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ABSTRACT
Application performance has been and remains one of top
five concerns since the inception of cloud computing. A
primary determinant of application performance is multi-
tenancy or sharing of hardware resources in clouds. While
some hardware resources can be partitioned well among VMs
(such as CPUs), many others cannot (such as memory band-
width). In this paper, we focus on understanding the vari-
ability in application performance on a cloud and explore
ways for an end customer to deal with it. Based on rigor-
ous experiments using CloudSuite, a popular Web2.0 bench-
mark, running on EC2, we found that interference-induced
performance degradation is a reality. On a private cloud
testbed, we also observed that interference impacts the choice
of best configuration values for applications and middleware.
We posit that intelligent reconfiguration of application pa-
rameters presents a way for an end customer to reduce the
impact of interference. However, tuning the application to
deal with interference is challenging because of two funda-
mental reasons — the configuration depends on the nature
and degree of interference and there are inter-parameter de-
pendencies. We design and implement the IC2 system to
address the challenges of detection and mitigation of perfor-
mance interference in clouds. Compared to an interference-
agnostic configuration, the proposed solution provides upto
29% and 40% improvement in average response time on EC2
and a private cloud testbed respectively.
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1. INTRODUCTION
In the brief history of cloud computing, unpredictable ap-

plication performance has been one of the two key issues
prevening widespread adoption of the cloud paradigm. In
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a recent survey of IT buyers, about 40% cited application
performance as a key concern [14]. Operational support for
critical applications was another key concern with 40% IT
buyers, making performance-related issues two of the top
five concerns for cloud customers.

Performance issues in cloud are often attributed to mis-
configurations of virtual machines (VMs), storage, and net-
works [24, 11, 26]. Another key reason for performance is-
sues, which has not received adequate attention, is imperfect
isolation of hardware resources across multiple VMs. Some
resources, such as CPU and memory can be partitioned
among VMs with little interference. However, current hy-
pervisors do not isolate low level hardware resources, such as
cache and memory bandwidth. Contention for these shared
hardware resources leads to variable performance across VMs.
Partitioning low-level hardware resources in software (hy-
pervisor) will introduce significant overheads and we do not
envision that processor caches and memory bandwidth will
be isolated on a per-VM basis in the forseeable future.

Interference due to contention of shared resources can lead
to severe performance degradation [28, 29, 12]. [28] reports
that contention between two network intensive VMs can in-
crease benchmark runtime upto 2X, while disk-to-disk and
cache-to-cache contention can increase runtimes by 4.5X and
5.5X respectively. We found similar results in our experi-
ments, where a cache intensive benchmark can increase av-
erage response time of a web server from a fraction of a sec-
ond (10−1) to several seconds. Existing work on handling
interference in clouds are driven primarily from a private
cloud perspective. The key idea is to either schedule in-
terfering VMs at different points in time on the same host
(e.g., [7]) or place interfering VMs on different hosts (e.g.,
[4, 20]). The first approach is limited in terms of the choices
of VMs available on a host that can be co-scheduled. The
second approach requires frequent live migrations, which is
very resource intensive, especially when the source server is
highly loaded [30]. Live migration in such a scenario is of-
ten long drawn and fails frequently. Further, it significantly
impacts application performance during the migration. So,
it is not suitable to deal with short-lived interference, which
we observe is prevalent in EC2. Finally, these approaches
are application-oblivious and can not accurately judge the
real impact on application performance.
Our solution approach. In this paper, we present a com-
plementary approach of handling interference by application
reconfiguration. We argue that an application can mitigate



the ill effects of short-term interference — rise in response
time and drop in throughput — by deploying an intelligent
configuration manager. This configuration manager contin-
uously monitors for interference and when it is observed,
reconfigures the application and/or middleware (e.g., web
server, database) to reduce contention for the bottlenecked
resources. Our solution gives power in the hands of the ap-
plication owners, and does not rely on the infrastructure
provider making prompt changes to help the application
with its periods of interference. This is also important be-
cause interferences in public clouds are often short-lived, less
than a minute, and therefore application reconfiguration,
which can be more agile than infrastructure reconfiguration,
is particularly well suited.
We selected web applications as our preferred application

domain for two primary reasons. First, web applications
constitute a large portion of cloud workloads. [25] reports
that nearly 25% of all IP-addresses in a portion of Ama-
zon EC2 host a public website. Second, web applications
and middleware components typically have a large num-
ber of tunable parameters with known performance bene-
fits. We selected Apache as the web server primarily for its
popularity—Apache has 53.32% market share of top million
busiest sites as on May 7, 2014 [19].
In this paper, we make the following key contributions:

1. We rigorously study the performance variability of web-
based applications in a public cloud environment. In this
study, we run the CloudSuite [6] benchmark in Amazon’s
EC2 for 100 hours over a 5-day period. We then compare
the statistics obtained from these runs with sample runs
of CloudSuite in a private cloud testbed. We observe that
CloudSuite has much longer response time distribution in
EC2 (ranging upto 5.5s) than in the local testbed (upto 0.42s
only) with identical resource configurations. This validates
our hypothesis, that public clouds have high degree of per-
formance uncertainty.
2. We conduct a study to understand if applications can be
configured to deal with interference. We observed that an
ideal operating configuration for Apache web server depends
on the type and degree of interference. Further, parameters
in different elements of the software stack depend on each
other and the inter-dependency changes with the degree of
interference; and finally, the application performance curves
with the configuration values are discontinuous in places,
making traditional control-theoretic approaches for parame-
ter tuning [5] ineffective. Specifically we found three param-
eters corresponding to the degree of concurrency and the
time to live of existing connections to be particularly signif-
icant.
3. We present a simple, heuristic-driven configuration man-
ager, IC2 to reconfigure the application upon interference.
IC2 solves three key challenges for dynamic reconfiguration—
first, it presents a machine learning based technique for de-
tecting interference; second, it uses a heuristic-based con-
troller for determining suitable parameter values during pe-
riods of interference; and finally, it reduces the cost of recon-
figuration of standard Apache distributions by implement-
ing an online reconfiguration option in the Httpd server. A
prototype implementation of IC2 was deployed both in EC2
and our private testbed. The experiments show that IC2can
recapture lost response time by upto 29% in EC2 and 40%
in our private testbed.
The rest of the paper is organized as follows. In Section

2, we verify the presence of interference in cloud platforms
and present a quantitative evaluation of performance degra-
dation. We next show the impact of interference in a private
cloud testbed and identify how interference changes optimal
configuration values for applications. The design of our pro-
posed solution and performance improvement achieved by it
are highlighted in Sections 4 and 5. We finally compare our
work with current research and conclude the paper.

