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Abstract—Debugging today’s large-scale distributed appli- model checking [23], [26], [24], and log analysis [18], [27]
cations is complex. Traditional debugging techniques suctas  [28], [30]. But there remains work to be done to build on these

breakpoint-.based debugging aqd performance profiling reqire techniques to create a usable debugging tool.
a substantial amount of domain knowledge and do not auto-

mate the process of locating bugs and performance anomalies In this work, we focus on debugging distributed appli-
We present ORION, a framework to automate the problem- c4tions by identifying the region of code where a fault first
localization process in distributed applications. From lage set becomes active. The developer can then focus on this region

of metrics, ORION intelligently chooses important metrics and to fix th bl ther th ding ti ; inina th
models the application’s runtime behavior through pairwise 0 Tix the probiem ratnér than spending ime in eéxamining the

correlations of those metrics in the system, within multipe non-  €ntire source code. We focus amanifested-on-metrio§vIM)
overlapping time windows. When correlations deviate from hose ~ bugs, i.e., those bugs that manifests themselves as anmaainor

of a learned correct model due to a bug, our analysis pinpoirt  temporal pattern in one or more metrics at the hardware, OS,
the metrics and code regions (class and method within it) thta  middleware, or application layers. MM bugs can manifests as
are most likely associated with the failure. We demonstrateour performance or correctness problems. Examples are resourc
framework with several real-world failure cases in distributed leaks prior to an application crashing, or incorrect use of
applications such as: HBase, Hadoop DFS, a Purdue campus- synchronization locks prior to the application hanging. e
wide Java application for checking availability of lab machnes, not handle bugs that lead to incorrect output, data cowuapti

and a regression testing framework from IBM. Our results shav o oi) ras that do not affect a system-measurable metric.
that ORION is able to pinpoint the metrics and code regions that

developers need to concentrate on to fix the failures. Design approach.We present @ION, a framework for

localizing the origin of MM faults in distributed applicatis.
.- INTRODUCTION ORION works by profiling a variety of metrics as the appli-

Debugging today’s large-scale distributed systems is comcation is executing, either at declared instrumentat_ioimtp(_)
plex. Systems are composed of multiple software component§uch as, method entry or exit) or asynchronously with a fixed
often running on distributed nodes. The interactions betwe Periodicity. Through machine learning techniques, it fiesi if
these components are complex enough that they cannot all Bee runtime profile isimilar enoughto profiles created offline
enumerated a priori. The unpredictability of the execuéomi- ~ Of non-faulty application’s executions. If it is not, RIDN
ronment and its effects on the application execution irsesa 90€s back through traces to indicate which metrics caused th
difficulty in the debugging process. Failures can come fronflivergence and from that, to the region of suspect code. The
different layers of the system—network, hardware, opegati Mechanism is probabilistic thus a rank-ordered list is jued
system, middleware, and application layers. Thus in génerato the developer for inspection. This design approach isesha

it is necessary to monitor the behavior of all the layers towith a few prior software systems [14], [25]. However, uelik
understand the origin of failures. these prior systems, which only gather traces from one or

] ) o two dimensions of the application, e.g., CPU and memory,
Why another debugging tool?There exists a significant orjon performs application profiling along a large number
number of debugging tools today [9], [10], [11]. They work of metrics. These metrics do not have to be hand-picked
well for many kinds of failures though they require varying py the developer. @ioN first automatically selects important
amounts of developer intervention. Despite the existeNtt®  metrics from the entire set for detailed analysis and thes us
rich set of tools, the debugging process is time consuming ancorrelations between the metrics to diagnose subtle errors
it often requires full domain knowledge of the program to find
where problems originate in the source code. Profilers [22], Summary of findings. We deploy QrION and evaluate it
[7], [5] can help in isolating performance bottlenecks, leoar,  on diverse distributed applications: HBase [2], Hadoop 4t
identifying the root cause of the bottleneck still remaiasen-  on-campus Java Enterprise Edition (JEEE) applicatioredal
tially a manual process. Research on distributed systems h&tationsStat, and an IBM regression testing applicatiorit§o
developed functional techniques that can help in debuggingull system simulator called Mambo. We focus on failures tha
such as program tracing and replay debugging [17], [20], [21 were difficult to debug manually. We demonstrateiON with
This work was partly supported by the National Science Fatiod under a total of 7 l?ug cases from these applications and Tind that the
Grant No. CNS-0916337, and it was performed partly underatispices of root cause is related to the top 3 abnormal metrics or code

the U.S. Department of Energy by Lawrence Livermore Natidrzoratory regions_in 6 of them. The RION code and data for this paper
under Contract DEAC52-07NA27344. (LLNL-PROC-632265) are available at [4].




The main contributions of this paper are: arise if a developer does not realize the importance of the
(1) We introduce the concept of multi-dimensional metric sorting operation at line 8 and comments it out as a result.
profiling to provide problem determination for a wide vayiet Then, due to random nature of the data, branch mispredition

of root causes. We show that, despite profiling a large numbewill drastically increase for th& statement at line 11 causing

of metrics, it is possible to find the “needle in the haystack”
i.e., the problematic metrics in a (possibly small) time aow
amidst a large number of normal metrics.

a performance degradation. In our experiments with matipl
runs of this bug, performance can be reduced by a factor of
2.4x. To our astonishment, we found that many developers

(2) We focus on a subtle class of problems that are not diagare not aware of such bugs—in fact this was one ofrtiuest
nosable by comparing instantaneous values of metrics stgainvoted topics instackoverflon{3] and also one of the most

thresholds. Our approach develops a correlation-anadygis
rithm that identifies when joint behavior of metrics is suspe
(3) We successfully demonstrateR@N in four different
distributed applications and under 7 failure conditionsall of

viewed questions with more than 214,000 views. To further
verify this fact, we conducted a survey with 30 respondents
with 3 to 7 years of experience in software industry. O28¥%

of them realized removing the sort statement might degrade

the cases, ®ION pinpoints the origin of problems to abnormal performance.
metrics and in most of the cases it finds code regions that

require human attention to fix the failures. In cases like in Figure 1, hardware metrics related to

branch-misprediction would be more useful than other met-
The rest of the paper is structured as follows. In Section Ilfics in finding the problem’s root cause. Since it is difficult
we provide an overview of the execution oR®N. In Section  for developers to select a priori the important metrics in
ll, we present the detailed design. In Section 1V, we ddseri debugging, our tool starts with the entire set of metrics
the seven case studies. In Section V, we review related worland automatically identifies those metrics with the zoom-
In Section VI, we discuss practcal implications of this work in process that we describe in detail in Section 1I-C. For
Section VII concludes the paper. example, when we used our tool in the above scenario, it
identified br anch- nmi spr edi ct ed as the top anomalous
I metric. When we used only OS-level metrics, it was not able
' to accurately identify the root cause.

