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ABSTRACT 

Khalil, Issa. PhD, Purdue University, December, 2006. Mitigation of Control and 

Data Traffic Attacks in Multihop Wireless Ad-Hoc and Sensor Networks. Major 

Professors: Saurabh Bagchi and Ness B. Shroff. 

 

 Recently we have seen increasing adoption of wireless ad-hoc and sensor 

networks (WAHAS) for security critical applications in military and civilian domains, 

such as battlefield surveillance and emergency rescue and relief. However, they are often 

exposed to a wide-range of control and data traffic attacks. Control attacks are directed to 

control traffic in the network, such as routing and localization. Examples are wormhole, 

Sybil, and rushing attacks. Control attacks are often easy to launch even without the need 

for any cryptographic key and can be used to subvert the functionality of the network by 

disrupting data flow. Data traffic attacks include selective forwarding and misrouting 

attacks. We have pursued two lines of defense to secure WAHAS networks. The first is 

attack prevention using low-cost key management for encryption and authentication. Our 

protocol SECOS provides the guarantee that communication between any two nodes 

remains secure despite compromise of any number of other nodes. The second line of 

defense is control and data traffic attack detection, diagnosis, and isolation through local 

monitoring and response. Each node oversees the traffic in its one-hop neighborhood and 

maintains state for the behavior of each neighbor. We develop a suite of three protocols 

for respectively static networks, mobile networks, and energy efficient sleep-awake 

aware local monitoring. To demonstrate the protocols, we perform analysis and 

simulations in ns-2. The metrics for evaluation include fraction of data received at the 

destination, coverage and delay of isolation, likelihood of false positives, and overhead in 

terms of resource consumption. 
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1. INTRODUCTION 

1.1. Background about Ad-Hoc and Sensor Networks 

Research advances in highly integrated and low power hardware, wireless 

communication technology, and highly embedded operating systems enable the 

development and deployment of wireless mobile ad-hoc and sensor networks (WAHAS). 

An ad-hoc network is an autonomous system of hosts connected by wireless RF links 

without any static infrastructure such as base stations, fixed routing units, or wired links. 

If two hosts are not within radio range, all message communication between them must 

pass through intermediate hosts which can also act as routers. Sensor networks are a 

particular class of wireless ad-hoc networks in which the nodes have micro-electro-

mechanical (MEMS) components, including sensors, actuators and RF communication 

components. These nodes are multifunctional and capable of sensing, communication, 

computation, and, sometimes, they can move. Sensor networks typically comprise of 

large numbers of sensor nodes placed in the environment to be monitored and usually 

communicate with each other through low-bandwidth communication links. For the 

purpose of this exposition, we use sensor nodes to refer to sensor network nodes, ad-hoc 

nodes to refer to ad-hoc network nodes, and Wireless Ad-hoc And Sensor nodes 

(WAHAS) to refer jointly to the two classes.  

WAHAS nodes cooperate among themselves for information gathering and 

analysis, and are becoming an important platform in several domains, including military 

warfare, civilian emergency operations, and monitoring of climate and biological 

habitats. It is widely believed that WAHAS networks have the potential to evolve into an 

infrastructure-less ubiquitous information collection, distribution, processing, and control 

system, parallel to and complimentary to the existing cellular personal communication 

systems. It will enable another wave of new services and further deepen the penetration 

of information technology into everyone’s life.  
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Consider two sample scenarios for the deployment of a WAHAS network. The 

first is from the military domain where high cost and powerful ad-hoc nodes may be 

carried by soldiers or in vehicles, while a large number of low cost and low-energy 

sensor nodes may be distributed over the battlefield. In the civilian domain, the role of 

the soldier is taken by emergency rescue personnel who are entering a domain in which 

they are guided by information available through a locally deployed sensor network. In 

both scenarios, nodes have varying levels of availability and trust, use loosely constrained 

motion paths, and interact across node types, e.g. an ad-hoc node query a sensor node 

about environmental conditions.  

The traffic in WAHAS networks can be classified as data and control traffic. 

Control traffic contains information needed to set up the network for data traffic to flow. 

Typical examples of control traffic are routing, monitoring the liveness of nodes, 

topology discovery, and system management. Looking further into routing traffic, we 

find multiple kinds of messages–route request (broadcast) and route reply (unicast) 

during the initial establishment phase, route maintenance during the lifetime of the data 

route, and route teardown at the end. It is critical to guarantee the fidelity of control 

traffic in WAHAS networks otherwise it can have a catastrophic effect which propagates 

to hamper the data traffic. For example, if an adversary node manages to interpose itself 

in an established route between two legitimate nodes, it can disrupt the data traffic flow 

by selectively dropping the data packets. All other kinds of traffic where data is 

communicated between WAHAS nodes is called data traffic.  

1.2. Need for Reliable Protocols in WAHAS Networks 

WAHAS networks have seen growing research interests in different areas —

devices, communication, network protocols, and applications. However, the open nature 

of the wireless communication channels, the lack of infrastructure, the quick deployment 

practices, and the hostile environments where they may be deployed, make them 

vulnerable to a wide range of failures – both natural and malicious. The natural failures 

could be node or link failures, permanent or transient, fail silent or otherwise. The 

malicious attacks could involve eavesdropping, message tampering, or identity spoofing, 

that have been addressed by cryptographic primitives for encryption and authentication 
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customized for the wireless domain. Alternately, the attacks may be targeted at the 

control or the data traffic in wireless networks. Such attacks are often times to be very 

difficult to detect, unlike Denial of Service (DoS) attacks. Examples of data traffic 

attacks include the blackhole and the selective forwarding attacks [76] in which a 

malicious node drops all or some of the data traffic passing through it. Control traffic 

attacks include (i) the wormhole attack [50],[53], (ii) the rushing attack [52], (iii) identity 

spoofing, (iv) the Sybil attack [57], (v) the sinkhole attack, and (vi) the HELLO flood 

attack [76]. Control traffic attacks are especially destructive since they can be launched 

even without having access to any cryptographic keys or compromising any legitimate 

node in the network, and they can be used to subvert the functionality of the network by 

disrupting data flow.  

Often WAHAS networks are deployed for applications where it is crucial to 

collect the correct data or relay the correct information to nodes from a command and 

control node. The critical nature of the applications hinges on the fact the human lives 

may be at risk (say a military operation or an emergency rescue and relief operation), 

important scientific data about a rare occurrence is being collected (using a sensor 

network), or financial considerations may be at stake (say, a network for monitoring 

corporate security). Therefore, for the applications to be successful, it is important to 

design protocols for detecting failures and responding to them at runtime.  

1.3. Problem Statement and Contributions 

The focus of our work is on the design of dependable WAHAS networks that 

behave reliably (who wants a toaster that overdoes the bread a third of the time) and 

securely (who wants the phone book on her mobile erased at the most inopportune time). 

Since many multi-hop wireless environments are resource constrained (e.g., bandwidth, 

energy, or processing), providing detection and countermeasures to such attacks often 

turn out to be more challenging than in wired networks. We believe that current 

technology trends may remove some of the resource constraints in the foreseeable future, 

such as memory and processing power, while the constraints of bandwidth and energy are 

expected to remain for some time to come. 
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In my thesis work, we have developed a primitive called local monitoring 

whereby a node in the network can monitor the runtime behavior of neighboring nodes. 

This primitive is generic and can be applied to the detection of any attack that manifests 

through (i) packet dropping, (ii) packet delay, (iii) packet fabrication, (iv) packet 

modification, and/or (v) packet misrouting. Based on local monitoring, we have 

developed, analyzed, and prototyped protocols for detecting, diagnosing, and mitigating 

attacks directed at control or data traffic in WAHAS networks. Moreover, we have 

developed protocols to enable mobility in such environments, e.g., cars communicating 

reliably and securely with one another in an ad-hoc network. There is no separation of the 

WAHAS network into payload and monitoring systems, instead each node can potentially 

play a role in both systems.   

The idea of overhearing traffic in the vicinity is not new in wireless networks (e.g. 

[56], [59], [60], [61], [62]). Previous work has used it to build trust relationships among 

nodes in networks (e.g. [59], [61]), detect certain kinds of attacks (e.g. [60], [62]), or 

discover routes with certain desirable properties, such as being node disjoint (e.g. [56]). 

Our novelty lies in presenting the technique in a formal framework–local monitoring–

identify the parameters that affect its performance, and analyze its capabilities and 

limitations. We systematically lay out the fundamental structures and the state to be 

maintained at each node for mitigating some representative attacks–wormhole, Sybil, 

rushing, and selective forwarding attacks. The first three are examples of attacks directed 

to control traffic while the last one is an example directed at data traffic. Independent of 

the detection mechanism, we propose a strategy to isolate malicious nodes locally in a 

distributed manner. 

Local monitoring is an efficient attack-detection mechanism in WAHAS 

networks; however, it could come at a high cost for energy constrained sensor networks, 

since it requires each node to be awake all the time, even if it is not involved in any 

network activity, to oversee network behavior of neighboring nodes. Therefore, we have 

modified the basic technique to a sleep/wake aware local monitoring primitive to 

significantly reduce the time a node needs to be awake for the purpose of monitoring. The 
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main challenge lies in providing a secure sleeping technique that is not vulnerable to 

security attacks and does not add to the vulnerability of the network. 

Another challenge to local monitoring is the issue of mobility. A mobile 

adversary can hop from one part of the network to another and in the absence of 

distributed knowledge sharing, can inflict unbounded damage. We develop a variant of 

local monitoring that can deal with mobile adversaries. It turns out that local monitoring 

requires an efficient mechanism for dynamic, secure two-hop neighbor verification. 

Moreover, it requires an efficient mechanism to track the malicious behavior of an 

adversary node accumulated over multiple locations in the network. We come up with a 

distributed protocol that operates locally in a neighborhood and when the adversary 

moves, the state is remembered and transferred to nodes in the new location using a 

centralized entity.   

Independent of the detection mechanism, the issue of mitigation, much neglected 

in existing literature in comparison to detection, is addressed in this work and results in a 

failing node being unable to cause further damage in the network. We have developed 

response strategies to mitigate the effect of the adversary nodes, either locally in a 

distributed manner which we call local response, or globally using a centralized entity 

which we call centralized response. For the response strategy to be successful, the 

response traffic has to be protected from eavesdropping, tampering, and masquerading to 

prevent incorrect responses such as blackmailing. Cryptography is the foundational 

technology that has been used for protecting and securing such traffic. This technology 

relies on keys as the centerpieces, and many attacks focus on disclosing these keys. This 

makes the management of the keys (the process by which keys are generated, stored, 

protected, distributed, used, and destroyed) in a large-scale network of up to hundreds of 

thousands of nodes a very important and challenging problem. The protocols in this 

domain (e.g. [63], [64], [65]) suffer from one or more of the following problemsweak 

security guarantees if some nodes are compromised, lack of scalability, high energy 

overhead for key management, and increased end-to-end data latency. We have 

developed a protocol called SECOS that mitigates these problems in static sensor 

networks. SECOS provides the guarantee that the communication between any two sensor 
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nodes remains secure despite the compromise of any number of other nodes in the 

network. 

The control attack mitigation approach that we propose targets a fairly general 

attack model. An adversary node can be either an external node or an internal node. An 

external adversary node does not have access to cryptographic keys as the legitimate 

network nodes, while an internal adversary node, also referred to as a compromised node, 

does. An adversary node may behave in an arbitrary or Byzantine manner. The adversary 

node can be more powerful than the legitimate nodes. Thus, it may have access to higher 

computational power, communication power (higher transmission radius or high 

bandwidth out-of-band channel), and energy resources. The adversary nodes may also 

collude among themselves and it may be assumed that there exist out-of-band channels 

linking each adversary node to another. We do not protect against brute force denial of 

service attacks, such as physical destruction of the nodes or physical layer jamming.  

1.4. Summary of Contributions 

1. Develop a scalable protocol for key management called SECOS with the following 

properties: 

a) Secos is Sensitive to the sensor node’s resource constraints, including 

computation, communication, and bandwidth.  

b) SECOS is an energy efficient method for key management and substantial energy 

savings are demonstrated without introducing specialized high cost nodes in the 

network.  

c) SECOS guarantees that the communication between two uncompromised nodes 

cannot be exposed, irrespective of the number of other nodes that are 

compromised. Similarly, the protocol can tolerate some nodes being unavailable 

due to natural failures.  

2. Develop a mechanism called local monitoring that is used to detect any generic 

control or data traffic attack in static WAHAS networks that manifests itself in one of 

dropping, misrouting, modifying, forging, injecting, or delaying of packets. 
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3. Develop a toolset based on local monitoring that can be mapped to detecting different 

classes of attacks. We analyze this toolset for different metrics, such as, false alarm 

probability, missed alarm probability, and latency of isolation. 

4. Develop local and global mechanisms that, based on information collected by the 

detection toolset, allows for diagnosing and isolating the malicious nodes. 

5. Develop protocols, based on the previous toolset, that mitigate wormhole, ID-

spoofing, Sybil, rushing, sinkhole, blackhole, and grayhole attacks in static WAHAS 

networks.  

6. Provide a technique for conserving energy while performing local monitoring without 

significantly degrading its security performance. This we believe is fundamental to 

deploying local monitoring in any network that is parsimonious in its energy 

consumption.  

7. Provide a primitive that prevents a node from claiming to exist at more than one 

position in mobile WAHAS networks. This primitive can be used in detecting several 

different attacks in mobile WAHAS networks such as the Sybil attack. We use this 

primitive to develop a protocol called MOBIWORP that detects, diagnoses, and isolates 

wormhole attacks in mobile networks.  

8. We demonstrate the effectiveness of all the protocols we have developed through 

extensive simulation with the network simulator ns-2.  

  

1.5. Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 presents local 

monitoring. Chapter 3 describes our key management protocol (SECOS). Chapter 4 

presents a protocol called LITEWORP for mitigating the wormhole attack in static 

WAHAS networks. Chapter 5 extends LITEWORP and presents a protocol called DICAS 

for mitigating other control and data traffic attacks in static WAHAS networks. Chapter 6 

presents a sleep-wake aware version of local monitoring that largely reduces the 

monitoring overhead head energy. Chapter 7 presents a protocol called MOBIWORP for 

mitigating the wormhole attack in mobile WAHAS networks. Chapter 8 presents the 
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related work. Chapter 9 provides conclusion of the thesis work. Finally, Chapter 10 

describes the future research problems. 
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2. LOCAL MONITORING: DETECTION AND ISOLATION 
PRIMITIVES 

2.1. Local Monitoring Detection and Diagnosis Primitive 

Local monitoring is a collaborative detection strategy whereby each node in the 

network monitors the traffic of its neighbors.  There is no separation of the WAHAS 

network into payload and monitoring systems, therefore, each node can potentially play a 

role in both systems. Local monitoring is the primitive that is used by all the protocols 

that we have developed to detect various control and data traffic attacks in WAHAS 

networks and diagnoses the malicious nodes involved in these attacks. Local monitoring 

requires that (i) each node in the network knows the identity of its first-hop neighbors and 

the neighbors of each neighbor, and (ii) each packet forwarder explicitly announces the 

immediate source of the packet it is forwarding. The first requirement holds by design of 

the routing protocol and the second requirement is satisfied through secure neighbor 

discovery protocols.  The complexity of the secure neighbor discovery protocols vary 

between static and mobile WAHAS network and is thus one of the main challenges that 

we have addressed in this work, Chapter 4 and Chapter 7 respectively. 

For a node M to be able to monitor a node A over the link from X to A, M must be 

a neighbor of both A and X. In such a case, we call M a guard node of A over the link 

from X to A. In Figure 2.1, nodes M, N, and X are the guards of A over the link from X to 

A. For a link (i, j), the sender i is always a guard node for node j. Information for each 

packet sent from X to A is saved in a watch buffer at each guard for a time t. The 

information maintained depends on the particular attack under consideration. A malicious 

counter (MalC(i,j)) is maintained at each guard node, i, for every  node, j, which i is 

monitoring over a sliding window of length Twin. The value of MalC(i,j) is incremented 

for any suspect malicious activity of j that is detected by i. The increment to MalC value 
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depends on the nature of the malicious activity, being higher for more severe infractions. 

To account for intermittent natural failures that can occur at legitimate nodes, a node is 

determined to be misbehaving, only if the MalC goes above a threshold (MalCth) over 

Twin. Examples of natural failures include collisions at the wireless media, environmental 

conditions, or passing barriers that may block or reduce the communication range. These 

natural failures may cause False alarms in which a “legitimate” node mistakenly consider 

another “legitimate” node to be malicious. 

DB X

M

N

A

A
X

YY The transmission 
range of node Y

A guard node

 
Figure 2.1: X, M, and N are guards of A over link X to A 

In a general sense, the elementary activities underlying a large set of attacks in 

WAHAS networks are comprised of the following actions performed by the adversary 

node on an incoming packet–delay, drop, modify, misroute, and fabricate. There are 

elementary checking actions on the watch buffer for detecting each of these elementary 

malicious activities. The exact information stored in the watch buffer depends on the type 

of checking action–if delay, drop, misrouting, or fabrication is to be detected, then only 

the header information that uniquely identifies the packet (in my implementation, the 

sender and the sequence number) need be stored. If however, modification to the payload 

is also to be detected, then the payload body or a hash of it has also to be stored. The 

actions are specified in Table 2.1. These checking actions form the basis of my detection 

protocol. In this thesis, we discuss the detection for a representative set of attacks, though 

the elementary checking activities can be combined to detect a larger class of attacks.  

Table 2.1: Elementary malicious activity and checking action 

Elementary malicious activity Elementary checking action 

Delay A packet lies unmatched in the buffer for time 
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greater than an application dependant threshold. 
Drop Same as in delay. 
Modify The outgoing packet does not match with the 

packet in the watch buffer. The matching may be 
either a bit-wise comparison of the unchanging 
fields in the packet (such as, the data, the original 
source and destination) or matching the hash 
values computed on these fields. 

Fabricate The outgoing packet does not have a 
corresponding packet in the watch buffer.  

Misrouting If the packet is forwarded to a next-hop node that 
is different from the one stored in the watch buffer. 

 

Consider Figure 2.1 again, a node, say M, that can directly monitor the malicious 

behavior of its neighbor, say A, may be able to detect that neighbor. However, a node 

such as D that can not directly monitor the behavior of its neighbor, A, relies on alerts 

from other neighbors (M, X, N). When D gets enough alert messages about A, it believes 

in that A is malicious even though it has not directly noticed that.  The notion of enough 

number of alerts is quantified by the detection confidence index (γ), Section 2.3. Each 

node maintains memory of nodes that it has revoked through a local blacklist so that a 

malicious node cannot come back to its neighborhood and claim to be blameless. Each 

entry in the blacklist consists of two fieldsthe identity of the malicious node and a one-

bit flag to indicate whether this malicious node has been detected directly or through the 

reception of g or more alerts from other nodes.  

2.2. Local Monitoring Isolation Primitives 

A node is said to be integrated in the network if some of its first-hop neighbors 

accept its communication and is said to be revoked or isolated when all its first-hop 

neighbors reject its communication. Therefore, a revoked node can not receive any traffic 

from the network nor it can pass any traffic to the network. A node in the network only 

accepts traffic from or passes traffic to nodes that appear in its first-hop neighbor list. A 

node X revokes its neighbor node Y by deleting the entry of node Y in the first-hop 

neighbor list of X.  
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2.2.1. Local Response and Isolation 

When a node is determined to be malicious, it is important to take some action to 

neutralize the ability of the node to cause further damage. This is done by causing all the 

first-hop neighbors of the malicious node to revoke it. The local response and isolation 

primitive is used to propagate the detection knowledge to the first-hop neighbors of the 

malicious node and to take the appropriate response to isolate it from the network. Since 

detection knowledge propagates among neighbors of the malicious nodes, an 

authentication mechanism is assumed to exist in the network to prevent false accusation. 