2. IS INTERFERENCE REAL?
We performed an experimental study to see if the perfor-

mance concerns due to interference are real. Our objectives
here are to answer two questions: i) Does an application
suffer from unpredictable latencies in EC2? ii) What hap-
pens when a co-located VM starts accessing memory very
fast? To answer the first question, we ran an application
benchmark on Amazon EC2 with a constant workload set-
ting and collected periodic performance data over 100-hours.
We then analyzed the collected data to detect outliers and
see how much performance variability there is. The appli-
cation benchmark we selected for our experiments is Cloud-
Suite, a popular web application benchmark [6] (more details
on the application benchmark are in the next section). The
web server and database of CloudSuite were installed on sep-
arate EC2 VMs each of type m1.large instances (equivalent
to 2 vcpus or 4EC2 compute units, and 7.5GB memory).
Observations. We see that as a result of interference,
there is significant variance in the performance of Olio on
EC2 with regard to the response time (Figure 1(a)), and
correspondingly, the throughput. The histogram is plotted
such that the value represents response time between the
two marks on the X-axis, e.g., there are 539 measurement
intervals with response times between 0.5 and 1 sec. In
contrast, for a similar experiment on local testbed (mea-
surements taken over 60 hours) we found the response time
was always < 0.5s. The response time distribution in EC2
has a much longer tail indicating periods of unpredictable
performance. In EC2, we also measured the duration of
interference using an outlier detection method as shown in
Equation 1. Our results indicate that there are several in-
stances when interference lasted for 30s or longer, the longest
duration being 140s. While these interference instances are
a small portion of the total number of requests, there are
two conditions that suggest we need to deal with them—
they are unpredictable and therefore, worst-case provision-
ing for performance critical applications suggests we must
put in place mechanisms to deal with them; when interfer-
ences do happen, they cause pathologically poor behavior of
the application and may push the application into a “death
spiral”. Evidence of death spiral in applications due to tran-
sient degradation has been given in the past, such as, due
to overfilling of application queues [23].

| Pi − PN/2 |> C ×median(| {Pi}
N
i=1 − PN/2 |) (1)

To answer the second question raised earlier, we ran an-
other set of experiments both on EC2 and private cloud
testbed. The results indicate cache-intensive interference
from co-located VMs can increase response time of a web
server by an order of magnitude. Our experiments in fol-
lowing sections substantiate this point.
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Figure 1: Distribution of response time of Olio run-
ning on (a) Amazon’s EC2 (b) Private cloud. VM
resource settings and workload intensity are inden-
tical in both cases.

3. INTERFERENCE IMPACTS OPTIMAL
CONFIGURATION VALUES

In this section, we endeavor to understand the relation-
ship between optimal configuration values of middlewares
and interference. To do so, we ran an extensive set of ex-
periments with Cloudsuite in a private cloud testbed. We
first describe our experimental setup and then highlight our
findings.

3.1 Experimental Setup
Hardware. Our private cloud testbed consisted of three
Poweredge 320 servers with Intel Xeon E5-2440 processors.
Each server has 6 cores (or 12 hardware threads with hy-
perthreading enabled), 15 MB cache and 16 GB memory.
We installed the KVM hypervisor on these machines. We
co-located our custom interference VMs on the same host as
the web server, while database VM was run on a separate
physical machine. In this work we focus only on web server
performance and over-provisioned the DB VM to eliminate
any DB bottleneck. The database (approx. 1.6GB) was also
loaded in memory to reduce disk contention. The third ma-
chine of our setup was used to run the benchmark driver
and rest of the client emulators. All the computers were
connected via a dedicated 1 Gbps switch. Table 1 lists the
values of different configurations for each experiment pre-
sented in this paper. It is to be noted that, we never cre-
ated contention for CPU and memory on the physical server.
With two interference threads running and 4 vcpus for WS,
the physical server’s CPU utilization was at the 50% mark
or lower for all experiments. Similarly, memory utilization
of the host was never an issue. Our maximum WS memory
utilization was well below 3GB for all workloads.
Application Benchmark. The application benchmark
we selected for our experiments is CloudSuite, a popular
web application benchmark [6]. CloudSuite internally uses
Olio, a social event calendar application as the base package.
Throughout the rest of this paper we use the terms “Cloud-
Suite,” “Olio,” and “Application benchmark” interchange-
ably. In our setup, we hosted Olio on a multi-threaded
Apache server (apache-worker v2.4) and used Php Fastcgi
Process Manager (php-fpm) for dynamic content genera-
tion. Our setup closely resembles a typical three-tier ap-
plication with php-fpm v5.3 as the busines logic (BL) tier.

We use identical CloudSuite setup in all our experiments—
homogeneous VMs with Ubuntu 12.04/Apache 2.4/php-fpm
5.3/Java 1.7. CloudSuite uses the Faban harness to emulate
clients. Client emulation is done using a pre-defined distri-
bution (negative exponential) of think times and operation
mixes as defined in [21]. Workload size is given in terms of
#concurrent_clients.
Interfering Application. We emulated interference from
co-located VMs by running two different benchmarks–LLCProbe
and Dcopy–on two VMs (also referred to as inteference VMs).
Dcopy is an application under the BLAS [1] benchmark
suite, which copies contents of a source array to a destination
array. LLCProbe [28] creates an LLC (Last Level Cache)
sized array in memory and then accesses each cache line very
frequently. Both Dcopy and LLCProbe are cache intensive,
however, rate of cache access is higher in LLCProbe than
in Dcopy. Moreover, by using Dcopy with a large array size
we can also emulate memory bandwidth contention. Inter-
ferences of this type may arise in reality if a co-located VM
runs data mining applications like Hadoop or even under
periodic consolidation operations. Earlier work has shown
[28, 30] that such interferences are a routine occurence in
present-day cloud infrastructures.
Parameter Selection. In our experiments and subsequent
evaluations, we consider three key configuration parameters
– MaxClients (MXC) and KeepaliveTimeout (KAT) from
Apache web server1 and pm.max_children from Php run-
time. These parameters greatly impact Apache’s web appli-
cation performance [5]. MaxClients captures the maximum
number of parallel threads the web server employs to serve
requests. This is typically configured based on the work-
load intensity, number of hardware threads available on the
physical server, and its RAM capacity. KeepaliveTimeout

indicates how long a web server would keep an idle client con-
nection in its connection pool (typically occupying a thread).
pm.max_children defines the maximum number of threads
used by the Php interpreter. We refer to pm.max_children

as PhpMaxChildren in this paper. It is pertinent to note
that these parameters are generic thread-pool management
parameters and have their counterparts in most commercial
server distributions making our study applicable to most en-
terprise middleware (e.g. thread pool size in glassfish).
Metric Collection. CloudSuite (Olio) uses Faban harness
to emulate clients and generates high level benchmark met-
rics for each run (Response Time and Throughput). For
each data point in our plots (i.e. a given setting of config-
uration values or workload) we consider an average of three
runs. Each run lasted for 10 minutes (excluding ramp-down)
of which last 5 minutes were considered as steady state and
reported. The experimental VMs were rebooted after each
run to clear any state. For monitoring hardware perfor-
mance counters we started oprofile [22], a low overhead pro-
filer, on the hypervisor of the web server VM. We use the
observation that a guest VM in KVM is represented as a
qemu process in the hypervisor. We used oprofile to moni-
tor the hardware events corresponding to the qemu process
of the WS VM. We next report some of our key experimental
results.