A. Measurement Gathering

OVERVIEW

) . . B. Profiling
ORION collects measurements of multiple metrics at differ-

ent levels in the system, i.e., hardware, OS, middleware and ORION can perform multi-dimensional profiling in two
application by means of third-party monitoring tools. Wgin Ways:synchronousindasynchronousin asynchronous mode,
collected measurements, RN builds models of normal Metric collection happens asynchronously to the appbcati

behavior, which permits localizing the failures’ origin. The measurement gathering is done by a process separate
from the application process(es). The asynchronous moele do

Section VIII shows the list of metrics that we measure.not interfere with the monitored application and therefore
Although this is not an exhaustive list of all the metrics injs a lightweight method. ®o0N collects OS metrics values
the system, we tried to monitor as many metrics as possiblgom the Linux/ pr oc file system, hardware metrics through
from multiple layers. @iON does not impose a limit in the PAPI [8] and middleware- and application-metrics valuesfr
number of metrics used. Instead, it allows developers toagse server containers by querying Java JMX connectors via asepa
many metrics as they think are useful for debuggin@I@  rate Linux process. This method requires offline procesting
addresses theurse of dimensionalitproblem, by filtering out  “line up” the metric collection points with the executionipts
noisy metrics and automatically zooming into the metriat th of the application. This is done by using a common time base
are relevant for failure debugging. since all the involved processes execute on the same machine

Some examples of the metrics that we gather are: Synchronous profiling annotates code regions with a set of
End-user Applicationper-servlet statistics such as processingmeasurements. Whenever a code region begins and ends, this
time, request and exception countdjddleware: cache hits method collects measurements and labels them with the-corre
and accesses, number of busy and created threads, andtrequgmnding code-region name. For Java applications (such as i
processing time from the middleware layer (such as Apache
Tomcat); OS: cpu- and memory-usage, context switches, file
descriptors, disk reads/writes, packets received andrrited,
stack size;Hardware: L1/L2/L3 data and instruction cache

/«From a random dataset ,
int arraySize = 50000;

add numbers greater than 127

_ ] i ) int data[] = new int[arraySize];
hits and misses,TLB misses,branches taken/not taken/miss 4| Random rnd =new Random(0);
for (int ¢ = 0; c< arraySize; ++c)

predicted, load/store instructions, hardware interrupts data[c] = rnd. nextint() % 256:

/+ No sorting causes branch misprediction/
Il Arrays . sort(data);
long sum = 0;
for(int i = 0; i < 100000; ++i) {
for (int ¢ = 0; c< arraySize; ++c)
if (data[c] >= 128)
sum += data[c];

Importance of collecting metrics from different layers.
Bugs can manifest in different layers of the system, theesfo
it is necessary to monitor metrics from all layers. For exEmp
a file-descriptor leak often manifests as an abnormal peitter
OS-related metrics such as memory and file-descriptor usage
Section IV-A illustrates this case in a file-descriptor ldalg
in Hadoop. Other bugs can be diagnosed faster if hardware-
related metrics are analyzed. To illustrate this, consttier
sample code in Figure 1. Here, a performance problem would

Fig. 1: Performance bug due to branch misprediction.
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Fig. 2: Overview of the problem determination workflow.

the Hadoop and HBase case studies), we lmseaassi st

. . TABLE I: Almost equal variance explained by first two PCs.
to instrument binary code and to collect measurements at the

beginning and at the end of classes/methods. Data Transformation Matrix
A B C D PC1 PC2 PC3 PC4
3 9 3 9 0.70 -0.11 0.68 -0.16
6 7 2 1 -0.21 0.31 0.46 0.80
1 6 2 1 0.66 0.07 -0.57 0.48
8 5 8 4 0.11 0.94 -0.03 -0.32
% of Vari Explained|| 46.71 45.28 8.0 0

C. Workflow of our Approach e e

Figure 2 shows the steps inRGDN to diagnose failures. I1l. DESIGN

(1) Trace collection: ORION uses two set of traces to localize ) . ) .
the origin of problems: aormal and anabnormaltrace file. A Selection of pertinent metrics for modeling

Normal trace files are obtained by CO”eCting metrics of the Some dimensions (or metrics) are more important than
application when failures are not manifested. This can bs ru others when debugging failures. We perform dimensionality
of an earlier bug-free application version or, in the case ofeduction to: (i) eliminate redundant metrics from the g,
intermittent failures, sections of a failed run where theltfa and (||) reduce Computation overhead. We use Principa| Com-
did not mar!|fest_|tself. _The abnorma_l trace file is obtalnedponent Analysis (PCA) as a baseline technique for dimension
when the failure is manifested. Labeling a run as one or thgyjity reduction. PCA uses an orthogonal transformatioroto-
other is a manual process. vert a set of observations (of possibly correlated varglilgo
a set of values of linearly uncorrelated variables, i.angipal
(2) Selection of pertinent metrics for modeling: ORION  components (PC). Applying PCA directly does not eliminate
filters out unimportant (or noisy) metrics from the analysis metrics from the analysis (which is our goal). Instead, PCA
This step can also be viewed as dimensionality reduction. Wgenerates a new set of metrics which are linear combinatibns
used an algorithm based on Principal Component Analysishe input metrics. We developed a heuristic following theaid
(PCA) to reduce the dimensionality of the problem. Thein [12] to rank input metrics based on their importance. The
intuition behind this step is to eliminate metrics that dd no jdea is to rank metrics that are weighted heavily, espgciall
provide much information for the rest of the analysis; anthe first few PCs of the PCA-generated transformation (which
example is constant metrics. contain most of the variance of the data), higher than neetric
with smaller weights. Different from [12], we consider the
(3) Normal-behavior modeling: ORION creates a baseline contribution of each PC to explain the total variance in the
model using the normal-behavior traces. Given traces: of data and design a new algorithm to rank metrics based on
metrics, the algorithm splits traces into equally sizedetim that.
windows and calculates pairwise correlations betweenhall t . . . .
n metrics for each time F\)/vindow. These correlation serve as 10 illustrate, consider Table | with 4 metrigs, B, C, D