The following local response algorithm is triggered by a guard node a when a node A is 

suspected because it’s malicious counter (MalC(α,A)) crosses the threshold, Ct. 

1. Node a removes A from its neighbor list, and sends to each neighbor of A, say D, an 

authenticated alert message indicating that A is a suspected malicious node. The 

communication is authenticated using a shared symmetric key between a and D to 

prevent false accusations. Alternately, if the clocks of all the nodes in the network are 

loosely synchronized, a can do local two-hop authentic multicast as in TESLA 

[72],[73] or mTESLA [63] to inform the neighbors of A. Note the α isolates A without 

waiting for γ alerts from other nodes since a node definitely to trust itself. 

2. When D receives the alert, it verifies its authenticity, that a is a neighbor to A, and 

that A is D’s neighbor. It then stores IDa in an alert buffer associated with A.  

3. When D receives enough alerts, γ, about A, it isolates A by marking A’s status as void 

in the neighbor list.   

4. After isolation, D does not accept any packet from or forward any packet to A.  

In addition to removing the malicious nodes from the network, this primitive 

makes the response process fast since the detection knowledge need not propagate 

throughout the network. This module is lightweight in the number of messages (one to 
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each neighbor of A, only on detection) and the number of hops each message traverses 

(maximum two hops).  

2.2.2. Global Response and Isolation 

The process of local isolation described in the previous section is quick and 

lightweight, and has the desired effect of removing the potential for mischief of static 

malicious nodes. However, a mobile malicious node can move to a new location and 

perform some malicious activities before it is detected. Hence, the local isolation by itself 

is not enough to isolate mobile malicious nodes. In mobile scenarios a global mechanism 

is required to track and accumulate the malicious behavior of the mobile malicious nodes 

over all the locations it moves to. In such scenarios we introduced a central authority to 

track the malicious node’s behavior. The global response and isolation primitive is 

specific to mobile WAHAS network scenarios and is explained along with the protocols 

for mitigating attacks against mobile WAHAS networks, Chapter 7. 

2.3. Selection of the Detection Confidence Index (γ) Value 

The detection confidence index is a design parameter in local monitoring used to 

enhance the capability of detection. However, γ introduces the possibility of framing 

among nodes. Framing is the process by which an innocent node is deliberately proved to 

be malicious by a quorum of malicious nodes. Therefore, the value of γ has to be chosen 

judiciously. The exact value of γ is application-specific and may range between one and 

infinity. A small value for g increases the chance of successful framing, while a large 

value of g increases the rate of harm a malicious node causes the network before being 

locally detected and isolated. If we set g to be infinity it means that a node only trusts 

itself in revoking a suspicious node, thus the local framing probability goes to zero. Any 

malicious node can be fully isolated as long as γ or more good guards detect it. However, 

if the number of good guards is less than γ, the node is only partially isolated from the 

network. Only the good guards that directly detect the malicious activity of the node 

isolate the malicious node. However, other neighbors of the malicious node continue to 

consider the malicious node as a legitimate node. 
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3. KEY MANAGEMENT: SECOS 

Cryptographic keys are needed for secure communication between legitimate 

WAHAS nodes. The cryptography protocols for encryption and authentication use the 

keys. However, the security guarantees of any of these protocols are conditioned on the 

keys being available to all the legitimate nodes and no other nodes. The management of 

the keys (the process by which keys are generated, stored, protected, distributed, used, 

and destroyed) in a large-scale network of up to hundreds of thousands of sensor nodes is 

thus an important problem. Many WAHAS nodes are constrained in their energy 

availability, memory and computational resources, and communication bandwidth. These 

constraints make it impractical to use asymmetric algorithms for key management. These 

algorithms are computationally intensive, and consequently, energy intensive since at 

their heart they involve exponentiation and modulus operations of large numbers. The 

common approach, therefore, is to use symmetric key cryptography where the two end-

points of a communication share a secret key. The challenge is to manage the keys for 

symmetric cryptography in a scalable manner. The scalability goal implies that the end-

to-end communication delay, energy overhead for key management, and the dollar cost of 

deployment should increase gradually with increasing the size of the sensor network. 

Since WAHAS nodes may be placed in hostile environments, we must also design for the 

possibility that some nodes may be taken over or compromised. The WAHAS nodes are 

inherently less reliable than wired platforms and therefore, a protocol must be designed to 

function in the face of some nodes being unavailable. Radio communication is 

recognized as more energy consuming than computation by several orders of magnitude 

[41]. Consequently, the key management protocol should minimize the number of 

overhead control messages and the overhead number of bytes added to data messages.  
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Some symmetric key management protocols rely on a common shared secret key 

between all the nodes in the network leading to a highly insecure deployment. At the 

other end of the spectrum, some protocols have a separate shared key for each pair of 

nodes, which leads to a large amount of key storage that grows as the square of the 

number of nodes, and is therefore not scalable. The requirement to minimize 

communication overhead makes most of the proposed purely symmetric algorithms 

impractical for many WAHAS networks such as sensor networks since they add a fixed 

size overhead number of bytes to the payload and sensor networks typically have small 

sized packets. 

In this chapter, we propose and analyze a protocol called SECOS (Scalable & 

Energy-Efficient Secure Communication On Sensors) for key management in sensor 

networks that uses symmetric cryptography. The high-level design goals in SECOS are to 

(i) provide a scalable and secure key distribution channel for any-to-any communication 

in a large-scale sensor network, (ii) minimize the adverse fallout of compromising any 

sensor node, (iii) make key management energy efficient, and (iv) reduce the end-to-end 

delay of secure data communication. 

Using the well-known approach of node clustering [36]-[40], SECOS divides the 

sensor field into multiple control groups and assigns a rotating control node to each 

group. Communication within a group occurs through the use of keys exchanged with the 

help of the control node, while inter-group communication involves establishing a secure 

channel between the respective control nodes through the involvement of the base station. 

Effectively, SECOS imposes a three-level hierarchy of the nodes – a single base station, 

multiple control nodes, and a large number of sensing nodes. Of these, only the base 

station is fixed, assumed to be secure and assumed not to have any resource constraints, 

while all the rest, including the control nodes, are generic sensor nodes. Although node 

clustering is a well-known technique, it has to be used with special care for key 

distribution to protect the network against the compromised nodes that play a special role 

in node clustering. The control nodes are assumed to be susceptible to compromise and 

are monitored and can be removed from their privileged role. SECOS also provides 

techniques for secure initial deployment and revocation of suspect nodes.  
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A key decision choice in SECOS is the control group size. We present a simple 

mathematical analysis to determine an upper bound on the control group size, due to the 

resource constraints on the control node and the allowable security. We then present an 

equation that quantifies the energy cost of key management in terms of several factors, 

including the control group size, and derive the optimal control group size for the most 

energy-efficient key management. 

A promising approach for sensor key management has been proposed in a system 

called SPINS [63]. SPINS uses the base station as an intermediary for secure 

communication between any two nodes. We create a simulation model for comparing 

SECOS and SPINS with respect to end-to-end data latency and energy overhead of key 

management. For a fair comparison, we make the key caches also available to SPINS, 

though the original work does not mention caches. The simulation results show that 

SECOS reduces the energy consumption by a factor ranging from 1.2 to 7 and the end-to-

end data latency by a factor of 1.05 to 1.50 depending on the communication pattern and 

the cache size. A large cache means keys are available locally and then SECOS performs 

comparably to SPINS. However, this also implies additional storage requirement and the 

deployment is less secure to nodes being compromised. We provide a mathematical 

analysis to quantify the probability of exposing the communication between two 

legitimate nodes as a function of the number of compromised nodes. This is done for 

SECOS, SPINS [63], and a key pre-distribution protocol due to Du [64] and SECOS is 

shown to perform better for large operating regions.  

Many key management protocols for ad-hoc networks have been proposed in the 

literature. They suffer from one or more of the problems of weak security guarantees if 

some nodes are compromised, lack of scalability, high energy overhead for key 

management, and increased end-to-end data latency. In general, the key pre-distribution 

protocols [1],[9],[13]-[16],[63],[64], [18]-[20],[25] expose the security of the whole 

network when a certain fraction of nodes is compromised. Kerberos-like protocols (such 

as [62]) divide the network into several sections with privileged nodes for key 

management in each section. If the privileged node fails or is compromised, secure 
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communication in the entire section becomes impossible. A detailed comparison with 

existing schemes is presented in Section 8.1. 

The contributions of this work can be summarized as follow, 

1. It provides a scalable protocol for key management that is sensitive to the sensor 

node’s resource constraints, including computation, communication, and bandwidth. 

We believe that current technology trends may remove some of the resource 

constraints, such as memory and processing power, in the foreseeable future, while 

the constraints of bandwidth and energy are expected to remain for some time to come. 

2. It presents an energy efficient method for key management and substantial energy 

savings are demonstrated without introducing specialized high cost nodes in the 

network. 

3. The protocol is resilient to some nodes being compromised due to attacks. In fact, it 

guarantees that, under a given set of assumptions, the communication between two 

uncompromised nodes cannot be exposed, irrespective of the number of other nodes 

that are compromised. Similarly, the protocol can tolerate some nodes being 

unavailable due to natural failures.  

SECOS uses several techniques well-known in the network security domain, such 

as node clustering, key refreshment, and neighborhood watch. Its contribution lies in 

synthesizing the different techniques into a cohesive protocol and applying that to the 

sensor network environment, with its distinctive constraints, chiefly, energy and 

susceptibility of the nodes to being physically compromised. We show that SECOS 

performs better with respect to existing state-of-the-art protocols for large parts of the 

normal operating region of sensor networks. In this paper, we do not describe the design 

in SECOS to address all forms of ID spoofing attacks and secure node addition to the 

existing network. 

The rest of this section is organized as follows. Section 3.1 presents the design of 

SECOS. Section 3.2 discusses how SECOS handles different classes of attacks. Section 3.3 

presents a mathematical analysis for the maximum control group size and the energy-

wise optimal control group size. Section 3.4 describes the message overhead in SECOS. 

Section 3.5 describes the experiments and the results.  
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3.1. Description of SECOS 

We use the following basic techniques in the design of SECOS. 

1. Refreshing the keys and purging the caches. The keys are periodically refreshed and 

the key caches are purged regularly for two important security goals. The first is to 

minimize the adverse fallout of compromising some nodes in terms of the number of 

old messages that are exposed. The second goal is to defeat possible cryptanalysis 

attacks by analyzing plaintext and ciphertext pairs processed with the same encryption 

key.  

2. Changing the nodes which play a privileged role. We do not wish to assume a large 

number of specialized well-protected nodes in our environment. Therefore, we design 

for the possibility of the nodes with special key management functionality being 

compromised and provide for them to be changed either on a time schedule, or when 

triggered by anomalous events. Another important goal of the control role rotation 

among the members of the control group is to achieve load balancing and even energy 

drain since the control node’s activities are more demanding. 

3. Neighborhood watch. Each node maintains a list of its immediate neighbors and can 

overhear neighborhood traffic in order to detect compromised nodes.  

3.1.1. System Assumptions and Attack Model 

Attack model: A malicious node can be either an external node that does not know the 

cryptographic keys, or an insider node, that possesses the keys. An insider node may be 

created, for example, by compromising a legitimate node. All these malicious nodes can 

exhibit Byzantine behavior and can collude amongst themselves. Any malicious node can 

for example eavesdrop on the traffic, inject new messages, replay and change old 

messages, spoof other identities, or pass traffic from one location of the network to a 

colluding node in another location (wormhole attack). 

System assumptions: SECOS assumes that the links are bi-directional, which means that if 

a node A can hear node B then B can hear A. Also, it assumes that the network has a static 

topology, though the functional roles a node plays (e.g., cluster head, data aggregator, 



 19

etc.) may change. SECOS also assumes that the sensor nodes are distributed uniformly on 

the sensor field. Moreover, it is assumed that the base station in SECOS is secure, not 

prone to failures, and does not have any resource constraints (bandwidth, energy, etc.). 

Protection against failures can be achieved by fault tolerant techniques such as 

redundancy for natural failures, or through a variety of possibly expensive security 

mechanisms, such as tamper proof hardware, for malicious failures. SECOS assumes that 

there is a certain amount of time from a node’s deployment, called the compromise 

threshold time (TComp) that is minimally required to compromise the node. We believe as 

in [20], [43], [44], that a sensor node deployed in a security critical environment must be 

designed to sustain possible break-in attacks at least for a short interval (say several 

seconds) when captured by the adversary; otherwise, the adversary could easily 

compromise all the nodes and thus take over the network. Therefore, instead of assuming 

that sensor nodes are tamper resistant which often turns out not to be true and very 

expensive, we assume there exists a lower bound on the time interval Tcomp that is 

necessary for an adversary to compromise a sensor node, and that the time TND for a 

newly deployed sensor node to discover its immediate neighbors is smaller than Tcomp. In 

practice, we expect TND to be of the order of several seconds, so we believe it is a 

reasonable assumption that Tcomp > TND. The current generation of sensor nodes can 

transmit at the rate of 40 Kbps [45] whereas the size of an ID announcement message is 

very small (12 bytes if an ID is 4 bytes and the hardware address size is 8 bytes).The 

probability of collision is quite small when a non-persistent CSMA protocol is used for 

medium access control [46]. Moreover, a node can broadcast its ID multiple times to 

increase the probability that it is received by all its neighbors. Furthermore, SECOS 

assumes that no external node exists in the network during the neighbor discovery. 

3.1.2. Keys in SECOS 

 SECOS uses five types of keys: the master key, the volatile secret key, the session 

key, the authentication key (MAC key), and the pseudo random number generator key 

(seed). The following notations for keys are used throughout this chapter. KAB (=KBA) 

refers to any secret key shared between A and B. The five kinds of keys – the master key, 
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the volatile secret key, the session key, the Authentication (MAC) key, and the random 

number generator key, will be denoted respectively as MKAB, VKAB, SKAB, AKAB, and RKAB 

Figure 3.1. E(K,X) denotes the encryption of a message X using key K. MAC(K,Z⊕X||Y) 

refers to the application of the MAC algorithm, keyed by key K, to the result of  the 

concatenation of Y with the result of  Z xor-ed with X. H(X) is the hash value of  X.  Any 

symmetric key encryption algorithm suitable for sensor networks may be used for 

encryption and decryption. It is desirable that the cipher text be the same length as the 

plaintext in order to reduce the message transmission overhead. An example of such a 

protocol is the counter mode (CTR) of block ciphers [12],[14]. Any underlying block 

cipher algorithm could be used with the CTR mode, e.g. DES [32] and its variants 3DES 

and DES-X, Rijindael [33], AES [33], TEA [34], and RC5 [35]. 
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Figure 3.1: Initial key setup between base station and three sensing nodes 

The master key is burnt into each sensor node at manufacture time and is shared 

with the base station. It is not used for encrypting message communication channels, but 

instead to generate other keys to be used for encryption and authentication. 

Compromising the communication channel does not reveal the master key since it is not 

used in any channel communication. The volatile secret key is also shared between the 

node and the base station. It is used, along with the master key, to generate the session 

and MAC keys. After each generation of session and MAC keys, a new volatile secret key 

is generated by applying a hash function to the current volatile secret key, after which the 
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current one is deleted and replaced by the new one. This provides SECOS with forward 

secrecy; if a node gets compromised, previous communications of the node are not 

exposed. This is due to the fact that the attacker is not able to generate the old keys since 

the earlier volatile secret keys are not available at the time of compromise, even though 

the master key is. As in the case of the master key, crypt-analyzing the communication 

does not reveal the volatile secret key since it is not used in any channel communication. 

The base station also shares two counters with each sensing node, one for each 

direction (sending and receiving) of communication SC(M,S) and RC(M,S). These 

counters are kept synchronized by incrementing them on messages sent or received 

between the sensor and the base station. During synchronization, the receive-counter 

value at one party is matched with the send-counter value at the other party. However, the 

counters need not to be exactly synchronized; they can be off by some known number 

Sync_diff. When the counters are not synchronized, the key generated at the base station 

using SC(M,S) may not match the one generated at the sensor node using RC(S,M). 

Therefore, the sensor node adjusts (increments/decrements) RC(S,M), generates the key, 

and compares the key with that generated by M. The sensor node continues to do that 

until the keys are either matched or the number of adjustments to RC(S,M) equals 

Sync_diff. In the latter case the sensor nodes initiate counter synchronization with the 

base station. In addition to the conventional use of counters to achieve semantic security, 

they are used in SECOS as a variable input for key generation. The semantic security 

prevents a malicious node from replaying old, properly authenticated messages that was 

used to establish keys between legitimate nodes. The use as the variable input is required 

in the key generation process to introduce randomness. These counters are used to replace 

the job of a nonce or a sequence number that ordinarily would be attached to every 

message to prevent the replay of old messages. However, due to the fact that 

communication is far more energy consuming than computation [49], we use the shared 

synchronized counters to minimize the transmission overhead of the sequence number or 

the nonce with every message. Figure 3.2 presents an algorithm that is used to 

synchronize the counters during key refreshment. Therefore, for most of the time, the 

counter synchronization does not incur any overhead and comes as a by-product of key 
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refreshment. For example during the course of our simulations no counter 

synchronization is required beyond that with the key refreshment. New keys are 

generated by applying MAC and hash functions over data that includes these counters. 

Figure 3.1 (a) shows the initial keying material that includes the master key, the volatile 

secret key, and the counters. 

The rest of the keys are derived from the previous two keys with the help of MAC 

(e.g. HMAC) and hash (e.g. SHA-1) functions that are preloaded on the base station and 

the sensors. The session key between the base station and a sensor node is generated by 

the base station, by applying a MAC function over the result of concatenating the binary 

representation of the number 1 with the result of the SC(M,S)  XOR-ed with the volatile 

secret key. The same session key is generated by the sensor node by applying a MAC 

function over the result of concatenating the binary representation of the number 1 with 

the result of the RC(S,M)  XOR-ed with the volatile secret key. The MAC function is 

keyed by the master key as shown in the bottom of Figure 3.1 for SKXY. The purpose of 

the session key is to provide data confidentiality for communication between two nodes. 

A similar mechanism is used to generate a shared authentication key between the base 

station and the sensing node with concatenation of the binary representation of the 

number 2 instead of the number 1, as shown in the bottom of Figure 3.1 for AKXY. SECOS 

uses independent keys for encryption and authentication since it prevents any potential 

interaction between the primitives that might introduce a weakness and is therefore a 

good security design principle. SECOS uses the standard key refreshment procedure for 

the session key and the authentication key. The session key and the authentication key are 

refreshed periodically or when triggered by a certain event, such as the detection of an 

attack. The pseudo random key is generated by each entity by applying a MAC function 

over the same parameters as for the session key with concatenation of the binary 

representation of the number 3. This key is used as a seed for the pseudo random number 

generator (e.g. RC4), which is used to produce the stream cipher such as in the CTR 

mode of DES [14]. This key is refreshed only when the pseudo random string it generates 

is exhausted, which depends on the pseudo random number generator algorithm used. 
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1. M generates a new session key: SKMS = MAC(MKMS, SC(M,S) ∆ VKMS || 1).