3.2 Impact of interference on middleware con-
figurations

1We use the terms Apache web server and Httpd synony-
mously to identify the Apache web server.



Experiment # Vcpus Memory(GB) MaxClients KeepaliveTimeout PhpMaxChildren Load Size
Sec. 3.2.1 4 4.5 Variable 5 1000 1500
Sec. 3.2.2 4 4.5 1700 Variable 1000 1500
Sec. 3.3 4 4.5 Variable Variable 1000 1500
Sec. 2,5 2 7.5 650* 5* 50* 550

Table 1: Summary of WS VM config. and parameters during different experiments. Values with asterisk are
reconfigured with IC2.

In this experiment, we evaluate the impact of interference
on the choice of optimal values for the three parameters—
MaxClients, KeepaliveTimeout in Apache and PhpMaxChil-

dren in Php-fpm. For each of these parameters, we ran the
web server with different interference intensity - LLCProbe
with array size of 15MB and Dcopy with array sizes 15MB
and 1.5GB. Due to its fast cache access, LLCProbe emulates
a strong interference, while Dcopy 15MB emulates a low in-
terference. With Dcopy size of 1.5GB we emulate contention
for both cache and memory bandwidth, and its overall ef-
fect is that of a moderate interference. Here a Dcopy size
of 0.0MB implies a run where no interference benchmark
was run (baseline). For each interference intensity, we var-
ied one parameter of Apache while the other was set to an
observed good value. Run configurations for each experi-
ment can be seen from Table 1. For all the experiments,
we kept the workload intensity (#concurrent_clients) to
a fixed value of 1500 which was found to be lower than the
saturation point of the web server2. Note that although we
have a constant number of concurrent clients, Faban may
generate bursty traffic in some intervals due to is stochastic
“wait time”.

3.2.1 Effect onMaxClients
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Figure 2: Choice of optimal parameter values with
varying Dcopy and LLCProbe. For all experiments,
#concurrent_clients is 1500, chosen default values
are MXC = 1700, KAT = 5, and PHP = 1000. In each
experiment, one of the parameters are varied while
others are kept constant at their default values.

Figure 2(a) show the choice of optimal MaxClients (MXC)
values for different interference intensities. In the baseline
case (Dcopy 0MB), best response time can be obtained by
setting MXC to 1700. However, the optimal value reduces to
1100 for Dcopy-1.5GB and LLC-15MB. Interestingly, with
a smaller interference of Dcopy-15MB, the optimal value in-
creased to 2000 (although the gain in response time was
small compared to at 1700). Even though all the curves

2We define saturation point to be the minimum workload
intensity when the web server exhausts its cpu or memory
capacity.

show concave nature before saturation, they diverge from
each other significantly clearly highlighting a change in the
operating environment.

It can also be seen that interference causes the response
time of WS to go up from fraction of a second (< 0.5s) to
several seconds. If we keep MXC constant at the baseline
optimal value of 1700 (refer Fig. 2(a)), with LLCProbe it
increases upto 2.5s. However, with a different MXC value
(1100), this degradation can be limited to only 1.5s. One
may argue that we can always keep MXC fixed at 1100, but
this wastes server resources (e.g. baseline throughput at
1100 is 13% lower than that at 1700). A better alternative
is to configure it for the dominant case (no-interference) and
to reconfigure when interference is detected.

3.2.2 Effect onKeepaliveTimeout
We found similar results for variable KeepaliveTimeout

(KAT) which suggests different optimal KAT values for vary-
ing interference intensity (refer Fig. 2(b)). For this experi-
ment, we kept the MXC value fixed at the optimal baseline
MXC value of 1700 and varied KAT from 2 to 40 seconds.
The curves show very different patterns with varying in-
terference intensity. In the baseline case, increasing KAT
beyond 5s increases response time. On the other hand, with
strong interferences increasing KAT reduces response time
significantly. Based on this, one may argue that we can al-
ways keep KAT fixed at a high value (e.g. 20). We see from
the plot that such a choice is suboptimal for no-interference;
it also shows poor throughput. As a general rule we found
that interference from co-located VMs increases the optimal
KAT value. This emphasizes that a web application needs
to reconfigure its KAT value in the presence of interference
and finding the optimal is a non-trivial problem.

Due to space limitations we only present the key findings
of varying PhpMaxChildren (PHP). In general, increasing
PHP had almost no impact in no-interference response time.
We therefore choose a low PHP value with lower memory
footprint as the no-interference optima. With interference,
optimal response time is seen for PhpMaxChildren= 800 or
higher although the performance improvement is smaller
compared to MaxClients. Interested readers may find the
details in [16].

Table 2 presents a summary of our observations about
optimality of parameters and the relationship with inter-
ference. Each cell in this table summarizes the impact of
interference on the optima of a given parameter (whether it
increases or decreases) and the degree of impact this param-
eter has on performance (high or low).

3.3 Change in inter-parameter dependency
In this section, we answer a commonly asked question

on configuration management–are two parameters indepen-
dent? We verify this with the specific example of two pa-
rameters that had the most profound effect on the perfor-
mance of our benchmark applications, namely, MaxClients



Table 2: Summary of our experiments on evaluat-
ing the impact of interference on optimal parameter
values.
Application runtime Apache and Php
Operating context
changes

Cache, memory
bandwidth pressure

General impact on optimal configuration values
Context MXC KAT PMC
No interference
Initial value High Low Low
With Interference Decrease Increase Increase
Performance Impact High High Low
Memory Pressure Decrease Increase Decrease
Performance Impact High High High

and KeepaliveTimeout. We find that dependency does exist
between these parameters and it changes with interference.
For this experiment, we varied both MXC and KAT for the

Apache server under two scenarios. In the first, we ran the
web server with no interference, while in the second, we ran
it with LLCProbe-15MB.We found that the nature of curves
changed significantly across these experiments (refer figures
3(a) and 3(b)). For the case with no interference, the curves
generally have a negative slope, while with interference, the
curves display both positive and negative slopes. Choice
of optimal KAT for a given MXC is significantly different
in the two. As a general observation, we find that lower
KAT is better at baseline while higher KAT is better during
interference.
One may argue that the following simple equation suffices

to determine KAT value for a given MXC:
KAT = MXC/#new_connections/sec
However, this does not work well during interference. For

example, during interference, if we reduce MXC then accord-
ing to this formula we should also reduce KAT to maintain
a constant connection rate. But such an action would fur-
ther increase load on the server. Due to shorter KAT, a
larger fraction of established client connections would time
out, necessitating new connection establishment. A better
alternative is to be aware of interference and select a differ-
ent value for #new_connections. This emphasizes the need
for the tuning algorithm to be context aware. Depending
on the presence or absence of interference it must select a
different optimal KAT value for a given MXC.
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Figure 3: (a–b) Depedendency between MaxClients

and KeepaliveTimeout changes with interference.

