-MC
(MCRM with Multiple Cover).



The corollary below follows from Theorem 1, since one can
find the answer to FCRM by solving MCRM and verifying
whether the full coverage is achieved.

Corollary 1: MCRM(k, ~r) is NP-hard, even for k = 2 and
~r = (2, 1, . . . , 1).

This means that the computational complexity to solve MCRM
grows exponentially with the number of sniffers, unless P =
NP. Many target applications of this problem have more than a
handful of sniffers and the problem has to be solved repeatedly
at runtime (whenever channel assignments change). Therefore,
this theorem points us toward finding approximate solutions
that will be applicable to practical networks.

Corollary 2: For any ε > 0, it is NP-hard to approximate
MCRM(k,~r) within a factor of 7

8 + ε of the maximum
coverage, even for k = 2 and ~r = (2, 1, . . . , 1).

Proof: Due to the proof of Theorem 1, it is easy to show
that FCRM(2,~1) is reduced to MCRM(k, ~r). Also, it is NP-
hard to approximate FCRM(2,~1) within a factor of 7

8 + ε for
any ε > 0 [6, Corollary 2]. Thus, the corollary follows.

This implies that the best approximation ratio attainable for
MCRM is at most 7

8 .

Non-submodularity of MCRM-MC. Submodularity is an
important property in discrete optimization. It allows to effi-
ciently find provably (near-)optimal solutions, similar to con-
vexity in continuous optimization [11]. A real-valued function
f : 2S → R, defined on the subsets of a finite set S, is said
submodular if and only if, for any X ⊆ S − {a}, the derived
set function ∆f(a|X) , f(X∪{a})−f(X) is monotonically
increasing, i.e., ∆f(a|X) ≥ ∆f(a|Y ) for X ⊆ Y . Intuitively,
submodularity is a diminishing-return property.

On the other hand, non-submodular functions are known
to be difficult to deal with. In the literature of theoretical
computer science, there are few results on the provable
performance guarantees for non-submodular functions. Also,
many greedy heuristics with good performance demonstrated
in computational experiments cannot receive a theoretical
analysis due to the difficulty of dealing with non-submodular
functions [12]. We follow the same approach and give up the
goal of trying to find approximation algorithms with provable
performance guarantees. Instead, we focus on heuristic-based
approximation algorithms that give good coverage empirically.

To investigate the submodularity on MCRM, we define w :
2K → R, defined on collections of coverage-sets in K, to
compute the total weight of the nodes covered by a sniffer-
channel assignment. We first consider MCRM-SC. In MCRM-
SC, a node is covered if it is overheard by at least one sniffer
on the same channel as the node. Hence, the increment of the
total weight by adding a coverage-set Ks,c to a given sniffer-
channel assignment A, i.e., ∆w(Ks,c|A), is non-increasing as
the given A becomes a superset. Thus, w is submodular for
MCRM-SC. Due to the submodularity of MCRM-SC, it is
possible to approximate MCRM-SC within a factor of 1 − 1

e
(≈ 0.632) of the maximum coverage [9].

On the other hand, the submodularity no longer holds for

MCRM-MC.

Theorem 2: For MCRM-MC, w is not submodular.
Proof: We prove the theorem by a counter example.

Assume that there exists a node n ∈ N such that rn ≥ 2. We
construct an instance of MCRM(k,~r) where wn = 1 (i.e., the
weight of node n is 1) and K1,1 = · · · = Krn,1 = {n} (i.e.,
sniffers 1, . . . , rn can overhear only the node n by tuning their
radios to channel 1). Consider two sniffer-channel assignments
A = ∅ and A′ = {K1,1, . . . ,Krn−1,1}. Then, it is follow that
∆w(Krn,1| A) = 0 and ∆w(Krn,1| A′) = 1. As a result, we
have ∆w(Krn,1| A) < ∆w(Krn,1| A′) for A ⊂ A′. Thus, the
theorem holds.