2. M generates a new Authentication key: AKMS = MAC(MKMS, SC(M,S) ∆ VKMS || 2).

3. M S: CounterMS, Change, MAC (AKMS, CounterMS || Change).

4. S generates a new session key: new (SKSM) = MAC(MKSM, RC(S,M) ∆ VKSM || 1).

5. S generates a new Authentication key: new (AKSM) = MAC(MKSM, RC(S,M) ∆ VKSM || 2).

6. S generates the next volatile secret key: VKSM = H(VKSM).

7. S M: CounterSM, MAC(AKSM, CounterSM).

8. M generates the new volatile secret key: new (VKMS) = H(VKMS).

9. After the key refreshment is completed, all the old keys are purged. 4,5,6,8&9

37

1,2&9

SS

MM

 
Figure 3.2: Key refreshment and counter synchronization procedure 

Sometimes a packet sent from a source may not reach its final destination either 

due to a malicious event such as a compromised node in the path dropping the packet or 

due to natural node or link failure. As a result, the shared counters between these two 

parties may become unsynchronized, and a procedure has to be invoked to resynchronize 

them. Key refreshment is accompanied by shared counter synchronization between the 

two parties. However, the counter synchronization could be launched without the need to 

refresh any key. Figure 3.2 shows the key refreshment procedure between, the base 

station, M, and a regular sensor node, S. The one-bit flag, Change, is used if the counter 

synchronization is accompanied by key refreshment. 

3.1.3. SECOS Structure  

A flat layout with a powerful base station and sensing nodes distributed through the 

sensor field and the base station being responsible for key management is clearly not 

scalable to a large number of nodes. This motivates the hierarchical structure of SECOS. 

The hierarchical structure we propose for SECOS has clusters of sensor nodes based on 

geographical proximity. Each cluster has a specially designated node called the Control 

Node, which plays a privileged role for key management. The cluster is called a Control 

Group. SECOS does not impose any special requirements on the control node, and it can 

be any ordinary sensor node in the cluster. This has the advantage of reducing the 

possibility of targeted DOS attacks to the specialized nodes. The control node acts as the 

intermediary for key management. It is periodically changed for the purpose of security 
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(the control node may get compromised), and for more even energy drain (the control 

node and its neighboring relay nodes drain energy faster). This hierarchical structure 

shown in Figure 3.3 consists of three levels of nodes. The root is the base station that is 

assumed to have powerful resources and is well protected. The internal nodes are regular 

sensor nodes selected to play the role of control nodes. The leaves are regular sensor 

nodes. 

M

C1 CB. . .

S S. . .SS SS. . . S SS. . . S S. . .SS SS. . .. . .
S: Sensing Node Ci : Control Node M: Base Station

Control GroupControl Group

C2

 

Figure 3.3: Three level hierarchy for key management in SECOS 

An important parameter in SECOS is the size of the control group. The size has two sets 

of determining factors, which exert opposing effects. The size has to be bounded within a 

maximum due to three factors―the resource constraints of the control node, such as the 

communication bandwidth and the computation capacity; the security concerns of not 

exposing too many nodes if the control node is compromised; and limiting the energy 

overhead of intra-group key management by bounding the distance between a sensor 

node and its control node. However, the size has to be kept above a threshold so that most 

communication occurs within a control group rather than involving multiple control 

groups since intra-group communication is more energy efficient than inter-group 

communication. Section 3.3 provides a detailed mathematical analysis of the control 

group size. 
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3.1.4. Topology Building and Maintenance 

It is necessary for the base station to have information about the topology of the 

network and for each node to have some local topology information. Here, we discuss 

how such information is initially obtained and subsequently how it is updated and 

maintained.  

As mentioned earlier in Section 3.1.2, each sensor shares a master key, a volatile 

secret key, and two counters with the base station from which each sensor node, upon 

deployment, computes shared session and MAC keys with the base station. As a result, a 

secure session is established between each node in the network and the base station. Also, 

in the initial deployment phase of the network, each node builds a list of its neighbors and 

communicates this list to the base station. SECOS assumes that a node cannot be 

compromised and no external malicious nodes exist within the time it takes to build this 

list, thus implying that the base station gets a correct view of the neighbor information. 

We say that two nodes, X and Y, are neighbors if X can hear the transmission of Y. Since 

SECOS only considers bi-directional links, this implies that Y can also hear the 

transmission of X. The list of neighbors at each sensor node is built by locally 

broadcasting a HELLO message, which is a small packet holding the ID of the sender, 

and then receiving a reply message, which is also a small packet holding the ID of the 

sender from each node that heard the HELLO message. As soon as the sensor nodes are 

spread in the sensor field, each node S broadcasts the HELLO message. For each reply 

received, S adds the sender ID to its neighbor list. Then S sends the full list to the base 

station authenticated using the authentication key shared between S and M (AKMS). Note 

that neighbor discovery is secure based on our assumption that no malicious nodes exist 

in the network during the neighbor discovery.  Also note that neighbor discovery incurs a 

relatively negligible overhead since it is performed only once during the deployment of 

the network which is assumed to be static. This process is shown in Figure 3.4. The base 

station uses these lists to build a connectivity graph that represents the initial network 

topology and from that the control groups. The connectivity graph is built using an NµN 

connectivity matrix that is initialized to 0. For every member i in the neighbor list of S 

that M receives, M sets the entry (S,i) of the connectivity matrix to 1. The base station 
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generates the control groups using the connectivity matrix and the knowledge of the 

limits on the control group size and the maximum number of hops in the control group. 

For example, to generate the first control group, M adds node number 1 to the group, then 

the neighbors of node 1 are added, then the neighbors of each neighbor are added, and so 

on until the full control group is generated. 

1. S one hop broadcast: HELLO.

2. X S: HELLO reply.

3. S: adds the ID of X to its neighbor list (Snl).

4. S: repeats 2 and 3 for every HELLO reply.

5. S M: MAC( AKSM, Snl || SC(S,M)).

M

5

S

X
1

2
The communication range of S. 

A neighbor of S (e.g. X).

3&4

1
1 1

1

 

Figure 3.4 : Building the topology 

Alternately, a secure routing protocol such as INSENS [23] can be used to build 

the topology information and communicate it to the base station during the routing table 

construction. 

The base station has a global view of the entire network topology. When a 

compromised node is detected, its neighbors are informed, possibly through authenticated 

multicast [22].  

3.1.5. Assigning and Changing the Control Node 

The base station divides the network, based on the topology it built during the 

setup phase, into control groups consisting of geographically proximal nodes. For each 

control group, it then designates a node as a control node, say C, and sends it a list of 

session keys that the base station generates for each node in the group. The list of keys is 

sent in a message that is encrypted using the shared session key between the control node 

and the base station (SKMC). The session key is not sent to the sensing nodes in the group. 

Each sensing node generates that key on its own by applying a MAC function over the 
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result of concatenating the binary representation of 1 with the result of the RC(S,M) 

XOR-ed with the volatile secret key shared between the sensor node and the base station. 

The MAC function is keyed by the master key. This process is exactly identical to how 

the shared session key between the sensor node and the base station is generated 

independently by both parties as shown in the lower part of Figure 3.1 for SKXY.   

When a sensor node serves as a control node, it does not perform any sensing and 

uses all its available storage to store the keys. The motivation for this is to restrict the 

functionality of the control node to key management to facilitate control node monitoring 

by its neighbors. If the control node were to also send sensory data, it would be 

impossible for the neighbors to distinguish between control and data traffic since both are 

encrypted. Also, the key management functionality drains more energy than the regular 

sensing functionality and we wish to have as even a drain among the different nodes as 

possible. Finally, the control node requires memory resources to store the keys and does 

more computations to facilitate key management and we wish to reserve as much 

resource as possible for the control node to serve its control role. Typically sensor 

networks have redundant deployments whereby an event can be detected by multiple 

sensors. This leads us to believe that a reasonable number of nodes (the control nodes) 

may be exempted from the sensing functionality without adversely affecting the coverage 

on the sensor field.  

After the control node, C, receives the list of nodes in the control group, it 

broadcasts to the group members a message claiming that it is the new control node for 

the group. This message includes the list of neighbors of the control node that was built 

during the initial topology discovery phase. When a group member receives the claim, it 

buffers the claim. When the member needs to use C, it challenges C. The heart of the 

challenge lies in generating a random number using the random number generation key 

introduced earlier, authenticating it with the MAC key that should be available at the 

legitimate control node, asking C to do some processing on the number, and send it back 

authenticated. During this challenge the two nodes establish two shared counters between 

them. These two counters provide the same functionality as the SC(M,S) and RC(M,S) 

that are shared between each node and the base station. If the new control node 
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successfully passes the challenge, the sensor node replaces its current control node with 

the new one and if it is a neighbor node to the control node, it stores the list of neighbors 

of the new control node for the purpose of control node monitoring (Section 3.1.9). Note 

that now the node has a shared session key with the control node, which is different from 

the shared session key with the base station. The initial control node set up is shown in 

Figure 3.6. Figure 3.5 shows how a node, S, challenge a new control node, say C, in 

addition to the establishment of the shared counters between them. 

1. S hears the claim of C as a control node and buffers that claim.

2. If S needs to use C, it generates two keys, SKSC and AKSC.

3. S selects a random value using the pseudo-random number generator to be used as its SC(S,C).

4. S C: SC(S,C), MAC(AKSC, SC(S,C)).

5. C sets its RC(C,S) = SC(S,C).

6. C selects a random value using the pseudo-random number generator to be used as its SC(C,S).

7. C S: SC(C,S), MACKSC(3)(AKCS, SC(C,S) ∆ SC(S,C)).

8. S  sets its RC(S,C) = SC(C,S).

SS

CC

2&3

1

5

64

Broadcasting
 

Figure 3.5: Challenging the control node 

As mentioned in Section 3.1, we want to minimize the adverse fall out of a 

control node being compromised and provide tolerance against control node failures by 

regularly changing the control node. The control node is changed by the base station 

based on a certain time schedule, or when some anomalous events are detected, e.g., a 

compromised control node is detected. When the base station decides to initiate the 

change, it follows the same procedure as outlined above in this section for a new control 

node being assigned. In response to the announcement from the new control node, the 

previous control node, after challenging the new control node and being satisfied, flushes 

all the cryptographic data in its cache and returns to its normal sensing mode. 
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1- The base station, M, selects a new control node, C, for the control group, G.

2- M generates a new session key for each node, i, in G.

SKiC = MAC(MAMi, SC(M,i) ⊕ VKMi || 1)

3- M sends to C a list of these generated session values

M C: E(SKMC, {SKiC, IDi}), MAC(AKMC, E(SKMC, {SKiC, IDi}) || SC(M,C))

4- C announces its presence

C G members: I am a control node for group G
 

Figure 3.6: Control node refreshment 

3.1.6. Key Caches 

Each sensor node has two types of caches: (i) Regular cache: stores the session 

keys used to encrypt data in message communication between itself and any other node. 

(ii) Key request cache:  When a node initiates a data exchange and it does not have the 

session key for the receiver, it initiates a key establishment process. Subsequently, it may 

generate more data packets for the same receiver, before the key has been established. 

The key request cache stores the IDs of such receivers. 

 In addition, a control node has two types of cache: (i) Ring cache: It stores the 

session keys between itself and each node in its control group. (ii) Control cache: It 

stores the session keys with other control nodes, which are used for inter-group 

communication. 

3.1.7. Node to Node Communication within Control Group 

When a node, say A, needs to communicate with another node within its control 

group, say B, it first checks in its regular cache for the session key. If present, it uses the 

cached key. If not present, A generates two random keys K and iK  and encrypts one of 

them ( iK ) using the other (K) as a key. Let us call K the Envelop. Node A sends the 

encrypted message E(K, iK ) to B. Node A encrypts the key (K) and sends it to the control 

node C as E(SKAC,K). The control node recovers the key K, encrypts it E(SKBC,K), and 

forwards it to the destination B. When B receives the key K from the control node, it can 
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decrypt and obtain the key iK that will be used as the shared session key between A and B. 

When B receives the message that A sent, it stores the message temporarily for the key to 

arrive from the control node. If B does not receive the key from the control node within a 

specified time, it drops the packet. Nodes A and B store the session key in their regular 

cache and continue to use it till the control node is changed, or the key is evicted due to 

cache replacement. The intra-group communication is shown schematically in Figure 

3.7(a), and the detailed message communication is shown below: 

1. A  B: A, B, K( iK )  

2. A  C: A, B, E(SKAC,K),  H(K), MAC(AKAC, A || B || E(SKAC,K) ||  H(K) ||SC(A,C)). 

3. C  A: A, B, E(SKBC,K),  H(K), MAC(AKBC, A || B || E(SKBC,K) ||  H(K) || SC(C,B)) 

The MAC function is taken over the encrypted value of the Envelop. This has the 

advantage that the receiver doesn’t have to decrypt the Envelop if the MAC authentication 

fails, which saves some computation.   

3.1.8. Node to Node Communication across Control Groups 

If node A wishes to communicate with a node that lies in a different control group, 

then two control nodes are involved. Say A lies in group G1 and B in G2 and the 

respective control nodes are C1 and C2. If A does not have the session key with B cached, 

A generates two random keys (K and iK ) and sends the encrypted message E(K, iK ) 

directly to B. Node A encrypts the key (K) and sends it to C1 as E(SKAC1, K). Node C1 

checks its control cache for the session key between itself and C2. If not present, C1 

generates a key, say U, and sends it encrypted to the base station as E(SKC1M, U). The 

base station forwards the key encrypted to C2 as E(SMC2, U). Notice that there is no need 

to send a direct packet from the source control node to the destination control node as in 

the communication between two nodes within a control group, since the base station is 

assumed to be trusted. After the session key between C1 and C2 is established (SKC1C2 = 

U), C1 sends the key K to C2 as E(SKC1C2, K), and C2 forwards the key to B as E(SKC2B, 
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K). Node B now has the key K and the message E(K, iK ) from A and proceeds as in the 

intra-group communication to extract iK and use it as the session key. 

H(K):The hash value of K; SKxy: Session key between X & Y; M: Base Station; 
A,B: Sensing Nodes; C: Control Node; (K,    ) : the Envelop and the key between A    
and B; U : the session key between C1 and C2.

: A secure session

M

A

B

C

(1)  E(K,    )
(2)  E(SKAC, K),H(K)
(3)  E(SKCB, K),H(K)
(4)  New secure session 

2

31

M

BA

C1 C2

1

2
3

4

6
7

(1) E(K,    ); E(SKAC1, K), H(K)
(2) E(SKC1M, U)
(3) E(SKMC2, U)
(4) Secure Session (C1,C2)

(5) E(KC1C2, K), H(K)
(6) E(K C2B, K), H(K)
(7) Secure Session (A,B)

(a) (b)

4

1

5

~

K

~

K
~

K

 
Figure 3.7: (a) Intra-group communication; (b) Inter-group communication using 

two control nodes. The two control nodes do not have a secure session when the 

process starts.   

The inter-group communication is shown schematically in Figure 3.7(b), and the 

detailed message exchange is shown in the following steps: 

1- A  B: A, B, E(K, iK ) 
2- A  C1: A, B, E(SKAC1, K),  H(K), MAC(AKAC1, A || B || E(SKAC1, K) ||  H(K) 

||SC(A,C1)) 
3- C1 checks its control cache for C2, if an entry exists go to step 6 
4- C1  M: C1, C2, E(SKC1M, U), MAC(AKC1M, C1 || C2 || E(SKC1M, U) || SC(C1,M)) 
5- M  C2: C1, C2, E(SMC2, U), MAC(AKMC2, C1 || C2 || E(SMC2, U) || SC(M,C2)) 
6- C1  C2: A, B, E(SKC1C2, K),  H(K), MAC(AKC1C2, A || B || E(SKC1C2, K) ||  H(K) 

||SC(C1,C2)) 
7- C2  B : A, B, E(SKC2B, K),  H(K), MAC(AKC2B, A || B || E(SKC2B, K)||  H(K) 

||SC(C2,B)) 



 32

3.1.9. Monitoring the Control Node 

The control node plays a privileged role in key management and a compromised 

control node can substantially affect the security of the network. Hence, it is important to 

monitor that the control node’s behavior does not deviate drastically from the expected 

functionality for key management. Occasional deviation is expected due to naturally 

occurring failures. Local monitoring, presented in Section 2.1, is used to detect any 

deviation in the functionality of the control node. If the control node is suspected as a 

malicious node, then the local response algorithm (Section 2.2.1) is called to propel the 

node from the network. However, it is more involved to detect if the control node C 

forwards a garbage packet instead of the Envelop. Since the communication from source 

A to C and C to the destination B are both encrypted, Figure 3.7 (a), local monitoring 

cannot observe the traffic. To solve the problem, A appends the hash of the Envelop to 

the packet. The hash is compared by C and if correct, re-appended to the packet before 

forwarding to B. Local monitoring can observe the hash values coming in and out of C 

and thus provide detection if the incoming and the outgoing hash values are different. If, 

however, the values are identical and B detects a mismatch, then C is considered 

suspicious by B that calls the local response algorithm (Section 02.2.1) to inform the 

neighbors of C about the detected suspicious activity.  

3.2. Security Analysis  

In this section, we discuss the ability of SECOS to deal with the three major classes 

of security attacks–confidentiality violation, denial of service attacks, and authentication 

violation. 

3.2.1. Confidentiality Attacks 

The key exchange protocol between two end points of a communication is 

described in Sections 3.1.7 and 3.1.8. We now show that this key exchange protocol does 

not reveal the shared key between two legitimate nodes irrespective of the number of 

compromised nodes if either of the following features is used.  Note that these features 

are individually sufficient but not necessary for the proposition to hold.  
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1. The initial message E(K, iK ) sent by the initiator of the key exchange, A, to the 

destination, B, cannot be obtained by the control node, or 

2. The two parties involved in the key exchange, A and B, share an old session key in 

addition to iK and use a combination of the new and previous session key for the 

communication. For example, if the previous session key was K , then A can use iK ⊕ 

K  as the current session key for communication with B. In case a previous shared 

session key is not available, nodes A and B must establish the session through the 

secure base station and not through the control node. 

Proposition: Under feature 1 or 2 above, it follows that compromising any number of 

nodes other than the two end-points does not reveal the shared key between them. This 

proposition holds even if the control node for the two end points is compromised. 

Proof: 

Case1:  If feature number 1 is valid, then B is the only node in possession of the 

encrypted packet holding the key E(K, iK ). Thus, the control node, C, does not have it 

and though it has K, it can never obtain the shared key iK . 

Case2: If feature number 2 holds, the proposition can be proved using mathematical 

induction as follows. 

Base case: Let the number of compromised nodes in the network be NC. If NC = 0, 

there is no compromised node and the claim is trivially satisfied. If NC =1, this 

compromised node could be either the control node of A and B or any other node. 

If it is not the control node then the session can not be disclosed since only the 

control node, other than A, can decrypt the packet holding the Envelop. Consider 

that the single compromised node is the control node. Two cases are possible. (1) 

Nodes A and B have a previous shared key using an old control node. The current 

compromised control node does not know this key because the old control node 

was not compromised since the current control node is the only compromised node 

in the network by assumption. (2) Nodes A and B do not have a previous shared 

old key so they use the secure base station to start up the shared key and not the 

compromised control node. In both cases 1 and 2, the compromised control node 

cannot disclose the secure session between A and B. 
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Inductive step: Assume that the session between A and B is secure under (NC -1) 

compromised nodes, we want to show that it will be secure when a new node gets 

compromised for a total of NC compromised nodes. 