3.4 Interference and web server capacity

In the previous section, we found that interference has a
significant impact on the resposne time of a web server. In
this section, we ask ourselves what is the root cause for such
increase? To answer this question, we analyzed the system
metrics obtained from the previous experiments (Sec 3.2).
We also evaluate the impact of interference with varying
workload sizes. Our observations are presented below.
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Figure 4: Effects of interference. Here we identify
system level bottlenecks that causes response time
to increase by an order.

Interference increase CPU utilization of WS-VM.
We found that for a memory allocation of 4.5GB, the WS
was never constrained for memory. But the cpu utilization
(Fig. 4(a)) values showed significant botleneck. It can be
seen that for a given choice of MaxClients, the IdleCPU
values for with-interference curves are lower than baseline.
Note that the IdleCPU values are virtual utilization mea-
sured inside the WS VM. Intuitively, for a constant workload
this should remain fixed irrespective of the functioning of a
co-resident VM. To understand this behavior, we measured
the CPI (cycles per instruction retired) values for the WS
VM with varying degrees of interference. Due to the large
number of cache misses induced by the interference VM, the
WS VM uses more of its cpu cycles fetching data from mem-
ory to cache and consequently the CPI increases. It can be
seen from Fig. 4(b) that the CPI values for the WS with
interference is between 2 and 2.25, whereas, baseline CPI
is only 1.5. It implies that, on average, a WS thread takes
longer time to finish execution. The overall effect is that
a larger fraction of the WS VM’s time slice is occupied by
some busy thread. This is reflected as increased cpu utiliza-
tion inside the guest VM.
Interference increases active memory of WS-VM.
Similar to Section 3.4, we found active memory of the web
server increased during interference. This happens since
with interference, Apache threads are active for a longer
duration on average (higher response time). Note that an
active Apache thread has larger memory footprint than in
idle one (in Apache terminology active threads includes the
request pool, a large block of memory for storing the re-
quest and response data, in addition to server and con-

figuration pools), therefore longer response time implies
increased active memory. We found that this observation
becomes even more significant if the web server is under
memory pressure. In such a case, if a web server’s memory
footprint is just below capacity in a baseline case, with inter-
ference it is likely to start swapping. This again has catas-
trophic impact on performance. We verified this hypothesis
by running the WS VM with 2GB RAM in a separate ex-
periment and found evidence of swapping with interference



even though no swapping happened in a baseline run. Due
to space limitation, we omit the details. Based on Fig.
4(a), we conclude interference reduces the capacity of a web

server.

4. DESIGN AND IMPLEMENTATION
In the previous section, we found that the choice of opti-

mal configuration values for web services middleware depend
significantly on interference created by co-located VMs. Here
we propose the design of a configuration manager that is
aware of the operating context [26] of the web server VM.
Although most of our implementation focuses on mitigating
impact of cache-intensive interference, the same principles
can be applied for other types of interferences (e.g. net-
work). To design an interference-aware configuration man-
ager we need to answer three important questions:
i) How do we detect a web server is suffering from interfer-
ence?
ii) Which parameters can be configured to mitigate interfer-
ence?
iii) For the parameters determined in step (ii), how should
their values be set as a function of the degree of interference?
We answer each of these questions in rest of this section.
Fig. 5 presents a high level system architecture of the

proposed solution. IC2 consists of two primary modules: a)
Performance monitor, and b) Config manager. For all the
VMs that are part of a web application (e.g. web server,
database and mail server) and managed by IC2, perfor-
mance monitor collects performance data at three levels. At
the application level it collects aggregate response time and
throughput measurements, whereas at system level, it col-
lects utilization values for CPU, memory, IO, and network.
If hardware performance counters are available (on our lo-
cal testbed, but not on AWS), it also collects CPI (cycles
per instruction) and CMR (last level cache-miss rate) data
for the monitored VMs. Based on the collected data, config
manager can detect if any system context has changed. This
can either be a change in workload, VM resource allocation
or presence of interference. There are several existing solu-
tions that can handle workload and resource changes [34, 5]
and these can run concurrently with our solution.
A high level functioning of IC2 is shown in Fig. 6. After

collecting metrics, IC2 tries to detect if the web server is
under interference. Based on the detection result it main-
tains a state machine for the web server. The state machine,
in turn, is used to decide when reconfigurations are needed.
Finally, the config controller actuates the reconfiguration ac-
tion. Details of this configuratin loop is presented below.
Interference detection. Any interfering VM that is

accessing large amounts of memory, such as our two experi-
mental interference VMs running DCopy or LLCProbe, will
ultimately cause a pressure on the shared cache on the phys-
ical machine. We find empirically that a sharp increase in
CMR is a leading indicator of interference. For example,
during our experiments in Section 3.2, we found the CMR
of the web server VM was always < 5% in a no-interference
run, whereas, during interference it increased to 15% or
higher (depending on the degree of interference). In our lo-
cal testbed implementation of IC2 we used increased CMR
as conclusive proof of interference. This approach, however,
cannot be used in public clouds due to the policy of disal-
lowing access to hardware counters. For our experiments on
EC2, we used a sharp rise in CPU, reduction in through-

Figure 5: System architecture of IC2

Figure 6: High level functioning of IC2

put (THPT) , and increase in response time (RT) of the
application VM as secondary evidence of interference.
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Figure 7: Interference impacts load per operation
(LPO) and work done (WorkDone) by a web server.
These, together with response time, can be used as
metrics for detecting interference. The values are
normalized by the factors shown in figure for better
visualization.

Instead of using raw CPU utilization which may show
sharp fluctuations due to stochastic nature of request ar-
rivals, we use a normalized metric Load Per Operation (LPO).

