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Abstract—Debugging today’s large-scale distributed appli-
cations is complex. Traditional debugging techniques suchas
breakpoint-based debugging and performance profiling require
a substantial amount of domain knowledge and do not auto-
mate the process of locating bugs and performance anomalies.
We present ORION, a framework to automate the problem-
localization process in distributed applications. From large set
of metrics, ORION intelligently chooses important metrics and
models the application’s runtime behavior through pairwise
correlations of those metrics in the system, within multiple non-
overlapping time windows. When correlations deviate from those
of a learned correct model due to a bug, our analysis pinpoints
the metrics and code regions (class and method within it) that
are most likely associated with the failure. We demonstrateour
framework with several real-world failure cases in distributed
applications such as: HBase, Hadoop DFS, a Purdue campus-
wide Java application for checking availability of lab machines,
and a regression testing framework from IBM. Our results show
that ORION is able to pinpoint the metrics and code regions that
developers need to concentrate on to fix the failures.

I. I NTRODUCTION

Debugging today’s large-scale distributed systems is com-
plex. Systems are composed of multiple software components
often running on distributed nodes. The interactions between
these components are complex enough that they cannot all be
enumerated a priori. The unpredictability of the executionenvi-
ronment and its effects on the application execution increases
difficulty in the debugging process. Failures can come from
different layers of the system—network, hardware, operating
system, middleware, and application layers. Thus in general,
it is necessary to monitor the behavior of all the layers to
understand the origin of failures.

Why another debugging tool?There exists a significant
number of debugging tools today [9], [10], [11]. They work
well for many kinds of failures though they require varying
amounts of developer intervention. Despite the existence of this
rich set of tools, the debugging process is time consuming and
it often requires full domain knowledge of the program to find
where problems originate in the source code. Profilers [22],
[7], [5] can help in isolating performance bottlenecks, however,
identifying the root cause of the bottleneck still remains essen-
tially a manual process. Research on distributed systems has
developed functional techniques that can help in debugging,
such as program tracing and replay debugging [17], [20], [21],

This work was partly supported by the National Science Foundation under
Grant No. CNS-0916337, and it was performed partly under theauspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DEAC52-07NA27344. (LLNL-PROC-632265)

model checking [23], [26], [24], and log analysis [18], [27],
[28], [30]. But there remains work to be done to build on these
techniques to create a usable debugging tool.

In this work, we focus on debugging distributed appli-
cations by identifying the region of code where a fault first
becomes active. The developer can then focus on this region
to fix the problem rather than spending time in examining the
entire source code. We focus onmanifested-on-metrics(MM)
bugs, i.e., those bugs that manifests themselves as an abnormal
temporal pattern in one or more metrics at the hardware, OS,
middleware, or application layers. MM bugs can manifests as
performance or correctness problems. Examples are resource
leaks prior to an application crashing, or incorrect use of
synchronization locks prior to the application hanging. Wedo
not handle bugs that lead to incorrect output, data corruption
or failures that do not affect a system-measurable metric.

Design approach.We present ORION, a framework for
localizing the origin of MM faults in distributed applications.
ORION works by profiling a variety of metrics as the appli-
cation is executing, either at declared instrumentation points
(such as, method entry or exit) or asynchronously with a fixed
periodicity. Through machine learning techniques, it verifies if
the runtime profile issimilar enoughto profiles created offline
of non-faulty application’s executions. If it is not, ORION
goes back through traces to indicate which metrics caused the
divergence and from that, to the region of suspect code. The
mechanism is probabilistic thus a rank-ordered list is provided
to the developer for inspection. This design approach is shared
with a few prior software systems [14], [25]. However, unlike
these prior systems, which only gather traces from one or
two dimensions of the application, e.g., CPU and memory,
ORION performs application profiling along a large number
of metrics. These metrics do not have to be hand-picked
by the developer. ORION first automatically selects important
metrics from the entire set for detailed analysis and then uses
correlations between the metrics to diagnose subtle errors.

Summary of findings. We deploy ORION and evaluate it
on diverse distributed applications: HBase [2], Hadoop [1], an
on-campus Java Enterprise Edition (JEEE) application, called
StationsStat, and an IBM regression testing application for its
full system simulator called Mambo. We focus on failures that
were difficult to debug manually. We demonstrate ORION with
a total of 7 bug cases from these applications and find that the
root cause is related to the top 3 abnormal metrics or code
regions in 6 of them. The ORION code and data for this paper
are available at [4].
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The main contributions of this paper are:
(1) We introduce the concept of multi-dimensional metric
profiling to provide problem determination for a wide variety
of root causes. We show that, despite profiling a large number
of metrics, it is possible to find the “needle in the haystack”,
i.e., the problematic metrics in a (possibly small) time window
amidst a large number of normal metrics.
(2) We focus on a subtle class of problems that are not diag-
nosable by comparing instantaneous values of metrics against
thresholds. Our approach develops a correlation-analysisalgo-
rithm that identifies when joint behavior of metrics is suspect.
(3) We successfully demonstrate ORION in four different
distributed applications and under 7 failure conditions. In all of
the cases, ORION pinpoints the origin of problems to abnormal
metrics and in most of the cases it finds code regions that
require human attention to fix the failures.

The rest of the paper is structured as follows. In Section II,
we provide an overview of the execution of ORION. In Section
III, we present the detailed design. In Section IV, we describe
the seven case studies. In Section V, we review related work.
In Section VI, we discuss practcal implications of this work.
Section VII concludes the paper.

II. OVERVIEW

A. Measurement Gathering

ORION collects measurements of multiple metrics at differ-
ent levels in the system, i.e., hardware, OS, middleware and
application by means of third-party monitoring tools. Using
collected measurements, ORION builds models of normal
behavior, which permits localizing the failures’ origin.