III. LOOK-AHEAD GREEDY ALGORITHMS

Our first approach to solve MCRM-MC is a greedy strat-
egy. For MCRM-SC, an intuitive greedy algorithm has been
presented in [4]. At each step, it picks the coverage-set that
maximizes the coverage improvement, i.e., the total weight
of uncovered nodes, among the coverage-sets of the sniffers
whose channel assignment is not yet determined. This intuitive
greedy algorithm can always achieve at least half of the max-
imum achievable coverage in MCRM-SC [4]. However, the
performance guarantee of the greedy algorithm no longer holds
for MCRM-MC due to the non-submodularity of MCRM-MC.

A. Naive Greedy Algorithms

To solve MCRM-MC, one might consider extending the
greedy algorithm in [4]. We can think of two extensions of
the greedy algorithm for MCRM-MC. At each step, among
the coverage-sets of the sniffers whose channel assignment
is not determined, the first extension picks the coverage-set
that maximizes the coverage improvement at the step, while
the second extension picks the coverage-set that maximizes
the sum of the weights of the hitherto uncovered nodes, i.e.,
the nodes whose coverage requirements have not been met
yet. Note that picking a hitherto uncovered node may still
leave it uncovered. Note that, in MCRM-MC, these two greedy
extensions yield a different solution, in general. To see this,
observe that an uncovered node n in MCRM-MC can have a
partial coverage of 1, . . . , rn − 2, or rn − 1, other than zero
coverage. Hence, when a coverage-set is picked at a step, only
the nodes in the coverage-set that have the partial coverage of
rn − 1 will be covered.

However, these greedy extensions make poor choices due
to their myopic nature, and this may lead to an inferior
performance. To illustrate this, we consider the example shown
in Table I. It is easy to see that the optimal sniffer-channel
assignment is {K1,2,K2,2,K3,2,K4,2}, and thus the maxi-
mum achievable coverage is 5 nodes. On the other hand, the
first greedy extension will pick a sniffer-channel assignment
{K1,1,K2,1,K3,1,K4,1} leading to a coverage of 2 nodes,
provided that ties are broken by a coverage-set that achieves
a higher total weight of uncovered nodes. Also, the second
greedy extension will choose a sniffer-channel assignment
{K1,1,K2,2,K3,2,K4,1}, thereby leading to zero coverage.



TABLE I
EXAMPLE TO ILLUSTRATE MYOPIC DECISIONS OF THE NAÏVE GREEDY

EXTENSIONS: wn = 1, rn = 2 FOR ALL n

Sniffers Coverage-sets
Channel 1 Channel 2

s1 K1,1 = {n1, n2, n3, n4} K1,2 = {n5, n6, n7}
s2 K2,1 = {n1} K2,2 = {n5, n6, n7}
s3 K3,1 = {n2} K3,2 = {n8, n9, n10}
s4 K4,1 = {n11, n12, n13} K4,2 = {n8, n9}

B. Look-Ahead Greedy Algorithms

Inspired by the observation through the previous example,
we design two look-ahead greedy algorithms to solve MCRM-
MC, which are presented in Alg. 1 and Alg. 2.

Alg. 1 has a fixed number |S| of steps. At each step, it looks
t′ − 1 steps ahead to find a coverage-set that is best for the
current and the next t′−1 steps. Here, t′ is the minimum of the
configuration parameter t and the number |S′| of remaining
steps of the algorithm. To find the best coverage-set, it first
finds a collection C∗ of t′ coverage-sets that maximize the
coverage improvement for the current and the next t′−1 steps
(line 5). This takes O(|S|t+1|C|t+1) time, where t is a constant
that we can choose. Then, among the coverage-sets in C∗, it
chooses a coverage-set Ks∗,c∗ that maximizes the coverage
improvement at the current step (lines 6 and 7).

Alg. 2 has a variable number of steps. At each step,
it chooses a collection C∗ of at most t′ coverage-sets that
maximizes the per-sniffer coverage improvement, among all
possible sniffer-channel assignments for any t′ sniffers whose
channel assignment is not yet determined (lines 4 and 5).