LPO is defined as LPO = CPUutil

Throughput
. We also define an-

other derived metric WorkDone = RT ∗ THPT ∗ CPUutil.
Intuitively, Workdone approximates the number of CPU cy-
cles spent to serve all the requests during current measure-
ment interval. Without interference, assuming the server is
not saturated, Workdone is small sinceRT < 1s even though
throughput is high. With interference, however, workdone
is large as response time increases significantly even though
throughput reduces. To determine applicability of LPO and
Workdone for interference detection, we ran CloudSuite in
EC2 for multiple 1-hour runs. During these runs we period-
ically start Dcopy on a co-located VM at fixed intervals of 8
minutes (4 minutes of interference followed by 4 minutes of
no-interference). The collected metrics for one 1-hour run is
shown in Fig. 7. It can be seen from the figures that both
LPO and Workdone form distinct clusters with and without
interference. It may be argued that interference detection



based on CPU utilization may fail to detect small interfer-
ences that does not increase utilization above threshold. In
our experiments, we found such interferences have minimal
impact on response time. Here, our primary focus is to de-
tect pathological cases that saturate server resources.
Decision Tree for Detecting Interference. To detect

interference in EC2 we built a Decision Tree classifier using
the attributes LPO, Workdone, and Response time. A deci-
sion tree generates a finite set of“tests”on attribute values to
determine the class of a given sample. Our choice of decision
tree is due to its two key advantages: i) simplicity—it is easy
to visualize the rules in a decision tree ii) customizability—
an administrator can manually change the thresholds of var-
ious attribute values based on expert knowledge or QoS re-
quirements. Our classifier consists of 3 classes: Interference,
No-interference, and Transient. The Transient class is in-
troduced to capture temporary fluctuations in performance
(e.g. immediately after starting or stopping of emulated
interference). Based on current observation values the clas-
sifier tries to pedict if the web server is suffering from inter-
ference or interference has gone away.
A key challenge in building the decision tree is to deal with

changes in parameter values. When IC2 reconfigures a web
server during interference, its performance metrics change
and therefore can lead to misclassification. A possible solu-
tion for this is to collect metrics with various combination of
parameter values, with and without interference. However,
collecting training data for all combinations of parameter
values is time consuming and may even be impractical. We
therefore select an alternate bootstrapping approach where
the classifier is trained in 3 phases. Each training phase
consists of 10-hour run of Cloudsuite and is done offline.
In phase I, we run Cloudsuite with baseline optimal setting
(IC2 disabled), periodically generating interference. The
collected data is used for training the phase I (base) clas-
sifier. In Phase II, we repeat the experiment with IC2 en-
abled and use the base classifier for interference detection.
The metrics collected approximate measurements with ran-
dom parameter combinations. We use 50% data from Phase
I and 50% data from phase II measurements to train the
phase II classifier. Finally, in phase III we use phase II clas-
sifier and collect more data with IC2 enabled. The data
collected in phase III is used for training the final classifier.
Note that, during training we use only Dcopy with varying
array sizes and intensity (#dcopy threads) as our interfer-
ence benchmark, while in evaluations we use both Dcopy
and LLCProbe to test our detection module. We used the
Weka [10] toolkit to create the decision tree.
Configuration Controller. IC2 internally uses a sim-

ple state machine to keep track of current operating context
of the web server and generate reconfiguration triggers (Fig.
8). In local testbed, the state machine consists of only two
states and interference detection is merged with the state
machine. We use response time in the trigger to ignore cases
where response time was within QoS values, this prevents
the server from incurring reconfiguration overheads during
less-intense interferences. Self loop in the state diagram are
the negation of the trigger condition on outgoing edge. In
EC2, however, we use a 5-state machine, two representing
interference and two representing normal (no-interference)
runs, and one for the transient phase described in the pre-
vious paragraph. The transition labels are classifier outputs
based on recent observations. Our choice of 5-states instead

of two serves two purposes: i) Due to ambient interference
in EC2, state changes may be short lived. Reconfiguring fre-
quently in such cases may impact throughput. Our design
forces IC2 to reconfigure only after it has seen two successive
periods under interference or no-interference (assuming the
current phase will last a while). ii) This hides classifier false
positives. For example, if the server is under no-interference
but the classifier predicts interference, it would take at least
three successive misclassifications for a reconfiguration (No-
interference -> Transient -> Interference -> Interference),
the probability of which is much smaller than the classifier
error rate. IC2 performs reconfiguration actions when the
server enters the states I2 or NI2 as shown in Fig. 8.

Figure 8: State transitions of IC2. In EC2, recon-
figuration is done when the server enters I2 or NI2.

Reconfiguration actions. Our reconfiguration actions
in IC2 are currently implemented as a heuristic backed by a
knowledge base (refer Table 3). This knowledge base directs
IC2 which parameters to reconfigure when a trigger is de-
tected. It does not include precise values of the parameters
but instead specifies a set of rules. The knowledge base can
be created in two ways: i) with the help of a domain expert,
ii) analyzing performance logs from training runs. Note that
most commercial web applications go through load testing
phase before going to production. A systematic variation
of critical middleware parameters (as in Section 3.2) during
these tests can generate insights about application perfor-
mance. Our current implementation deals with row 3 of
Table 3, i.e. increased CMR. Our earlier experiments sug-
gest that the actions MXC↓, KAT↑, and PHP↑ can improve
application performance during phases of cache interference.
We reconfigure all three parameters simultaneously.

Table 3: Knowledge base for web server reconfigu-
ration
Context Change Configuration Heuristic
Increased Workload (High
Idle Memory)

MXC↑ and PHP↑

Increased Virtual/Physical
CPU ratio

MXC↓ and KAT↑

Increased LLC Miss Rate MXC↓, KAT↑, PHP↑
Increased Host Memory
Contention

MXC↓ and PHP↓

Increased Page Faults (Ac-
tive Memory Low)

PHP↓

Update functions. The quantitative update functions for
the three parameters are shown in Algorithm 1. The upda-
tion objective for MXC is to reduce CPU demand of the web
server. We therefore decrease it proportional to the increase
in CPU utilization (approximated by δLPO). We restrict the



Algorithm 1 Parameter update functions for IC2

1: procedure reconfigure for interference()

2: δMXC ← ((MXC ∗
LPO−LPOnointf median

LPO
))

