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Abstract—Intrusion detection systems (IDS) are an impor-
tant component to effectively protect computer systems. Misuse
detection is the most popular approach to detect intrusions,
using a library of signatures to find attacks. The accuracy of
the signatures is paramount for an effective IDS, still today’s
practitioners rely on manual techniques to improve and update
those signatures. We present a system, called pSigene, for the
automatic generation of intrusion signatures by mining the vast
amount of public data available on attacks. It follows a four-
step process to generate the signatures, by first crawling attack
samples from multiple public cybersecurity web portals. Then,
a feature set is created from existing detection signatures to
model the samples, which are then grouped using a biclustering
algorithm which also gives the distinctive features of each
cluster. Finally the system automatically creates a set of
signatures using regular expressions, one for each cluster. We
tested our architecture for SQL injection attacks and found
our signatures to have a True and False Positive Rates of
90.52% and 0.03%, respectively and compared our findings
to other SQL injection signature sets from popular IDS and
web application firewalls. Results show our system to be very
competitive to existing signature sets.

Keywords-web application security; signature generalization;
biclustering; SQL injection;

I. INTRODUCTION

Network intrusion detection systems (NIDS) are an im-

portant and necessary component in the security strategy

of many organizations. These systems continuously inspect

network traffic to detect malicious activity and when this

happens, send alerts to system administrators. One type

of NIDS, called misuse-based detector, uses signatures of

attacks to inspect the traffic and flag the malicious activity.

But a potential problem faced by these signature-based NIDS

is that as new attacks are created and as new kinds of benign

traffic are observed, the signatures need to be updated. The
current approach to this process is manual. Consequently,

keeping them updated is a Herculean task that involves

tedious work by many security experts at organizations

that provide the NIDS software. A big drawback of the

signature-based schemes that has been pointed out by many

researchers and practitioners [20], [9] is that due to their

relatively static nature, they miss zero-day attacks. These

are attacks that target hitherto unknown vulnerabilities and

consequently, no signature exists for such attacks. Our goal
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in this work is to automatically generate signatures by

performing data mining on attack samples. Further, we aim

to create generalized signatures; “generalized” implies the

signatures will be able to match some zero-day attacks as

well, not just the attack samples that it has been trained on.

We use SQL injection attacks for developing and demon-

strating our method.

We look at the rulesets of three popular misuse-based

detectors—Snort [37], Bro [28], and ModSec [41]. From

these, we observe the reflection of the ad hoc and manual

nature of the signature creation (and update) process. We

observe that many rulesets include signatures that are too

specific, many are disabled by default, and several show

clear overlaps. For example, 70% of the almost 20,000

signatures included in the ruleset for Snort (snapshot 2920)

are disabled by default. Also, several sets of signatures

contained in the Snort ruleset file sql.rules could be

merged as one. For example, signatures with identifiers

19439 and 19440 have the same regular expression, except

for the last character and hence could easily be merged. Ad-

ditionally, we found multiple examples of signatures using

very simple regular expressions, which increases the risk of

generating false positive (FP) alerts. As an example, several

rules in Snort use the regex .+UNION\s+SELECT to detect

SQL injection attacks, by searching for the SQL statements

UNION and SELECT. The problem is that such search might

be too simple as these statements are also commonly found

in benign database queries from web applications.

In this paper, we propose a solution for the automatic

creation of generalized signatures represented as regular

expressions, by applying a sequence of two data mining

techniques to a corpus of attack samples. The goal is to

make the process less manual (and tedious) and target

detection of zero-day attacks. We call our solution pSigene
(pronounced psy-gene), which stands for probabilistic

Signature generation. pSigene follows a four-step process. In

the first step, it crawls multiple public cybersecurity portals

to collect attack samples. In the second step, it extracts a rich

set of features from the attack samples. In the third step,

it applies a specialized clustering technique to the attack

sample (training) data collected in step 2. The clustering

technique also gives the distinctive features for each cluster.

In the last step a generalized signature is created for each

cluster, using logistic regression modeling, which is trained

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.21

45

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.21

45

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.21

45



both on attack sample data (from step 2) and some benign

traffic data. Logistic regression gives a probabilistic classifier

— given a new sample, it can tell with a probability value

what is the likelihood of the sample belonging to any given

cluster.

Regular expressions (regexs) are a structural notation for

describing similar strings. Regexs are a powerful tool used to

define languages, per the automata theory definition. Current

NIDS have incorporated the usage of regexs to generalize

signatures, so variations of attacks can be detected. We adopt

the use of regexs for our generalized signatures.

Most of the efforts to date to automate the signature

creation process has been related to malware activity [44],

[19], such as for worms and botnets. This landscape is

different from ours in that we target attack steps that have

a small “distance” from legitimate activity. Consider for

example, an SQL injection attack in which a small variation

in the where clause, such as a tautology 1==1, followed by

a comment demarcation symbol “;”, can cause a legitimate-

looking SQL query to become an attack sample. Second, we

consider activities where the feature set of each sample is

very rich. For example, we first started with 477 features for

SQL injection attacks, corresponding to various keywords,

symbols and their relative placements. The rich feature set

poses challenges and constraints on the kinds of machine

learning techniques that can be used.