a summary of the expected behavior of the application if?Nd 4 Observation rows. In this experiment, the first priakip
different time windows. component (PC-1) and the second principal component (PC-

2) covers 46.7% and 45.3% of the variance of the data,
4) Suspicious metric selectionAbnormal traces are used to '€SPECtVely. In the transformation matrix generated bAPC
ge)lect tﬁe metrics that are correlated with a failure. Frdm ametrch has a weight of 0_.7_|n PC']'. and met.f.Dchas welght
the n metrics, the top-3 most abnormal metrics are presente f0.941in PC-2. The heu”SF'C used in [12] will raskhigher
to the user. The user can then focus on finding the problem®!2nD- But if we also consider the variance covered by each
origin based on the abnormal metrics. C, metricD should get a higher rank than metéc

Figure 3 show our ranking algorithm. Here, in the

(5) Abnormal code-region selection:Often, finding suspi- transformation-matrix, we first adjust the weight of a nehy
cious metric information in step 3 is not sufficient to infaet the corresponding contribution of that PC towards exptegni
origin of a failure. For example, a metric like CPU utilizati  the total variance of the data. Then, we give equal impoganc
may be affected by any region of codeRON selects the to each column in the modified transformation matrix. We
code regions that have a high degree of association with thealculate maximum weight of a metric across all columns and
suspect metric(s). RON highlights suspicious code regions then sort metrics based on these maximum weights to get a
so that users can focus on finding bugs that could have causéatal ordering of metrics based on its importance. Thisvalls
the problems within them. to filter out unimportant metrics from the rest of the anaysi
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column < column = percentageP CAdolumn| .
for eachrow in W: }WmeWZ
/« Calculate maximum value in row. Store in map/
10{  rowMaxValueMaprow-num «— MAX{abs (row)}
11| rank « SIZE (metrics) One CCV
12| I« Sort based on maweight in each row. Key is rownumsx/ per window
13| for each key in valueSort fowMaxValueMay)
14| rankMap[ metric key]] <« rank CCVs Base
15| rank = rank — 1 /+ Weight implies importances/ (Hyper-sphere)
16| PRINT rankMap

Fig. 4: Creation of the normal-behavior hyper-sphere.
Fig. 3: PCA-based heuristic for filtering out metrics.

vectoror CCV. Correlation coefficients are calculated using

in ORION. The complexity of this algorithm i€)(n2) where the Pearson correlation-coefficierfiormula:

n is the number of metrics. We used the difference in ranks N B B
between normal and abnormal runs to chose important metrics (X,Y) = 1 Z X=X\ (Y -V @
Performance bugs tend to change the correlation between AT =N

metrics and in turn the weights in the PCA transformation k=1
matrix which changes relative ranking between metrics.eMor where N is the number of elements of observations in the
shift in metrics ranking indicates it was affected by the bud  window, X and Y are the mean of variable¥ and Y
hence should be chosen for detailed analysis. This firstipass respectively, andx andsy are the standard deviations &f
very light weight and coarse as it lacks the notion of timet Bu gndY'.

it is very useful to reduce the overhead of detailed analysis

the following phase without losing vital information.

SX Sy

Normal-behavior Model. Using the normal-behavior
, ) traces, our framework creates a baseline model which is used
B. Modeling Sequential Data in step 3 (from the main workflow) to select suspicious metric

Many bugs and performance anomalies develop a charadN€ model is a set of normal-behavior CCVs obtained by
teristic temporal pattern that can only be captured by airady splitting traces into observations .wmdows and computing a
measurements in a sequential manner (rather than by obgerviCCV for each window. We term this model aigper-sphere
instantaneous snapshots of values). After reducing theoeum Figure 4 shows the process of creating this hyper-spher. Th
of metrics with the PCA algorithm, we build a baseline number of points in it corresponds to the r!umber of windows
model that captures temporal patterns between metricg usifh@t we obtained from the normal-behavior traces, and the
correlation coefficients. dimensions (or features) are correlation-coefficients efrin

pairs. Notice that, if we havéV metrics in the analysis, the

Observation window. Traces are split into non-overlapping dimension of the hyper-sphere I3 = w
windows of the same size. A window can be viewed as a matrix
S x N in which S is the number of records (or samples) and  The idea of using a hyper-sphere where dimensions are
N is the number of metrics. The set of records comprise§orrelation coefficients is that we can use nearest-neigttbo
one observation windowSince we do not knova priori the  pinpoint abnormal observation windows from the faulty &sic
optimal size of observation windowsSY, i.e., the window Since an observation window is translated to a single datg po
size that is sufficient to capture the temporal patterns hat (i.e., aCCV), we can treat the problem of finding abnormal
failure shows, our algorithm sweeps through multiple sizegvindows as an outlier detection problem via nearest-neighb
for the windows within a range (between sizes of 100 and 20@€., an abnormal window would correspond to the CCV point
samples in our evaluation). The algorithm then findsithmeost  that is the farthest away from the hyper-sphere.
abnormal windows (irrespective of its size) and, withingho
abnormal windows, the correlations and metrics that caus
the unusual patterns. For our evaluation, we usk alue
of 3. Section II-C describes our algorithms for the sefstti Motivation. The main motivation of our technique is that
of suspicious metrics and code regions. the manifestation of faults will change the correlationtsen
some (affected) metric(s) and the rest of the metrics, while
maintaining the legitimate correlations in the other nostri
To illustrate this idea, consider a bug where unused dagabas
connections are kept open—metrics such as file descriptors

CCV = [cc(1,2),cc(1,3),...,cc(N —1,N))], (1) and open sockets will be affected by the bug and will exhibit
a different temporal pattern than during workloads wheee th
where cc(i, j) is the correlation coefficient of metricsand  bug is not activated. However, correlations among the other
i, 1 # j. We denote this vector as @rrelation coefficient metrics will not be affected.