For both the algorithms, how far the algorithm can look
ahead is determined by the parameter t. Since covering
node n requires at least rn sniffers, it is reasonable to set
t = maxn∈N rn − 1 for the Look-t-Steps-Ahead Greedy
Algorithm and t = maxn∈N rn for the Look-t-Sniffers-at-
One-Step Greedy Algorithm. If t is set to the largest value (i.e.,
|S| − 1 or |S|), the look-ahead greedy algorithms will solve
MCRM-MC exactly. However, their computational complexity
will grow exponentially with |S|, i.e., the number of sniffers.

IV. RELAXATION-AND-ROUNDING ALGORITHMS

We consider another approach, called relaxation and round-
ing (RaR), to solve MCRM-MC. RaR is known as a highly
effective technique to solve NP-hard optimization problems.
The typical steps involved in RaR algorithms are:
• Step 1: Formulate the given optimization problem into an

integer program (IP)
• Step 2: Transform the IP into a relaxed program where

the integer constraints are relaxed and that is solvable in
polynomial time

• Step 3: Solve the relaxed program to obtain the optimal
solution

• Step 4: Round the non-integer values from Step 3 in order
to obtain an integer solution feasible for the original IP

At Step 2, an important issue is to find as strong a relaxed
program as possible, while keeping the relaxed program
solvable in polynomial time. We define a stronger relaxed

Algorithm 1 Look-t-Steps-Ahead Greedy Algorithm
1: G ← ∅, S′ ← S
2: while |S′| 6= 0 do
3: t′ ← min{t+ 1, |S′|}
4: P ←

{
{Ks1,c1 , . . . ,Kst′ ,ct′} : si ∈ S′, ci ∈ C ∀i, and

si 6= sj if i 6= j
}

// P is the set of all possible sniffer-channel assignments
of any t′ sniffers in S′

5: Find C∗ ∈ P such that

∆w (C∗|G) = max
∀C∈P

∆w (C|G)

// i.e., C∗ is a sniffer-channel assignment for any t′ snif-
fers in S′ that maximizes the coverage improvement,
given G

6: Find Ks∗,c∗ ∈ C∗ such that

∆w ({Ks∗,c∗} |G) = max
∀Ks,c∈C∗

∆w ({Ks,c} |G)

// i.e., Ks∗,c∗ is a coverage-set in C∗ that maximizes
coverage improvement, given G

7: G ← G ∪ {Ks∗,c∗}
8: S′ ← S′ − {s∗}
9: end while

10: return G

Algorithm 2 t-Sniffers-at-One-Step Greedy Algorithm
1: G ← ∅
2: while |S′| 6= 0 do
3: Q ←

{
{Ks1,c1 , . . . ,Kst′ ,ct′} : t′ ≤ min{t, |S′|}, si ∈

S′, ci ∈ C ∀i, and si 6= sj if i 6= j
}

// i.e., Q is the set of all possible sniffer-channel
assignments for at most t′ sniffers in S′

4: Find C∗ ∈ Q such that

∆w (C∗|G)

|C∗|
= max
∀C∈Q

∆w (C|G)

|C|
// i.e., C∗ is a sniffer-channel assignment in Q for at
most t′ sniffers that achieves the maximum per-sniffer
coverage improvement

5: G ← G ∪ C∗
6: S′ ← S′ − s(C∗), where s(C∗) denotes the set of the

sniffers chosen in C∗
7: end while
8: return G

program as follows. Let us say both programs P1 and P2

include the optimal IP solution, and program P1 has a feasible
solution set that is a subset of that of P2. Then P1 will be
called a stronger relaxed program than P2. The benefits of a
stronger relaxed program are two folds. First, it often leads
to a better approximate solution to the IP, since a stronger
relaxed program will likely yield a non-integer solution closer
to the optimal IP solution. Second, it will give a better estimate
(i.e., upper bound) of the maximum coverage. At Step 4, a



challenging goal is to minimize the degradation of the quality
of the resulting integer solution so as to obtain an integer
solution that is as close to the optimal IP solution as possible.
A. LP and SDP Relaxations

We devise two relaxations; one is a linear program (LP)
relaxation, and the other is a semidefinite program (SDP)
relaxation. LP relaxation is a widely-used relaxation technique,
but may not yield a tight upper bound for MCRM-MC. Hence,
we also devise a SDP relaxation for MCRM-MC to obtain a
stronger relaxation than the LP relaxation. To formulate the
relaxations, we define a set of indicator variables. We assign
an indicator variable xn ∈ {0, 1} to each node n ∈ N , and
xn = 1 indicates that node n is covered by the given solution.
We assign an indicator variable ys,c ∈ {0, 1} to a coverage-set
Ks,c ∈ K, and ys,c = 1 indicates that the radio of sniffer s is
tuned to channel c.