We demonstrate our solution specifically with SQL in-

jection attacks (shortened as SQLi attacks). Although there

exist elegant preventive solutions to solve this problem,

like parameterizing SQL statements [4], dynamic bracket-

ing [38], taint inference [36], and escaping special SQL

characters [18], in practice it seems elusive to completely

implement such solutions. SQLi attacks have been very

dominant in the last few years, being used in high-profile

cases such as intrusions to large technology organizations

[14], government agencies [2], and software companies [23],

[8]. Signatures to improve detection mechanisms, such as

what pSigene delivers, are necessary as they complement

prevention mechanisms.

pSigene effectively suggests the number of signatures

necessary to detect the attacks while helping to reduce the

size of each signature, in terms of the number of features

necessary to define each signature. In our experiments,

pSigene collected a set of 30,000 attack samples from which

we manually extracted a set of 159 features and then pSigene
created nine signatures, all but one of which required 14

or fewer features. For testing, we used the popular SQL

injection tools SQLmap [7], Arachni [1] and Vega [39].

The experimental results showed that our signature set was

able to detect 86.53% of all attacks while only generating

0.037% of false positives. This is a higher true positive rate

for SQLi than Snort (79.55%) and Bro (73.23%), which use

manually created and progressively refined signatures. Bro

had no false positive while Snort had about 5X false posi-

tives compared to pSigene. ModSecurity however performed

better than pSigene with a true positive rate of 96.07%, and a

false positive rate slightly worse (0.0515% compared to our

0.037%). We also compared our technique to an existing

signature generation algorithm [29] and found that its TPR

was very low but it had no false positive at all.

The contributions of our work are:

1) An automatic approach to generate and update signa-

tures for misuse-based detectors.

2) A framework to generalize existing signatures. The

detection of new variations of attacks is achieved by

using regular expressions for the generalized signa-

tures.

3) We rigorously benchmark our solution with a large

set of attack samples and compare our performance to

popular misuse-based IDS-es and a web application

firewall. Our evaluation also brings out the impact

of practical use case whereby periodically new attack

samples are fed into our algorithm and consequently

the signatures can be progressively, and automatically,

updated.

The remainder of this paper is structured as follows:

Section II presents the threat model used along with the

different components for the proposed framework. Section

III describes the dataset used to evaluate pSigene, the evalua-

tion results along with a comparison to existing open-source

rulesets and to another signature generation algorithm. We

also determine the performance implications of using our

approach. A discussion follows in Section IV about the

usage scenarios and limitations of our approach. Then we

give an overview of previous approaches to automatically

generating signatures and detecting attacks through inter-

actions between web services and databases. We end with

some conclusions and future work.

II. DESIGN

The goal of pSigene is to generate generalized signatures

from traces of attack samples and non-malicious network

traffic. As shown in Figure 1, the generation of the signatures

involves four phases. First multiple public cybersecurity

portals on the Internet are crawled to collect attack samples.

In the second step, a set of features is extracted from the

attack samples. The third step calls for the sample set to be

grouped using a clustering technique. This step also gives

the features that distinguish each cluster. In the final step,

a generalized signature is created for each cluster, using

logistic regression modeling. The process allows to create

signatures that represent a set of similar attacks, reducing

the number of rules handled by a NIDS.

To develop our system, we consider SQL injection (SQLi)

attacks. They have been a very relevant and popular attack

vector for the last few years. IBM [16] reported that in

2012 the majority of the security incidents detected on

their monitored clients around the world were attributed
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Figure 1. Components of the pSigene architecture, a webcrawl-based creation process for SQLi attack signatures. For each component, there is a reference
to the section providing further details. It is shown below each component.

to SQLi. Also, injection attacks were the primary cause of

incidents, making SQLi a primary attack vector for hackers.

To consider this attack type, our threat model assumes

attacks against web applications, connected to a database

(commonly known as three-tier system). An attacker starts

by having a publicly accessible description of the system and

then browses the web application, looking for forms where

she can provide user input and then this input can serve as

parameters for an SQL statement.

A. Webcrawling for Attack Samples

The first phase is to crawl the web to collect attack

samples that later are used to generate the generalized signa-

tures. The objective is to take advantage of the multitude of

public web sources available that provide attack samples.

This approach looks to proactively collect samples from

multiples web sources, which is the opposite of a more

common strategy to use honeypots to collect attack samples.

We chose to proactively collect samples because we are

targeting slow moving attacks (such as SQLi), they present

a greater diversity than typically handled by honeypots, the

distance between legitimate requests and malicious requests

is often quite small, and above all, for a purely logistical

reason — to speed up the data collection. Our approach

was facilitated in practice by the wide availability of well-

maintained data sources of SQLi attack samples, some of

which provide APIs to enable automated sample collection.

A practical point here is that what we see during the web

crawling is the entire HTTP request payload and we extract

the SQL query from it by leaving out the HTTP address,

the port, and the path (typically a ? indicates the start of the

query string).

To collect the attack samples, we crawled different cy-

bersecurity portals between April and June of 2012. Each

portal or site is a public repository of computer security

tools, exploits, and security advisories, where security pro-

fessionals and hackers share examples of different attacks.

Examples of cybersecurity portals include Security Focus

Table I
EXAMPLES OF SQLI VULNERABILITIES PUBLISHED IN JULY 2012.

VULNERABILITY CVE ID

Joomla 1.5.x RSGallery 2.3.20
component

CVE-2012-3554

Drupal 6.x-4.2 Addressbook mod-
ule

CVE-2012-2306

Moodle 2.0.x
mod/feedback/complete.php
2.0.10

CVE-2012-3395

RTG 0.7.4 and RTG2 0.9.2
95/view/rtg.php

CVE-2012-3881

[35], the Exploit Database [34], PacketStorm Security [27],

and the Open Source Vulnerability Database [13]. This

last site also provides its own search API, making it easy

for security practicioners and researchers to automate the

collection process of data on those sites. For sites that do

not provide such capability, one can use the APIs provided

by search engines, such as Google custom search API [15].

There are also open forums and mailing lists where users

share attack samples. In our experiments, we collected over

30,000 SQLi attack samples and used these as our dataset to

generate the generalized signatures during the experiments.