Section VIII shows the list of metrics that we measure.
Although this is not an exhaustive list of all the metrics in
the system, we tried to monitor as many metrics as possible
from multiple layers. ORION does not impose a limit in the
number of metrics used. Instead, it allows developers to useas
many metrics as they think are useful for debugging. ORION
addresses thecurse of dimensionalityproblem, by filtering out
noisy metrics and automatically zooming into the metrics that
are relevant for failure debugging.

Some examples of the metrics that we gather are:
End-user Application:per-servlet statistics such as processing
time, request and exception counts;Middleware: cache hits
and accesses, number of busy and created threads, and request
processing time from the middleware layer (such as Apache
Tomcat);OS: cpu- and memory-usage, context switches, file
descriptors, disk reads/writes, packets received and transmitted,
stack size;Hardware: L1/L2/L3 data and instruction cache
hits and misses,TLB misses,branches taken/not taken/miss-
predicted, load/store instructions, hardware interrupts.

Importance of collecting metrics from different layers.
Bugs can manifest in different layers of the system, therefore
it is necessary to monitor metrics from all layers. For example,
a file-descriptor leak often manifests as an abnormal pattern in
OS-related metrics such as memory and file-descriptor usage—
Section IV-A illustrates this case in a file-descriptor leakbug
in Hadoop. Other bugs can be diagnosed faster if hardware-
related metrics are analyzed. To illustrate this, considerthe
sample code in Figure 1. Here, a performance problem would

arise if a developer does not realize the importance of the
sorting operation at line 8 and comments it out as a result.
Then, due to random nature of the data, branch mispredition
will drastically increase for theif statement at line 11 causing
a performance degradation. In our experiments with multiple
runs of this bug, performance can be reduced by a factor of
2.4x. To our astonishment, we found that many developers
are not aware of such bugs—in fact this was one of themost
voted topics instackoverflow[3] and also one of the most
viewed questions with more than 214,000 views. To further
verify this fact, we conducted a survey with 30 respondents
with 3 to 7 years of experience in software industry. Only23%
of them realized removing the sort statement might degrade
performance.

In cases like in Figure 1, hardware metrics related to
branch-misprediction would be more useful than other met-
rics in finding the problem’s root cause. Since it is difficult
for developers to select a priori the important metrics in
debugging, our tool starts with the entire set of metrics
and automatically identifies those metrics with the zoom-
in process that we describe in detail in Section II-C. For
example, when we used our tool in the above scenario, it
identified branch-mispredicted as the top anomalous
metric. When we used only OS-level metrics, it was not able
to accurately identify the root cause.

B. Profiling

ORION can perform multi-dimensional profiling in two
ways:synchronousandasynchronous. In asynchronous mode,
metric collection happens asynchronously to the application.
The measurement gathering is done by a process separate
from the application process(es). The asynchronous mode does
not interfere with the monitored application and therefore
is a lightweight method. ORION collects OS metrics values
from the Linux/proc file system, hardware metrics through
PAPI [8] and middleware- and application-metrics values from
server containers by querying Java JMX connectors via a sepa-
rate Linux process. This method requires offline processingto
“line up” the metric collection points with the execution points
of the application. This is done by using a common time base
since all the involved processes execute on the same machine.

Synchronous profiling annotates code regions with a set of
measurements. Whenever a code region begins and ends, this
method collects measurements and labels them with the corre-
sponding code-region name. For Java applications (such as in

1 /∗From a random data−s e t , add numbers g r e a t e r t ha n 127∗ /
2 i n t a r r a y S i z e = 50000;
3 i n t d a t a [ ] = new i n t [ a r r a y S i z e ] ;
4 Random rnd =new Random ( 0 ) ;
5 f o r ( i n t c = 0 ; c < a r r a y S i z e ; ++c )
6 d a t a [ c ] = rnd . n e x t I n t ( ) % 256;
7 /∗ No s o r t i n g c a us e s branch m i s p r e d i c t i o n∗ /
8 / / Ar rays . s o r t ( d a t a ) ;
9 long sum = 0 ;

10 f o r ( i n t i = 0 ; i < 100000; ++ i ) {
11 f o r ( i n t c = 0 ; c < a r r a y S i z e ; ++c )
12 i f ( d a t a [ c ] >= 128)
13 sum += d a t a [ c ] ;
14 }

Fig. 1: Performance bug due to branch misprediction.
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Fig. 2: Overview of the problem determination workflow.

the Hadoop and HBase case studies), we useJavaassist
to instrument binary code and to collect measurements at the
beginning and at the end of classes/methods.

C. Workflow of our Approach

Figure 2 shows the steps in ORION to diagnose failures.
(1) Trace collection:ORION uses two set of traces to localize
the origin of problems: anormal and anabnormaltrace file.
Normal trace files are obtained by collecting metrics of the
application when failures are not manifested. This can be runs
of an earlier bug-free application version or, in the case of
intermittent failures, sections of a failed run where the fault
did not manifest itself. The abnormal trace file is obtained
when the failure is manifested. Labeling a run as one or the
other is a manual process.

(2) Selection of pertinent metrics for modeling: ORION
filters out unimportant (or noisy) metrics from the analysis.
This step can also be viewed as dimensionality reduction. We
used an algorithm based on Principal Component Analysis
(PCA) to reduce the dimensionality of the problem. The
intuition behind this step is to eliminate metrics that do not
provide much information for the rest of the analysis; an
example is constant metrics.

(3) Normal-behavior modeling: ORION creates a baseline
model using the normal-behavior traces. Given traces ofn
metrics, the algorithm splits traces into equally sized time
windows and calculates pairwise correlations between all the
n metrics for each time window. These correlation serve as
a summary of the expected behavior of the application in
different time windows.