Inductive proof: If the NC
th compromised node is not the control node, the claim is 

trivially satisfied. If the NC
th node is the control node, then as in the base case, two 

cases are possible. (1) Nodes A and B share an old key (Kold), or (2) nodes A and B 

do not share an old key. In case (1), by the induction hypothesis, none of the (NC -

1) compromised nodes know the key, Kold. The new compromised node does not 

know Kold since the key was exchanged before the node got compromised. So if 

the new key exchanged through the compromised control node is Knew , then the 

new session key will be (Kold ∆ Knew). While the compromised node can know 

Knew, it cannot know Kold. In case (2), nodes A and B do not share an old key and 

hence obtain their key directly from the secure base station. This exchange is done 

using the shared session key with the base station and therefore the key is 

unknown to the control node. This completes the proof of the proposition. 

Comments: The proof excludes the following cryptanalysis scenario.  Assume the two 

nodes A and B have the startup key Kold from the main base station and then they 

use the Knew1 from control node C1, Knew2 from control node C2, …, Knewm from 

control node Cm. An attacker may capture the packet holding Kold and crypt-

analyze it to obtain Kold. By the time this is done, the control node is Cm. Then the 

session key at that time will be Kold∆Knew1∆Knew2∆…∆Knewm. To know this key, 

the attacker must either compromise all the control nodes C1 up through Cm or 

crypt-analyze all the packets holding the keys Knew1 up through Knewm . It is 

expected that m will be a large number due to the small number of cipher packets 

the adversary has to crypt-analyze a key. It will be practically infeasible to 

compromise selectively all the control nodes C1, …, Cm, especially considering 

that control nodes are pseudo-randomly chosen from among the ordinary sensor 

nodes. Alternatively, it will be practically infeasible to crypt-analyze all the keys 

Knew1, …, Knewm. 
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However, it is possible, though difficult, that neither of the features mentioned 

above are satisfied. In feature 1, the control node may be able to buffer all packets 

between A and B, either directly or with the help of other malicious colluding nodes, and 

attempt to decrypt them and thus acquires iK . Even if the communication of the initial 

message and the Envelop are randomized in time and order, it is possible that C buffers 

all messages within a window. Feature 2 is violated if the two parties do not share an old 

key and are unwilling to initiate key exchange using the main base station, possibly 

because it is far from either party. Section 3.2.1.1 presents a mathematical analysis of the 

probability of disclosing the secure session between A and B under certain number of 

compromised nodes if neither of the above features is used. 

3.2.1.1. Probability of Secure Session Disclosure 

In this subsection we provide a mathematical analysis of the probability of 

compromising the link between two arbitrary nodes A and B lying in the same control 

group with the number of compromised nodes in the network being a parameter. For the 

purpose of comparison with other key management protocols, we assume in this analysis 

that only compromised nodes may exist in the network (no external malicious nodes). We 

perform the analysis for SECOS, SPINS (a representative Kerberos like protocol), and a 

protocol by Du et al. [64] (a representative key pre-distribution protocol), and compare 

the results. We assume that SPINS has as many base stations as the number of control 

groups in SECOS (NB) and that the nodes are uniformly distributed in the sensor field.  

For the mathematical analysis, we use a restricted version of SECOS which does 

not use the two features mentioned in Section 3.2.1, i.e., the node does not use the 

multiple keys from previous control nodes or the communication with the base station 

and the control node may overhear communication between the two nodes in its control 

group. This serves as a plausible operating region for the protocol where resources are 

constrained, the control group size is small, or the control node colludes with a neighbor 

of the source-destination pair. The restriction on SECOS also serves to shed light on the 

advantages obtained by a specific feature of SECOS, namely using two packets–K( K� ) and 

the Envelop for key exchange between two arbitrary nodes. Note that if we use the 
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unrestricted version of SECOS, the analysis would become trivial since the probability of 

compromising the link between an uncompromised source-destination pair would be 

zero. 

To disclose the session key between A and B, an attacker must obtain both the 

Envelop (K) and the packet that is sent directly from A to B (E(K, iK )). To obtain the 

Envelop, the control node for A and B must be compromised. To analyze the probability 

of capture of E(K, iK ), we create a bounding path between A and B which is the 

rectangular bounding box containing nodes that may overhear the communication from A 

to B. This is shown by the dotted box in Figure 3.8. This is an overestimate since we use 

a square that circumscribes the circular transmission range of a node. To capture E(K, 
iK ), there must be at least one node in the bounding path from A to B that is 

compromised (we assume no compromised nodes exist in the network). Let the average 

number of hops between a pair of nodes in the control group be Hctrl, the density of nodes 

in the sensor field be D, and the communication range be R. The probability of capturing 

E(K, iK )is less than or equal to the probability of having at least one compromised node 

in the bounding path. Let N be the total number of nodes in the sensor field and 

SGctrl=N/NB is the size of a control group. Let the number of compromised nodes in the 

network be NC and assume that the compromised nodes are uniformly distributed in the 

field. Let E2 represent the event that there is at least one compromised node in the 

bounding path. 

The identity of the current control node in a control group can be easily deduced 

by an attacker. However, as mentioned in the assumptions, it takes a finite amount of 

time Tcomp to compromise a node. The period of rotation of the control node is smaller 

than Tcomp. Thus, starting from an uncompromised network, it will be impossible for an 

attacker to compromise the control node after identifying it. So the attack model for the 

analysis is that the attacker randomly picks a node to compromise. Let E1 be the event 

that this randomly chosen node is a control node, for some arbitrary source-destination 

pair A and B. 
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Figure 3.8: The bounding path between A and B 

The probability of E1 is 
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The probability of compromising the link between A and B (PA-B) is given by 

 ( ) ( ) ( )1 2 2 1 1|A BP P E E P E E P E− = =  (3.2) 

The number of nodes within the bounding path Nbp is given by its area times the density 

of nodes in the network. 

 ( ) 21 2 2( 1)bp ctrl ctrlN H R R D H R D= + ⋅ ⋅ = +  (3.3) 

Let E3 be the event that the control node exists in the bounding path. Then the probability 

of E3 is 
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Note that in the previous formula, we consider the size of the control group since A and B 

lie within the same control group. 
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Let NG = N-NC represents the number of uncompromised (good) nodes in the network. 

The number of ways in which we can choose Nbp good nodes is 
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The total number of ways in which we can choose Nbp nodes is 
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Since A and B both are assumed to be non-compromised nodes, they are subtracted from 

Nbp, NG, and N. 

 2 1 3

2
2

( | ) 1 2
2

G

bp

bp

N
N

P E E E N
N

 − 
  −  = − −  
  −   

 (3.8) 

    

( )

( )

( )

( ) 3 3

2

2

2
2

1 1 ( ) 1. ( )2
2

2

2 1 2
1 1 (2

2 1 2

G

bpC
C A B

bp

C

ctrlC

ctrl

N
NNP P E P ENN

N

N N

R D HN PNN
R D H

−

   − 
    −      = − − +    −          −     

  − −  
    + −     = − −    −        + −    

( )3 3) ( )E P E

 
 
 + 
 
 
 

 (3.9) 

In SPINS [63], which represents an example of the Kerberos-like protocols, the 

base stations are fixed. In order to make the sensor network economical, the authors 

assume that the base stations are not equipped with any specialized mechanisms or 

hardware to prevent compromise. They only assume that the base station has sufficient 

battery power to surpass the lifetime of all sensor nodes, sufficient memory to store 

cryptographic keys, and means for communicating with outside networks. Therefore the 

base stations in SPINS are equally likely to be compromised as any other sensor nodes. 

The model for the adversary is that it can target the base stations for compromising them. 

The attacker can identify the base stations and they are fixed so the adversary has enough 

time to try to compromise them. Thus,  
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  The protocol by Du et al. [64] represents an example of a key-pre-distribution 

scheme and is summarized by us in Section 8.1. The authors present a corresponding 

calculation of PC(A-B) as 
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Where d is the key space threshold, i.e. compromising (d+1) nodes will 

compromise the whole key space. w is the size of the key space’s pool, i.e. there are w 

key spaces for each node to pick from. t is the number of different key spaces that each 

node holds. The memory requirement at each node is mem = (d+1)µt . Also, they provide 

the formula for the probability that any two neighboring nodes can establish a secure 

session between them as 
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Figure 3.9: Probability of compromising a randomly selected link between two 

uncompromised nodes as a function of the number of compromised nodes in the 

network. 

Figure 3.9 shows the comparison among these three schemes (SECOS, SPINS, Du) 

using: w = 50, mem = 200, t=5, and Pactual=0.42 as parameters for Du’s scheme (d is 
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calculated as 39 based on the memory constraint mem), NB = 20 for SPINS, and. N = 

2000, R = 30, D = 15 neighbors for each node, and Hctrl = 10 as parameters for SECOS. 

Notice that Du’s scheme has only 0.42 for Pactual while SECOS and SPINS both have 

100% probability for any two nodes to establish a secure session between them. 

According to Figure 3.9, SECOS has lower probability of compromising a link than the 

other two protocols over a large range of the operating region. The probability goes to 

one for SPINS when the number of compromised nodes is greater than the number of 

base stations. Also, the link disclosure probability goes to one for Du’s scheme when the 

number of compromised nodes is greater than the d threshold. However, for a small 

number of compromised nodes, Du’s scheme is the most robust. 

3.2.2. Denial of Service (DoS) Attack 

1. DOS attack against a control node. This may be launched through a compromised 

node when it repeatedly asks the control node for forwarding a key. This kind of 

attack is handled by keeping a state vector at the control node for the currently active 

nodes that have recently requested key forwarding, and ignoring and sending 

feedback to the base station if a node behaves abnormally, e.g., asking for keys to 

communicate more than the feasible data rate. The feasible data rate is determined 

using a running window of the last m key requests and considers the communication 

bandwidth and the key cache size.  

2. DOS attacks by a compromised control node: We reduce the probability of the 

presence of a compromised control node by a judicious selection of the control node 

based on trust level by periodically changing the control node. However, for the time 

period when a compromised node serves as a control node, it can prevent two 

legitimate nodes, A and B, from establishing a common key between them. In such a 

situation when the initiator cannot establish the secure session using the control node, 

it can perform the key exchange using the base station as an intermediary. Each of A 

and B share a session key with the base station, which is distinct from the shared 

session key with the control node, and this can be used to establish a secure channel. 

This solution is also valid when control node is unavailable due to a natural failure. 
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The base station verifies that the requests for Envelop forwarding are coming from a 

legitimate node in the network and if it finds the control node is non-existent, installs 

a new control node. This scheme is identical to that used in SPINS in the general no-

attack case. 

3. DoS attacks against regular nodes: It is relevant to talk of only those DoS attacks 

against regular nodes that are enabled by mechanisms in SECOS. One possible DoS 

attack that may be launched against a legitimate node, B, is storage exhaustion by 

sending garbage packets to B, which buffers it in the expectation that the key needed 

to decrypt the packet is forthcoming from the control node. Requiring B to limit the 

number of unencrypted packets received from a specific source, accompanied by the 

inability of that source to launch an ID spoofing attack due to the neighbor watch 

(Section 3.2.3) alleviates this attack.  

3.2.3. Authentication Attack 

Another possible class of attacks is The ID spoofing and Sybil attacks in which a 

node impersonates other nodes [57] [76]. Through this attack, a compromised node can 

obtain knowledge of shared keys between other nodes. This class of attacks may be 

launched by a compromised control node, a regular node, or multiple nodes in collusion. 

SECOS handles the problem of regular nodes trying to masquerade as the control node by 

providing the control node challenge mechanism (Section 3.1.5) and for control nodes 

trying to masquerade as a different sensing node by using local monitoring (Section 

3.1.9). The two kinds of authentication attack whereby a node impersonates a 

neighboring node or a non-neighboring node are detected by the neighbor watch 

mechanism by the neighbors of the compromised node according to the scheme described 

in Section 3.1.9. Note also that many key management protocols (e.g. [63],[9]) do not 

address the authentication problem. Key management protocols in [15] and [64] are 

examples which address authentication is an inherent property of their protocol.  

If the control node, C, is  compromised, it may launch the following attack to 

uncover the key between two nodes in its control group, A and B. Node C sends to B a 

key iK  encrypted using the Envelop K claiming that it is from A. Node C performs the 
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same communication with A, claiming it is from B. Then C sends the Envelop K to both A 

and B after encrypting it with the respective session keys. The communication between A 

and B is now under the control of C. In SECOS, this attack is prevented through local 

monitoring in two different ways. First, if C tries to impersonate B and sends a packet, 

any of its neighbors, which does not have B in its neighbor list detects this while A itself 

will not be able to detect the impersonation. Second, if C generates the spurious messages 

and claims it is forwarding the message from B through a neighbor, say O, this is detected 

by the guard nodes for the communication through O,  while it can not be detected by the 

destination, A.   

We quantify the overhead in terms of control messages for each of the operations 

in SECOS, such as key establishment within and across control groups, neighbor watch, 

and control node monitoring.  

3.3. Determining Control Group Size 

In this section, we perform mathematical analysis to determine the optimal control 

group size in SECOS based on the constraints of the sensor network and the desired level 

of security. We introduce some notations for this analysis. The regular cache size at each 

node is SC, the hit rate in the cache aC, and the miss rate bC =1-aC. The control cache size 

is SCC, and its hit and miss rates are aCC and bCC, respectively. The hit rate is the 

probability that an item is found in the cache while the miss rate is the probability that an 

item is missed from the cache. The control group size that is to be optimized is SGctrl, and 

the communication group size is SGcom. We introduce the communication group for a 

node as the neighborhood of that node, with which it predominantly communicates. The 

quantitative meaning of predominant is made clear in the particular discussion. For the 

analysis in this section, we assume that the communication happens completely within 

the communication group. Each node generates packets according to a Poisson process 

with rate 1/λ. The destination is chosen at random from the communication group. The 

destination is changed once every µ seconds on an average, again using an exponential 

distribution. The control node has an average lifetime of Tctrl.  S(Pkt) gives the size of the 

Pkt packet. Hcom, Hctrl, and Hall are the average number of hops between nodes within the 

same communication group, between a node and the control node, and between a node 
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and the base station. Energy gives the energy for transmission and reception of one bit. The 

summary and notations for some of the control packets used are given in Table 3.1. 

Table 3.1:  Summary of relevant SECOS packet types 

Packet Notation Description Packet Notation Description 

K_req The Envelop from the 

source to the control node 

or from the control node to 

the destination.  

K_repf Relay the Envelop from one 

control node to another, 

used  in inter-group key 

establishment 

Data  Data packet K_rep   The encrypted key from the 

source to the destination  

3.3.1. Maximum Control Group Size 

The maximum allowable size of the control group is determined by three factors–

computational capabilities of the control node, bandwidth available around the control 

node, and the storage capacity for keys in the control node. These factors are discussed 

below. Here, GCOMP is the maximum control group size under the computational 

limitation only, GBW is the maximum control group size under the bandwidth limitation 

only, and GSTORE is the maximum control group size under the storage limitation only. 

1. Computational Capabilities (GCOMP). The computational capability of the control node 

to service key requests from nodes in its group is one of the factors that bound the 

control group size. Assume that the computational capability of the control node 

allows it to process IP instructions per second and the encryption algorithm for the 

Envelop encryption and decryption, the hash function computation, and the MAC 

encryption and decryption according to the steps shown in Figure 3.7(a) require IK 

instructions. The maximum number of keys that can be serviced is IP/IK keys per 

second. So if the node changes a destination every µ seconds and the miss rate in the 

regular cache is bC, a request is generated by a single node once every µ/bC seconds.      

 COPM
C

IPG
IK

µ
β
⋅

≤
⋅

  (3.13) 
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2. Channel Bandwidth (GBW). On average the available bandwidth for each node given 

channel bandwidth BW is BW/Nnbr where Nnbr is the number of one-hop neighbors of 

the node. Given the range of wireless transmission (r) and the density of nodes (ρ): D 

= Л r2 ρ. Part of this traffic bandwidth is consumed by data. Thus the available BW 

for control communication (BWc) is the total bandwidth per node minus the amount of 

data traffic 

 2 ( )
c

BW S DataBW
D λ

= −  (3.14) 

Each new session key served generates 2S(K_req) amount of traffic. Taking into 

account the regular cache misses and the key request rate this term is multiplied by 

(bC.1/µ).  

 (2 ( _ ))( / ) /(2 ( _ )( / ))c BW C BW c CBW G S K req G BW S K reqβ µ β µ≥ ⋅ ⇒ ≤ ⋅  (3.15) 

3. Storage Capacity (GSTORE).The storage refers to the ring cache in the 

control node which stores the keys of nodes in the control group. If the storage 

requirement of each key is SKey and the available flash memory for the ring cache is 

FM, then the storage upper bound is given by 

 /STORE KeyG FM S≤  (3.16) 

The maximum size of the control group is the minimum of those calculated from 

equations  (3.13),(3.15), and (3.16) above. 

 max min( , , )COMP BW STOREG G G G=  (3.17) 

The previous three factors came from resource constraints. A fourth factor arises 

from the security requirement. This is the security tolerance (GSEC) when a control node 

gets compromised. GSEC represents the maximum size of the control group under a 

certain acceptable number of compromised sessions or exposed messages. It is assumed 

that all the sessions that are established after the control node is compromised are 

disclosed. 

4. Security tolerance (GSEC). We want to limit the amount of communication that will 

become exposed due to the control node being compromised. Let N(s) be the 

acceptable number of message communications that can be exposed. Let the rate at 

which nodes are compromised be λSEC. Consider a round as the time a control node 
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maintains its privileged position. The length of a round is Tctrl. Consider an 

infinitesimally small time slice dt, after time t has elapsed in a round. The number of 

nodes that can be compromised in this time slice is λSECdt. In the worst case, all the 

compromised nodes are control nodes. As a result of compromising these control 

nodes, the number of communication sessions that will become exposed are 

GSEC.((Tctrl-t)/µ)µbC. Integrating over the entire round, we have  

 ( ) 2

0

( )
2

ctrlT
SEC SEC C ctrl SEC SEC C

ctrl

G T t Gdt T N S
λ β λ β

µ µ
−

= ≤∫  (3.18) 

 2

2 ( )
SEC

SEC C ctrl

N SG
T

µ
λ β

≤  (3.19) 

The maximum size of the control group becomes, 

 min( , , , )max COMP BW STORE SECG G G G G=  (3.20) 

3.3.2. Energy-Wise Optimal Control Group Size  

Here we wish to find the optimal control group size based on security and energy 

concerns. For this analysis, we consider the energy consumed in the entire network per 

unit time, which is equivalent to the power requirement of the network. We want to 

increase the security by minimizing the time between control node refreshments and we 

want to decrease the overhead energy of the protocol. The security requirement favors 

decreasing the time to refresh the control nodes and the smallest is the best while a larger 

period is more optimal energy wise. So we shall proceed to optimize the energy 

overhead. In doing so, we face two conflicting factors. The first is the number of nodes 

that can be served by the same control node, and the second is the average number of 

hops to the control node. The first factor favors increasing the control group size, since 

that will reduce the occurrence of the energy expensive inter-control group key setup 

communication. The second factor favors decreasing the control group size, since that 

will reduce the number of hops between a sensing node and the control node.  

Three factors are to be considered for the overhead energy consumption of SECOS:  

the destination of the packet to be sent (whether within the same control group or 
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outside), the probability of regular cache hit, and the probability of control cache hit. In 

the following derivation, we assume that the average number of hops between nodes is 

proportional to the number of nodes under the same density and traffic conditions, such 

that: Hctrl = max (Hcomµ SGctrl /SGcom,,1). From these we derive the following four cases: 

Case 1: Hit in the regular cache. This occurs with probability aC  that can be calculated 

as follows: 
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The term (SCµl)/(SGcomµm) represents the probability that the key is found in the 

regular cache during the send of the first packet and the subsequent terms represent the 

probability that the second, the third, the fourth, etc  packets hit. We assume that the size 

of the regular cache is greater than the number of packets sent in µ seconds. However, aC 

= 1 if the cache size is greater than the communication group size (SC > SGcom). If there is 

a hit in the regular cache, no overhead energy is spent.  