€. Detection of Suspicious Metrics

Correlation coefficients. For each observation window,
ORION builds a vector of (pair-wise) correlation coefficients
between all the metrics



1| /= Get statistics of failedrun windows x*/ 1| /= Get statistics of failedrun windows x/

2| for each size s in ranger: 2| for each size s in ranger:

3 setOfWindows— create windows set of size 3 normalWins «+ get windows from normal traces
4 for each window w in setOfWindows 4 failedRunWins«<— get windows from abnormal traces
5 d «— find NN distance ofw in the hyperSphere 5 for each window w in failedRunWins

6 ccs — get top abnormal corr. coefficients ol 6 d — NN distance ofw from normalWins

7 Append {w, d, ccs} to tuplesList 7 Append {w, d} to tuplesList

8 8

9| I+ Select the most abnormal windows$ 9| I+ Select the most abnormal windows$

10| Sort tuplesList based on distancel (high to low) 10| Sort tuplesList based on distancel (high to low)
11| abnormalWindows<— get top elementsin tuplesList 11| abnormalWindows— get top elementsin tuplesList

12 12

13[ /* Build histogram of most abnormal metrics/ 13 /* Build histogram of abnormal coderegions x/
14| for each window w in abnormalWindows 14| for each window w in abnormalWindows

15 for each correlation cc corresponding tow: 15 Add code regionsin w to histogram

16 From cc add metrics Xand Y to histogram 16

17 17| Print the most frequent code regionsn histogram
18| Print the most frequent metricsin histogram

) ) o ) Fig. 6: Algorithm to select the suspicious code regions from
Fig. 5: Algorithm to select the suspicious metrics from &®C {rgces of the failed run.

of a failed run.

they are different parameters, but in practice the sameevalu
(k = 3) works well and reduces the search space of parameters,
a desirable outcome for any deployable tool.

Our goal is that, when faults are manifeste®ION finds
the metric(s) that is (are) mostly associated with failufigdgs
is performed by ranking metrics according to their contribu
tions to correlation breakups and by selecting the top-Kkinget
in this ranking. The application developer can subsequentl
focus on reviewing the code which affects these suspicious After the suspicious metrics are detecteGN highlights
metrics to locate the root cause of the problem. code regions that make metrics abnormal so that developers
can focus on them to fix the problem.R®N first finds
suspicious periods of time in which a metric shows an unusual
temporal pattern (i.e., an abnormal window). Then, withiatt
eriod, QRION looks for outlier observations, i.e., an abnormal
ode region.

D. Detection of Anomalous Code Regions

Algorithm overview. The goal of the algorithm is to select
the metrics that are most likely associated with the protdem
origin. The algorithm’s input is a normal-behavior hyper-
sphere and traces of a failed run. The algorithm’s output i
a list of metrics that are ranked by abnormality degree. The
algorithm is presented in Figure 5. Algorithm requirements. The algorithm for detecting
abnormal code regions is similar to the abnormal metric-

Statigti i indow: W te ob i . selection algorithm. A major difference is that only one ricet
alistics creation per window. vve createé observation win- s ,seq in the analysis, i.e., the abnormal metric. This icgetr

dows of multiple sizes from the failed-run traces file. Foctea ¢ given by the previous step, i.e., the metric-selectiap st

window, we calculate two statistics: (1) tmearest-neighbor The user can opt to execute this algorithm using the top-two

(NN) distance of the window from the hyper-sphere represent 145 three and so on) abnormal metric(s) if the top-one
ing normality. This distance is calculated by first compgtin

a CCV from the window and then by finding the euclidean abnormal metric does not help in finding the problem’s origin

[ P The algorithm’s inputs are traces files (from the normal ded t
distance between theC'V and the closest point in the hyper- fjjeq run) such as in Figure 4 but with only one column—this
\/Zizl(cci — bb;)?, wherecc;

sphere using the formulé= column corresponds to measurements of the abnormal metric.
and bb; are correlation coefficients; (2) the dimensions thatThe output of the algorithm is the top few anomalous code
have the highest weight in making th&C'V far away from the  regions. We assume that each record in this file is annotated
hyper-sphere. A dimension here corresponds to a correlatiowith a code region.

coefficient.

Abnormal window selection: Windows are sorted by their NN
distance from high to low and only the tdpwindows in the
list are taken for further analysi% (= 3 for our evaluation).
These windows correspond to time periods when abnorm
behavior is manifested.