(4) Suspicious metric selection:Abnormal traces are used to
select the metrics that are correlated with a failure. From all
the n metrics, the top-3 most abnormal metrics are presented
to the user. The user can then focus on finding the problem’s
origin based on the abnormal metrics.

(5) Abnormal code-region selection:Often, finding suspi-
cious metric information in step 3 is not sufficient to infer the
origin of a failure. For example, a metric like CPU utilization
may be affected by any region of code. ORION selects the
code regions that have a high degree of association with the
suspect metric(s). ORION highlights suspicious code regions
so that users can focus on finding bugs that could have caused
the problems within them.

TABLE I: Almost equal variance explained by first two PCs.

Data Transformation Matrix
A B C D PC1 PC2 PC3 PC4
3 9 3 9 0.70 -0.11 0.68 -0.16
6 7 2 1 -0.21 0.31 0.46 0.80
1 6 2 1 0.66 0.07 -0.57 0.48
8 5 8 4 0.11 0.94 -0.03 -0.32
% of Variance Explained 46.71 45.28 8.0 0

III. D ESIGN

A. Selection of pertinent metrics for modeling

Some dimensions (or metrics) are more important than
others when debugging failures. We perform dimensionality
reduction to: (i) eliminate redundant metrics from the analysis,
and (ii) reduce computation overhead. We use Principal Com-
ponent Analysis (PCA) as a baseline technique for dimension-
ality reduction. PCA uses an orthogonal transformation to con-
vert a set of observations (of possibly correlated variables( into
a set of values of linearly uncorrelated variables, i.e., principal
components (PC). Applying PCA directly does not eliminate
metrics from the analysis (which is our goal). Instead, PCA
generates a new set of metrics which are linear combinationsof
the input metrics. We developed a heuristic following the idea
in [12] to rank input metrics based on their importance. The
idea is to rank metrics that are weighted heavily, especially in
the first few PCs of the PCA-generated transformation (which
contain most of the variance of the data), higher than metrics
with smaller weights. Different from [12], we consider the
contribution of each PC to explain the total variance in the
data and design a new algorithm to rank metrics based on
that.

To illustrate, consider Table I with 4 metricsA, B, C, D
and 4 observation rows. In this experiment, the first principal
component (PC-1) and the second principal component (PC-
2) covers 46.7% and 45.3% of the variance of the data,
respectively. In the transformation matrix generated by PCA,
metricA has a weight of 0.7 in PC-1 and metricD has weight
of 0.94 in PC-2. The heuristic used in [12] will rankA higher
thanD. But if we also consider the variance covered by each
PC, metricD should get a higher rank than metricA.

Figure 3 show our ranking algorithm. Here, in the
transformation-matrix, we first adjust the weight of a metric by
the corresponding contribution of that PC towards explaining
the total variance of the data. Then, we give equal importance
to each column in the modified transformation matrix. We
calculate maximum weight of a metric across all columns and
then sort metrics based on these maximum weights to get a
total ordering of metrics based on its importance. This allow us
to filter out unimportant metrics from the rest of the analysis
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1 metrics: a r r a y o f m e t r i c s names
2 W : t r a n s f o r m a t i o n ma t r i x g e n e r a t e d by PCA.
3
4 percentagePCA← getVar ianceExp la inedByPCA (W ,normalizedData)
5 f o r each column in W :
6 /∗ M ul t i p l y columns by v a r i a n c e c ove ra ge∗ /
7 column← column ∗ percentagePCA [column]
8 f o r each row in W :
9 /∗ C a l c u l a t e maximum va lue in row . S t o r e in map∗ /

10 rowMaxValueMap[ row-num] ← MAX{abs ( row )}
11 rank ← SIZE (metrics)
12 /∗ S o r t based on max−weight i n each row . Key i s row−num∗ /
13 f o r each key in v a l u e S o r t (rowMaxValueMap)
14 rankMap[ metrics[ key] ] ← rank
15 rank = rank − 1 /∗ Weight i m p l i e s impo r ta nc e∗ /
16 PRINT rankMap

Fig. 3: PCA-based heuristic for filtering out metrics.

in ORION. The complexity of this algorithm isO(n2) where
n is the number of metrics. We used the difference in ranks
between normal and abnormal runs to chose important metrics.
Performance bugs tend to change the correlation between
metrics and in turn the weights in the PCA transformation
matrix which changes relative ranking between metrics. More
shift in metrics ranking indicates it was affected by the bugand
hence should be chosen for detailed analysis. This first passis
very light weight and coarse as it lacks the notion of time. But
it is very useful to reduce the overhead of detailed analysisin
the following phase without losing vital information.

B. Modeling Sequential Data

Many bugs and performance anomalies develop a charac-
teristic temporal pattern that can only be captured by analyzing
measurements in a sequential manner (rather than by observing
instantaneous snapshots of values). After reducing the number
of metrics with the PCA algorithm, we build a baseline
model that captures temporal patterns between metrics using
correlation coefficients.

Observation window.Traces are split into non-overlapping
windows of the same size. A window can be viewed as a matrix
S ×N in which S is the number of records (or samples) and
N is the number of metrics. The set of records comprises
one observation window. Since we do not knowa priori the
optimal size of observation windows (S), i.e., the window
size that is sufficient to capture the temporal patterns thata
failure shows, our algorithm sweeps through multiple sizes
for the windows within a range (between sizes of 100 and 200
samples in our evaluation). The algorithm then finds thek-most
abnormal windows (irrespective of its size) and, within those
abnormal windows, the correlations and metrics that cause
the unusual patterns. For our evaluation, we use ak value
of 3. Section III-C describes our algorithms for the selection
of suspicious metrics and code regions.