It is important for our signature generalization approach

to work effectively that the sample collection be as com-

prehensive as possible. As one heuristic-based check for

this, we manually inspected the high and medium risk SQL

injection vulnerabilities published during the month of July

2012 in the National Vulnerability Database [25] for web

applications using the MySQL database — approximately

30 in number. In each case, we found examples of SQLi

attacks in our dataset that could be launched against each

of the web applications reviewed. Table I includes some

examples of the SQLi vulnerabilities published in July 2012

and for which, we found attack samples in our collected

dataset.

Once the attack samples are collected, we use a set of

5 transformations, including uppercase → lowercase, URL
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Table II
SOURCES OF SQLI FEATURES.

FEATURE
SOURCE EXAMPLES DESCRIPTION

MySQL create Words are reserved
Reserved insert in MySQL and require
Words delete special treatment

for use as identifiers
or functions.

NIDS/WAF in\s*?\(+\s*?select SQLi signatures from
Signatures \)?; popular open-source

[ˆa-zA-Z&]+= detection systems
are deconstructed
into its components.

SQLi ’ ORDER BY [0-9]-- - Common strings
Reference /\*/ found in SQLi
Documents \" attacks, shared by

subject matter experts.

encoding→ ascii characters, and unicode→ ascii characters.

B. Feature Selection

We characterize each sample using a set of features, which

will be used as input for the clustering algorithm. To create

the set of features, we use three sources that are domain-

specific for the SQLi attack scenario: (1) SQL reserved

words [26], (2) SQLi signatures from the Bro and Snort

IDS and the ModSecurity web application firewall (WAF),

and (3) SQLi reference documents [33], [6]. A summary of

the feature sources is presented in Table II.

The SQL reserved words are used as features since they

represent identifiers or functions, necessary to create SQL

queries like in SQLi attacks. Examples of reserved words

used to create the feature set for SQLi attacks include

SELECT, DELETE, CURRENT_USER, and VARCHAR. For

this paper, we limited the feature set to only include the re-

served words for the MySQL database management system,

thus excluding special-purpose keywords used in Microsoft

SQL and other non MySQL databases.

We also looked at existing signatures for features since

the signatures are the result of a usually long optimization

process, so it could be assume that these signatures have

components (strings inside a signature) that can be used as

features to help identify attacks. We did not use a whole

signature as a single feature, but rather divided the signature

into logical components and each component then was used

as a feature. To achieve this, we used metacharacters such

as parentheses () and the alternation operator | that delimit

logical groups and branches inside a regular expression.

As an example, let’s consider a signature taken from

the ModSecurity Core Rule Set (CRS), defined as a

regular expression with seven case insensitive groups,

joined by the alternation operator: (?:<group 1>)|
. . .|(?:is\s+null)| (?:like\s+null)|
. . .|(?:<group 7>). In this case, we created seven

features, one for each regex group in the signature.

Our choice allowed for our system to also consider

the relative position of SQL tokens among them, when

creating the features. As an example, feature =[0-9%]+
only considers a number if it is preceeded by the = character.

All features included in the set were of numeric type, each

one measuring the number of times a feature was found

in an attack sample. The resulting feature set used in the

experiments had 159 entries (from an initial set of 477),

after removing those features that were not found in any of

the samples used in the training phase of the system. The

removed features also corresponded to cases for attacks to

non-MySQL databases (not considered in our experiments)

or because of multiple features looking for similar SQLi

strings (overlapping features).

70 (out of 159) entries in the resulting feature set per-

formed as binary features. That is, the value for each of

these features was either one (confirming the existence of

the corresponding SQL token or string in a sample) or a

zero (non existence) in each of the attack samples.

The process of creating the feature set might at first blush

seem intensely manual. But in our experience, the process

was automatable for the most part. Both the reserved words

and the fragmentation of the existing signatures (rows 1 and

2 in Table II) could be automated since they follow from

unambiguous rules. In the case of analyzing the reference

documents, this was partially automated and served more to

validate features created with the other sources. Additionally,

we believe that the feature space was exhausted so the

creation of the feature set should be considered a one-time

task, for each kind of attack (such as SQLi).

We also considered using only binary features, i.e., the

binary flag whether a feature is present or absent in a sample,

rather than its count. However, this did not produce good

results.

Each attack sample that provides the input to the cluster-

ing algorithm later used is characterized by its values for

the 159 features. The resulting data is organized in a matrix

where the samples are the rows of the matrix and the features

are the columns. The size of the matrix was then 30,000 by

159 and can be classified as sparse because 85% of its cells

were populated with zeroes. About 6% of its cell values

were ones.

C. Creating Clusters for Similar Attack Samples

We use the biclustering technique [30] to analyze our

matrix, which is popularly used in gene expression data

analysis. The objective of this technique is to identify

blocks in the sample dataset built by a subset of features to

characterize a subset of samples. Given a set of m rows and

n columns (i.e., an m×n matrix), the biclustering algorithm

generates biclusters - a subset of rows which exhibit similar

behavior across a subset of columns. To achieve this, the

biclustering technique first clusters the rows (samples) of
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the matrix and then clusters the columns (features) of the

row-clustered data.

To formalize the concept of bicluster, a sample set D is

given as a |N | × |F | matrix where N is the set of samples

and F is the set of features. The elements dij of the matrix

indicate the relationship between sample i and feature j.

Then, a bicluster BRC is a block that includes a subset of

the rows R ⊆ N and a subset of columns C ⊆ F , sharing

one or more similarity properties.