Select most abnormal metrics: Once the tope abnormal
windows are ranked, within each window, the correlation
coefficients (CCs) are ranked by how much they contribute t
the NN distance of that window. Now the tdpECs are taken

The algorithm has the following main steps:

Algorithm overview. The algorithm is shown in Figure 6.
First, we construct a set of windows from traces of the normal
run and another set from traces of the failed run. Second, we
find NN distances of the windows of the failed-run from the

ormal-behavior windows. Then, to select the most abnormal
windows, we rank the failed-run windows based on the NN
distances (from high to low) and select only the top-k window
Finally, we build a histogram of the occurrences of code
cFegions in these abnormal windows— as we observe from

. L our case studies, the faulty code regions in performance bug
from each abnormal window, giving a total bk  CCs. Recall execute frequently in the most unusual periods of time. The

that each CC involves two metrics. With these short-listesC top-3 most frequent code regions are shown to the user.
the metrics that are present in them are counted up and the top
k most frequently occurring metrics are flagged as the most How to compare one-dimensional windows?n the pre-
abnormal metrics. Notice that we use the same parameter fetous algorithm, we find the difference between two windows
filtering the top choices (windows, CCs, metrics). In theory by calculating the Euclidean distance of their correspogdi



CCVs. We summarize the window’s information by calcu- Top Abnormal Metrics

lating aggregates of its valueaverage standard deviation [1] minfit
minimum maximumand sum These aggregates become the [2](nun_file desc ]
X . T [3] L2_LDM
features of a window. ®o0ON then finds the dissimilarity
between two windows by computing the Euclidean distance Top Abnormal Classes
using these aggregates as features. [1][ora/apache/hadoop/dfs/DFSClient ]
[2]

2] org/apache/hadoop/dfs/BlocksMap
[3] org/apache/hadoop/dfs/DataNode

IV. EVALUATION Top Abnormal Method/Class in DFSClient

In this section, we describe how we debugged seven [1] DFSOutputStream$access
performance bugs in different distributed applicationadblop, % gﬁggﬂggﬂggg;gggiﬁ:igg;ggigﬁigﬁiggream
HBase, a distributed system heavily used in IBM as regrassio
framework, and a distributed application used by students i
large university. Due to space limitations, we only presant
detail the first 4 cases and provide a summary of the results
of cases 5-7. In all of the casesR@ON reduces substantially
the time spent in localizing the problem origin by showing th TABLE II: Average use of file descriptors per class in HDFS for
metric most perturbed by the fault, and if needed furthes, th the specific bug discussed in Section IV-A.
abnormal code region. The process is fully automated ssuser

Fig. 7: Results from @ioN for the HDFS bug.

. . . Rank | Class Average # File Descriptors
do not need to have full understanding of the application and T | Namespacelno 50
its components dependencies. 20| NogeDirectory e
4 UnderReplicatedBlocks| 1.25
5 Datanodelnfo 1.24
. 6 DataNod 1.21
A' Case 1 HadOOp DFS 7 Dgt:nc?deeBlocklnfo 1.2
i 8 DFSClient 1.16
Hadoop is an open-source framework that supports data- 9 | DataBlockScanner 1.14
10 NameNode 1.13

intensive distributed applications [1]. It enables apgtiiens

to work with thousands of compu_tational noc_ies and a large
amount of data. We use FION to dlagno_se a file de_scrlptor- inpoints DFCl i ent as the most abnormal class. Within
leak bug that occurred in the Hadoop Distributed File Systenp-~ i ent . OriON highlights DFSQut put St r eamas the
(HDFS) in version 0.17. The bug report is HADOOP-3067. 5in apnormal subclass. This is only partially correct—t par

We collect all the OS and hardware level metrics givenof the bug fix is inBl ockReader which is used internally
in Table IV via synchronous profiling. All the Java classesby DFSQut put St r eamand DFSI nput St r eam however,
and public methods within each class are instrumented eSindFSQut put St r eamdoes not require changes to fix the bug.
we are debugging the Hadoop DFS, we only consider the
j aval or g/ apache/ hadoop/ df s package. A total of 45 e
Java classes and 358 methods in these classes are instiadmenh,I

To see if a simpler, and currently practiced, approach can
ad the developer to the origin of the bug faster, we set up
e following hypothetical steps for hunting this bug. Sop@

This bug is manifested as a failure in one of the HDFSthat a simple profiling tool indicates a high number of file
tests (theTest Cr cCor r upt i on test.) The bug origin is that descriptors in use. The developer then proceeds to examine
subclasse®FSI nput St r eamand DFSQut put St reamof  which classes use file descriptors most. The answer to this
the main classDFSCl i ent did not handle open sockets question is shown in Table Il. The average number of file
correctly by not closing them when they are not used anymorelescriptors used per method is calculated by taking an geera
The patch that developers suggested to fix the bug include@cross all invocations of the methods of that class. Fros) thi
changes to the following code: claB§SC i ent , subclasses the developer would be likely to inspect the classes appgari
DFSI nput St r eamandBl ockReader (which is used inter- near the top. It is only when one gets to the 8th ranked class
nally by DFSQut put St r ean). We used the buggy version that one gets to the class where the bug IBSSCl i ent .
and revision 0.17 to obtain traces of a failed run, and coddhus, this will lead to significant time manually inspecting
from a previous revision where tiBest Cr cCor r upt i on classes 1-7 and ruling them out as the source of the bug.
test passed to get traces of a normal run.

Figure 7 shows @IoN's results. The top-three abnormal B. Case 2: HBase
metrics presented by ®oN are: (1)mi nor _faults (No. HB . distributed | iented
minor page faults), (2hum file_desc (No. open file ase IS an open-source, distributed, column-oriente

descriptors), (3.2 LDM (level-2 load miss). The 2nd metric database [2]. It operates on top of dist(ibuted file systekes |

is associated with the problem’s origin since an increaghen thet HD_tIESMandesd capa\l?\lle of proce?smg”ve:y Izijrge slcale of
number of open sockets caused by the bug affects directly t %a a Wlt X ap; edUC%I E gs X NHI(3) co %ngg gna yze ;
number of open file descriptors. Metrics (1) and (3) are bot SAQE 2%59;) 3V ea ”OCt Ilut% InOS |ase| e ( l;]g repor
memory related and they are pinpointed as suspect becaise . )- We collect all the "level metrics snown In

: able IV. There are 27 java classes that are instrumented
bug also causes abnormal memory consumption patterns. from thehadoop/ hbase/ r egi onser ver / package. They

ORION also presents abnormal code regions, first, basethclude classes to handle region columns, store data files,
on Java classes and second, based on subclasses (of tbgs and many other abstractions. These classes include 184
abnormal classes) and methods within therri@\ correctly  methods which are all instrumented.