Correlation coefficients. For each observation window,
ORION builds a vector of (pair-wise) correlation coefficients
between all the metrics

CCV = [cc(1, 2), cc(1, 3), . . . , cc(N − 1, N))], (1)

where cc(i, j) is the correlation coefficient of metricsi and
j, i 6= j. We denote this vector as acorrelation coefficient

Fig. 4: Creation of the normal-behavior hyper-sphere.

vector or CCV . Correlation coefficients are calculated using
the Pearson correlation-coefficientformula:

cc(X, Y ) =
1

N − 1

N
∑

k=1

(

Xk − X̄

sX

) (

Yk − Ȳ

sY

)

(2)

where N is the number of elements of observations in the
window, X̄ and Ȳ are the mean of variablesX and Y
respectively, andsX andsY are the standard deviations ofX
andY .

Normal-behavior Model. Using the normal-behavior
traces, our framework creates a baseline model which is used
in step 3 (from the main workflow) to select suspicious metrics.
The model is a set of normal-behavior CCVs obtained by
splitting traces into observations windows and computing a
CCV for each window. We term this model as ahyper-sphere.
Figure 4 shows the process of creating this hyper-sphere. The
number of points in it corresponds to the number of windows
that we obtained from the normal-behavior traces, and the
dimensions (or features) are correlation-coefficients of metric
pairs. Notice that, if we haveN metrics in the analysis, the
dimension of the hyper-sphere isD = N(N−1)

2 .

The idea of using a hyper-sphere where dimensions are
correlation coefficients is that we can use nearest-neighbor to
pinpoint abnormal observation windows from the faulty traces.
Since an observation window is translated to a single data point
(i.e., aCCV ), we can treat the problem of finding abnormal
windows as an outlier detection problem via nearest-neighbor,
i.e., an abnormal window would correspond to the CCV point
that is the farthest away from the hyper-sphere.

C. Detection of Suspicious Metrics

Motivation. The main motivation of our technique is that
the manifestation of faults will change the correlations between
some (affected) metric(s) and the rest of the metrics, while
maintaining the legitimate correlations in the other metrics.
To illustrate this idea, consider a bug where unused database
connections are kept open—metrics such as file descriptors
and open sockets will be affected by the bug and will exhibit
a different temporal pattern than during workloads where the
bug is not activated. However, correlations among the other
metrics will not be affected.
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1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗ /
2 f o r each s i z e s i n ra nge r :
3 setOfWindows← c r e a t e windows s e t o f s i z es
4 f o r each window w i n setOfWindows:
5 d ← f i n d NN d i s t a n c e of w i n t he hyperSphere
6 ccs ← ge t top abnorma l c o r r . c o e f f i c i e n t s o fw
7 Append {w , d , ccs} t o tuplesList
8
9 /∗ S e l e c t t he most abnorma l windows∗ /

10 S o r t tuplesList based on d i s t a n c ed ( h igh to low )
11 abnormalWindows← ge t top e le me n tsi n tuplesList
12
13 /∗ B u i l d h i s tog ra m of most abnorma l m e t r i c s∗ /
14 f o r each window w i n abnormalWindows:
15 f o r each c o r r e l a t i o n cc c o r r e s p o n d i n g tow :
16 From cc add m e t r i c s X and Y to histogram
17
18 P r i n t t he most f r e q u e n t m e t r i c si n histogram

Fig. 5: Algorithm to select the suspicious metrics from traces
of a failed run.

Our goal is that, when faults are manifested, ORION finds
the metric(s) that is (are) mostly associated with failures. This
is performed by ranking metrics according to their contribu-
tions to correlation breakups and by selecting the top-k metrics
in this ranking. The application developer can subsequently
focus on reviewing the code which affects these suspicious
metrics to locate the root cause of the problem.

Algorithm overview. The goal of the algorithm is to select
the metrics that are most likely associated with the problem’s
origin. The algorithm’s input is a normal-behavior hyper-
sphere and traces of a failed run. The algorithm’s output is
a list of metrics that are ranked by abnormality degree. The
algorithm is presented in Figure 5.

The algorithm has the following main steps:
Statistics creation per window: We create observation win-
dows of multiple sizes from the failed-run traces file. For each
window, we calculate two statistics: (1) thenearest-neighbor
(NN) distance of the window from the hyper-sphere represent-
ing normality. This distance is calculated by first computing
a CCV from the window and then by finding the euclidean
distance between theCCV and the closest point in the hyper-

sphere using the formulad =

√

∑D

i=1(cci − bbi)2, wherecci

and bbi are correlation coefficients; (2) the dimensions that
have the highest weight in making theCCV far away from the
hyper-sphere. A dimension here corresponds to a correlation
coefficient.
Abnormal window selection: Windows are sorted by their NN
distance from high to low and only the top-k windows in the
list are taken for further analysis (k = 3 for our evaluation).
These windows correspond to time periods when abnormal
behavior is manifested.
Select most abnormal metrics: Once the top-k abnormal
windows are ranked, within each window, the correlation
coefficients (CCs) are ranked by how much they contribute to
the NN distance of that window. Now the top-k CCs are taken
from each abnormal window, giving a total ofk×k CCs. Recall
that each CC involves two metrics. With these short-listed CCs,
the metrics that are present in them are counted up and the top-
k most frequently occurring metrics are flagged as the most
abnormal metrics. Notice that we use the same parameter for
filtering the top choices (windows, CCs, metrics). In theory,

1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗ /
2 f o r each s i z e s i n ra nge r :
3 normalWins← ge t windows from normal t r a c e s
4 failedRunWins← ge t windows from abnorma l t r a c e s
5 f o r each window w i n failedRunWins:
6 d ← NN d i s t a n c e of w from normalWins
7 Append {w , d} t o tuplesList
8
9 /∗ S e l e c t t he most abnorma l windows∗ /

10 S o r t tuplesList based on d i s t a n c ed ( h igh to low )
11 abnormalWindows← ge t top e le me n tsi n tuplesList
12
13 /∗ B u i l d h i s tog ra m of abnorma l code−r e g i o n s ∗ /
14 f o r each window w i n abnormalWindows:
15 Add code r e g i o n s in w t o histogram
16
17 P r i n t t he most f r e q u e n t code r e g i o n sin histogram

Fig. 6: Algorithm to select the suspicious code regions from
traces of the failed run.

they are different parameters, but in practice the same value
(k = 3) works well and reduces the search space of parameters,
a desirable outcome for any deployable tool.