The objective of using biclustering is to identify subsets

of attack samples which share similar values for a subset

of features. Each subset of samples (cluster) may use dif-

ferent sets of features. We want to create a signature for

each bicluster and the biclustering technique allows using

different features for different biclusters. This enables us to

create compact and distinctive signatures for the wide variety

of SQLi attacks. The biclusters are nonoverlapping (i.e., no

two biclusters have spatial overlap) and nonexclusive (i.e.,

two biclusters may use overlapping set of features) (Figure

2). The heatmap shows eleven clusters that are formed, by

visual analysis of the color patterns. A contiguous region

with one color pattern constitutes one cluster. Note that not

all features are used in the cluster formation; thus, there are

some gaps for the feature dimension when you consider all

the clusters. Note also that not all samples are covered in a

cluster, indicating that some attack samples are considered

so different that they do not fit within any cluster. This may

indicate that our training set has some noise in it. Being able

to deal with some noise in a training set is an important

property for any machine learning algorithm and we are

heartened to see that that is the case with pSigene.

We use a simple approach to achieve the biclustering

technique, performing a two-way hierarchical agglomerative

clustering (HAC) algorithm, using the Unweighted Pair

Group Method with Arithmetic Mean (UPGMA). The way

biclustering worked is first it did a clustering of the samples

and then within each cluster, it clustered by the features.

Thus, it identified what were the discriminating features for

each cluster.

The UPGMA algorithm produces a hierarchical tree,

usually presented as a dendrogram, from which clusters

can be created. It works in a bottom-up (agglomerative)

approach by first partitioning the sample set of size N into

N clusters, each one containing a single sample. Then, the

Euclidean pairwise distance is calculated among the initial,

single sample clusters in order to merge the two closest ones.

After the first round of paired clusters finishes, UPGMA

is used to recursively merge the clusters. At each step, the

nearest two clusters are combined into a higher-level cluster.

The distance between any two clusters A and B is taken to

be the average of all distances between pairs of objects ”x”

in A and ”y” in B. This biclustering process is repeated

until a single cluster containing all the samples is formed.

Note that this is just the termination point from biclustering;

Table III
FEATURES INCLUDED IN SIGNATURE 6

FEATURE
NUMBER FEATURE (Regular Expression)

25 =
37 =[-0-9\%]*
53 <=>|r?like|sounds\s+like|regex
36 ([ˆa-zA-Z&]+)?&|exists
28 [\?&][ˆ\s\t\x00-\x37\|]+?
32 \)?;

its results will guide us to pick the multiple clusters as we

explain below.

The results from applying the biclustering technique to the

webcrawled dataset are presented as a heat map in Figure

2. On each axis, the corresponding dendrograms are also

shown. The heat map shows the graphical representation of

the reordering of the matrix |N |×|F | into a set of bi-clusters.

Each bicluster is represented as an area of similar color

as the heat map simultaneously exposes the hierarchical

cluster structure of both rows and columns, as explained in

[10]. Each column in the matrix is standardized as follows:

the statistical mean and standard deviation of the values is

computed. The mean is then subtracted from each value and

the result divided by the standard deviation. As a value is

closer to the mean, it is shown with the black color in the

heat map. The highest and the lowest values are shown in red

and green, respectively. Figure 2 also shows the dendrograms

produced by the HAC algorithm for both rows (sample set)

and columns (feature set).

To validate the accuracy of the HAC algorithm, we also

calculated the cophenetic correlation coefficient for each

dendrogram. The cophenetic correlation for a cluster tree

is defined as the linear correlation coefficient between the

cophenetic distances obtained from the tree, and the original

distances (or dissimilarities) used to construct the tree. Thus,

it is a measure of how faithfully the tree represents the

dissimilarities among observations. In our experiments, we

found the cophenetic correlation coefficient value of 0.92, a

promisingly high number.

Ultimately, the above-mentioned explorations of the de-

sign space required visual inspection of multiple heatmaps

rather than the alternative: use of multiple security experts

and an almost zen master-like grasp of regular expressions.

D. Creation of Generalized Signatures

From each bicluster bj , we create a signature Sigbj which

characterizes the samples in that bicluster, plus is more

generalized. Specifically, in our solution, a signature Sigbj
is a logistic regression model built to predict whether an

SQL query is an attack similar to the samples in cluster bj .

Logistic regression is a very popular classification method

since the output values for the hypothesis function, lay in

the range between 0 and 1. These values are interpreted as

the estimated probability that a sample belongs to a class.
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Figure 2. Heat map with two dendrograms of the matrix data representing the samples dataset. The 30,000 attack samples are the rows and the 159
features are the columns. The heat map also shows the eleven biclusters selected. Signatures were not produces for biclusters 9 and 10 as they were ’black
holes’ (did not contained sufficient training data).

Each bicluster bj is defined by a set of features Fj and

a set of samples Sj . We then create the corresponding

signature Sigbj of each bicluster by using the features as the

variables in the hypothesis function and training this function

with the samples from the bicluster, as well as normal traffic.

pSigene calculates the parameters Θj (which is a vector

of individual parameter values), using the labeled data of

attack samples from cluster bj as well as benign network

traffic data. The intuition behind the calculation of Θj is

that it should minimize the errors in the labeled training set.

Having calculated Θj , let us see how pSigene would work

during the operational phase (the test phase). When a sample

i is available to pSigene, to determine if it belongs to attack

class j, it calculates the value of the hypothesis function:

hθ(Fij) = g(ΘT
j Fij)

where Fij represents the values of sample i for the feature

set Fj . We use for g the sigmoid function which is defined

as:

g(z) =
1

1 + e−z

This gives a value between 0 and 1 and is interpreted as

the probability that the test sample i belongs to attack class

j.