Top Abnormal Metrics Top Abnormal Metrics

[1] user_time [1] Servlet:AxisServlet-WQDModule/ roce§sin Time
[2] wchar [2]Javax.sql.DataSource/infdbd2/numActive
[3] num_file_desc [3] rss

Top Abnormal Classes (for user_time . .
Raisitelusionnttolt (Tor user tine ) Fig. 9: Results from @IoN for the StationsStat case.
[1]1[org/apache/hadoop/hbase/regionserver/HRegion |

[2] org/apache/hadoop/hbase/regionserver/HRegionServer

[3] org/apache/hadoop/hbase/regionserver/Store

Top Abnormal Methods (for Hregion)

time. The algorithm in @IoN, after it has zoomed into

[;] gegegignwame a time window where the fault manifested itself, considers
B frequencies of methods within that suspect time window to

decide which methods to flag. This causes it to flag the
most frequently invokedjet Regi onNane, i sCl osed and
Top Abnormal Classes (for wchar) toStri ng methods.

[1][org/apache/hadoop/hbase/regionserver/HRegion |
[2] org/apache/hadoop/hbase/regionserver/HRegionServer i
[3] org/apache/hadoop/hbase/regionserver/Store C. Case 3: StationsStat

StationsStat is a Java multi-tier application that is used t
check the availability of workstations on Purdue’s compgiti
labs. Students on the campus use StationsStat daily to check
the number of available Windows or Mac workstations for

The bug, which manifests as an application’s hang, i€ach lab on campus. StationsStat is managed by Purdue’s IT
the result of two locks being acquired in an incorrect or-department (ITaP) and runs in Apache Tomcat 5.5 on RedHat
der. The bug lies in two methoddiRegi on. put and Enterprise Linux 5 with an in-memory SQL DB.

HRegi on. cl ose. It is activated by running the HBase

Per f or manceEval uati on testing tool which is used t0 i, \hich the application became unresponsive. System admin
evaluate HBase's performance and its scalability. The bugyyoiqrs received failure reports from their monitoriygtem,
manl_festatlon IS intermittent—it m_a_nlfests on average &% Nagios, or from user phone calls. Since the problem rootecaus
the time—making it particularly difficult to localize. was unknown, the application was restarted and the problem
We ran a previous bug-free version to generate normalappeared to go away temporarily. StationsStat's admaitsts
behavior traces and appliedR@®N against the traces of a tracked 495 metrics from the OS, middleware, and applinatio
failed run when the deadlock manifests. Figure 8 shows théyers at 1 minute intervals (using asynchronous profilfog)
results. The top abnormal metric, i.eiser time, is the more than two months. We collect the application, OS and
amount of user-level CPU time. This metper sedoes not Mmiddleware metrics in Table IV.
provide much insight into the failure origin since it is diffit
to correlate that to a code region. We observe that, usingne
user _ti nme as our abnormal metric, the most abnormal COd%vas
region isHRegi on class, which is where the bug lies. Further
considering the 2nd most abnormal metsichar (the number
of bytes which the program has caused, or will cause to b
written to disk), the flagged code region is also HiRegi on
class. This confirms thatlRegi on is where the developer
needs to focus her attention.

Fig. 8: Results from @ioN for the HBase bug.

Due to an unknown bug, periodic failures were observed

StationsStat was a challenging scenario, not only because
problem’s root-cause was unknown, but also because ther
no error-free data available to create the normal-behav
" hyper-sphere. Fortunately,RION can still work in this sce-
nario by usingalmost error-free data. The administrators
Foticed that, after restarting StationsStat, the nexurfaias
often seen only after a week or more—symptoms seemed to
suggest that the problem, possibly a resource exhaustign bu
grew progressively from a service restart to a failur&i@N

The bug patch shows that the bug resides inHRegi on  therefore used a data segment collected right after a testar
class. This class stores data for a certain table region arig build the hyper-sphere representing normalitRIGN also
all columns for each row—a given table consists of one offiltered out constant metrics in this phase which resultefin
more HRegions. The patch flips the order of acquiring thenon-constant metrics for the rest of the analysis.
two locks (a write lock and then a read lock) and conse- In contrast with the previous cases, we conducted a blind
qguently the order of releasing them. It puts the change in ; ; : P : ' ., :
both theHRegi on. put and theHRegi on. ¢l ose methods. experiment in which @ION gives us the suspicious metrics

We speculate that spinning on locks in the deadlock situatiow.'thom us knowing the actual root-cause of t_he problem.
causes theiser _ti me metric to go awry. Figure 9 shows the abnormal metrics thakiON finds. We

then compared ®ION's answer to the application developers
The abnormal methods withinHRegi on that are best guess of the root-cause. The results show that the sus-
flagged by @ION are get Regi onNane, i sCl osed and picious metrics given by ®o0N matched well with what the
t oSt ri ng (Figure 8). They do not correspond to the methodsdeveloper thought to be the origin of the problem. The 2nd
where the bug liesput and cl ose). Through a detailed abnormal metric is the number of active SQL connections.
investigation, we identify the cause of this. The three feag The application had only one localized region where it made
methods are invoked much more often withitRegi on calls to the SQL driver that Tomcat used to handle database
than are the erroneous methods. However, the three flaggednnections. The developer concluded that the SQL drivee co
methods and the erroneous methods occur close together was buggy since it was obvious that the few lines of SQL



Database Top Abnormal Metrics

Worker Servers S Web User Interface B% ‘:(e:gsibytes
Traces for Writes [3] rss
problem [T E Read .
localization m Top Abnormal Code Regions (for wchar)
. cvs Server (3] Cote o aveid probions with X toats
X [1] Code to avoid running tests on debug builds
NFS Server [1] checking for more commits we could work on
cooo [E C LDAP Server [1] Disconnecting from the database
E=——
Loop
Fig. 10: Mambo Health Monitoring system. —
Disconnecting from the database
Single | Checking for more commits we could work on
Region| Code to avoid problems with X tests
Code to avoid running tests on debug builds
. . . . . . . . Make use of NFS
driver invocation code in his application was not. Upgradin [[checking the existence of lock file |
the SQL driver fixed the problem and the application continue =

to run today providing an important function to students all
over campus. Interestingly, the top metric flagged Ri1cN—

the processing time of a servlet— had nothing to do with the
bug. We found that this is due to large differences in worétloa
between our normal and abnormal data sets (normal data were e ) .
collected right after the server restart, while abnormahda Source of difficulty is that these problems are often trarisie
were collected after the server has been up for a while). Thignd the software elements do not have error messages that
negative result highlights the importance of getting thenmed correspond to the actual problem. We choose the problem of

and the abnormal data sets under similar workload condition 10Sing NFS mount as it has been a frequent problem for users
over its seven year lifespan. We emulate NFS problems by