D. Detection of Anomalous Code Regions

After the suspicious metrics are detected, ORION highlights
code regions that make metrics abnormal so that developers
can focus on them to fix the problem. ORION first finds
suspicious periods of time in which a metric shows an unusual
temporal pattern (i.e., an abnormal window). Then, within that
period, ORION looks for outlier observations, i.e., an abnormal
code region.

Algorithm requirements. The algorithm for detecting
abnormal code regions is similar to the abnormal metric-
selection algorithm. A major difference is that only one metric
is used in the analysis, i.e., the abnormal metric. This metrics
is given by the previous step, i.e., the metric-selection step.
The user can opt to execute this algorithm using the top-two
(and top-three and so on) abnormal metric(s) if the top-one
abnormal metric does not help in finding the problem’s origin.
The algorithm’s inputs are traces files (from the normal and the
failed run) such as in Figure 4 but with only one column—this
column corresponds to measurements of the abnormal metric.
The output of the algorithm is the top few anomalous code
regions. We assume that each record in this file is annotated
with a code region.

Algorithm overview. The algorithm is shown in Figure 6.
First, we construct a set of windows from traces of the normal
run and another set from traces of the failed run. Second, we
find NN distances of the windows of the failed-run from the
normal-behavior windows. Then, to select the most abnormal
windows, we rank the failed-run windows based on the NN
distances (from high to low) and select only the top-k windows.
Finally, we build a histogram of the occurrences of code
regions in these abnormal windows— as we observe from
our case studies, the faulty code regions in performance bugs
execute frequently in the most unusual periods of time. The
top-3 most frequent code regions are shown to the user.

How to compare one-dimensional windows?In the pre-
vious algorithm, we find the difference between two windows
by calculating the Euclidean distance of their corresponding
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CCV s. We summarize the window’s information by calcu-
lating aggregates of its values:average, standard deviation,
minimum, maximumand sum. These aggregates become the
features of a window. ORION then finds the dissimilarity
between two windows by computing the Euclidean distance
using these aggregates as features.

IV. EVALUATION

In this section, we describe how we debugged seven
performance bugs in different distributed applications: Hadoop,
HBase, a distributed system heavily used in IBM as regression
framework, and a distributed application used by students in a
large university. Due to space limitations, we only presentin
detail the first 4 cases and provide a summary of the results
of cases 5–7. In all of the cases, ORION reduces substantially
the time spent in localizing the problem origin by showing the
metric most perturbed by the fault, and if needed further, the
abnormal code region. The process is fully automated so users
do not need to have full understanding of the application and
its components dependencies.

A. Case 1: Hadoop DFS

Hadoop is an open-source framework that supports data-
intensive distributed applications [1]. It enables applications
to work with thousands of computational nodes and a large
amount of data. We use ORION to diagnose a file descriptor-
leak bug that occurred in the Hadoop Distributed File System
(HDFS) in version 0.17. The bug report is HADOOP-3067.

We collect all the OS and hardware level metrics given
in Table IV via synchronous profiling. All the Java classes
and public methods within each class are instrumented. Since
we are debugging the Hadoop DFS, we only consider the
java/org/apache/hadoop/dfs package. A total of 45
Java classes and 358 methods in these classes are instrumented.

This bug is manifested as a failure in one of the HDFS
tests (theTestCrcCorruption test.) The bug origin is that
subclassesDFSInputStream andDFSOutputStream of
the main classDFSClient did not handle open sockets
correctly by not closing them when they are not used anymore.
The patch that developers suggested to fix the bug included
changes to the following code: classDFSClient, subclasses
DFSInputStream andBlockReader (which is used inter-
nally by DFSOutputStream). We used the buggy version
and revision 0.17 to obtain traces of a failed run, and code
from a previous revision where theTestCrcCorruption
test passed to get traces of a normal run.

Figure 7 shows ORION’s results. The top-three abnormal
metrics presented by ORION are: (1)minor_faults (No.
minor page faults), (2)num_file_desc (No. open file
descriptors), (3)L2_LDM (level-2 load miss). The 2nd metric
is associated with the problem’s origin since an increase inthe
number of open sockets caused by the bug affects directly the
number of open file descriptors. Metrics (1) and (3) are both
memory related and they are pinpointed as suspect because the
bug also causes abnormal memory consumption patterns.

ORION also presents abnormal code regions, first, based
on Java classes and second, based on subclasses (of the
abnormal classes) and methods within them. ORION correctly

minflt

L2_LDM

Fig. 7: Results from ORION for the HDFS bug.

TABLE II: Average use of file descriptors per class in HDFS for
the specific bug discussed in Section IV-A.

Rank Class Average # File Descriptors
1 NamespaceInfo 6.0
2 INodeDirectory 1.31
3 INode 1.29
4 UnderReplicatedBlocks 1.25
5 DatanodeInfo 1.24
6 DataNode 1.21
7 DatanodeBlockInfo 1.2
8 DFSClient 1.16
9 DataBlockScanner 1.14
10 NameNode 1.13

pinpoints DFClient as the most abnormal class. Within
DFClient, ORION highlights DFSOutputStream as the
main abnormal subclass. This is only partially correct— part
of the bug fix is inBlockReader which is used internally
by DFSOutputStream andDFSInputStream; however,
DFSOutputStream does not require changes to fix the bug.