We used the Preconditioned Conjugate Gradients (PCG)

method [11] to find the optimal parameters Θ of the regres-

sion model for each bicluster.

As an example of how we used logistic regression in the

SQL injection attack scenario, consider a bicluster b6 ob-

tained after running the biclustering algorithm. This bicluster

has a set S6 of 2, 741 samples and a set F6 of the features

listed in Table III. After training with the set S6 (attack

class) and one day of non-malicious traffic (other class), we

compute the parameters Θ6 of the generalized signature for

bicluster S6:

ΘT
6 = −3.761054 + 0.262131f6,25 + 0.262131f6,37

+ 0.261463f6,53 + 0.261584f6,36

− 0.117270f6,28 + 0.708324f6,32

III. EVALUATION

We implemented pSigene using the popular Bro IDS and

evaluated it along the signatures in three other IDSes by

using SQL attack samples and benign web traffic. We also

compared our technique to another proposed algorithm for

signature generation.

A. SQLi Signature Sets

We analyzed three different sets of SQLi signatures, taken

from two popular open-source IDS (Snort and Bro) and

one web application firewall (ModSec). A summary of the

different signatures used in the evaluation is presented in

Table IV. The fact that some of the SQLi rules are disabled

by default in some of the IDSes may indicate the perception

that there exists overlaps between rules. The high usage of

regex is because it holds the promise that a regex will be able

to match a wide set of attacks. This observation motivated

us to build on regex’s in choosing the features in pSigene.

A description of each signature set follows:
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Table IV
COMPARISON BETWEEN DIFFERENT SQLI RULESETS.

RULES VERSION NUMBER SQLi RULES USAGE
DISTRIBUTION SQLi RULES ENABLED OF REGEX

Bro 2.0 6 100% 100%

Snort Rules 2920 79 61% 82%

Emerging 7098 4231 0% 99%
Threats

ModSecurity 2.2.4 34 100% 100%

Bro A network analysis framework, Bro can be used as

a signature-based IDS. It comes with a set of signatures to

perform low-level pattern matching. We analyzed the 6 SQLi

rules present on Bro v2.0 [28] to detect SQLi attacks. All

six of the rules make extensive usage of regular expressions.

Snort / Emerging Threats (ET) Snort is an open source

network IDS that performs packet-level analysis and comes

with its own ruleset. Emerging Threats is an open source

project that publishes detection rulesets for IDS such as

Snort. For our experiments, we merged Snort version 2920

[40] and ET version 7098 rulesets [12]. Over 98% of those

rules use simple regular expressions.

ModSecurity (shortened as “ModSec”) is a web applica-

tion firewall (WAF) used to protect Apache web servers from

attacks such as SQLi. The OWASP ModSecurity Core Rule

Set (ModSec CRS) project is an open-source initiative to

provide the signatures used by ModSecurity to detect attacks

to web applications. We analyzed CRS version 2.2.4.

Snort and Bro use a deterministic approach to handle

the signatures. In other words, these systems produce an

alert only if all the requisites defined in a signature are

met. In contrast, ModSecurity takes a probabilistic approach

and uses a scoring scheme where signatures are weighted

and can contribute to determine the level of anomaly for a

particular trace.

The average length of the 6 signatures (regular expres-

sions) found in Bro was 247.7 characters (max: 429, min:

27). Meanwhile, regular expressions in ModSecurity had an

average length of 390.2 characters (max: 2917, min: 28) and

in Snort were 27.1 (max: 40.1, min: 5).

For all the experiments presented in this paper, we con-

sidered only those signatures that used or included regular

expressions, which was the overwhelming majority of the

rules. We did this to allow for a fairer comparison between

pSigene and the other IDSes, since pSigene uses regular

expressions for its features.

B. Datasets

For training, we used the 30,000 attack samples collected

by crawling public sources (as detailed in Section II-A) and

240,000 HTTP samples for normal traffic. We used three

test datasets to evaluate the performance of the different

signature sets, one to determine the FPR and two for the

TPR. The test dataset used to compute FPR corresponds to a

1-week network trace at a university institution. We captured

all HTTP traffic to the main web servers at the university,

including the institutional web servers, the registration and

payment servers, and the web interface for the mailing

servers. The network trace amounts to 4.53 GB and included

over 1.4 million HTTP GET requests. Although no ground

truth existed for this trace, we ran it through all three

signature sets and manually reviewed the alerts generated.

All alerts were false positives; therefore we concluded no

malicious attack was included in the trace. Also, no incidents

were reported during this time by the network’s managers.

A second testing dataset was used to compute the TPR

of all signature sets. We generated this testing dataset by

running SQLmap [7], a popular SQL injection scanning tool,

against a vulnerable web application [43] running Apache

Tomcat and MySQL database. SQLmap was launched

against the application which contained 136 vulnerabilities,

triggering the scanning tool to generate over 7200 attack

samples. To collect this testing dataset, we set up an isolated

network which only had the test traffic and thus the traces

were not contaminated with other traffic.

A third testing dataset was created to further determine

the TPR of all the signature sets. Using two tools, Arachni

[1] and Vega [39], we generated another SQLi dataset of

8578 samples and used it to test the detection rate (TP)

of all the signatures sets. We will refer to the Arachni and

Vega together as the Arachni set since we do not present the

results separately for them due to space reasons and because

they provide similar insights. The use of three different

tools to generate the TPR testing sets, with their different

methods for generation of attack samples, was important to

our evaluation strategy to assess the generality of pSigene
in detecting a variety of SQLi attacks.