LP relaxation. We formulate MCRM as the following integer
linear program (ILP), denoted by ILPMCRM:

maximize
∑
n∈N

wnxn (1)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (2)

xn ≤
1

rn

∑
s,c:n∈Ks,c

ys,c ∀n ∈ N, (3)

xn, ys,c ∈ {0, 1} ∀n ∈ N, s ∈ S, c ∈ C.
(4)

The constraint (2) is due to the fact that each sniffer has a
single radio and the radio can be tuned to only one channel
at a time. The constraints (3) together with the objective
function (1) and the constraint (4) makes xn = 1 if node
n is covered by a solution, and otherwise makes xn = 0 .

We transform ILPMCRM into the following LP relaxation,
denoted by LPMCRM:

maximize
∑
n∈N

wnxn (5)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (6)

xn ≤
1

rn

∑
s,c:n∈Ks,c

ys,c ∀n ∈ N, (7)

0 ≤ xn, ys,c ≤ 1 ∀n ∈ N, s ∈ S, c ∈ C, (8)
xn (|{(s, c) : n ∈ Ks,c}| − rn) ≥ 0 ∀n ∈ N.

(9)

The integer constraint (4) in ILPMCRM is relaxed to the
fractional constraint (8).

One could have a naı̈ve LP relaxation of Eqs. (5)–(8) by
simply relaxing the integer constraint (4) in ILPMCRM to the
fractional constraint (8). But, to obtain a stronger LP relax-
ation, we additionally include the constraint (9) in LPMCRM.
Note that the additional constraint (9) along with the objective
function (5) and the constraint (8) makes xn = 0, when the
number of sniffers within range of node n is smaller than

rn. Hence, constraint (9) enforces the algorithm for solving
LPMCRM to give zero coverage to the nodes that are impossible
to cover due to an insufficient number of sniffers that can
overhear the nodes. We see empirically that this additional
constraint improves the solution quality of the relaxed LP
problem (by 9% of that of the naı̈ve LP relaxation, on average).

SDP relaxation. We formulate MCRM into the quadratically
constrained linear program, denoted by QCLPMCRM:

maximize
∑
n∈N

wnxn (10)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (11)

xn

 1

rn

∑
s,c:n∈Ks,c

ys,c − 1

 ≥ 0 ∀n ∈ N,

(12)
ys,c(ys,c − 1) = 0 ∀s ∈ S, c ∈ C, (13)
xn(xn − 1) = 0 ∀n ∈ N. (14)

The constraints (13) and (14) represent the integer constraints
of xn and ys,c, respectively. The constraint (12) together with
(10) and (14) makes xn = 1 if node n is covered by a solution,
and otherwise makes xn = 0.

We now formulate a SDP relaxation from QCLPMCRM. We
define ~z = (x1, . . . , x|N |, y1,1, . . . , y|S|,|C|) and denote the i-
th entry of ~z by zi. We define a symmetric square matrix M
of variables as

M =

(
1 ~z
~zT Z

)
.

Here, Z is a symmetric square matrix of new variables Zi,j’s
with order |N |+ |S| · |C|, and Zi,j denotes the entry in the i-th
row and the j-th column of Z. To derive a SDP relaxation, we
first add the constraints (7)–(9) in LPMCRM to QCLPMCRM and
rewrite the QCLPMCRM with the additional constraints (7)–(9)
into the following matrix form:

maximize W •M (15)
subject to Ai •M ≤ bi, i ∈ I (16)

Z = ~zT~z. (17)