To see if a simpler, and currently practiced, approach can
lead the developer to the origin of the bug faster, we set up
the following hypothetical steps for hunting this bug. Suppose
that a simple profiling tool indicates a high number of file
descriptors in use. The developer then proceeds to examine
which classes use file descriptors most. The answer to this
question is shown in Table II. The average number of file
descriptors used per method is calculated by taking an average
across all invocations of the methods of that class. From this,
the developer would be likely to inspect the classes appearing
near the top. It is only when one gets to the 8th ranked class
that one gets to the class where the bug lies,DFSClient.
Thus, this will lead to significant time manually inspecting
classes 1–7 and ruling them out as the source of the bug.

B. Case 2: HBase

HBase is an open-source, distributed, column-oriented
database [2]. It operates on top of distributed file systems like
the HDFS and is capable of processing very large scale of
data with MapReduce. We use ORION to collect and analyze
the metrics of a deadlock bug in HBase 0.20.3 (bug report
HBASE-2097). We collect all the OS-level metrics shown in
Table IV. There are 27 java classes that are instrumented
from thehadoop/hbase/regionserver/ package. They
include classes to handle region columns, store data files,
logs and many other abstractions. These classes include 184
methods which are all instrumented.
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Fig. 8: Results from ORION for the HBase bug.

The bug, which manifests as an application’s hang, is
the result of two locks being acquired in an incorrect or-
der. The bug lies in two methods,HRegion.put and
HRegion.close. It is activated by running the HBase
PerformanceEvaluation testing tool which is used to
evaluate HBase’s performance and its scalability. The bug
manifestation is intermittent—it manifests on average 75%of
the time—making it particularly difficult to localize.

We ran a previous bug-free version to generate normal-
behavior traces and applied ORION against the traces of a
failed run when the deadlock manifests. Figure 8 shows the
results. The top abnormal metric, i.e.,user_time, is the
amount of user-level CPU time. This metricper sedoes not
provide much insight into the failure origin since it is difficult
to correlate that to a code region. We observe that, using
user_time as our abnormal metric, the most abnormal code
region isHRegion class, which is where the bug lies. Further,
considering the 2nd most abnormal metricwchar (the number
of bytes which the program has caused, or will cause to be
written to disk), the flagged code region is also theHRegion
class. This confirms thatHRegion is where the developer
needs to focus her attention.

The bug patch shows that the bug resides in theHRegion
class. This class stores data for a certain table region and
all columns for each row—a given table consists of one or
more HRegions. The patch flips the order of acquiring the
two locks (a write lock and then a read lock) and conse-
quently the order of releasing them. It puts the change in
both theHRegion.put and theHRegion.close methods.
We speculate that spinning on locks in the deadlock situation
causes theuser_time metric to go awry.

The abnormal methods withinHRegion that are
flagged by ORION are getRegionName, isClosed and
toString (Figure 8). They do not correspond to the methods
where the bug lies (put and close). Through a detailed
investigation, we identify the cause of this. The three flagged
methods are invoked much more often withinHRegion
than are the erroneous methods. However, the three flagged
methods and the erroneous methods occur close together in

Fig. 9: Results from ORION for the StationsStat case.

time. The algorithm in ORION, after it has zoomed into
a time window where the fault manifested itself, considers
frequencies of methods within that suspect time window to
decide which methods to flag. This causes it to flag the
most frequently invokedgetRegionName, isClosed and
toString methods.

C. Case 3: StationsStat

StationsStat is a Java multi-tier application that is used to
check the availability of workstations on Purdue’s computing
labs. Students on the campus use StationsStat daily to check
the number of available Windows or Mac workstations for
each lab on campus. StationsStat is managed by Purdue’s IT
department (ITaP) and runs in Apache Tomcat 5.5 on RedHat
Enterprise Linux 5 with an in-memory SQL DB.

Due to an unknown bug, periodic failures were observed
in which the application became unresponsive. System admin-
istrators received failure reports from their monitoring system,
Nagios, or from user phone calls. Since the problem root cause
was unknown, the application was restarted and the problem
appeared to go away temporarily. StationsStat’s administrators
tracked 495 metrics from the OS, middleware, and application
layers at 1 minute intervals (using asynchronous profiling)for
more than two months. We collect the application, OS and
middleware metrics in Table IV.

StationsStat was a challenging scenario, not only because
the problem’s root-cause was unknown, but also because there
was no error-free data available to create the normal-behavior
hyper-sphere. Fortunately, ORION can still work in this sce-
nario by using almost error-free data. The administrators
noticed that, after restarting StationsStat, the next failure was
often seen only after a week or more—symptoms seemed to
suggest that the problem, possibly a resource exhaustion bug,
grew progressively from a service restart to a failure. ORION
therefore used a data segment collected right after a restart
to build the hyper-sphere representing normality. ORION also
filtered out constant metrics in this phase which resulted in70
non-constant metrics for the rest of the analysis.

In contrast with the previous cases, we conducted a blind
experiment in which ORION gives us the suspicious metrics
without us knowing the actual root-cause of the problem.
Figure 9 shows the abnormal metrics that ORION finds. We
then compared ORION’s answer to the application developers
best guess of the root-cause. The results show that the sus-
picious metrics given by ORION matched well with what the
developer thought to be the origin of the problem. The 2nd
abnormal metric is the number of active SQL connections.
The application had only one localized region where it made
calls to the SQL driver that Tomcat used to handle database
connections. The developer concluded that the SQL driver code
was buggy since it was obvious that the few lines of SQL
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Fig. 10: Mambo Health Monitoring system.

driver invocation code in his application was not. Upgrading
the SQL driver fixed the problem and the application continues
to run today providing an important function to students all
over campus. Interestingly, the top metric flagged by ORION—
the processing time of a servlet— had nothing to do with the
bug. We found that this is due to large differences in workload
between our normal and abnormal data sets (normal data were
collected right after the server restart, while abnormal data
were collected after the server has been up for a while). This
negative result highlights the importance of getting the normal
and the abnormal data sets under similar workload conditions.