C. Implementation in Bro

To run our experiments, we implemented the signatures

generated by pSigene into the Bro IDS and then instructed

Bro to use only our signatures and not its own. To achieve

this, we coded a function count_all() that accepted as

input two parameters, a regular expression and a string, and

returned the number of times the regular expression was

found in the string. pSigene is invoked by Bro from its

upper policy layer, which is analogous to where Bro’s own

signatures reside.

D. Experiment 1: Accuracy and Precision

We performed the evaluation separately with seven sig-

natures (corresponding to seven biclusters, labeled 1 to 7

in Figure 2) and with nine signatures (adding biclusters 8

and 11 to previous set of seven biclusters). The set of seven

signatures obtained a higher TPR than Bro and Snort, while

also producing a very low FPR. The results from the set of

nine signatures allowed determining how much the TPR can

be improved while also measuring the increase in the FPR.
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Table V
ACCURACY COMPARISON BETWEEN DIFFERENT SQLI RULESETS.

RULES TPR (%) TPR (%) FPR (%)
(SQLmap) (Arachni)

ModSecurity 96.07 98.72 0.0515
pSigene
(9 signatures) 86.53 90.52 0.037
pSigene
(7 signatures) 82.72 89.48 0.016
Snort - Emerging 79.55 76.59 0.1742
Threats
Bro 73.23 76.33 0.0000

We visually identified eleven biclusters from the heatmap

using a rule of 5%. That is, for any bicluster we selected

from the heatmap, it would have to include at least 5% of

all samples in the training dataset. This permitted to include

a large percentage of all the samples in the original training

set, while giving reasonably homogeneous colored areas.

From the list of eleven biclusters selected, pSigene dis-

carded those considered as black holes which are defined

as biclusters composed of vectors of mostly zeroes. These

biclusters will show on the heat map in black color and

more than 99% of all the features values in corresponding

samples, are zeroes. In our experiments, biclusters 9 and 10

were black holes (shown in Figure 2) so no signatures were

generated from them.

The results are shown in Table V for all testing sets. From

the SQLmap set, our signatures had higher detection rate

(86.53% for 9 signatures and 82.72% for 7 signatures) than

Snort and Bro, but lower than ModSecurity (96.07%) and

a similar result was obtained from the Arachni set. Both

our signature sets had the lowest FPRs, only behind Bro’s

signature set (which did not raise a single false positive).

Although the other FPRs were very low, one should not be

deceived by these numbers. A FPR of 0.174%, as recorded

for Snort, represents over 2, 463 false alarms generated over

the one week traffic, while ModSec’s represents over 730
false alarms. In comparison, our sets produced 523 false

alarms in the case of nine signatures and 226 in the case of

seven signatures.

ModSecurity achieved the highest TPR of all signatures

sets. We had suspected this to be a difficult result to improve

upon. The ModSec set is part of a popular open source WAF

tool and has been manually developed by expert security

administrators (we had personal communication with the

lead developer of the project, confirming this belief that we

had already obtained through reading of public discussion

groups). The resulting set is a group of complex regular

expressions, making it difficult for regular system adminis-

trators to update it when new vulnerabilities are discovered

and to adjust it to the traffic of a particular network.
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Figure 3. ROC curves for each of the signatures generated for the
generalized set. The plot shows different performance for each signature,
suggesting that each one can be tuned separately which can improve the
overall detection rate of the set.

Accuracy and Precision of Individual Signatures

We wanted to drill deeper into the overall accuracy and

precision result of pSigene to see what the contribution from

each of the signatures is. For this, we plotted the ROC curves

for each of the 9 signatures for the entire test data. The

result is shown in Figure 3. To generate the ROC curve for

a given signature, we ran pSigene with only that signature

enabled and we varied the probability threshold for the

output of logistic regression. In the ROC curve, the point

(0, 1) corresponds to the ideal case and the greater is the

area under the curve, the better the performance is. Note that

in this plot, the FPR only goes till 0.05, not till 1. This is

because the maximum value of FPR for the systems under

test does not grow beyond 0.05.

The first observation is that there is wide variability in

the quality of the signatures. Signature 6 performs well

while signature 4 lags. Second, signatures 1, 2, 3, and 8 are

quite insensitive to the threshold settings. Third, signature 6

will produce false positives faster than signatures 1 and 8.

From a ROC curve like this and with an idea of a desired

TPR and FPR, a security administrator can visually, and

approximately, decide which signatures to enable or disable.

Coverage of Individual Signatures

Another aspect of the clusters and the corresponding

signatures is how many samples does each cover and how

many features are used in each cluster’s signature. The

results are shown in Table VI. There is quite a large range

of cluster sizes and number of features. The largest cluster

has 44% of the samples while the smallest has 5.5%. Three

clusters use 57% of the total number of features (90 out of

159). However, an interesting, and not a priori obvious, ob-

servation is that logistic regression does significant amount

of pruning of features for these three clusters. Thus, logistic
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Figure 4. Cumulative TPR for set of 9 signatures produced by pSigene.
Seven signatures contributed between 7 and 19 percent of the total TPR.
Signatures 7 and 8 contributed 1.64 percent each.

regression downplays the role of some features in classifying

a sample as being malicious or benign. For example, for

cluster 3, logistic regression throws out 88% of the features,

for cluster 2 86% of the features, and for cluster 1 63%

of the features. We hypothesize that this large amount of

filtering by logistic regression is due to two causes. First,

the reduction of the feature set from 477 to 159 is a manual

process and there still remain overlaps between some of

them. Second, logistic regression is focused on picking

features that help to classify while biclustering has that only

as an indirect goal. Nevertheless, biclustering is a crucial

step and needs to precede logistic regression. Biclustering

creates some order out of the chaos of the large amount of

samples and large set of features, by identifying the samples

which are similar and by identifying a superset of features

according to which they are similar.