Here, W and Ai are symmetric square matrices of order
|N |+ |S| · |C|, bi is a real number, and I is an index set. The
notation • denotes the Frobenius inner product, i.e., W •M =∑

i,j Wi,jMi,j , and (·)T denotes the matrix transpose. The
constraints (7)–(9) from LPMCRM are added to obtain a stronger
SDP relaxation. Note that, due to constraint (17), Zi,j is equal
to the quadratic term zizj . Following the standard procedure
[13], we now transform Eqs. (15)–(17) into the following SDP
relaxation, denoted by SDPMCRM:

maximize W •M (18)
subject to Ai •M ≤ bi, i ∈ I (19)

M � 0 (⇔ Z − ~zT~z � 0). (20)



Here, M � 0 means that the matrix M must be positive
semidefinite, i.e., satisfy ~vM~vT ≥ 0 for any real vector ~v.

SDPMCRM is a relaxed program of QCLPMCRM equivalent
to ILPMCRM, since a zero matrix is positive semidefinite and
hence Z − ~zT~z = 0 implies Z − ~zT~z � 0. In SDPMCRM, Zi,j

is no longer equal to zizj and now becomes an independent
variable. Hence, SDPMCRM is an LP defined over the variables
in M , attached with the positive semidefinite constraint (20).
Intuitively, we can interpret SDPMCRM as a polynomial-time
complexity emulation of QCLPMCRM by introducing the aux-
iliary variables Zi,j’s and aiming Zi,j = zizj with the
constraints (12)–(14) and (20). Note that the objective function
of SDPMCRM is still defined over only the variables x1, . . . , xn,
and also that the value that xn can take is constrained by the
constraints of LPMCRM (i.e., Eqs. (6)–(9)). Hence, we have the
following theorem.

Theorem 3: SDPMCRM is a relaxation of ILPMCRM that is
at least as strong as LPMCRM.

B. Randomized Rounding Algorithm and Greedy Rounding
Algorithm

We develop two distinct rounding algorithms to round
the non-integer values of ys,c’s obtained from LPMCRM or
SDPMCRM; one is randomized, while the other is deterministic.

Randomized Rounding Algorithm (RRA). It probabilisti-
cally rounds the (fractional) LPMCRM or SDPMCRM optimal
solution ~y∗ by treating each fractional value as the probability
of rounding it to 1. That is, P (y#s,c = 1) = y∗s,c, where y#s,c
denotes the resulting integer value of a fractional value y∗s,c
after rounding by RRA.

Greedy Rounding Algorithm (GRA). We present GRA
in Alg. 3. It rounds ~y∗ by iteratively choosing a sniffer-
channel pair whose value will be rounded to 0. At each
iteration (lines 4–16), for each sniffer-channel pair p = (s, c)
whose value is not yet rounded to an integer, GRA ad-
justs the values of yps,1, . . . , y

p
s,|C| according to Eq. (21).

At the iteration, GRA finds the sniffer-channel pair p̃ =
(s̃, c̃) whose associated adjusted values ~yp̃ achieve the max-
imum coverage improvement (line 9). Here, the coverage
improvement attained by ~yp, compared to ~y#, is defined
by ∆w(~yp, ~y#) =

∑
n∈N(s)

(
wn(~yp)− wn(~y#)

)
, where

wn(~y) = wn ·
⌊
min

{
1, 1

rn

∑
(s,c):n∈Ks,c

ys,c

}⌋
, N(s) is the

set of the neighboring nodes of sniffer s, and bxc denotes
the largest integer that is not greater than x. Intuitively, the
coverage improvement computes the coverage improvement
attained by ~yp as the total weight of the nodes that are newly
covered by the adjusted fractional values ~yp. Then, at the end
of the iteration, GRA updates the fractional values of sniffer
s̃ to the adjusted values of sniffer s̃ in ~yp̃, thereby rounding
at least one non-integer value to an integer (lines 10–15).