In this case study, there was no need for the additionadropping outgoing NFS packets with a probability of 0.1. The
step of QRION where it maps the abnormal metric to a codeNFS packet dropping functionality is implemented by adding
region. This is because only one small localized region ef th an iptables rule at the start of the faulty run.
application code had anything to do with SQL, which was

Fig. 11: Results from @ioN for the MHM problem.

implicated by the metric. Code annotations.We run CRION in an asynchronous
mode. The profiling process collects metrics at a 1 sec granu-
D. Case 4: Mambo Health Monitor larity. MHM was instrumented at 48 instrumentation points

) ) ) in 1400 lines of Tcl source code, which resulted in 2227
The Mambo Health Monitor (MHM) is a regression test records. The Tcl script invokes Perl and bash scripts. Since
system for the IBM Full System Simulator, commonly known these had been rigorously tested, we were told that theyidhou
as Mambo. Mambo is a computer architecture simulator fohe kept out of scope of our problem localization effort. The
systems based on IBM’s Power(TM) architecture. Mambo hag,strumentation code records a timestamp and an identifier
been used in the development and testing of a wide rang@y the code region. Unlike in the other applications, this
of systems, including IBM's Power line of server systemscode did not have finely granular methods (and of course no
(Power5, Power6, Power7), the Cell(TM) processor used ijasses). Therefore, the points to insert instrumentatias a
the Sony Playstation3(TM), and IBM’s BlueGene systems. Thgpjective decision and this was done based on the amount of
MHM executes tests on the simulator to detect regressionsomments in the code. Our instrumentation covers the starts
in behavior that may be introduced by new developmentgng the ends of crucial operations, such as, CVS operations,

The tests are drawn from a test suite that covers the keyFs operations, and database operations, also othensesct
functionality in all the major target systems. Test resalt8  gch ag f -t hen- el se blocks.

stored in an SQL database and are accessed through a web-
based interface. Figure 10 shows the system’s elements. Results. We collect traces of a normal and of a failed

There is a servers farm which serve as MHM clients. Eac)’kun' We use the same machine as the MHM client and

client accesses a database to determine which tests have {oP the workload pattern the same. Figure 11 shows the
be run. The client then checks out the code from a CV esults of applying @ION. First, notice that the two top

repository (after authentication) and proceeds to run ¢isé t agr;%rrrgaltrgtsetr(lvt\:lfit?er(ne &?:;istergl?éegistg ;/r%’ rneﬂa:é]%r t::?rom
Upon completion, the client writes results in the databasé oy y

(success or failure) along with some informational itenughs disk, respectively). Next, we ﬁr.‘d abnormal code regionagisi
as, performance results wchar as our abnormal metric—QoON ranks equally four

different code regions as the figure shows. Notice that none

Failures. A test-case can fail due to a problem in the en-of the pinpointed regions perform any operation that makes
vironment or a problem with the architecture being simulate use of NFS, the root cause. However, when we look at the
Examples of environment-related problems causing a test toode (Figure 11), we notice that these regions are shortrand a
fail are many: a NFS connection that fails intermittently, aalways executed together inside a loop, so they can be gidoupe
cron job fails to get authenticated with the LDAP server,uxn into one region. We also notice that, right after this (gredjp
failing to map the simulator’'s network port to the machine’sregion, there is a code region that makes use of the NFS,
network port, tmp filled up. A problem like this can make ai.e., the Checki ng-t he-exi stence-of-lock-file
developer falsely believe that her architecture code isgipug region. This region performs I/O to access a file that is medint
when in reality the problem lies in the environment. A key using NFS and is affected by the injected fault.



The reason the NFS region is not ranked as an abnormal

. . . . : . TABLE llI: Performance measurements.
region (in fact is ranked 4) is that measurement inaccusacie

emerge from asynchronous profiling. These code regions (de- Bug case | Bug localization time (min)
marcated by our instrumentation points) are small comptared 'L%’OOP;?:; 1450362
the frequency of metric collection. Hence, it becomes diffic HB;:E:%QS 2.90
to accurately map the metric collection points to within an HBase-6305 10.35
instrumented code region. In these cases|dd pinpoints to Hoase 1o78 a
the user not only the abnormal code region but also one region JHM 0.48

before and one region after the abnormal one. This strategy

works well here since the code region that is affected by the

fault is right after the region that ®ON selects as abnormal. It is suitable for cases where the source of the problem is use
input or the configuration file.

E. Summary of Cases 5-6 Model checkers are useful for checking small applications

Case 5.This bug (HBASE-3098 report) manifests itself against specifications [23], [26]—due to its exhaustiveuret
as an application hang in HBase version 0.9&I@N results it is not feasible for most real-world applications. In atfzh, it
suggest using thesi ze metric as the abnormal metric to is more appropriate for checking against specifications.et.i
find the abnormal code regions.R@N ranks the follow- al. [24] propose a technique that does live model checking and
ing classes as the top-3 most abnornidRegi onSer ver, provides execution replay. The programmer writes a preéglica
ZooKeeper Wt cher , HBaseSer ver . The fixing patch for  that is invariant throughout the execution, and this praiidés
this bug (suggested by the developers) contains changes to thecked as the application runs. When the predicate istehla
Java classes, one of this beiRBegi onSer ver . We noticed the system states leading to the violating state are given as
that the theHmast er class, which is ranked as number 4 in output. While this approach works well for specifications, a
ORION, is also part of the patch. Two buggy code regionsthe instruction that changes the system state from comfagymi
showed up in top 5 results. There are a total of 131 classe® violation is usually the root cause of the problem, foresth
that the developer would need to analyze to x this bugid®™  types of problems such as performance problems, the errors
reduces the search space substantially to a handful ofeslass may have accumulated from different regions of the code