Weighted energy overhead = Energy overhead per miss. Probability = 0. 

Case 2: Miss in the regular cache and the destination is in the same control group.  The 

probability of regular cache miss is bC = 1- aC. The probability of communication within 

one control group is SGctrl/SGcom. If SGctrl>SGcom, i.e., the control group is larger than the 

communication group, then the communication is always within one control group and 

the probability is one.  

Weighted energy overhead = Energy overhead per miss. Probability =  
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 (3.22) 

Case 3: Miss in the regular cache, the destination is outside the control group and hit in 

the control cache. The probability of control cache hit, given that the number of control 

groups within the communication group is NBC=SGcom/SGctrl, is given by:  aCC = 

SCC/(N(SGcom)-1) = SCC/((SGcom/SGctrl)-1) = SGctrlµSCC/(SGcom-SGctrl). However, if SGctrl > 

SGcom/(SCC+1), aCC = 1.  

Weighted energy overhead =Energy overhead per miss. Probability = 
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Case 4: Miss in the regular cache, the destination is outside the control group, and miss in 

the control cache .The probability of control cache miss bCC = 1 - aCC  = 1 - SGctrlµSCC 

/(SGcom-SGctrl) = (SGcom-SGctrl-SGctrlµSGcom)/(SGcom-SGctrl) 

Weighted energy overhead = Energy overhead per miss. Probability 
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The total overhead energy of the protocol equals the sum of the contributions of 

the above four cases. Let the size of the key reply be SR, i.e. S(K_rep)= SR. And since the 

size of key request equals the size of key reply forward which is approximately three 

times the size of the key reply, we have  S(K_req) =  S(K_repf) = 3SR. The total overhead 

energy TE is written as several separate equations each for a region bounded by 

discontinuities:  

If  SGctrl > SGcom then 

 7E R ctrl nergy CT S H E β= × × × ×  (3.25) 

If SGctrl < SGcom  and SGcom < SGctrl (SCC+1) then  
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If  SGcom > SGctrl (SCC+1) then  
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We substitute Hctrl = 1 when SGctrl µHcom <SGcom and Hctrl = SGctrl µHcom / SGcom  

when SGctrl µHcom  ¥ SGcom  in the above set of equations. 

By minimizing TE with respect to SGctrl, we get a value of SGctrl = Genergy_opt that 

minimizes the overhead energy of SECOS. This does not give a closed form solution since 

there are discontinuities due to aC, aCC, and Hctrl. The equation can be solved numerically 

as shown below.  

If the above analysis gives a control group size that is smaller than the maximum 

size calculated in Section 3.3.1, then we choose that. Else, we are bounded by the 

maximum control group size. Mathematically, the chosen control group size is SGctrl = 

min (Genergy_opt, Gmax). 
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Figure 3.10: Total power consumed in SECOS with varying control group size.  
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Figure 3.10 presents a numerical solution for the optimal control group size for 

optimizing the total power consumption for a network of 2000 nodes with Hall = 100, 

Hcom = 10, SGcom = 200, βc = 0.2, Energy = 100 pJ, SR = 128 bit, and three different values 

for SCC 1, 4, and 9. As Figure 3.10 shows, the optimal group size occurs when SGctrl = 

SGcom/(SCC+1). The consumed power starts very high for small control group sizes 

relative to the communication group size because a large portion of the communication 

goes through the costly inter-group communication. As the control group size increases, 

the power decreases due to the decrease in the inter-group communication to the point 

where the number of control groups within the communication group equals the size of 

the control cache. Thus, decreasing the number of control groups, by increasing the 

control group size beyond this point does not provide any additional gains since all inter-

group communication hits in the control cache. Increasing the control group size after this 

point starts increasing the power linearly due to the increase in the average number of 

hops to the control node within the same control group. In our analysis, the increase in 

the number of hops is assumed to be linear with the size of the control group. 

3.4. Message Overhead 

In this section, we analyze the overhead in terms of control messages for each of 

the operations in SECOS. The overhead is calculated as the product of the number of bytes 

and the number of hops. 

Some Notation: Let Nnbr be the average number of neighbors of a node, Hcmax be the 

maximum number of hops between any two nodes in the control group, and D be the 

density of nodes in the network. Further, R is the range of transmission, and Hcom, Hctrl, 

and Hall are the average number of hops between nodes within the same communication 

group, between a node and the control node, and between a node and the base station, 

respectively. 

We now calculate the overhead involved in the various functions of SECOS 

3.4.1. Building the Neighbor List 

The following messages are required to build the neighbor list: 
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(i) One HELLO message from a node to its neighbors, (ii) Nnbr HELLO reply messages 

from the neighbors to the node, and (iii) one message containing the list of neighbors 

from the node to the base station. The size of each HELLO or the HELLO reply message 

is 9 bytes; 8 for the IDs of the sender and the receiver, and one holding the packet data. 

The size of the neighbor list packet is 4(Nnbr +2) bytes. The HELLO message travels one 

hop where the neighbor list message travels Hall hops on average to the base station. The 

total overhead in byte-hop product equals 9 (Nnbr +1) + 4(Nnbr +2)Hall. 

3.4.2. Setting the Control Node  

The following messages are required to setup the control node: 

(i) One message holding the list of members of the control group from the base station to 

the control node, (ii) one message for control announcement from the control node to the 

members of control group, and (iii) one message for neighbor list announcement from the 

control node to its neighbors. The member list message travels Hall hops on average and 

its size equal to 12µSGctrl bytes; 4 bytes for each member node ID and 8 bytes for the 

session key between the member and the control node. The size of the control 

announcement is 5 bytes and it travels Hcmax hops. The number of nodes involved in 

broadcasting the announcement depends on the range of transmission R and density of 

nodes in the network D. This number equals to  pµ(RµHcmax)2 D. The size of the neighbor 

list is 4 Nnbr and it travels one hop. The total overhead in byte-hop product equals 

12µSGctrlµHall+ 5p (RµHcmax)2 D + 4 (Nnbr +1). 

3.4.3. Key Establishment within the Same Control Group  

The following messages are required to setup a key between two nodes within the 

same control group: 

(i) One message holding the key from the initiator to the target,   (ii) one message holding 

the Envelop from the initiator to the control node, and (iii) one message holding the 

Envelop from the control node to the target. The message holding the key travels Hctrl 

hops on average and its size equals to 16 bytes, 8 bytes for the IDs of the initiator and the 
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target and 8 bytes for the key. The message holding the Envelop also travels Hctrl hops on 

average and its size equals 44 bytes, 8 bytes for the IDs of the initiator and the target of 

the communication, 8 bytes for the IDs of the intermediate sender and receiver of the 

message, 8 bytes for the key, 10 bytes for the hash value of the key, and 10 bytes for the 

MAC value, which provides freshness to the message. The total overhead in byte-hop 

product equals 104µHctrl. 

3.4.4. Key Establishment across Control Groups 

The following messages are required to setup a key across control groups when a 

shared key already exists between the corresponding control nodes: 

(i) One message holding the key from the initiator to the target, (ii) one message holding 

the Envelop from the initiator to its control node, (iii) one message holding the Envelop 

from the control node of the initiator to the control node of the target, (iv) one message 

holding the Envelop from the target’s control node to the target. Message (i) travels Hcom 

hops on average and its size equals to 16 bytes, 8 bytes for the ID’s of the initiator and 

the target and 8 bytes for the key. Message (ii) or message (iv) travels Hctrl hops on 

average and its size equals to 44 bytes, 8 bytes for the ID’s of the initiator and the target, 

8 bytes for the ID’s of the intermediate sender and receiver of the message, 8 bytes for 

the key, 10 bytes for the hash value of the key, and 10 bytes for the MAC value, which 

provides freshness to the message. Message (iii) travels Hcom hops on average and its size 

equals to 44 bytes, 8 bytes for the ID’s of the initiator and the target, 8 bytes for the ID’s 

of the intermediate sender and receiver of the message, 8 bytes for the key, 10 bytes for 

the hash value of the key, and 10 bytes for the MAC value, which provides freshness to 

the message. The total overhead in byte-hop product equals 60µHcom + 88µHctrl. 

And the messages that are required to setup a key across control groups with no 

shared key between the corresponding control nodes are the same messages as in the 

previous case in addition to (i) one message holding a key from the initiator’s control 

node to the base station and (ii) one message holding the same key from the base station 

to the target’s control node. The size of each of these messages equals to 16 bytes, 8 
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bytes for the ID’s of the initiator and the target and 8 bytes for the key, each of them 

travels Hall hops. The total overhead in byte-hop product equals 32µHall.   

3.5. Experiments & Results 

We build simulation models for SECOS and SPINS using the network simulator, 

ns-2. We generate a grid topology for the sensor field and distribute the nodes randomly 

on it. We distribute the nodes into control groups based on geographical location and 

place the base station at the top right corner of the field. We simulate 9 different 

communication patterns by changing the communication group size and the average 

percentage of communications that go within that group, for example 90/10 

communication means that 90% of the destinations are chosen from within the 

communication group while the rest are picked randomly from the whole network. Four 

different values of the relative size of the communication and control group are chosen 

for the experiment – 0.5, 1, 2, and 4. The simulation parameters are shown in Table 3.2. 

Table 3.2: Simulation parameters for evaluation 

Bandwidth 40 Kbps Control group size (G) 10 
Transmission range in meters 50  Ring cache size 20 
Number of nodes in sensor field 200 Regular cache size (C) 0,5,10 
The topology in square meters 120X600 Simulation Time 105 s 
Freq. of destination change (µ) 20 s Freq. of packet generation (λ) 200 s 
Frequency of control node 
change (τ) 

5 s Frequency of session key 
refreshment 

200 s 

Number of control groups 20 Control cache size 5 
 
We measure two parameters for both SECOS and SPINS: the total overhead energy 

due to key management and the average end-to-end delay of data packets. The end-to-end 

delay of a data packet is the sum of the delay of key management and data transmission 

delay. For the plots, we use the ratio of the SPINS value to the SECOS value. A higher 

value on the plot implies better performance by SECOS with a value of one being the 

crossover point. 

In the first experiment, we vary the size of the regular cache at each sensing node 

and observe the output parameters for 4 different sizes of the communication group. The 

100%:0% and 90%:10% communication patterns show identical trends but the 90%:10% 
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case is less favorable to SECOS because occasionally the destinations could be far, outside 

the control group. Focusing on the less favorable 90%:10% case, we show the results in 

Figure 3.11 and Figure 3.12. 

In the first experiment, we vary the size of the regular cache at each sensing node 

and observe the output parameters for 4 different sizes of the communication group. The 

100%:0% and 90%:10% communication patterns show identical trends but the 90%:10% 

case is less favorable to SECOS because occasionally the destinations could be far, outside 

the control group. Focusing on the less favorable 90%:10% case, we show the results in 

Figure 3.11 and Figure 3.12. 

Note that in these results, the two energy consuming but security enhancing parts 

of SECOS are simulated, namely, the periodic refreshment of the session keys, and the 

periodic change of the control node. From these graphs we find that SECOS outperforms 

SPINS both in terms of saving energy and reducing end-to-end delay. SECOS reduces the 

energy consumption by a factor ranging from 1.2 to 5.7, depending on the 

communication pattern and the cache size. 
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Figure 3.11: Ratio of overhead energy expended for SPINS and SECOS with varying 

cache sizes for different communication group sizes 
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Figure 3.12: Ratio of end-to-end data latency for SPINS and SECOS with varying 

cache sizes for different communication group sizes 

If the cache can store the keys of all the nodes that a node may communicate with, 

SPINS performs comparably in energy to SECOS.  But this is inadvisable from the point 

of view of forward security since a number of old sessions may be exposed if the node 

gets compromised. If we use the most secure configuration with no cache, SECOS has a 

2.8-5.7 fold energy reduction. As the cache size increases, the need for key exchange 

decreases and thus the difference between SECOS and SPINS decreases until the point 

when the cache can hold all the needed keys. For the simulation parameters here, the 

maximum benefit to SECOS is when the control group size equals the communication 

group size. As the communication group size increases beyond this, SECOS is favored less 

and less. The difference between SECOS and SPINS decreases as more inter-group 

communication takes place and this process is more energy consuming in SECOS than in 

SPINS. However, a reasonable sized control cache as used in these experiments still 

ensures that SECOS performs better than SPINS. This is explained by the fact that the 

control cache eliminates the necessity of a control node to create a new secure channel 

with another control node using the base station as the intermediary for every inter-group 

communication. It is seen that the difference between SECOS and SPINS decreases more 

sharply for SGcom/SGctrl=0.5 and 1. This is due to the fact that for these ratios, SECOS 

initially far outperformed SPINS with small cache sizes. The trend in delay is identical to 
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that for the energy overhead. The reason behind the lower energy consumption is that the 

number of hops to exchange the keys is lower, which translates directly to a lower delay. 

Next, we consider the communication pattern where any node can talk to any 

other node in the sensor field, which is referred to as all-to-all communication. The 

results are shown in Figure 3.13. In all-to-all communication, the energy ratio decreases 

as the cache size increases for a reason similar to that in the other communication 

patterns. However, it is seen that the reduction becomes flat beyond 10 cache entries. 

With 20-entry control cache, which effectively mimics an infinite cache, SECOS consumes 

58% less energy and incurs 8.8% less delay. This indicates that even if the possibility of a 

sensing node being compromised can be disregarded, and the cache size made arbitrarily 

large, SECOS outperforms SPINS. This is explained by the fact that relative to the number 

of control groups in the entire network, the control cache is large enough that SECOS does 

not have to resort frequently to the expensive inter-group communication. In a real-world 

deployment, it is likely that the communication group of a node will not span too many 

control groups, since a node is unlikely to communicate frequently with nodes 

geographically very distant from it. Therefore, with reasonable control cache sizes, 

SECOS will perform well.  

Finally, we bring out the overhead SECOS incurs due to two mechanisms for 

improving security, namely refreshment of session keys, and change of the control node. 

Figure 3.14 shows that the energy overhead of SECOS is 25% compared to SECOS-no-

refresh when there is no cache. Relative overhead of SECOS with respect to SECOS-no-

refresh increases as the cache size increases since SECOS increasingly sees the 

performance impact of purging the cache. At higher cache sizes, 93% energy may be 

saved if refreshment and control node change are suppressed. The reduction in delay is 

about 9% at high cache sizes. 
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Figure 3.13: Ratio of overhead energy SPINS: SECOS  
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Figure 3.14: Ratio of packet delay for SECOS with key refreshment and control node 

change: SECOS without these techniques 
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4. MITIGATION OF THE WORMHOLE ATTACK IN STATIC 
WAHAS NETWORKS: LITEWORP  

The wormhole attack [50],[53],[76],[95] is a particularly severe control attack that 

can be launched without having access to any cryptographic keys or compromising any 

legitimate node in the network. During the attack, a malicious node captures packets from 

one location in the network, and “tunnels” them to another malicious node at a distant 

point, which replays them locally. The tunnel can be established in many different ways, 

such as through an out-of-band hidden channel (e.g., a wired link), packet encapsulation, 

or high powered transmission. This tunnel makes the tunneled packet arrive either sooner 

or with lesser number of hops compared to the packets transmitted over normal multihop 

routes. This creates the illusion that the two end points of the tunnel are very close to 

each other. A wormhole tunnel can actually be useful if used for forwarding all the 

packets. However, in its malicious incarnation, it is used by attacking nodes to subvert 

the correct operation of ad-hoc and sensor network routing protocols. The two malicious 

end points of the tunnel may use it to pass routing traffic to attract routes through them. 

They can then launch a variety of attacks against the data traffic flowing on the 

wormhole, such as selectively dropping the data packets. The wormhole attack can affect 

network routing, data aggregation and clustering protocols, and location-based wireless 

security systems.  

In this chapter, we present a simple lightweight protocol, called LITEWORP, to 

detect and mitigate wormhole attacks in WAHAS networks. LITEWORP uses the secure 

two-hop neighbor discovery and local monitoring of control traffic to detect nodes 

involved in the wormhole attack. It provides a countermeasure technique that isolates the 

malicious nodes from the network thereby removing their ability to cause future damage. 

We provide a novel taxonomy of the different ways in which wormhole attacks can be 

launched and show how LITEWORP can be used to handle all but one of these attack 
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modes. LITEWORP has several features that make it especially suitable for resource-

constrained wireless environments, such as sensor networks. LITEWORP does not require 

any specialized hardware, such as directional antennas or fine granularity clocks. It does 

not require any time synchronization between the nodes in the network. It does not 

increase the size of the network traffic, and incurs negligible bandwidth overhead, only at 

initialization and on detection of a wormhole. The lightweight feature of LITEWORP is in 

contrast to other countermeasures for wormhole attacks, which have requirements (e.g. 

directional antennas [51],  highly accurate time measurement [75], and clock 

synchronization [53]) that often make them impractical for sensor networks and 

infeasible for many classes of ad-hoc networks. Finally, in LITEWORP, detection and 

isolation are done judiciously to minimize the possibility of victimizing innocent nodes 

due to false alarms caused by natural collisions in the wireless medium or due to 

malicious framing. 

In the coverage analysis that we present in Section 4.3.1, we show the relation 

between the number of nodes required for local monitoring, the guards, and the 

probability of false or missed detection. Moreover, we present an analysis for the 

isolation latency and the framing probability with various parameters such as the number 

of malicious nodes. We build a simulation model for LITEWORP using the network 

simulator ns-2 and perform a comparative evaluation of a network with and without the 

technique. The results show that with a large number of guards, LITEWORP can achieve 

98.9% non-malicious routes, with 12% of the network nodes compromised. For this 

configuration, the possibility of false detection (due to natural collisions) or framing (due 

to malicious reporting) is negligible. Further, the detection and isolation of the nodes 

involved in the wormhole can be achieved in a negligible time after the attack starts, and 

the cumulative number of lost packets and malicious routes established saturates with 

time because wormholes are identified and isolated.  Finally, we analyze the storage, 

computational, and bandwidth overheads incurred by LITEWORP, and demonstrate its 

lightweight nature.  

The rest of this Chapter is organized as follows. Section 4.1 describes taxonomy 

of the wormhole attack modes. Section 4.2 describes the LITEWORP protocol and its 



 59

defenses against the various modes of the wormhole attack. Section 4.3 presents coverage 

and cost analysis of LITEWORP. Section 4.4 presents simulation results.  

4.1. Wormhole Attack Modes 

In this section we classify the wormhole attack based on the techniques used for 

launching it. 