V. TIME COMPLEXITY ANALYSIS

A. Time Complexity of Look-Ahead Greedy Algorithms
The look-ahead greedy algorithms both have at most |S|

iterations of the while loop. At each iteration, Look-t-Steps-

Algorithm 3 Greedy Rounding Algorithm
1: Let ~y∗ be the optimal solution to LPMCRM or SDPMCRM
2: ~y# ← ~y∗

3: P ← {p = (s, c) : 0 < y#s,c < 1 ∀s ∈ S, c ∈ C}
4: while P 6= ∅ do
5: for each p = (s, c) ∈ P do
6: ~yp ← ~y#

7: Adjust the values of the entries yps,1, . . . , y
p
s,|C| of ~yp

according to:

yps,c ← 0, yps,c′ ←
yps,c′∑
∀c∈C y

p
s,c
∀c′ 6= c (21)

8: end for
9: Find p̃ = (s̃, c̃) ∈ P that maximizes the coverage

improvement gained by ~yp (i.e., ∆w(~yp, ~y#))
10: ~y# ← ~yp̃

11: if yp̃s̃,c ∈ {0, 1} for all c ∈ C then
12: P ← P − {(s̃, 1), . . . , (s̃, |C|)}
13: else
14: P ← P − {(s̃, c̃)}
15: end if
16: end while
17: return ~y#

Ahead Greedy Algorithm and t-Sniffers-at-One-Step Greedy
Algorithm need to consider at most O(|S|t+1|C|t+1) possible
sniffer-channel assignments in P and at most O(|S|t|C|t)
possible sniffer-channel assignments in Q, respectively. Here,
t (i.e., the look-ahead capability) is assumed to be less than a
half of |S|, which is true for almost all cases. Also, any sniffer-
channel assignment has at most O(|N |) nodes whose coverage
needs to be verified to compute the coverage improvement.
Thus, Look-t-Steps-Ahead Greedy Algorithm has time com-
plexity of O(|S|t+2|C|t+1|N |), and t-Sniffers-at-One-Step
Greedy Algorithm has time complexity of O(|S|t+1|C|t|N |).

B. Time Complexity of Relaxation-and-Rounding Algorithms

To compute the time complexity of the RaR algorithms, we
first compute the time complexity of formulating and solving
the LPMCRM or the SDPMCRM, and then compute the time
complexity of GRA or RRA.

Formulating and solving LPMCRM. To formulate LPMCRM,
we need to build an LP in the following matrix form: maximize
~c · ~x subject to A~x = ~b and ~x ≥ 0. In the formulation of
LPMCRM, building matrix A with the constraints (6)–(9) domi-
nates the complexity, which will take O

(
(|N |+|S|·|C|)2

)
time

since we have |N |+ |S| · |C| variables and O(|N |+ |S| · |C|)
constraints in LPMCRM. To solve LPMCRM, one can employ one
of many existing LP solvers, e.g., the one in [14] which will
take O

(
(|N |+ |S| · |C|)3/ log(|N |+ |S| · |C|)

)
time. Thus, in

total, it takes O
(
(|N |+ |S| · |C|)3/ log(|N |+ |S| · |C|)

)
time

to formulate and solve LPMCRM.

Formulating and solving SDPMCRM. To formulate SDPMCRM,
constructing the matrices Ai’s in the constraint (19) dominates



TABLE II
TIME COMPLEXITY OF PROPOSED ALGORITHMS

Algorithm Time complexity
Look-t-Steps-Ahead Greedy O(|S|t+2|C|t+1|N |)
t-Sniffers-at-One-Step Greedy O(|S|t+1|C|t|N |)

Solving LPMCRM O
(

(|N|+|S|·|C|)3
log(|N|+|S|·|C|)

)
Solving SDPMCRM O

(
(|N |+ |S| · |C|)3

)
RRA O(|S| · |C|)
GRA O(|S|2 · |C|2 · |N |)

the complexity. This will take O
(
(|N | + |S| · |C|)3

)
time,

since each Ai has (|N |+ |S| · |C|+ 1)2 entries and SDPMCRM
has O(|N | + |S| · |C|) constraints. To solve SDPMCRM, one
can use one of various SDP solvers available, which will take
O
(
(|N |+|S|·|C|)3

)
time [15]. Thus, in total, it takes O

(
(|N |+

|S| · |C|)3
)

time to formulate and solve SDPMCRM.

Solving RRA and GRA. It is easy to compute that RRA and
GRA have the time complexity of O(|S| · |C|) and O(|S|2 ·
|C|2 · |N |), respectively.