In this case study, there was no need for the additional
step of ORION where it maps the abnormal metric to a code
region. This is because only one small localized region of the
application code had anything to do with SQL, which was
implicated by the metric.

D. Case 4: Mambo Health Monitor

The Mambo Health Monitor (MHM) is a regression test
system for the IBM Full System Simulator, commonly known
as Mambo. Mambo is a computer architecture simulator for
systems based on IBM’s Power(TM) architecture. Mambo has
been used in the development and testing of a wide range
of systems, including IBM’s Power line of server systems
(Power5, Power6, Power7), the Cell(TM) processor used in
the Sony Playstation3(TM), and IBM’s BlueGene systems. The
MHM executes tests on the simulator to detect regressions
in behavior that may be introduced by new development.
The tests are drawn from a test suite that covers the key
functionality in all the major target systems. Test resultsare
stored in an SQL database and are accessed through a web-
based interface. Figure 10 shows the system’s elements.

There is a servers farm which serve as MHM clients. Each
client accesses a database to determine which tests have to
be run. The client then checks out the code from a CVS
repository (after authentication) and proceeds to run the test.
Upon completion, the client writes results in the database
(success or failure) along with some informational items, such
as, performance results.

Failures. A test-case can fail due to a problem in the en-
vironment or a problem with the architecture being simulated.
Examples of environment-related problems causing a test to
fail are many: a NFS connection that fails intermittently, a
cron job fails to get authenticated with the LDAP server, Linux
failing to map the simulator’s network port to the machine’s
network port, /tmp filled up. A problem like this can make a
developer falsely believe that her architecture code is buggy
when in reality the problem lies in the environment. A key

Fig. 11: Results from ORION for the MHM problem.

source of difficulty is that these problems are often transient
and the software elements do not have error messages that
correspond to the actual problem. We choose the problem of
losing NFS mount as it has been a frequent problem for users
over its seven year lifespan. We emulate NFS problems by
dropping outgoing NFS packets with a probability of 0.1. The
NFS packet dropping functionality is implemented by adding
an iptables rule at the start of the faulty run.

Code annotations.We run ORION in an asynchronous
mode. The profiling process collects metrics at a 1 sec granu-
larity. MHM was instrumented at 48 instrumentation points
in 1400 lines of Tcl source code, which resulted in 2227
records. The Tcl script invokes Perl and bash scripts. Since
these had been rigorously tested, we were told that they should
be kept out of scope of our problem localization effort. The
instrumentation code records a timestamp and an identifier
for the code region. Unlike in the other applications, this
code did not have finely granular methods (and of course no
classes). Therefore, the points to insert instrumentationwas a
subjective decision and this was done based on the amount of
comments in the code. Our instrumentation covers the starts
and the ends of crucial operations, such as, CVS operations,
NFS operations, and database operations, also other structures,
such asif-then-else blocks.

Results. We collect traces of a normal and of a failed
run. We use the same machine as the MHM client and
keep the workload pattern the same. Figure 11 shows the
results of applying ORION. First, notice that the two top
abnormal metrics are metrics related to I/O, i.e.,wchar and
read_bytes (written characters to disk and read bytes from
disk, respectively). Next, we find abnormal code regions using
wchar as our abnormal metric—ORION ranks equally four
different code regions as the figure shows. Notice that none
of the pinpointed regions perform any operation that makes
use of NFS, the root cause. However, when we look at the
code (Figure 11), we notice that these regions are short and are
always executed together inside a loop, so they can be grouped
into one region. We also notice that, right after this (grouped)
region, there is a code region that makes use of the NFS,
i.e., the Checking-the-existence-of-lock-file
region. This region performs I/O to access a file that is mounted
using NFS and is affected by the injected fault.
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The reason the NFS region is not ranked as an abnormal
region (in fact is ranked 4) is that measurement inaccuracies
emerge from asynchronous profiling. These code regions (de-
marcated by our instrumentation points) are small comparedto
the frequency of metric collection. Hence, it becomes difficult
to accurately map the metric collection points to within an
instrumented code region. In these cases, ORION pinpoints to
the user not only the abnormal code region but also one region
before and one region after the abnormal one. This strategy
works well here since the code region that is affected by the
fault is right after the region that ORION selects as abnormal.

E. Summary of Cases 5–6

Case 5.This bug (HBASE-3098 report) manifests itself
as an application hang in HBase version 0.90. ORION results
suggest using thevsize metric as the abnormal metric to
find the abnormal code regions. ORION ranks the follow-
ing classes as the top-3 most abnormal:HRegionServer,
ZooKeeperWatcher, HBaseServer. The fixing patch for
this bug (suggested by the developers) contains changes to 12
Java classes, one of this beingHRegionServer. We noticed
that the theHmaster class, which is ranked as number 4 in
ORION, is also part of the patch. Two buggy code regions
showed up in top 5 results. There are a total of 131 classes
that the developer would need to analyze to x this bug. ORION
reduces the search space substantially to a handful of classes.

Case 6.This bug (HBASE-6305 report) manifests itself
as a hang in theTestLocalHBaseCluster test in Hbase
version 0.94.3. According to the bug report, the origin of the
fault appears to be a stack overflow error. Using ORION we find
the following top-3 abnormal code regions:HBaseServer,
HRegionServer, ServerName. The suggested patch fixes
only two classes—one of those isHRegionServer which
was ranked by ORION as the second most abnormal class.
There is a total 155 classes that the developer would need to
analyze in order to fix this bug without ORION.