4.1.1. Wormhole using Encapsulation 

Wormhole attacks are particularly severe against many ad-hoc and sensor network 

routing protocols, such as the two ad-hoc on-demand routing protocols DSR [54]and 

AODV [55], and the sensor TinyOS beaconing routing protocol [76]. First, we 

demonstrate how a generic wormhole attack is launched against such routing protocols, 

using DSR as an example. In DSR, if a node, say S, needs to discover a route to a 

destination, say D, S floods the network with a route request packet. Any node that hears 

the request packet transmission processes the packet, adds its identity to the source route, 

and rebroadcasts it. To limit the amount of flooding through the network, each node 

broadcasts only the first route request it receives and drops any further copies of the same 

request. For each route request D receives, it generates a route reply and sends it back to 

S.   The source S then selects the best path from the route replies; the best path could be 

either the path with the shortest number of hops or the path associated with the first 

arrived reply. However, in a malicious environment, this protocol will fail. When a 

malicious node at one part of the network hears the route request packet, it tunnels it to a 

second colluding party at a distant location near the destination. The second party then 

rebroadcasts the route request. The neighbors of the second colluding party receive the 

route request and drop any further legitimate requests that may arrive later on legitimate 

multihop paths. The result is that the routes between the source and the destination go 

through the two colluding nodes that will be said to have a wormhole between them. This 

prevents nodes from discovering legitimate paths that are more than two hops away. 
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Figure 4.1: Wormhole through packet encapsulation 

One way for two colluding malicious nodes can involve themselves in a route is 

by simply giving the false illusion that the route through them is the shortest, even though 

they may be many hops away. Consider Figure 4.1 in which nodes A and B try to 

discover the shortest path between them, in the presence of the two malicious nodes X 

and Y. Node A broadcasts a route request (REQ), X gets the REQ and encapsulates it in a 

packet destined to Y through the path that exists between X and Y (U-V-W-Z). Node Y 

demarshalls the packet, and rebroadcasts it again, which reaches B. Note that due to the 

packet encapsulation, the hop count does not increase during the traversal through U-V-

W-Z. Concurrently, the REQ travels from A to B through C-D-E. Node B now has two 

routes, the first is four hops long (A-C-D-E-B), and the second is apparently three hops 

long (A-X-Y-B). Node B will choose the second route since it appears to be the shortest 

while in reality it is seven hops long. So X and Y succeed in involving themselves in the 

route between A and B. Any routing protocol that uses the metric of shortest path to 

choose the best route is vulnerable to this mode of wormhole attack. 

This mode of the wormhole attack is easy to launch since the two ends of the 

wormhole do not need to have any cryptographic information, nor do they need any 

special capabilities, such as a high speed wire line link or a high power source. A simple 

way of countering this mode of attack is a by-product of the secure routing protocol 

ARAN [74], which chooses the fastest route reply rather than the one which claims the 

shortest number of hops. This was not a stated goal of ARAN, whose motivation was that 

a longer, less congested route is better than a shorter and congested route. 
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4.1.2. Wormhole using Out-of-Band Channel 

This mode of the wormhole attack is launched by having an out-of-band high-

bandwidth channel between the malicious nodes. This channel can be achieved, for 

example, by using a long-range directional wireless link or a direct wired link. This mode 

of attack is more difficult to launch than the previous one since it needs specialized 

hardware capability.  
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Figure 4.2: Wormhole through out-of-band channel 

Consider the scenario depicted in Figure 4.2. Node A is sending a route request to 

node B, nodes X and Y are malicious having an out-of-band channel between them.  Node 

X tunnels the route request to Y, which is a legitimate neighbor of B. Node Y broadcasts 

the packet to its neighbors, including B. Node B gets two route requests—A-X-Y-B and A-

C-D-E-F-B. The first route is both shorter and faster than the second, and is thus chosen 

by B; this results in a wormhole being established between X and Y in the route between 

A and B. 

4.1.3. Wormhole using High Power Transmission 

 In this mode, when a single malicious node gets a route request, it broadcasts the 

request at a high power level, a capability which is not available to other nodes in the 

network. Any node that hears the high-power broadcast rebroadcasts it towards the 

destination. By this method, the malicious node increases its chance to be in the routes 

established between the source and the destination even without the participation of a 

colluding node. A simple method to mitigate this attack is possible if each node can 
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accurately measure the received signal strength and has models for signal propagation 

with distance. In that case, a node can independently determine if the transmission it 

receives is at a higher than allowable power level. However, this technique is 

approximate at best and dependent on environmental conditions. The local monitoring 

approach used in LITEWORP provides a more feasible defense against this mode. 

4.1.4. Wormhole using Packet Relay 

  In this mode of the wormhole attack, a malicious node relays packets between 

two distant nodes to convince them that they are neighbors. It can be launched by even 

one malicious node. Cooperation by a greater number of malicious nodes serves to 

expand the neighbor list of a victim node to several hops. For example, assume that node 

A and node B are two non-neighbor nodes with a malicious neighbor node X. Node X can 

relay packets between nodes A and B to give them the illusion that they are neighbors. 

4.1.5. Wormhole using Protocol Deviations 

 Some routing protocols, such as ARAN [74], choose the route with the shortest 

delay in preference to the one with the shortest number of hops. During the route request 

forwarding, the nodes typically back off for a random amount of time before forwarding. 

This is motivated by the fact that the request forwarding is done by broadcasting and 

hence, reducing MAC layer collisions is important. A malicious node can create a 

wormhole by simply not complying with the protocol and broadcasting without backing 

off. The purpose is to let the request packet it forwards arrive first at the destination. This 

increases the probability that the route between the source and the destination will 

include the malicious node. This is a special form of the rushing attack described in [52].  

Summarizing, the different modes of the wormhole attack along with the 

associated requirements are given in Table 4.1. 

Table 4.1: Summary of wormhole attack modes 

Mode name Min. # of compromised nodes Special requirements 
Packet encapsulation Two None 
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Out-of-band channel Two Out-of-band link 
High power transmission One High energy source 
Packet relay One None 
Protocol deviations One None 

 
Many applications in ad-hoc and sensor networks become vulnerable once a 

successful wormhole attack has been launched. Routing is an important example. As we 

discussed in 4.1.1, on demand ad-hoc routing protocols like DSR and AODV, and the 

sensor TinyOS routing protocol are highly vulnerable to the attack. Other routing 

protocols like SEAD [77], Ariadne [78], ARRIVE [85], directed diffusion [80], multipath 

routing [81], minimum cost forwarding [82], rumor routing [83], and even secure routing 

protocols presented in [79] and [60] are also vulnerable to wormhole attacks. For further 

details on the vulnerability of routing protocols, the reader may refer to [53]. Moreover, 

all the protocols that are used in building neighbor lists and, by extension, the routing 

protocols (e.g. DSDV [84], OLSR [86], and TBRPF [87]) that use these lists, are 

vulnerable as well..  

4.2. Defenses 

In this section, we describe the process for wormhole detection in LITEWORP 

followed by the process for isolation of the malicious nodes.  

4.2.1. System Model and Assumptions 

Attack model: In the attack model that we consider, the wormhole is launched by a 

malicious node, which may be either an external node that does not have the 

cryptographic keys, or an insider node, that possesses the keys. The insider node may be 

created, for example, by compromising a legitimate node. All these malicious nodes can 

exhibit Byzantine behavior and can collude amongst themselves. The malicious node can 

be a powerful entity that can establish out-of-band fast channels or have high powered 

transmission capability. 

System assumption: LITEWORP assumes that the communication links are bi-directional, 

which means that if a node A can hear node B then B can hear A. LITEWORP assumes that 

a finite amount of time is required from a node’s deployment for it to be compromised. 
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LITEWORP further assumes that no external or internal malicious nodes exists before the 

completion of the neighbor discovery. However, this assumption can removed by using 

one of the protocols for secure neighbor discovery such as the one by Hu and Evans using 

directional antennas [51] or by using trusted and more powerful nodes as in [155]. There 

is an obvious tradeoff here between cost (advanced hardware resources) and benefit 

(more relaxed set of assumptions).  Moreover, LITEWORP assumes that the network has a 

static topology. This does not rule out route changes due to node failures, malicious node 

isolation, route evictions from the routing cache, or the change in the role that a node 

practices (e.g., cluster head, data aggregator, etc.). From the point of view of LITEWORP, 

incremental deployment of a node in the network is identical to having a mobile node 

move to its location. This is handled using the protocol for wormhole mitigation in 

mobile multi-hop wireless networks, Chapter 7. LITEWORP requires each packet 

forwarder to explicitly announce the immediate source of the packet it is forwarding, i.e., 

the node from which it receives the packet. Finally, LITEWORP assumes a key 

management protocol, such as SECOS [66],[63]-[65],  is used to pre-distribute pair-wise 

keys in the network. 

4.2.2. Building Neighbor Lists 

This protocol is used to build the data structure of the first-hop neighbors of each 

node and the neighbors of each neighbor. This data structure is used in local monitoring 

to detect malicious nodes and in local response to isolate the detected malicious nodes. A 

neighbor of a node, X, is any node that lies within the transmission range of X. As soon as 

a node, say A, is deployed in the field, it does a one-hop broadcast of a HELLO message. 

Any node, say B, that hears the message, sends back a reply to A. Node A accepts all the 

replies that arrive within a timeout. For each reply, A adds the responder to its neighbor 

list RA. Then, A does a one-hop broadcast of a message containing the list RA. When B 

hears the broadcast, it stores RA. Hence, at the end of this neighbor discovery process, 

each node has a list of its direct neighbors and the neighbors of each of its direct 

neighbors. Note that this requires a larger memory than simply keeping a list of first-hop 

and second-hop neighbors. This process is performed only once in the lifetime of a node 
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and is assumed to be secure. Henceforth, a node will not accept a packet from a node that 

is not a neighbor nor forward to a node that is not a neighbor. Also, second-hop neighbor 

information is used to determine if a forwarded packet comes from a neighbor of the 

forwarder. If a node C receives a packet forwarded by B purporting to come from A in the 

previous hop, C discards the packet if A is not a second-hop neighbor. After building its 

first- and second-hop neighbor list, node A activates local monitoring. 

4.2.3. Detecting Different Modes of Wormhole Attacks using LITEWORP 

In this section, we use local monitoring (Section 2.1) to build the detection 

algorithm individually for each of the first four wormhole attack modes and show how 

existing approaches can be used to detect the fifth mode.  

4.2.3.1. Detecting Out-of-Band and Packet Encapsulation Wormholes 

Recall, from local monitoring (Section 2.1), that a guard node α of a node A over 

the link from a node X to A performs the following steps as  part of its role in monitoring 

the network communication, 

1. The guard node a ,   saves information from the packet header of each control packet 

going over the link from X to A and time stamps it with the deadline t.  

2. Node a overhears every packet going out of A. For all the packets that A claims has 

come from X, α looks up the corresponding entry in its watch buffer. 

3. If an entry is found, a drops that entry since the corresponding packet has been 

correctly forwarded. 

4. If an entry is not found, then A must have fabricated the packet. Therefore, a 

increments MalC (a,A) by Vf. 

5. If an entry for a packet sent from X to A stays in the watch buffer beyond t, then A is 

accused of dropping the corresponding packet. Node a increments MalC(a,A) by Vd. 

6. If the incoming packet to A is different from the corresponding outgoing packet from 

A, then A is accused of modifying the packet. Therefore, α increments MalC(α,A) by 

Vm. 
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Now, consider the scenario in Figure 4.3. M1 and M2 are two malicious nodes 

wishing to establish a wormhole between the two nodes S and D. When M1 hears the 

REQ packet from S, it directs the packet to M2. Node M2 rebroadcasts the REQ packet 

after appending the identity of the previous hop from which it got the REQ. Node M2 has 

two choices for the previous hop—either to append the identity of M1, or append the 

identity of one of M2’s neighbors, say X. In the first choice all the neighbors of M2 will 

reject the REQ because they all know, from the stored data structure of the two-hop 

neighbors, that M1 is not a neighbor to M2. In the second case, the knowledge of the first-

hop and second-hop neighbor lists is not sufficient for all the guards to detect the attack. 

However, using local monitoring, all the guards of the link from X to M2 (X, m, and l) 

will detect M2 as fabricating the route request since they do not have the information for 

the corresponding packet from X in their watch buffer. In both cases M2 is detected, and 

the guards increment the MalC value of M2. 
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Figure 4.3: Wormhole detection for out-of-band and packet encapsulation modes 

In addition, the REP packet may also be used for detection of M1 and M2. When D 

gets the REQ, it generates a route reply packet, REP, and sends it back to M2. The guards 

of the link from D to M2 (D, m, and y) overhear the REP and save an entry in their watch 

buffers.  Node M2 sends the route reply back to M1 using the out-of-band channel or 

packet encapsulation. After t time units, the timers in the watch buffers of the guards D, 

m, and y run out, and thus the guards detect M2 as dropping the REP packet and 

increment the MalC of M2. However if M2 is smarter, it can forward another copy of the 

REP through the regular slower route. In this case, MalC of M2 is not incremented. When 
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M1 gets the REP from M2, M1 forwards it back to S after appending the identity of the 

previous hop. As before, M1 has two choices—either to append the identity of M2, or 

append the identity of one of M1’s neighbors, say Z. In the first choice, node S rejects the 

REP because it knows that M2 is not a neighbor to M1. Also, all the neighbors of M1 know 

that M2 is not a neighbor to M1. In the second case, all the guards of the link from Z to M1 

detect M1 as forging the REP since they don’t have the corresponding entry from Z in 

their watch buffers.  

4.2.3.2. Detecting High Power Transmission Wormhole 

This mode is detected using the assumption of symmetric bi-directional channels. 

Suppose a malicious node, say X, tries to use high power transmission to forward a 

packet P1 to it is final destination, or to cross multiple hops to introduce itself in the 

shortest path. Then all the nodes for which X is not in their neighbor lists detect the 

malicious behavior of X and reject P1.  

4.2.3.3. Detecting Packet Relay Wormhole 

This mode is detected using the stored neighbor lists at each node. Suppose a 

malicious node X is a neighbor to two non-neighbor nodes A and B and tries to deceive 

them by relaying packets between them. Both A and B detect the malicious behavior of X 

since they know that they are not neighbors and reject the relayed packet. 

4.2.3.4. Detecting Protocol Deviation Wormhole 

This mode can not be detected using LITEWORP. Researchers have proposed 

techniques for countering selfish behavior in specific protocols. Selfishness refers to the 

property that nodes may tend to deny providing cooperating services to other nodes in 

order to save their own resources, e.g., battery power. Kyasanur et al. have addressed the 

problem of greediness at the MAC layer [88], while Capkun et al. have addressed 

selfishness in packet forwarding [75]. Hu et al. have proposed a solution to an attack, 
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called the rushing attack, in which nodes greedily forward the route request passing 

through them without back off [52]. 

4.2.4. Response and Isolation Algorithm 

Detection of an ongoing attack is only the first step towards protecting the network. 

The local response and isolation module is used to diagnose the attacker and take 

appropriate response to isolate it from the network and thereby removing its ability to 

cause future damage. This module is controlled by the local monitoring module and 

invoked upon the detection of a malicious node. In the local response approach, the 

detection knowledge propagates only locally, within two hops from the suspect node. 

This action is implemented by deleting the suspect node from the first-hop and the 

second-hop neighbor list. The local response algorithm presented in Section 2.2.1 is 

called when a monitor, say a, detects a malicious behavior of a node, say A, during the 

course of local monitoring. However, for the convenience of reading, we reprint the 

algorithm below, 

1. When MalC(a,A) crosses a threshold, Ct , a revokes A from its neighbor list, and sends 

to each neighbor of A, say D, an authenticated alert message indicating A is a 

suspected malicious node. This communication is authenticated using the shared key 

between a and D to prevent false accusations. Alternately, if the clocks of all the 

nodes in the network are loosely synchronized, a can do authenticated local two-hop 

multicast as in TESLA [72],[73] or mTESLA [63] to inform the neighbors of A. Note 

the α isolates A without waiting for γ alerts from other nodes since a node is assumed 

to trust itself. 

2. When D gets the alert, it verifies the authenticity of the alert message, that a is a 

neighbor to A, and that A is D’s neighbor. It then stores the identity of a in an alert 

buffer associated with node A.  

3. When D gets enough alert messages, γ, about A, it isolates A by marking A’s status as 

void in the neighbor list.  γ  is the detection confidence index.   

4. After isolation, D does not accept any packet from or send any packet to A.  
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In addition to removing the malicious nodes from the network, this primitive 

makes the response process fast since the detection knowledge need not propagate 

throughout the network. This module is lightweight in the number of messages (one to 

each neighbor of A, only on detection) and the number of hops each message traverses 

(maximum two hops). Note that the detection confidence (g) is useful for reducing the 

possibility of framing with a higher value being favored for this purpose. Framing is the 

attack where a malicious node, acting as a guard, sends alert about a correct node. If  g is 

set to infinity, then a node only trusts itself and the framing probability is zero. 

4.3. LITEWORP Analysis 

4.3.1. Coverage Analysis 

In this section, we quantify the probability of missed detection and false detection 

of the wormhole attack as the network density increases and the detection confidence 

index (γ) varies. The results provide some interesting insights. For example, we am able 

to find the required network density d to detect p% of the wormhole attacks for a given γ.  

Consider a homogeneous network of N nodes uniformly distributed with density d 

in a deployment field. For simplicity, assume that the field is large enough that edge 

effects can be neglected in our analysis. Consider any two randomly selected neighbor 

nodes, S and D, as shown in Figure 4.4(a). Nodes S and D are separated by a distance X, 

and the communication range is r.  Then, X is a random variable with range (0,r) and 

probability density function of  

 2

2( )X
xf x

r
=  (4.1) 

To see this, note that the number of nodes within a distance x (0≤  x ≤r) of a 

randomly selected node W is πx2d. This follows from the assumption of uniform 

distribution of the nodes.  The number of neighbors of W is πr2d,  where the neighbor of 

W is any node that lies within the transmission range of W (r). The probability that a 

neighbor of W is at a distance X that is less or equal x is the cumulative probability 

density function (cdf) of the random variable X (FX(x)) which is given by 
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The probability density function (pdf) of X is the derivative of the cumulative 

probability density function, which is given by Equation(4.1). 
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Figure 4.4: (a) The area from which a node can guard the link between S and D; (b) 

illustration for detection accuracy 

The guard nodes for the communication between S and D are those nodes that lie 

within the communication range of S and D, the shaded area in Figure 4.4 (a). This area is 

given by 

 
2

2 1 2( ) 2 cos
2 4
X XArea X r X r
r

−  = − − 
 

 (4.3) 

The minimum value of Area(X), Areamin, is when X = r. Therefore, the minimum 

number of guards is 

 2
min min 1.23g Area d r d= = ⋅  (4.4) 

The expected value of the area 

      [ ] ( )
2

2 1 2 2
2

0

2( ) 2 cos 1.84
2 4

r x x xE Area X r x r dx r
r r

−
     = − − ≈ ⋅    

     
∫  (4.5) 

Therefore, the expected number of guards is 

 2[ ( )] 1.84g E Area X d r d = = ⋅   (4.6) 

 The number of neighbors of a node is given by 

 2
BN r dπ=  (4.7) 

Therefore, 
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 0.59 Bg N≈     (4.8) 

Now, as in [67] where IEEE 802.11 was analyzed, we assume that each packet 

collides on the channel independently with a constant probability, PC. As shown in Figure 

4.4 (b), a guard G will not detect a fabricated packet sent by D, claiming it was received 

from S, if G experienced a collision at the time that D transmits. Therefore, the 

probability of missed detection is PC. Assume that S sends y packets to be forwarded by 

D within a time window Twin. Assume that D selectively fabricates (to evade detection) 

packets with probability Pfab. Then, the number of packet fabrications (m) that occur 

within Twin is y•Pfab. Also assume that the MalC threshold over time window of Twin is b 

(Ct =β) and each malicious activity increases the MalC by one. Then, the probability of 

detection by direct observation (henceforth shortened as “direct detection”) at a guard is 

given by 

 ( ) ( ) ( )| 1 i i
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i

P P P
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=
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∑  (4.9) 

Now consider the case of detection through evidence furnished by γ or more 

guards, shortened as “indirect detection.” Assuming independence of collision events 

among the different guards, the probability that at least g of the guards generate an alert is 

given by 
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Where,  ( , 1)B gγ γ− +  is the Beta function and ( )( | ; , 1)directB P gβ µ γ γ− +  is the 

incomplete Beta function. This gives the probability of indirect detection at a guard. 