. . . before the specification is violated. Our tool does not agsum
Case 6:Th|s bug (HBASE-6305 report) mam_fests itself that the instruction that makes the system state in vialato
as a hang in th@est Local HBased ust er test in Hbase

version 0.94.3. According to the bug report, the origin @ th the root cause of the problem, and is thus more applicable to

fault appears to be a stack overflow error. Usirgj@N we find a wider range of problems.

the following top-3 abnormal code regiondBaseSer ver, There is a volume of work on statistical methods to detect
HRegi onSer ver, Ser ver Nare. The suggested patch fixes and localize problems. Some of the work analyzes applicatio
only two classes—one of those iHRegi onSer ver which  logs [18], [27], [28], [30]. However, there is often a one-
was ranked by @ION as the second most abnormal class.to-many mapping between the log record corresponding to
There is a total 155 classes that the developer would need the problem and the actual code regions that could be the
analyze in order to fix this bug without FBON. source of the problem. [13], [15], [29] analyze request flows

. to diagnose problems in request-processing applicattiner
e o e oy oy ork anlyzes metc vales, ypcal sing machine e
the Test Cat al (? Tracker te)ét case) as a hang. The t}(/) -3 algorithms [14], [16], [19], [31]. In [14] and [16], the sigture

gir ¢ ing. 1OP=3 5t "the current problem is compared to a database of known
abnormal classes given byRGON did not contain the origin

of the bug, i.e., they were not changed by the suggested.pat roblems. If there is a match, the diagnosis and fixes used

; reviously can be reused again. This approach is suitable fo
However, QrIoN was able to showzat al ogTr acker which o0 Sihat are not easy to fix even if the root cause is known
was part of the patch, in its top-5 results. Also notice that t

developer would have had to analyze more than 44 classes ge.g., overloaded servers), problems due to the envirohmen
1Evelop . y % hardware problems. In other situations, once a problem
fix this bug without the use of RION.

is diagnosed and fixed, it will not occur again, limiting the
usability of the tool. The overall approach of [19] and [31]
is similar to our approach in that machine learning models

We measure the time ®JoN spends inbug localization ~ are trained based on training data. If the system is in an
This involves creating the hyper-sphere based on normaRbnormal state, the metrics that are most abnormal are given
behavior traces, finding the abnormal metric and, subsetyuen to localize the problem. In addition, when this is not enough

the abnormal code region. Table Ill shows our measurement pinpoint the location of the fault, QON goes a step further
and provide a ranking of most suspicious code regions to

V. RELATED WORK reduce the programmer’s effort needed to fix the problem.

F. Performance

Traditional debuggers such as gdb, and tools that enable Vi
execution replays [20], [21] let the programmer find the éxac '
line of code of the bug. However, for this to be feasible, the We discuss practical limitations of this work:
programmer needs to have a good guess of where the problgjam) We observe that, as KON drills down deeper looking
lies. Attariyanet al. [11] propose a technique that determinesfor problematic code regions (classubclassesmethod), it
the root cause of performance problems using taint analysiprovides less accurate results. An example is the Hadoop bug

DIsScuUsSsION



in which we are able to identify the abnormal code region at18]
a Java class granularity but not at a method granularity.
(b) Applications that do not provide code-region delimiters
would require manual effort from the developer (like with [1°]
the MHM system) to indicate what are good instrumentation
points. For most applications, howeverR@N automatically (20]
annotates entry and exit points of methods.
(c) A trade-off of our asynchronous profiling approach is 5y
the difficulty of mapping metric samples to code regions
accurately, when the code region is short relative to the tim[22]
it takes to sample metrics. However, this comes with the
advantage of minimal perturbation of the application. For[23]
asynchronous profiling, RoN provides code regions that are
adjacent to whatever code region it finds as abnormal. 24
VII.

We propose @ION to perform root cause analysis for [25]
failures in distributed applications. From a comprehemsiv [26]
set of monitored metrics, RON pinpoints the metric and
a window that is most highly affected by a failure and
subsequently highlights the code region that is associatid
the problem’s origin. Our algorithm models the application
behavior through pairwise correlations of multiple megric
and when failure occurs, it finds the correlations (and hencé&s]
the metrics) that deviate from normality. Our case studies
with different distributed applications show the utility the
tool—ORION can localize the origin of real-world failures at

CONCLUSION

[27]

. ; . ; . [29]
a granularity of metrics and code regions in few minutes.
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VIII. A PPENDIX

Due to space limitations, Table IV only shows some of the imdypes
that we analyzed, grouped by layer. The full list of metricsl alescriptions
can be seen here [6].

TABLE IV: Some of the monitored metrics.

Hardware Metrics OS Metrics

L1_DCM minor_faults

L2_DCM major_faults

L2_ICM user cpu_time

L1_TCM sys cpu_time

L2_TCM num_threads

CA_SHR virt_mem_size

CA_CLN rss mem size

TLB_DM stack size

L1_ST™M read bytes

L2_LDM write_bytes

HW_INT num_file_desc

BR_TKN nicRcvPckts

BR_MSP nicSentPckts

TOT_IIS IPInOctets

TOT_INS IPOutOctets

VEC_DP Application Metrics
FP_INS servlet processingTime
SR_INS servlet requestCount
BR_INS servlet errorCount

RES STL datasourcenumidle
L1_DCH datasourcenumActive
VEC_SP Middleware Metrics
L1_DCA requesthandler bytesSent
L2_DCA requesthandler bytesReceived
L2_DCR requesthandler requestCount
L1_ICH requesthandler processingTime
L2_ICH requesthandler errorCount
L1_ICA cacheghits

L2_ICA cachgaccesses

L2_TCH number threads