Figure 4 shows the contributions of the individual signa-

tures (for the 9 cluster case) toward the TPR. The signatures

are arranged in descending order of their quality. The plot

shows that signatures are of differing qualities, but all

of the signatures make non-trivial contribution toward the

overall TPR—signature 1 contributes the most at 19%, while

signature 8 contributes the least with 1.63%.

E. Experiment 2: Incremental Learning

In this experiment, we first incremented the number of

attack samples while learning the Θ parameters in logistic

regression to create the signatures. We progressively added

some attack samples from the test dataset into the training

dataset - we experimented with 20% and 40% of the test

dataset being included in the training. This reflects the real

world scenario where fresh attack samples will be fed to

pSigene to do incremental training with these new samples.

Thus, over time, pSigene will be able to detect more and

Table VI
DETAILS OF SIGNATURES FOR EACH CLUSTER CREATED BY pSigene.

NUMBER NUMBER OF NUMBER OF
BICLUSTER OF FEATURES FEATURES

SAMPLES (BICLUSTERING) (SIGNATURE)

1 13272 90 33
2 5477 90 13
3 2629 90 11
4 6947 12 8
5 4245 8 5
6 2741 6 6
7 3928 10 5
8 1676 8 6

11 1671 15 14

more of the attacks as it operates for longer periods and gets

incrementally trained. Note that the incremental training is

also an automatic process and therefore, we are spared the

tedium of manually updating prior signatures.

When adding 20% of the SQLmap dataset, we obtained a

TPR = 89.13% and a FPR = 0.039%. After augmenting

the training dataset with 40% of the samples from the

SQLmap set, the TPR increased to 91.15% while the FPR

also increased to 0.044%. In both cases (20% and 40%), we

used sets of 9 signatures.

From the results, the TPR showed an increment of a

bit over 2%, for each round of the experiment. This can

be explained as we first randomized the SQLmap set and

then divided it into 20% parts. So one can hypothesize that

pSigene is seeing some similar attack samples in the test

phase.

F. Experiment 3: Comparison to Perdisci’s Approach

We also compared pSigene to the approach presented in

Perdisci et.al. [29] for the automatic generation of signatures

for HTTP-based malware. We selected this approach as (1)

it has as one of its claims the ability to create signatures for

variants of malware that have not yet been seen, (2) it in-

volves the analysis of HTTP traces like in our SQLi scenario,

and (3) is based on the popular token-subsequence technique

used to generate signatures for polymorphic worms [24].

As the current evaluation of pSigene involves a different

type of attacks, SQL injection, two changes were made to

the original technique in Perdisci’s paper 1. First, we did not

implement the first step, coarse-grained clustering, as it was

not applicable to our scenario. They clustered malware sam-

ples by looking at structural similarities among sequences

of HTTP requests but in our case, each HTTP request is

considered independently of the rest so the first step is

not needed. In the second step, fine-grained clustering, we

1We contacted the authors but no implementation was available to us,
so we re-implemented their technique for this evaluation. We faithfully
followed the method outlined in the paper, with a few specializations which
we outline here.
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modified how an HTTP request was evaluated to compute

the distance metric between pairs of requests. We used the

same predefined weights (10 and 8) as in Perdisci, assigning

them to the parameter values and names, respectively, and

disregarded the method and path of a HTTP request. For the

SQLi scenario, the parameter values include the actual SQL

query and therefore represent the most important part of a

URL when detecting this type of attack.

We used the same training set as pSigene to generate

the signature set with the adjusted Perdisci implementation.

Controlling the clustering process by using the DB validity

index (Section 3 of [29]), 145 clusters were produced during

the fine-grained clustering phase. We reduced the cluster set

to 27 after removing clusters according to the presented tech-

nique, i.e., with a single sample or that produce signatures

too short (such as ?id=.*). At the end of phase 3, cluster

merging, 10 signatures were produced. To merge different

clusters, we chose a threshold of 0.1 as this meant that

two signatures would only be merged if they were nearly

identical. At all phases, the DB index was computed to

validate our answers.

We tested the signatures produced with Perdisci’s ap-

proach using the same malicious and benign sets used for

other signature sets. Perdisci’s achieved a TPR of 5.79% and

a FPR of 0%. The FPR is very good as these signatures did

not misclassify a single benign sample as malicious. The

TPR on the other hand is very low. We were not expecting

the TPR to be high as Perdisci’s (and Polygraph) objective

is not to produce generalized signatures but rather to create

a single token subsequence that can represent the set of all

samples previously seen . Still, the TPR shows the limitation

faced from using approaches like this to detect variations of

known attacks. As a counterpoint, when we used the same

samples from the training set for the testing, it showed a

TPR of 76.5%. This indicates that it is more successful in its

objective of automatically creating signatures from already

seen samples.

G. Experiment 4: Performance Evaluation

In this section, we report the overhead of pSigene sig-

natures. Specifically, we measured the processing-time per

HTTP request for each signature in the SQLmap dataset.

We observe that pSigene reports minimum, average, and

maximum processing times of 390, 995, and 1950 μsec,

respectively. On average, pSigene gives a slowdown of 17X
and 11X against Modsec and Bro signatures respectively.

The increased processing-time in pSigene is majorly attrib-

uted to the count_all() function call, which counts the

number of regex matches for each HTTP request string. We

observe from the data that the signatures with a large number

of invocations of count_all() take a disproportionately

large fraction of the total processing time. Given that we

run these measurements on a relatively resource-starved

machine (700 MHz (CPU), 512 MB (RAM)) and still

the worst case processing time was less than 2 ms, we

would expect that signature matching in pSigene will not

become a bottleneck. Importantly, the signature matching is

completely parallelizable - each parallel thread can match

one signature and this functionality is inbuilt in Bro (Bro’s

cluster mode). But we do not have this obvious performance

optimization implemented yet.