Therefore, the probability of detection at a guard is given by, 

 ( ) ( ) ( ) ( )| |detect direct indirect direct indirectP P P P Pβ µ γ β µ γ= + −  (4.11) 

Based on Equation(4.11), Figure 4.5 shows the probability of detecting at a guard 

as a function of the number of neighbors with m = 7, b = 4, g  = 3, Pfab=1, the number of 

compromised nodes M = 2, and PC = 0.05 at NB = 3. Thereafter, PC is assumed to increase 
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linearly with the number of neighbors. The number of guards is determined from NB 

using Equation (33). Since the number of guards increases as the number of neighbors 

increases, the probability of indirect detection increases since it becomes easier to receive 

the alarm from g guards. However, the collision probability also increases with the 

number of neighbors, and thus the probability of direct detection starts to fall rapidly 

beyond a point, which in turn decreases the indirect detection and the overall detection at 

a guard. However, note that the detection is still high (above 98.5%) at the relatively high 

density of each node having 35 neighbors since the reduction in the direct detection 

capability is compensated by the indirect detection. 

  
Figure 4.5: Probability of attack detection at a guard against NB 

Figure 4.6 shows the probability of detecting the wormhole attack against γ with m 

= 7, b = 4, NB = 20, the number of compromised nodes M = 2, and PC = 0.33. As g 

increases, the probability of indirect detection at a guard decreases since it becomes 

harder to reach consensus among all the γ guard nodes. Therefore, the probability of 

detection decreases rapidly with increasing γ. However, note that the probability of 

detection is still high even at the lowest point (above 0.88) since the probability of direct 

detection is not affected by γ. 
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Figure 4.6: Probability of wormhole detection at a guard against γ 

Recollect that false alarm is caused by a “legitimate” node mistaking another 

“legitimate” node to be malicious because of imperfections in the wireless channel. As 

shown in Figure 4.4 (b), a false alarm occurs when D receives a packet sent from S, while 

G does not receive that packet, and later, G receives the corresponding packet forwarded 

by D. Thus, the probability of false alarm is 

 2(1 )FA C CP P P= −  (4.12) 

Assume that S sends y packets to D for forwarding, within Twin. The probability 

that D is falsely accused directly by a guard is the probability that b or more packets are 

falsely suspected as fabricated. Therefore, the probability of direct false alarm (PDF) at a 

guard is given by, 
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The probability of indirect false alarm (PIF) is the probability that at least γ guards 

generate false alarms, which is given by  
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The probability of false alarm at a guard is given by, 

 ( ) ( ) ( ) ( )| |false DF IF DF IFP P P P Pβ ψ γ β ψ γ= + −  (4.15) 

Based on Equation(4.15), Figure 4.7 shows the probability of false alarm at a 

guard as a function of the number of nodes for the same parameters as in Figure 4.5. The 

non-monotonic nature of the plot can be explained as follows. As the number of 

neighbors increases, so does the number of guards. Initially, this increases the probability 

that at least γ guards miss the packet from S to the guard but not from D to the guard, 

leading to increase in indirect false detection. But beyond a point, the increase in the 

number of neighbors increases the collision probability. This increases the probability 

that both of these packets are missed at the guard and thus does not lead to false 

detection. The worst case false alarm probability is still low (less than 1.2×10-3). 

 
Figure 4.7: Probability of false alarm at a guard against NB 

Figure 4.8 shows the probability of false alarm as a function of γ with PC = 0.05, 

β=4, µ=7, and NB=20. As g increases, the probability of false detection decreases since it 

becomes harder to reach consensus among all the γ guard nodes. Moreover, recall that the 

probability of direct false detection does not change with γ. Therefore, the probability of 

false detection decreases with increasing γ. 
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Figure 4.8: Probability of false alarm at a guard against γ 

Figure 4.16 (Section 4.4) shows the probability of indirect detection against γ, 

both through analysis and simulation 

4.3.2.  Analysis of a Node being Framed 

Using the same notation of previous section with N be the total number of nodes 

in the network, Nm be the number of malicious nodes, Pm=Nm/N be the probability that a 

node gets compromised, d be the density of nodes in the network, r be the range of 

communication, and NB = pr2d be the number of neighbors of a node.  

Assuming that false detection is zero, then, the probability that a good node X is 

locally framed equals the probability that there are at least g malicious nodes among X’s 

neighbors which is given by, 

 ( )( ) 1
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N iB i
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i
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=
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= − 
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The probability of node framing (Pframe) as a function of the probability of node 

compromise for g = 5 and NB = 7 is plotted in Figure 4.9 From the figure, we see that the 

probability of framing increases exponentially with the probability of node compromise 

but up to the upper end of the range, it is still less than 0.03. 
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Figure 4.9: Probability of node framing against the probability of compromising a 

given node (g=5, NB=7) 

4.3.3. Detection Latency Analysis 

Here, we analyze the amount of time it takes to detect a malicious node. Assume 

the traffic distribution and the bandwidth capacity allows a maximum of m packets to be 

forwarded by a malicious node M within a time window Twin. Assume that M selectively 

fabricates (to evade detection) packets with probability Pfab. Let G be the guard node of 

M over the link from X to M that collects and keeps a malicious counter (MalC(G,M)) for 

M over a window of length Twin which slides by d units, Figure 4.10. Assume the MalC 

threshold Ct over this time window is b and that each malicious activity increases the 

MalC by one. Let Twin/d = h. When h=1 in Figure 4.10 (a), the sliding windows are non-

overlapping and therefore, the events detected in any two windows are independent.  

δ

Twin

(b) Twin/ δ = η >1
δ

Twin

δ

Twin

(b) Twin/ δ = η >1

Twin= δ
(a) Twin/δ = η = 1
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Figure 4.10: Sliding window illustration 

The probability that G detects M during a certain time window (PgdM) equals the 

probability that M fabricates at least  b packets within Twin, which is given by 
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The expected time of detection is calculated from the number of  Twin time slots 

(Nts) that pass before the guard G detects the malicious node M. The probability that Nts = 

k is 

 ( ) 1
( ) 1

k

ts gdM gdMP N k P P
−

= = −  (4.18) 

Using Bernoulli trials, the expected value for Nts is given by E[Nts] =1/PgdM. The 

expected number of time slots (E[Nts]) before a single guard detects a malicious node is 

plotted in Figure 4.11. The plot shows that the latency decreases very fast with increasing 

probability of malicious behavior. 

 
Figure 4.11: Expected number of time slots E[Nts] before a single guard detects a 

malicious node 

For the case with overlapping sliding windows (η>1), Figure 4.10 (b), the 

analysis becomes more difficult and we use Martingale Theory [96] to obtain bounds on 

the delay. Here, we assume rate-based detection, i.e., a node is determined to be 

malicious if the rate of malicious activities goes above a threshold α. We present this 
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analysis for g =  ∞ since it eliminates framing and is shown to give reasonable detection 

rates as shown through the simulations (Section 4.4). 

  Let Xi be an i.i.d. Bernoulli random variable that tracks the number of malicious 

actions by a node, such that Xi=1 (malicious activity) with probability λ and zero, 

otherwise. Thus, E[Xi] = λ. Consider that the guard observes the node for Nact activities 

(packet forwarding actions). Define 
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Then it can easily be shown that ZNact is a zero-mean martingale process. 

Similarly, YNact defined below is also a zero-mean martingale process 
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Now, let N0 be the number of activities at which the guard detects the node to be 

malicious. Then, 
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Our goal is to find E[N0]. From elementary probability, 

 0 0 0 0 0 0 0[ ] [ | 1] ( 1) [ | 1] ( 1)E N E N N P N E N N P N= = ⋅ = + > ⋅ >  (4.22) 

Note that E[N0|N0=1]P(N0=1) = 1×λ = λ. Also P(N0>1) = P(X1=0) = 1-λ.  

  Next we find E[N0|N0>1]. Note that since YNact is a martingale, using the 

Optional Stopping Theorem [96], E[YN0] = E[Y2] = 0. Also, note that given N0>1,  
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This means that given N0>1, 
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  In other words, YN0 ≥ (α-λ)N0 + λ. Taking expectations on both sides, 
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 Therefore, de-conditioning, we get the lower bound as 

 0[ ] (1 ) /( )E N λ λ λ λ α≥ + ⋅ − −  (4.26) 

For the upper bound we can repeat the arguments. Therefore, define 

 
0 0 0 1NZ N Nλ α+ ⋅ < ⋅ +  (4.27) 

  The last term is because Xi≤1. Now, choosing α such that, λ < α (i.e., the rate of 

malicious activity is less than the detection threshold) and taking expectations we obtain 

 0 00 [ ] ( ) 1 [ ] 1/( )E N E Nλ α λ α+ ⋅ − < ⇒ < −  (4.28) 

Therefore, the bounds for the expected number of activities after which the guard 

will detect the node as malicious is, 

 0(1 ) /( ) [ ] 1/( )E Nλ α λ α λ α⋅ − − < < −  (4.29) 

We plot Equation (4.29) in Figure 4.12 and find that the bounds asymptotically 

converge and exist only for λ > α. 

 
Figure 4.12: Lower and upper bound for expected number of activities before a 

malicious node is detected by a guard 

4.3.4. Cost Analysis 

In this section, we show the memory, the computation, and the bandwidth 

overheads of LITEWORP to evaluate its suitability to resource-constrained environments. 
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4.3.4.1.  Memory Overhead  

We need to store the first and the second hop neighbor lists, the watch buffer, and 

the alert buffer. The identity of a node in the network is 4 bytes. Reusing the notation 

from the previous section, the size of neighbor list is NBL = pr2d entries. Each entry in 

the NBL needs 5 bytes; 4 for identity of the neighbor and 1 for the MalC associated with 

that neighbor. So the total NBL storage, NBLS=5(πr2d)2. For example, for an average of 

10 neighbors per node, NBLS is less than half a kilobyte. The alert buffer has g number of 

4 byte entries. The watch buffer size depends on the average number of hops between a 

source-destination pair, h, the frequency of route establishment, f, as well as the density 

of the nodes, d. To find the average number of nodes involved in watching a REP, we 

create a rectangular bounding box containing nodes that may overhear the REP sent from 

A to B (Figure 4.13). This is an overestimate since we use a square that circumscribes the 

circular transmission range. The number of nodes involved in monitoring is 

 22 ( 1)REPN r h d= +  (4.30) 

Thus, given N as the total number of nodes in the network, each node is involved 

in watching ( / )REPN N f  route replies per unit time. For example, if N=100 nodes, h = 4 

hops, and f = 1 route every 4 time units, then NREP = 17, and each node watches only 4 

route replies every 100 time units. Because the time t for which the packet is kept in the 

watch buffer is relatively small (may be less than one time unit), a watch buffer size of 4 

entries is more than enough for this example. Each entry in the watch buffer is 20 bytes: 4 

bytes each for the immediate source, the immediate destination, and the original source, 

and 8 bytes for the sequence number of the REP. If we include the route request in the 

watch, then each node will be involved in watching ( / )REPf N N f+ . That requires each 

node to watch 4 packets every 16 time units; again 4 entries are still sufficient for the 

watch buffer.  
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Figure 4.13: The average number of nodes involved in the watch of a route reply 

4.3.4.2. Computation and Bandwidth Overhead 

Each watched route reply requires one lookup for the current source and the 

current destination in the neighbor list, adding an entry to the watch buffer (incoming) or 

deleting an entry from the watch buffer (outgoing), and may be another addition and 

deletion from the watch buffer (if a node is a guard for two consecutive links). Since the 

size of the watch buffer and the neighbor list structure are relatively small, the 

computation time required for these operations is negligible. For example, a lookup in a 

100 entry buffer takes the MICA mote with an Atmega128 4-MHZ processor, about 2m 

seconds. The bandwidth overhead is incurred after deployment of a node for neighbor 

discovery and in the case of wormhole detection for informing the neighbors of the 

detected node. This is therefore a negligible fraction of the total bandwidth over the 

lifetime of the network.  

From the above analysis, we can conclude that LITEWORP has relatively modest 

memory, computation, and bandwidth overhead. This makes it especially suitable for 

resource-constrained sensor and ad-hoc networks. 

4.4. Simulation Results 

We use the ns-2 simulation environment [89] to simulate a data exchange 

protocol, individually in the baseline case without any protection, and with LITEWORP. 

We distribute the nodes randomly over a square field with a fixed average node density. 

Thus, the field size varies (80×80 m to 204×204 m) with the number of nodes. We use a 
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generic on-demand shortest path routing that floods route requests and unicasts route 

replies in the reverse direction. A route, once established, is not used forever but is 

evicted from the cache after a timeout period expires (TOutRoute). When a malicious node 

hears a route request, it directs the request to all the malicious nodes in the network using 

an out-of-band channel or using packet encapsulation. For packet encapsulation, we 

assume that the colluding nodes always have a route between them. We simulate the out-

of-band channel by letting the compromised nodes deliver the packets instantaneously to 

their colluding parties. These two schemes exercise the principal feature of LITEWORP, 

namely, local monitoring and are the most challenging to mitigate. Hence, we simulate 

them in preference to other modes of attack. After a wormhole is established, the 

malicious nodes at each end of the wormhole drop all the packets forwarded to them. 

Furthermore, a malicious node always frames its good neighbors. 

The simulation also accounts for losses due to natural collisions. The guards 

inform all the neighbors of the detected malicious node through multiple unicasts. For 

each run, malicious nodes are chosen at random such that they are more than 2 hops away 

from each other.  

Input parameter: Each node acts as a data source and generates data using an 

exponential random distribution with inter-arrival rate of φ. The destination is chosen at 

random and is changed using an exponential random distribution with rate x. We use M 

for the number of malicious nodes, γ for the detection confidence, and N for the total 

number of nodes. The input parameters with the experimental values are given in Table 

4.2. A design parameter in LITEWORP is the increment to the malicious counter value 

upon detecting a malicious event. On the one hand, we want the increment to be large for 

higher detection probability, fast detection, and small watch buffer size. On the other 

hand, we want the increment to be small to reduce the percentage of false alarms. We 

conduct an experiment to design the malicious counter increment. We choose the 

increment as the lower of the two points–the point where the percentage detection 

reaches its maxima and the point where the knee of the false detection curve lies. This 

gives us a reasonable combination of low false alarm rate and high detection rate. The 

value of the MalC increment used for the experiments is given in Table 4.2. 
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Output parameters: The output parameters include (i) the isolation latency which is 

defined as the time between when the node performs its first malicious action to the time 

by which all the neighbors of the node have isolated it, (ii) the fraction of data packets 

dropped due to the wormhole to the data packet sent, (iii) the fraction of malicious routes 

to the total number of routes established. This parameter quantifies the amount of harm 

caused by the malicious nodes,, (iv) the percentage of framing, which is defined as the 

percentage of the number of good nodes that could be framed to the total number of 

nodes, (v) the percentage of false isolation, which is defined as the percentage of the 

number of nodes that have been isolated due to natural causes to the total number of 

nodes, and the percentage of malicious node isolation, which is defined as the number of 

malicious nodes isolated to the total number of malicious nodes. 

All the output parameters that we present here are measured at the end of the 

simulation time (1500 seconds) unless otherwise stated. The output parameters are 

obtained by averaging over 30 runs. Finally, the figures we present are for the 100-node 

scenario unless otherwise stated.  

Table 4.2: Input parameter values for LITEWORP simulations 

Parameter Value Parameter Value Parameter Value 
Tx Range (r) 30 m g 3,5,7, infinity # nodes (N) 20,50,100,150 
MalC incr. 10 φ 0.2 sec x 0.02 sec 
TOutRoute 50 sec M 0-6 BW 40 kbps 
Ct 150 t 0.5 sec Twin 200 

 
Data packet drop: Figure 4.14 shows the number of packets dropped as a function of the 

simulation time for 2 and 4 colluding nodes both with LITEWORP and without LITEWORP.  

The attack is started 50 sec after the start of the simulation. Since the numbers are vastly 

different in the two cases, they are shown on separate Y-axes; the axis on the left 

corresponds to the baseline case and the axis to the right corresponds to the system using 

LITEWORP. In the baseline case, since wormholes are not detected and isolated, the 

cumulative number of packets dropped continues to increase steadily with time. But in 

the LITEWORP case, as wormholes are identified and isolated permanently, the 

cumulative number stabilizes. Notice that the cumulative number of packets dropped 
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grows for some time even after the wormhole is locally isolated, due to the cached routes 

that contain the wormhole and continue to be used till route timeout occurs. 
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Figure 4.14: Cumulative number of dropped packets with and without LITEWORP 

Figure 4.15 shows a snapshot, at the end of the simulation time, of the fraction of 

data packets dropped and the fraction of malicious routes. This is shown for 0-4 

compromised nodes for the baseline and with LITEWORP. With 0 or 1 compromised node, 

there is no adverse effect on normal traffic since no wormhole is created. The relationship 

between the number of dropped packets and the number of malicious routes is not linear. 

This is because the route established through the wormhole is more heavily used by data 

sources due to the aggressive nature of the malicious nodes at the ends of the wormhole. 

If we track these output parameters over time, with LITEWORP, they would tend to zero 

as no more malicious routes are established or packets dropped, while without LITEWORP 

they would reach a steady state as a fixed percentage of traffic continues to be affected by 

the undetected wormholes. 



 85

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4
#of malicious nodes

w
/o

 L
ite

W
or

p

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

W
ith

 L
ite

W
or

p

fr. drop
fr. mal routes
fr. drop-LiteWorp
fr. mal route-LiteWorp

 
Figure 4.15: Fraction of dropped packets and malicious routes with and without 

LITEWORP 

Figure 4.16 bears out the analytical result for the detection probability as γ is 

varied with NB = 15 and M= 2. As γ increases, the detection probability goes down due to 

the need for alarm reporting by a larger number of guards, in the presence of collisions.  

Also the isolation latency goes up, though it is very small (less than 30 s) even at the right 

end of the plot. 
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Figure 4.16: Detection probability and latency with varying g 

Framing: Figure 4.17 shows the percentage of framing with various values of g. As the 

number of malicious nodes increases, the chances of getting g malicious nodes framing a 

good node increases and thus the framing percentage increases. As we increase g, the 

percentage of framing decreases since it becomes more difficult to get g malicious nodes 
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to frame a good node. When the value of g is greater or equal to 7, the probability of 

framing goes to zero since no node has more than 7 neighbors in this simulation setup, 

therefore, it is impossible for framing to occur. 
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Figure 4.17: Percentage of framing 

Varying the number of malicious nodes: Figure 4.18 shows the percentage of malicious 

nodes isolated at the end of the simulation time for three different values of g. The 

isolation percentage falls almost linearly as we increase the number of colluding 

malicious nodes from 2 to 6 due to the decrease in the number of available guards. Note 

that as g increases, the percentage of malicious nodes isolated decreases slightly due the 

requirement of higher number of guards to agree on the detection. However, the % 

malicious nodes isolated is above 90% for 6 malicious nodes with infinite g. 
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Figure 4.18: Percentage of malicious node isolation 
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Figure 4.19 shows that the percentage of false isolation increases as the number of 

malicious nodes increases. This is because not all guard nodes come to the decision to 

isolate a malicious node at the same time. Therefore, a given guard node may suspect 

another guard node when the latter isolates a malicious node but the former still has not. 