3: δMXC ← checkBounds(δMXC)
4: δKAT ← (δresponse ∗ CKAT )
5: δKAT ← checkBounds(δKAT )
6: update params(δMXC , δKAT , (400− PHP ))
7: end procedure

new value to be within a min-max bound so that through-
put does not degrade alarmingly. A similar objective func-
tion can be realized for a memory constrained web server
by considering memory utilization. An underlying assump-
tion here is that the server’s CPU utilization is dominated
by the Apache Httpd server. In our setup, though Php-fpm
was used for dynamic content generation, we found the im-
pact of PhpMaxChildren on response time/throughput was
much smaller than MaxClients. This likely indicates that
the effect of PhpMaxChildren on CPU utilization of the VM
was marginal.
On the other hand, increase in response time implies the

server’s average request cycle time (response time + wait
time) is increased. We increase KAT proportional to the
δresponse time to offset increased cycle time, i.e., to keep a
connection alive for longer since the server is taking longer
time to respond to client requests. During experiments in
Fig. 2(b), it was found that the increase in optimal KAT

value (KAT intf
opt − KATnointf

opt ) during interference is sev-
eral times larger than δresponse time. Therefore, a constant
multiplicative factor (CKAT ) is used with δresponse time to
come up with the change in the KAT value. We empirically
determined the value of CKAT to be 3. For PhpMaxChil-

dren, we found performance improvement beyond a certain
value (400, for a VM with 2vcpus) is negligible. We there-
fore select two constant values of PHP for interference and
no-interference scenarios.
Implementation. IC2 currently has been implemented as
a Java application which combines the functionalities of Per-
formance Monitor and Config Manager described in Fig. 5.
One instance of IC2 is designed to handle an application
group as shown in Fig. 5, e.g. an application group may
consist of web server, database server, and e-mail server.
In current implementation, we focus on managing the web
server. IC2 uses remote scripts to fetch performance met-
rics from various levels of the monitored systems. It uses
Faban logs to collect application level metrics (in periodic
intervals of 5s), and uses sysstat utilities (inside WS VM)
for cpu and memory utilization. In the local testbed, we
also collect hardware counters from the hypervisor. Based
on the collected data and configured threshold values, it de-
tects if an interference has started or stopped. It then sends
reconfiguration commands to the Apache and Php servers.
A separate program was implemented to start and stop the
interference benchmarks in periodic intervals.
Redesigning Httpd. During initial testing with IC2, we
found that CloudSuite had significant increase in response
time and decrease in throughput immediately after a re-
configuration. This transient phase lasted between 30-60s
and was determined to be a limitation of Apache Httpd
server. In order to update configuration values, the server
has to restart all child proceses. This is essential because

Httpd internally assumes that configuration values are never
changed (read-only)—doing so allows it to avoid synchro-
nization overhead during request processing.

To avoid the penalty of restarting Httpd, we implemented
an online reconfiguration option for Httpd. The online re-
configuration option enables Httpd to gracefully change over
from old parameter values to new parameter values without
needing to shut down and restart all worker processes. We
noted that MaxClients is used only in Httpd master process
to control the number of worker threads. The children pro-
cesses (workers) are oblivious of MXC. Therefore MXC can
be updated in master (and subsequently propagated to chil-
dren) without requiring restart. KAT value is read at the
end of every request processing, therefore any change to it
is reflected in the next request. Assuming a relaxed consis-
tency model, we can modify KAT in master and propagate
the changes to children later.

We implemented a custom signal handler (SIGUSR2) and
an online reconfiguration command (apachectl reconfig-

ure) in the Httpd server (worker mpm) to initiate online re-
configuration of these two parameters. The signal is deliv-
ered to the master process by apachectl and later propa-
gated to children via Httpd’s Pipe of Death (POD) imple-
mentation. We also updated the Scoreboard structure to
store runtime values of MXC and KAT. The reconfiguration
decisions are implemented in server_main_loop() in master
and child_main() in children. Our implementation involved
adding/modifying 500 lines of code in current Apache code-
base (v2.4.3). With our implementation of online Httpd, the
server showed significantly less overhead of reconfiguration
as explained in the next section. The modified version of
Apache can be downloaded from [15].

5. EVALUATION
In this section, we evaluate the effectiveness of IC2 in

detecting and remediating interference. The high level ob-
jective here is to reduce the response time for the web server
during periods of interference. Therefore, if the average re-
sponse time after reconfiguration is lower than that before
reconfiguration, we consider IC2 to have achieved its objec-
tive. More specifically, we ask ourselves the following ques-
tions, individually for the local testbed and Amazon EC2:
i) Can IC2 successfully detect interference?
ii) How much improvement in response time can be obtained
by running IC2?
iii) What is the overhead of reconfiguration in IC2?

To quantify the performance change due to IC2, we com-
pare IC2 with the performance of an interference-agnostic
controller. We assume that an interference-agnostic con-
troller is able to achieve optimal parameter setting under
normal runs and does not react to interferences. We found
that for resource configurations equivalent to EC2 m1.large

instances, the optimal parameter values for no-interference
runs were < MXC = 650,KAT = 5, PMC = 50 >. For all
the experiments, we consider a CloudSuite workload with
550 concurrent clients which is below the saturation point
of the web server.
Interference Emulation. To emulate interference we started
the interference benchmarks with varying array sizes at dif-
ferent instants in time. To simplify implementation, we
consider a periodic interference behavior as opposed to a
stochastic behavior. Due to transient behavior of httpd-



basic immediately after reconfiguration, we found it difficult
to precisely evaluate benefits of IC2 with a bursty interfer-
ence. For our evaluations the interference benchmarks are
on for 240s followed by an off period of 240s. We selected
emulated interference to evaluate IC2 instead of natural in-
terference in EC2 primarily because of two reasons: 1) In-
terferences occur infrequently enough to make statistically
significant results difficult within a reasonable experimental
time. 2) The nature (intensity and duration) of interference
may change every time making it hard to draw compara-
ble results. We run LLCProbe with an array size of 20MB,
Dcopy with 20MB (also referred to as Dcopy-low) and Dcopy
with 1.5GB (Dcopy-high). On EC2, this synthetic interfer-
ence happened in addition to ambient interference in the en-
vironment. On the local testbed, we ensured that no other
VM, extraneous to our experiment, was running.
Co-location in EC2. In order to evaluate IC2 in EC2 we
needed to co-locate some of our VMs on the same machine
as the WS VM. This is necessary to emulate interference
on the web server. We iteratively started 10 EC2 instances
in batches (as described in [25]) and were able to success-
fully co-locate 2VMs after some trial and error. We found
that the co-located instances had sequential domids and were
able pass messages among themselves using xenstore (write
in one VM and read from another). We used this as veri-
fying evidence that co-location was achieved. Our results,
in themselves, are also secondary validation of co-location
since we found noticeable impact of interference on WS per-
formance. The co-located VMs on EC2 were hosted on a
Xeon-2650 machine having 8(16) physical(logical) cores and
20MB L3.
Baseline Formation. To form baseline observations for
both private testbed and EC2 we first configured their corre-
sponding web servers to the no-interference optimal settings.
These settings, with IC2 disabled, emulate an interference-
agnostic controller. We then used Faban to generate client
requests for a 1-hour run. During the run we started our
interference controller described above to generate periodic
interferences. The application metrics for CloudSuite (re-
sponse time and throughput) were collected at intervals of
5s. These metrics when plotted against time axis represent
performance of one baseline run. In general, we found that
interference had more performance impact in EC2 than in
local testbed. For this experiment, we reconfigured the WS
VM on the local testbed to match Amazon EC2’s m1.large
instances. To achieve noticeable impact, we had to use 4
threads of the interference benchmark on the local testbed
compared to 2 in EC2. We found that with this utilization
of the local server (6 of 12 hardware threads) the effects of
interference in local and EC2 were of comparable magnitude.
Similar to baseline measurements, we also ran CloudSuite

with IC2 enabled. In both testbeds, we evaluate IC2 under
two scenarios: one where Apache is reconfigured with tradi-
tional apachectl -k graceful command (httpd-basic) and
the other where our instrumented version of Apache is re-
configured online (httpd-online). We iteratively start 1-hour
of baseline run followed by 1-hour of IC2 with httpd-online,
and 1-hour of httpd-basic. This was repeated 16 times for
a total runtime of 48 hours (3 × 16). We restart the web
server between each 1-hour run.