IV. DISCUSSION

This work throws light on the importance of good training

data for creating the clusters and subsequently the signatures.

It is imperative that the training data be representative of

the kinds of attacks that will be seen in operation, though

they do not need to be identical. How far apart can the

attacks in training and test be? This is a perennial question

that is asked of machine learning algorithms in all different

contexts. This answer is probabilistic since our framework

gives a probability value to how likely a sample is to

belong to a cluster. The heartening insight from pSigene’s

evaluation is that the match does not need to be exact and

thus hitherto unseen attacks can also be detected. The flip

side of this is that it suffers from some false positives, which

in some deployments may be completely unacceptable. For

specificity, consider the following example.

The set of regex patterns used in signature 4 of

pSigene include char, @, information_schema,

and ch(a)?r\s*?\(\s*? \d. Looking at the set of

samples used to train for this signature, one can find SQLi

samples similar to ?id=-1+union+ select+1,2,3,
4,concat(database(),char(58), user(),
char(58),version()),6,7,8,9,10, 11, 12,
13, 14, 15, 16,17, where there are two occurrences

of patterns char and two of ch(a)?r\s*?\(\s*?\d.

The testing set on the other hand include samples with

different subsets of the regex patterns for signature 4 and

for pattern char we found samples from zero to thirty

occurrences.

The features should be chosen to be rich enough that

they are likely to capture important characteristics of the

zero-day attacks. Thus, signatures based on such features

will likely be able to match some of the zero-day attacks.

The feature selection process needs to be repeated for each

kind of attack, but not for each attack sample. This makes

this process more feasible in practice. In contrast, manual

signature update is a process that needs to be done for each

attack sample and is therefore not as scalable. Of course, in

practice, a signature update is done in a batch mode after a

certain number of attack samples have been collected.

V. RELATED WORK

The work presented in this paper is related to three

areas of intrusion detection: automatic signature creation,

signature generalization, and the interaction between web
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applications and databases. We discuss how previous work

in these two areas relates to our research.

An important work on automatic signature creation is by

Yegneswaran, et al [44]. The authors presented a framework

based on machine learning to produce attack signatures.

A key point by the authors and which we agree with is

that the framework requires protocol knowledge in order

to produce effective signatures and such insight impacts

the resulting detection mechanism. Distinct from our work,

they take a passive approach as HTTP and NetBIOS-based

malware traffic is collected from honeynets. Additionally,

our framework is agnostic to transport- and network-level

information, which is important for their framework. Finally,

we rely heavily on regular expressions, looking to produce

rich, optimized regex signatures. Their approach to regexs

is limited as it only uses simple metacharacters such as *,

+, and ? to express clusters of signatures.

Previous work on signature generalization also includes

[24], [19], and [22]. In [24], a system called Polygraph

generates signatures that consist of multiple disjoint sub-

strings. In doing so, Polygraph leverages our insight that for

a real-world attack to function properly, multiple invariant

substrings are often be present in the payload. Similarly,

[19] applies pattern-matching techniques and protocol con-

formance checks on multiple levels in the protocol hierarchy

to network traffic captured at a honeypot system, to produce

worm signatures. [22] extends this idea to detect zero-day

polymorphic worms on high-speed networks. In both cases,

the goal is to detect worms at the network layer while our

general approach considers protocol information and suited

for other types of attacks.

Robertson et al. [32] present an anomaly generalization

technique to automatically translate suspicious requests to

a web server into anomaly signatures. This approach is

complementary to ours and uses heuristics-based techniques

to infer web-based attacks. For the class of SQL injection

attacks, the technique performs a simple scan for common

SQL language keywords and syntactic elements. This results

in basic signatures to detect SQLi attacks, but no details

were provided on the performance of these signatures.

Other papers that present similar anomaly-based intrusion

detection techniques for SQLi attacks include [17] and [21].

The interaction between web applications and databases

to improve the detection rate of attacks against these re-

sources has been covered in [3], [42], [5], and [31]. [3]

et al. present a novel approach for automatically detecting

potential server-side vulnerabilities of this kind in legacy

web applications through blackbox analysis. [42] proposes

a serially composed system with a web-based anomaly

detection system, a reverse HTTP proxy, and a database

anomaly detection system to increase the detection rate of

web-based attacks.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a system called pSigene, for

the automatic generation and update of intrusion signatures.

The system benefits from mining the vast amount of public

data available on attacks. We tested our architecture for the

prevalent class of SQLi attacks and found our signatures

to perform very well, compared to existing signature sets,

which have been created manually and with a tremendous

amount of security expertise and progressive refinement over

the period of multiple years.

Our framework allows one to generalize existing signa-

tures and the detection of new variations of attacks (i.e.,

some kinds of zero-day attacks) is achieved by using regular

expressions for the generalized signatures. We also rigor-

ously benchmarked our solution with a large set of attack

samples and compare our performance to popular misuse-

based IDS-es. The evaluation also brings out the impact

of a practical use case whereby periodically new attack

samples are fed into our algorithm and consequently the

signatures can be progressively, and automatically, updated.

In contrast, to improve the other signature sets requires the

manual inspection and testing of the signatures, which could

overwhelm a system administrator with limited resources.

Future work will include the implementation of the in-

cremental update operation. This task has some open design

choices in terms of the machine learning technique to use

and empirical evidence is needed to guide our choice. We

will also improve the online performance of the signature

matching process. This will be done first by simply paral-

lelizing the process and next by optimizing the code path

within Bro through which our signature matching occurs.
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