Based on the results, we summarize the time complexity of
the proposed algorithms in Table II.

VI. PRACTICAL IMPLEMENTATIONS

The two variants of the look-ahead greedy and the SDP-
based RaR algorithms can be implemented by employing
a centralized network entity, which first gathers from each
sniffer the information of the channel usage of nodes, then runs
the algorithm to determine the channel assignment of sniffers,
and distributes the decision to every sniffer. This centralized
setting would be suitable for networks whose configuration
(i.e., nodes’s channel-usage and network topology) changes
slowly with time.

On the other hand, the LP-based RaR algorithms can be
implemented in a distributed manner. One can develop a dis-
tributed algorithm to solve LPMCRM by applying the methods
in [9]. Also, it is easy to see that RRA and GRA can be
implemented in a distributed fashion since they require only
local information. This distributed implementation can quickly
adapt to frequent network configuration changes due to nodes’
mobility and the addition and replacement of sniffers.

VII. NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed algorithms
through MATLAB simulations in two kinds of networks:
random networks and scale-free networks. In random net-
works, nodes and sniffers with receiving range r are randomly
deployed in a 1 × 1 square area with a uniform distribution.
In scale-free networks, nodes are deployed such that the
probability f(d) of a node having degree d follows a power
law of the form of d−p, i.e., the number of nodes with
high degree decreases exponentially. We pick the nodes with
highest degrees as sniffers so as to achieve higher coverage
than picking them randomly. The rationale behind choosing
these two kinds of networks is that the performance of the
proposed algorithms will largely depend on the distribution of

node degree, and the two kinds of networks have a significant
difference in the node-degree distribution.

We evaluate the proposed algorithms in two metrics: cov-
erage and running time. Here, coverage is defined as the total
weight of nodes covered by a solution divided by the total
weight of all nodes. We conduct two experiments in each
network. In the first experiment, we see how the proposed
algorithms perform as the number of sniffers increases. In the
second experiment, we evaluate the proposed algorithms for
different values of the coverage requirements of nodes. In the
both experiments, each node’s radio is tuned to a channel that
is randomly selected from the available channels, and we set
the parameters as follows: r = 0.22, 2 < p < 3, wn = 1
for all n, |C| = 3 (same as the number of non-overlapping
wireless channels in IEEE 802.11), and t = max∀ rn − 1 for
Look-t-Steps-Ahead Greedy Algorithm and t = max∀ rn for
t-Sniffers-at-One-Step Greedy Algorithm. All of the results
are the average taken over at least 30 iterations.

A. Coverage

We compare the coverage of the proposed algorithms with
the ILP optimum, i.e., the maximum achievable coverage, and
the optimums of SDPMCRM and LPMCRM, denoted by SDP-UP
and LP-UP respectively, which constitute upper bounds on the
maximum coverage. In Fig. 1(a), we observe that the SDP-
and-GRA and the LP-and-GRA show coverage comparable to
the maximum achievable coverage, and they are followed by
the look-ahead greedy algorithms with a small gap. We see
that, after rounding, GRA maintains the quality of the optimal
solution of SDPMCRM or LPMCRM closer to the maximum cov-
erage, while RRA results in slight degradation of the solution
quality. A surprising result is that the second naı̈ve greedy
algorithm shows reasonable coverage, while the first naı̈ve
greedy algorithm show poor coverage. Also, we observe that
SDPMCRM provides only a slightly tighter upper bound than
LPMCRM, and accordingly its corresponding RaR algorithms
perform only slightly better than the LP-based algorithms.

In Fig. 1(b), we observe similar trends to those in random
networks. But, a notable observation is that, in scale-free
networks, SDPMCRM provides a much tighter upper bound
of the maximum achievable coverage. Accordingly, we can
see that the SDP-based RaR algorithms show a noticeable
coverage improvement over the LP-based RaR algorithms.