5.1 Results

5.1.1 Improvement in Response Time
Fig. 9 shows the variation in Response time with Time in

local testbed and in EC2 for a set of representative runs. In
each plot, red vertical lines show the point on time axis when
an emulated interference is started and green vertical lines
show when interference is stopped. The blue vertical lines
show the point when IC2 reconfigured with httpd-online.
New parameter settings at each reconfiguration point is an-
notated as the three tuple |MXC|KAT |PHP |. It can be
seen that in general both httpd-online and httpd-basic are
able to reduce response time during interference. In case
of httpd-basic, there is a spike in response time following a
reconfiguration, an indication that Apache is restarting all
of its child processes. With httpd-online this spike is nearly
eliminated, although, some overhead remains due to upda-
tion of PhpMaxChildren. Interference detection is faster in
Local than EC2 since we use cache miss rate. Another in-
teresting fact is that the effect of interference persists longer
in EC2 even after emulated interference is stopped. This
happens for two reasons, i) ambient interference in EC2, ii)
max throughput in EC2 is lower than in the local testbed,
hence queued requests persist for longer in EC2.

To quantify improvement in response time, we analyze
response time during interference in two halves—a) From
onset of interference (red line in Fig. 9) upto 60 seconds is
considered first half. This is the period when interference
detection and reconfiguration take place effectively showing
overhead of IC2, specially in case of httpd-basic. b) From
60s after interference to stopping of interference (green line
in Fig. 9) is considered the second half. This is the steady
state performance of IC2 during interference.

We found that, across different interference types in EC2,
httpd-basic degraded response time by 5-10% in the first
half, but httpd-online improved response time by 3-10%.
This proves that the online version of Apache is able to
reconfigure faster. In local testbed, during the first half,
httpd-basic showed improvement between 5 and 19% while
httpd-online showed improvement between 20 and 25%. The
measurements are better in Local testbed compared to EC2
since interference detection happens faster. In steady state
or second half (60-240s from onset of interference), httpd-
online showed improvements of 21-29% in EC2 and 32-40%
in Local testbed (refer Fig. 10). The numbers for httpd-
basic are 18-22% in EC2 and 34-40% in Local. The steady
state performance of httpd-basic and httpd-online are com-
parable in local testbed, although httpd-online outperforms
httpd-basic in EC2. Overall IC2 showed higher improve-
ment in response time in local testbed since it was able to
compute δMXC and δKAT more precisely (no ambient in-
terference as in EC2). We find that the response time im-
provements are significant considering the simplicity of our
controller. It further establishes our point that, in a cloud
deployment, an application configuration manager must be
interference-aware. A summary of our results can be found
in Table 4.

5.1.2 Detection Latency
From the collected metrics we also measured how long it

takes for IC2 to detect interference in EC2 and in Local
testbed. We define detection latency to be time from the
starting or stopping of an emulated interference to the time
when IC2 reconfigures Apache server. In Fig. 9 these are the
times between a red line and the next blue line (we call this
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Figure 9: IC2 improves response time of a web server during phases of interference. Red vertical bars show
when an emulated interference is started and green vertical bars show when interference is stopped. The
blue vertical bars show the point when IC2 reconfigured with httpd-online. New parameter setting at each
reconfiguration point is annotated as the three tuple MXC,KAT,PHP. Baseline run implies IC2 is disabled.
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Figure 10: Response time with IC2 for various interferences. Numbers represent percentage improvement
from baseline RT.

Table 4: Summary of IC2 Results. Response time
numbers are %change from baseline runs across in-
terference benchmarks. FH:=first half, SH:=second
half, INTF:=interference, NI:=no-interference

Response Time
(%change)

Detection
Latency

httpd-online httpd-basic
FH SH FH SH INTF NI

Local 20-25↓ 32-40↓ 6-19↓ 34-40↓ 15s 10s
EC2 3-10↓ 21-29↓ 5-10↑ 18-22↓ 20s 65s

interference detection latency) or time between a green line
and the next blue line (no-interference detection latency).
We found that in local testbed, median values for interfer-
ence and no-interference detection latencies are 15s and 10s
respectively. In comparison, IC2 detects interference in EC2
with a median latency of 20s. Detection of no-interference
in EC2 takes much longer—a median value of 65s. This hap-
pens since effect of interference persists much longer in EC2
as described in the previous section (Fig. 9(b)). Our future
work includes finding ways to reduce detection latency even
further in both testbeds.

5.1.3 Classifier Accuracy
To measure the accuracy of our classifier we apply it on

the data collected from our experiments in Section 5. For
each experiment type (httpd-online and httpd-basic), we
create a test set comprising measurements collected by IC2

in that experiment. Due to space constraints, we present
only the first type here. We label the test data based on its
timestamp and our knowledge of when an emulated inter-
ference is started and stopped. Data from the start(stop)
of an interference upto 30s is labeled Transient, rest are

labelled according to which interval it is (Interference or
No-interference). Note that this labeling does not take into
account ambient interference in EC2 and therefore may man-
ifest as poorer precision, although the classifier works well in
practice as seen in results from Section 5.1.1. We found the
Transient class had significant overlap with both Interfer-
ence and No-interference in the training data, as a result it
had very low precision. But since IC2 does not perform any
reconfiguration in this state, the cost of misclassification is
zero. We therefore ignore the results for Transient and focus
primarily on interference detection.
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Figure 11: Accuracy
of Interference Detection
with varying cost matri-
ces. The cost values 5 :
1 : 10 are used in produc-
tion.