Case 7.This bug (HBASE-7578) was one of the most
difficult to debug since it only manifested occasionally (in
theTestCatalogTracker test case) as a hang. The top-3
abnormal classes given by ORION did not contain the origin
of the bug, i.e., they were not changed by the suggested patch.
However, ORION was able to showCatalogTrackerwhich
was part of the patch, in its top-5 results. Also notice that the
developer would have had to analyze more than 44 classes to
fix this bug without the use of ORION.

F. Performance

We measure the time ORION spends inbug localization.
This involves creating the hyper-sphere based on normal-
behavior traces, finding the abnormal metric and, subsequently,
the abnormal code region. Table III shows our measurements.

V. RELATED WORK

Traditional debuggers such as gdb, and tools that enable
execution replays [20], [21] let the programmer find the exact
line of code of the bug. However, for this to be feasible, the
programmer needs to have a good guess of where the problem
lies. Attariyanet al. [11] propose a technique that determines
the root cause of performance problems using taint analysis.

TABLE III: Performance measurements.

Bug case Bug localization time (min)
Hadoop-3067 4.06
HBase-2097 15.32
HBase-3098 4.90
HBase-6305 10.35
HBase-7578 2.10
StationsStat 31.04

JHM 0.48

It is suitable for cases where the source of the problem is user
input or the configuration file.

Model checkers are useful for checking small applications
against specifications [23], [26]—due to its exhaustive nature,
it is not feasible for most real-world applications. In addition, it
is more appropriate for checking against specifications. Liu et
al. [24] propose a technique that does live model checking and
provides execution replay. The programmer writes a predicate
that is invariant throughout the execution, and this predicate is
checked as the application runs. When the predicate is violated,
the system states leading to the violating state are given as
output. While this approach works well for specifications, as
the instruction that changes the system state from comforming
to violation is usually the root cause of the problem, for other
types of problems such as performance problems, the errors
may have accumulated from different regions of the code
before the specification is violated. Our tool does not assume
that the instruction that makes the system state in violation is
the root cause of the problem, and is thus more applicable to
a wider range of problems.

There is a volume of work on statistical methods to detect
and localize problems. Some of the work analyzes application
logs [18], [27], [28], [30]. However, there is often a one-
to-many mapping between the log record corresponding to
the problem and the actual code regions that could be the
source of the problem. [13], [15], [29] analyze request flows
to diagnose problems in request-processing applications.Other
work analyzes metric values, typically using machine learning
algorithms [14], [16], [19], [31]. In [14] and [16], the signature
of the current problem is compared to a database of known
problems. If there is a match, the diagnosis and fixes used
previously can be reused again. This approach is suitable for
problems that are not easy to fix even if the root cause is known
(e.g., overloaded servers), problems due to the environment,
or hardware problems. In other situations, once a problem
is diagnosed and fixed, it will not occur again, limiting the
usability of the tool. The overall approach of [19] and [31]
is similar to our approach in that machine learning models
are trained based on training data. If the system is in an
abnormal state, the metrics that are most abnormal are given
to localize the problem. In addition, when this is not enough
to pinpoint the location of the fault, ORION goes a step further
and provide a ranking of most suspicious code regions to
reduce the programmer’s effort needed to fix the problem.

VI. D ISCUSSION

We discuss practical limitations of this work:
(a) We observe that, as ORION drills down deeper looking
for problematic code regions (class→subclasses→method), it
provides less accurate results. An example is the Hadoop bug
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in which we are able to identify the abnormal code region at
a Java class granularity but not at a method granularity.
(b) Applications that do not provide code-region delimiters
would require manual effort from the developer (like with
the MHM system) to indicate what are good instrumentation
points. For most applications, however, ORION automatically
annotates entry and exit points of methods.
(c) A trade-off of our asynchronous profiling approach is
the difficulty of mapping metric samples to code regions
accurately, when the code region is short relative to the time
it takes to sample metrics. However, this comes with the
advantage of minimal perturbation of the application. For
asynchronous profiling, ORION provides code regions that are
adjacent to whatever code region it finds as abnormal.

VII. C ONCLUSION

We propose ORION to perform root cause analysis for
failures in distributed applications. From a comprehensive
set of monitored metrics, ORION pinpoints the metric and
a window that is most highly affected by a failure and
subsequently highlights the code region that is associatedwith
the problem’s origin. Our algorithm models the application
behavior through pairwise correlations of multiple metrics,
and when failure occurs, it finds the correlations (and hence
the metrics) that deviate from normality. Our case studies
with different distributed applications show the utility of the
tool—ORION can localize the origin of real-world failures at
a granularity of metrics and code regions in few minutes.
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VIII. A PPENDIX

Due to space limitations, Table IV only shows some of the metric types
that we analyzed, grouped by layer. The full list of metrics and descriptions
can be seen here [6].

TABLE IV: Some of the monitored metrics.

Hardware Metrics OS Metrics
L1 DCM minor faults
L2 DCM major faults
L2 ICM user cpu time
L1 TCM sys cpu time
L2 TCM num threads
CA SHR virt mem size
CA CLN rss mem size
TLB DM stack size
L1 STM read bytes
L2 LDM write bytes
HW INT num file desc
BR TKN nicRcvPckts
BR MSP nicSentPckts
TOT IIS IPInOctets
TOT INS IPOutOctets
VEC DP Application Metrics
FP INS servlet processingTime
SR INS servlet requestCount
BR INS servlet errorCount
RES STL datasourcenumIdle
L1 DCH datasourcenumActive
VEC SP Middleware Metrics
L1 DCA requesthandler bytesSent
L2 DCA requesthandler bytesReceived
L2 DCR requesthandler requestCount
L1 ICH requesthandler processingTime
L2 ICH requesthandler errorCount
L1 ICA cachehits
L2 ICA cacheaccesses
L2 TCH number threads
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