In Fig 2, we compare the coverage of the proposed algo-
rithms only with upper bounds on the maximum coverage, i.e.,
SDP-UP and LP-UP, but not with the maximum coverage due
to a large amount time to obtain the ILP optimum. We observe
that, as rn increases, the gap between the highest coverage
achieved by SDP-and-GRA and the upper bound by SDPMCRM
becomes larger in both networks, and is larger in scale-free
networks than in random networks. Also, we see that the first
naı̈ve greedy extension shows good coverage when rn = 1,
but the coverage dramatically decreases as rn becomes 2. In
both the figures, as rn increases, the coverage decreases since
there are a fixed number of sniffers and each node requires
more number of sniffers to be covered.
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Fig. 1. Coverage for different values of |S|, where |N | = 40 and rn = 2 for all n.
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Fig. 2. Coverage for rn = 1, 2 and 3 for all n, where |N | = 60 and |S| = 40.

We would like to remark that, in practice, as the number of
channels increases, sniffers needs to be equipped with multiple
radios to achieve a reasonably good coverage. We consider the
extension to the multiple-radio case as our future work.
B. Running Time

Figure 3 shows the running time of the proposed algorithms
in random networks. We present only the results for random
networks since those for scale-free networks show similar
results. In both the figures, there are two different y axes.
The y axis on the right represents the running time of the
look-ahead greedy algorithms, while the y axis on the left
represents the running time of the other algorithms. The right
y-axis shows a much larger time scale than the left y-axis, by
5 and 100 times for Fig. 3 (a) and (b), respectively.

In Fig. 3 (a), we observe that the running times of the SDP-
based RaR algorithms are substantially higher than those of

LP-based RaR algorithms, not expected from the asymptotic
time complexity results. Also, we observe that the running
times of the look-ahead greedy algorithms are much larger
than those of the other algorithms, and they grow rapidly as the
number of sniffers increases, as expected from its asymptotic
time complexity of |S|3. A notable observation is that the
running time of t-Sniffers-at-One-Step Greedy Algorithm is
almost half (or a third) of that of Look-t-Steps-Ahead Greedy
Algorithm. This implies that t-Sniffers-at-One-Step Greedy
Algorithm picks two (or three) coverage-sets at once for most
of the iterations, while Look-t-Steps-Ahead Greedy Algorithm
chooses only one coverage-set at every iteration.

Figures 3 (b) shows similar trends to those for the case
of varying number of sniffers, in the comparison among
the proposed algorithms. We observe that the naı̈ve greedy
algorithms and the RaR algorithms show a relatively constant
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Fig. 3. Running time for random networks

running time over different values of rn, while the look-ahead
greedy algorithms show a dramatically increasing running time
as rn increases, thus impractical for large values of rn.

To summarize the simulation results, the SDP-and-GRA
achieves the highest coverage close to the maximum coverage,
but shows a (relatively) long running time. Hence, the SDP-
and-GRA will be favored, especially, for monitoring appli-
cations where a higher coverage is more emphasized, such
as security monitoring. On the other hand, the LP-and-GRA
attains the coverage comparable to that of the SDP-and-GRA,
but with a faster running time. Thus, LP-and-GRA can be
considered as a good compromise between the coverage and
the running-time, and will be favored for monitoring appli-
cations in dynamic network environments where the channel
assignment of nodes changes rapidly.

VIII. CONCLUSION

In this paper, we studied the optimal sniffer-channel assign-
ment problem for reliable monitoring in multi-channel wireless
networks. In this, each node needs to be monitored by multiple
sniffer nodes to maintain an acceptable monitoring quality.
This problem fundamentally differs from the previously stud-
ied problems that assume perfect sniffers and thus do not
need to consider sniffer redundancy. We proposed a variety
of approximation algorithms based on two basic approaches—
greedy and relaxation-and-rounding. We present a comparative
analysis of the proposed algorithms through simulations. Our
conclusion is that SDP-and-GRA achieves the highest cov-
erage close to the maximum achievable coverage, but shows
a (relatively) long running time. On the other hand, LP-and-
GRA attains coverage comparable to that of the SDP-and-GRA
at a lower running cost.

In future work, we will generalize the problem to the
multiple-radio case where nodes and sniffers are equipped with
multiple radios. Also, we will consider ways to come up with
the degree of sniffer redundancy for various scenarios.
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