During training phase,
it was found that with
default cost for misclassi-
fication, the decision tree
had significant number
of False Negatives (FN).
This causes IC2 to per-
form badly, e.g. using
baseline parameter set-
ting while in interfer-
ence may have signifi-
cant performance degra-
dation and vice versa.
We tried several combi-
nations of cost matrices
and selected the one with
lowest miss rate. Fig.
5.1.3 shows the interfer-

ence detection rate of our classifier with different cost matri-
ces for httpd-online test data. Here a cost value of {a : b : c}



represent a 3×3 cost matrix, a is the cost of No-interference
(NI) detected as Interference (I), b is the cost of Transient
misclassified as any other class, c is the cost of (I) classified as
(NI), and cost of correct prediction is 0. We define Miss Rate
as (I classified as NI + NI classified as I)/Total Samples. It
can be seen that, initially with default cost of 1 : 1 : 1, miss
rate was 12%, but with higher cost values miss rate reduced
to 6%. We used the cost values of 5 : 1 : 10 in our produc-
tion runs based on the fact that response time penalty for
misconfiguration in (I) is much higher than cost of miscon-
figuration in (NI). The largest percentage of FNs (98.7%)
arise from NI being detected as I (with cost 10 : 1 : 10).
This happens since impact of interference persists longer in
EC2 as seen in Fig. 9(b) (but our labeling does not account
for this). This also manifested as lower precision of (I) and
lower recall of (NI). In general, our interference detection
achieved 89% recall and 73% precision.

5.1.4 Cost ofIC2

The cost of IC2 can be defined in terms of two metrics—
(a) Apache performance immediately after a reconfiguration,
and (b) execution cost of IC2. We already found in Section
5.1.1 that IC2 with httpd-online improves response time
during first half, both in EC2 and in private testbed. This
indicates httpd-online is able to reduce cost of reconfigura-
tion significantly (compared to httpd-basic, response time
improved by upto 17%). Note that IC2 is trained offline,
therefore it does not have any runtime cost for building the
classifier. Since the classifier has only 3 attributes, the tree
has a simple structure and classification decision is made in
the order of 10 comparisons. This is insignificant compared
to our measurement period of 5s, which is also the frequency
at which the classifier is invoked. Therefore, the execution
cost of IC2 is negligible.

5.2 Discussion
How generic is the knowledge base in IC2?
We believe the knowledge base (KB) in Table 3 to be appli-
cable to thread-pool based server architectures (e.g. Apche,
Glassfish, WebSphere). In a small scale experiment with
Glassfish, we found that it has sensitivity to thread-pool
size (similar to MXC). Our KB, however, is not applicable
to event-driven architectures (e.g. Nginx). We are currently
conducting further experiments to understand relevant con-
figuration parameters for such event-driven servers.
How expensive is it to generate the knowledge base?
The knowledge base in IC2 can be created empirically by
systematically varying important parameters as described
in Sec. 3.2. It can be done in parallel with the load test-
ing phase of web applications. Note that the KB does not
include precise values of parameters, rather IC2 can figure
out the parameter values depending on runtime conditions,
including interference. Once created, it can be used for a
given application and middleware distribution irrespective
of deployment (assuming similar architectures, e.g. x64 or
x86).
Can IC2 handle other types of interference?
Network interference is another major problem that seri-
ously affects performance of cloud applications. IC2 can
also be useful in mitigating some of the effects of network
interference through application reconfiguration. In our pre-
liminary experiments, we simulated an environment where
bandwidth available to the WS-VM became constrained (by

upto 20%) due to a co-located VM using up a major share of
the network. We observed, as the level of network interfer-
ence increases (i.e. the available bandwidth to WS-VM re-
duces) the response time of the webserver sharply degrades.
IC2 can improve response time by employing an admission

control mechanism, which is equivalent to reconfiguring the
MaxClients parameter in Apache to a lower value. We em-
pirically verified that optimal MXC setting with network in-
terference is lower than no-interference optima [16]. IC2 can
be trained to use response time along with packets pruned
from send-buffer as a trigger to detect such network inter-
ference.

6. RELATED WORK
The issue of interference in virtualized environments has

been pointed out by several researchers [28, 8, 27, 17] and
some efforts have been made for providing better resource
isolation [17, 9, 27]. However, due to the intrusive nature of
these changes and the impact on performance, today’s pro-
duction virtualized environments still do not provide iso-
lation for cache usage and memory bandwidth, which are
relevant to the results that we presented here. Existing so-
lutions primarily try to reduce the probability of occurrence
of interference by using better scheduling or consolidation
techniques [7, 4, 20, 18]. All of these are beyond the control
of an end-user. In this paper, we look at the problem of in-
terference from a customer’s perspective and try to suggest
simple solutions to mitigate it in a non-intrusive manner;
by tuning application level parameters in enterprise middle-
ware.

In one of the early works on tuning of Apache servers [13],
Liu et al. showed that MaxClients exhibits a concave up-
ward behavior on response time—an observation that led to
the design of a tuning agent using hill-climbing algorithms.
Our results also highlight this behavior of MaxClients, but
we find that the gradients of the curves change frequently
due to interference and dependence on other parameters. In
another work [5], Diao et al. presented a multi-input multi-
output (MIMO) feedback control for optimizing web server
performance, however, their controller only considers work-
load intensity—one of the many challenges we present in our
paper. A more recent work [35] looks into automatic gener-
ation of configuration files in multi-tier web servers. All of
these operate in non-virtualized environments.

The question of how to performance tune applications that
are executing in virtualized environment has been addressed
by several prior works. Such approaches were applied to con-
figuration of software systems like Apache server [32], appli-
cation server [33], database server [31] and online transaction
services [3, 35]. Some of these consider coordinated tuning of
resources allocated to VMs and associated application con-
figurations [31, 2], an approach which requires changes to
the hypervisor.

We believe we are the first show the challenges of ap-
plication configuration in the presence of interference and
present mitigation actions. Our evaluations points out the
non-linear, discontinuous nature of the performance space
and the difficult-to-model dependencies between configura-
tion parameters and therefore it is unlikely that an existing
configuration solution will work for all environments in a
dynamic cloud environment.

7. CONCLUSION AND FUTURE WORK



In this paper, we investigated one of the major sources of
performance variability in clouds, namely, interference and
presented ways in which an end-customer can mitigate its
ill-effects. More specifically, we evaluated the frequency and
impact of interference in public clouds like Amazon EC2.
Our experiments suggest that performance anomaly due to
interference is a reality. We designed and evaluated an
interference-aware application configuration manager (IC2),
which is able to detect interference and find suitable param-
eter values during these phases. Our solution reduced ap-
plication response time by upto 29% in EC2 and 40% in a
private cloud testbed during periods of cache interference.
Our future work is geared towards achieving two objec-

tives: i) Reducing detection latency for reconfiguration so
that IC2 can deal with smaller durations of interferences
gracefully, and ii) Dealing with various other kinds of inter-
ferences.
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