For example, a guard node G1 detects a malicious node M earlier than the other guard 

nodes for the link to M. Node G1 subsequently drops all the traffic forwarded to M and is 

therefore suspected by other guard nodes for M. This problem can be solved by having an 

authenticated one-hop broadcast whenever a guard node performs a local isolation. 
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Figure 4.19: Percentage of false isolation 

Figure 4.20 shows that the percentage of malicious routes increases as we 

increase the number of malicious nodes. As the number of malicious nodes increases, the 

percentage of damage that occurs before each of the nodes is detected and isolated 

increases. 
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Figure 4.20: Percentage of malicious routes 
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Varying g:: Figure 4.21 shows the percentage of false isolation as a function of g. As g 

increases the false isolation decreases since it becomes more and more unlikely to get g 

nodes falsely accuse a good node as malicious. As the number of malicious nodes 

increases the false isolation increases for the same reasoning as in Figure 4.17. 
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Figure 4.21: Percentage of false isolation 

Figure 4.22 shows that the percentage of malicious routes increases with g. As g 

increases, the detection and isolation of nodes decreases and takes  longer time which 

gives the malicious nodes more chance to establish more malicious routes. Moreover, as 

the number of malicious nodes increases, the percentage of damage (malicious routes) 

increases intuitively. 
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Figure 4.22: Percentage of malicious routes 
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The observation from all the experiments is that an infinite value of γ appears to 

be a desirable operating region. We find that it eliminates framing and minimizes the 

percentage of false isolation. On the other hand, it only slightly increases the percentage 

of malicious routes and slightly decreases the percentage of malicious nodes isolated. 

However, these values are acceptable and close to the case when g is small. This is 

because the guards of a node over a certain link are likely to see the same view of the 

node and therefore, they are likely to reach to the same reasoning about the monitored 

node whether individually or through the reports of other guards. This reduces the 

importance of having guards inform each other of their view about the monitored node 

which results in little change when we increase the value of g to infinity. 
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5. MITIGATING OTHER CONTROL AND DATA TRAFFIC 
ATTACKS IN STATIC WAHAS NETWORKS: DICAS 

The traffic in WAHAS networks can be broadly classified into data and control 

traffic. Control traffic contains information needed to set up the network for data traffic 

to flow. Typical examples of control traffic include routing, monitoring the liveness of 

nodes, topology discovery, and system management. Examples of data traffic include 

sensor readings and alert messages in surveillance environments.  

As mentioned earlier in the introduction (Chapter 1), the wireless media makes 

the traffic of WAHAS networks more susceptible to various kinds of attacks against both 

control and data traffic. Control traffic attacks include the (Ci) wormhole attack 

([51],[53]), (Cii) the rushing attack [52], (Ciii) the Sybil attack [57], (Civ) the sinkhole 

attack [76], and (Cv) the HELLO flood attack [76]. Therefore, the wormhole attack 

presented in the previous chapter (Chapter 4) is one of many control traffic attacks 

against WAHAS networks. Control attacks are especially dangerous because they can be 

used to subvert the functionality of the routing protocol and create opportunities for a 

malicious node to launch data traffic attacks such as dropping all or a selective subset of 

data packets.  

In addition to control traffic attacks, WAHAS networks are also vulnerable to 

data traffic attacks. The most notable data traffic attacks are (Di) blackhole, (Dii) 

selective forwarding, (Diii) artificially delaying of packets, in which respectively a 

malicious node drops data (entirely or selectively) passing through it, or delays its 

forwarding, and (Div) misrouting attack in which the attacker relays packets to the wrong 

next-hop in an intention to indirectly drop them. The attacks could result in a significant 

loss of data or degradation of service. 
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These control and data traffic attacks affect many WAHAS network protocols 

presented in the literature. Table 5.1 enumerates some of theses protocols and their 

respective vulnerabilities summarized from the work presented by Karlof et al. [76].  

Table 5.1: Examples of vulnerable WAHAS network protocols to control and data 

traffic attacks 

Routing protocol name Attacks 
Directional diffusion ([80], [81]) Ciii, Civ, Cv, Dii 
GPSR [99]  Ciii, Dii 
Minimum cost forwarding [82] Ci, Civ, Cv, Dii 
LEACH [58], PEGASIS [103] Cv, Dii 
Rumor routing [83] Ci, Ciii, Civ, Dii 
SPAN [101] Ciii, Cv 
  
In this chapter, we extend the work presented in the previous chapter (Chapter 4) 

through providing new mitigation techniques for additional control and data traffic 

attacks in static WAHAS networks.  We present a lightweight framework called DICAS 

(Detection, Diagnosis, and Isolation of Control and Data Attacks in Sensor Networks), 

which mitigates many control and data traffic attacks in static WAHAS networks. Again, 

DICAS not only detects the occurrence of an attack, but also diagnoses the malicious 

nodes involved in it and removes their capability of launching future attacks by isolating 

them from the network. The detection and isolation mechanisms are executed locally, 

without incurring a significant overhead. DICAS is especially suited to the low cost point 

of sensor networks since it does not require any specialized hardware (such as directional 

antennas [1] or GPS) nor does it require time-synchronization among the nodes [53]. 

DICAS achieves its security goals by exploiting local monitoring (Section 2.1). We 

systematically lay out the fundamental structures and the state to be maintained at each 

node for mitigating some representative attacks – Sybil, wormhole, rushing, selective 

forwarding, and misrouting attacks. The first three are examples of attacks directed to 

control traffic while the last two are examples of attacks directed at data traffic. 

Independent of the detection mechanism, we use local isolation (Section 2.2.1) to isolate 

malicious nodes locally in a distributed manner. 
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In this chapter we consider the possibility of monitoring the data traffic in 

addition to the control traffic to mitigate various control and data traffic attack. This is in 

contrast to the previous chapter in which guards monitor only the control traffic.  This 

enables us to detect and isolate the attacker at any point during the network activity, even 

if we fail to do so using the control traffic or the adversary stays benign during exchange 

of control traffic. It is important to be able to use the data traffic in detection and isolation 

of attackers since in some network scenarios, the frequency of control traffic exchange 

may not be sufficient to detect malicious nodes if the protocol wants to maintain a low 

incidence of false detection. However, monitoring data traffic is not trivial because of the 

vastly increased volume compared to control traffic. Hence, we investigate the effect of 

partial sampling of data traffic on the metrics of detection and isolation. 

We use DICAS to create a novel lightweight secure routing protocol called LSR 

that withstands known attacks against the routing infrastructure and provides additional 

protection against data attacks by supporting secure node-disjoint multiple route 

discovery. We analyze the detection coverage and the probability of false detection of 

DICAS. We also evaluate the memory, communication, and computation overhead of 

DICAS. Finally, we simulate the wormhole attack in ns-2 and show its effect on the 

network performance with and without DICAS. The results show that DICAS can achieve 

100% detection of the wormholes for a wide range of network densities. They also show 

that the detection and isolation of the nodes involved in the wormhole can be achieved in 

a fairly short time after an attack starts. In addition, we simulate a combined Sybil and 

rushing attack to bring out the adverse impact on node-disjoint multipath routing and 

show the improvement using DICAS. The results show that LSR using DICAS is resilient to 

the combined attack and that the average number of node-disjoint routes discovered is not 

reduced. Our experiments with data monitoring show the feasibility of detecting the 

selective forwarding attack while monitoring only a fraction of the data traffic. 

In summary, the contributions in this chapter include, 

• Proposing a mechanism to detect any control or data attack that directly manifests 

itself in one of dropping, delaying, modifying, misrouting, or fabricating of packets. 
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• Developing a toolset based on overheard information that can be mapped to detecting 

different classes of attacks. We analyze this toolset for different metrics, such as, false 

alarm probability, missed alarm probability, and latency of isolation. 

• Proposing a mechanism that, based on information collected by the toolset, allows for 

diagnosing and isolating the malicious nodes. 

• Demonstrating the effectiveness of the toolset applied to both data and control attacks 

through simulations.  

The rest of this chapter is organized as follows. Sections 5.1 describes DICAS. 

Section 5.2 describes LSR. Section 5.3 presents representative examples of control and 

data attacks and their mitigation using LSR with DICAS. Section 5.4 analyzes the coverage 

and overhead of DICAS, while Section 5.5 presents simulation results.  

5.1. Description of DICAS 

In its goal of providing detection and isolation to control and data attacks, DICAS 

provides the following primitives - neighbor discovery and one-hop source 

authentication (Section 5.1.2). These two primitives are used with local monitoring 

(Section 2.1) and local response (Section 2.2.1) to provide mitigation for various attacks. 

5.1.1. System Model and Assumptions 

Attacker model: This model is the same as that of LITEWORP (Section 4.2.1), however 

we repeat it here for convenience. An attacker can control an external node (i.e., a node 

that does not know the cryptographic keys that allows it to be authenticated by the rest of 

the nodes), or an internal node, (i.e., a node that possesses all the keys required for it to 

be authenticated by other nodes in the network, but exhibits malicious behavior). An 

insider node may be created, for example, by compromising a legitimate node. A 

malicious node can perform all the attacks mentioned in the introduction of this chapter, 

by itself or by colluding with other nodes. A malicious node can establish out-of-band 

fast channels (e.g., a wired link) or have a high powered transmission capability. 
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System assumptions: These assumptions the same as those of LITEWORP (Section 4.2.1), 

however, we repeat them here for convenience. DICAS assumes that all the 

communication links are bi-directional. A finite amount of time is required from a node’s 

deployment for it to be compromised, and to perform the first- and second-hop neighbor 

discovery protocol. We assume that no external or internal malicious nodes exist before 

the completion of the neighbor discovery. However, we can remove this assumption and 

use one of the protocols for secure neighbor discovery such as the directional antenna by 

Hu and Evans [51]at the additional cost of using directional antennas or by using trusted 

and more powerful nodes as in [95]. DICAS assumes that the network has sufficient 

redundancy, such that each node has more than an application defined threshold number 

of legitimate nodes as guards. DICAS assumes that the network has a static topology. This 

does not rule out route changes due to natural and malicious node failures or route 

evictions from the routing cache. Moreover, DICAS assumes that each packet forwarder 

explicitly announces the immediate source of the packet it is forwarding. Finally, DICAS 

assumes a key management protocol, e.g., [64], is used to pre-distribute pair-wise keys 

such that any two nodes in the network can securely communicate with each other. 

5.1.2. Primitives: Neighbor Discovery and One Hop Source Authentication  

Neighbor discovery: This protocol is used to build a data structure of the first hop 

neighbors of each node and the neighbors of each neighbor. The data structure is used in 

local monitoring to detect malicious nodes and in local response to isolate these nodes. A 

neighbor of a node, W, is any node that lies within the transmission range of W. As soon 

as a node, say A, is deployed in the field, it sends a one-hop broadcast of a HELLO 

message. Any node that receives the message sends a reply back to A. For each reply 

received within a pre-defined timeout (TROUT,), A adds the responder to its neighbor list, 

RA. Let RA = W1, ..., Wp and Msg = RA||Kcommit(A), where Kcommit(A) is the commitment key A 

uses later to authenticate itself to its neighbors. Node A then sends a one-hop broadcast of 

Msg. A node Wj that receives Msg, stores RA (Wj’s second-hop neighbors) and Kcommit(A). 

Hence, at the end of this neighbor discovery process, each node has a list of its direct 

neighbors and their neighbors as well as the commitment key of each one of its direct 
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neighbors. This process is performed only once in the lifetime of a node and is secure in 

static wireless networks that follow our assumptions of attack-free environment during 

neighbor discovery. 

Commitment key generation and update: This protocol is used to generate and update 

the commitment key used by the one-hop source authentication protocol. The values of 

the commitment key at a node S (Kcommit(S)) are derived from a random seed (Kseed(S)) as 

Kcommit(S) = H(i) (Kseed(S)), where H is a one-way collision resistant hash function [112]-

[114], i  takes values between 0 and l(¥2), and l is the length of the sequence of values of 

Kcommit(S) that we call the commitment string. The first value of the commitment key 

Kcommit(S) that is exchanged with the neighbors during neighbor discovery is H(l)(Kseed(S)) = 

vl. The subsequent values of the commitment key (vl-1,…, v0) are progressively disclosed 

to the neighbors during subsequent transmissions. Before the current commitment string 

{vl, vl-1,…, v0} is exhausted, a new one is generated at S {ul, ul-1,…,u0}. The commitment 

key ul from the new string is authenticated to the neighbors using the last undisclosed key 

from the current string with the one-hop source authentication protocol. 

One-hop source authentication: This protocol allows a node to distinguish between its 

neighbors to prevent identity spoofing among them. A node S authenticates its 

transmitted packets to the neighbors by attaching the last undisclosed value from the 

commitment string Kcommit(S).  This authentication is only used with the source of the 

packet, not at every hop in the path of the packet from the source to the destination . 

When a neighbor of S, say B, receives the packet, it verifies the validity of Kcommit(S) by 

computing a hash function over it and comparing the result with the stored value of 

Kcommit(S). If  Kcommit(S)   is valid, B stores it as the new commitment key value of S. 

However, this protocol may fail to provide the required authentication if an attacker 

blocks the transmission range of a certain source from the rest of network except itself. 

Therefore, the attacker can impersonate that source and generate valid packets. In such 

case, we revert to the well-known mTESLA authentication scheme [62][63] which 

countermeasures such attacks. 
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5.1.3. Application of Local Monitoring for Data Attacks 

Chapter 4  presents the application of local monitoring to the wormhole attack 

through monitoring the control traffic. Moreover, Chapter 2 presents the elementary 

activities underlying a large set of attacks in an ad-hoc multi-hop network. These 

activities are comprised of the following actions performed by the adversary node on an 

incoming packet – delay, drop, modify, and fabricate. Also, Chapter 2 presents the exact 

information stored in the watch buffer for each malicious action and the corresponding 

checking details of each. 

This section expands the attack-set mitigated by local monitoring to include data 

attacks. DICAS refers to data attacks as the general class of attacks directed at the data 

traffic after the route has been established. The objective of these attacks is to disrupt the 

end-to-end transmission of data between a source and a destination. The disruption can be 

done through leaking information or through launching denial of service by manipulating 

the data. When leaking information, the adversary node does not manipulate the data but 

gathers information based on data that flows through it. In the denial of service attack, the 

adversary actively manipulates the data packets through delay, drop, fabrication, or 

modification. Information leaking is difficult to detect by monitoring the data traffic 

alone. This mode of attack becomes particularly insidious when the adversary uses 

control attacks such as the wormhole attack to create an opportunity to control a 

disproportionately large portion of the routes in the network. We use the local monitoring 

approach applied to the control traffic to mitigate this mode of attack.  

For the second class of data attacks (DoS by manipulating the data), local 

monitoring can be applied to the data traffic using the elementary checking activities 

mentioned in Table 2.1. This approach is useful in particular where an adversary node is 

in the position of having large amounts of data traffic flowing through it due to its 

strategic position in the network, without the need to launch a wormhole attack. The 

detection of data traffic manipulation in such a case can significantly improve the 

delivery ratio of the network.  

Recall that in local monitoring, the guard node maintains in its watch buffer a data 

structure containing the following information about the observed packets: immediate 



 97

source, immediate destination, original source, final destination, packet id (unique wrt a 

sender), and packet information. The packet information may be the unchanging fields in 

the packet header, the hash value of the unchanging fields in the header and the payload, 

or the entire packet itself. The elementary checking actions mentioned in Table 2.1 are 

performed on this information. The key distinction of data traffic monitoring from control 

traffic monitoring is the volume of traffic. Therefore, each guard node selects a fraction 

of the data traffic to monitor. In the current design, this is a global parameter for all the 

nodes. The fraction of traffic monitored is calculated over a given time window. Also for 

detecting modification, only hash values are matched, using a collision free yet 

computationally inexpensive hashing technique, such as SHA-1 [107]. 

5.1.4. Local Response and Isolation 

This is the same as that of Section 2.2.1 and Section 4.2.4. 

5.2. LSR: Lightweight Secure Routing 

LSR is an on-demand routing protocol, sharing many similarities with the AODV 

[55] protocol. However, LSR has significant differences in order to enhance security. The 

design features of LSR described below make it resilient to a large class of control attacks 

such as wormhole, Sybil, and rushing attacks, as well as authentication and ID spoofing 

attacks. Combined with DICAS, LSR can deterministically detect and isolate nodes 

involved in launching these attacks.  

5.2.1. Route Discovery and Maintenance 

Route request: When a node, say S, needs to discover a route to a destination, say D, it 

generates a route discovery packet (REQ) that contains: a flag to indicate that it is a route 

request packet (FREQ), the sender’s identity (IDS), the destination’s identity (IDD), and a 

unique sequence number (SN). The SN is incremented with every new REQ and is used to 

prevent the replay of the REQ packet. Node S then calculates a message authentication 

code (MAC) of the packet using the shared key between S and D (KSD). Finally, S 
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generates and attaches the next value of the commitment key Kcommit(S) to the REQ packet 

and broadcasts it. 

1. [At S] REQ = FREQ || IDS || IDD || SN  

2. S Broadcast→REQ||MACKSD(REQ)||Kcommit(S)||IDS 

A neighbor Z of S accepts the REQ packet if the associated Kcommit(S) is valid. Then 

Z removes Kcommit(S) from the REQ, attaches IDZ, and forwards the REQ. 

An intermediate node B that is not a direct neighbor to S stores the first REQ 

packet it receives. Node B also keeps the identity of every different neighbor that 

forwards a subsequent copy of the same REQ during a rush time, Tr, selected randomly 

from [Tmin, Tmax], as in [52]. When Tr runs out or when a certain number of requests, Nr, is 

collected, whichever occurs first, B broadcasts a randomly selected copy of the REQ 

copies that it has. Assume, without loss of generality, that B selects the one forwarded by 

W. For each source-destination pair, node B keeps the identity of the node from which it 

receives the forwarded REQ (IDW). Node B then appends IDB and IDW to the REQ and 

broadcasts it. The process continues until the REQ reaches D.  

3. B Broadcast→ REQ||MACKSD(REQ)||IDW|| IDB 

Route reply: When D receives the REQ packet, it verifies the authenticity of the source 

using the shared key KSD. Then D generates a route reply packet REP that contains: a flag 

to indicate that it is a route reply packet (FREP), the sender identity (IDS), the destination 

identity (IDD), and a SN. Node D then calculates a MAC value over the packet using KSD. 

Node D generates and attaches the next value of the commitment key Kcommit(D) to the 

REP packet. Finally, D unicasts the REP packet back to the previous hop as determined 

by the REQ packet. Let A be the immediate previous hop from D and C the immediate 

previous hop from A. 

1. [At D] REP = FREP||IDS||IDD|| SN 

2. D  A:REP|| MACKSD(REP) || Kcommit(D)||IDD||IDA  



 99

When A receives the REP packet, it verifies and removes Kcommit(D), updates its 

routing table as follows - <Destination, Next-hop>: {D, D}, {S, C}. Node A then appends 

IDD||IDA||IDC and sends the REP packet to C.  

3. [At A]  Verify and remove Kcommit(D). Set <Destination, Next-hop>: {D, D}, {S, C} 

4. A  C: REP||MACKSD(REP)|| IDD || IDA || IDC  

The REP continues to propagate using the reverse path of the corresponding REQ 

towards S. Node S verifies the authenticity of the reply using KSD and updates its routing 

table to node D.  

The route maintenance in LSR, as in AODV, is triggered when a broken link is 

detected and a new route is discovered by using the above protocol for route discovery.  

Note that in LSR, the source chooses the route corresponding to the fastest route 

reply and not the shortest-hop route, to guard against attacks that modify the hop count. A 

longer but less congested route is preferred to a shorter but congested route, as in [73].   

5.2.2. Node-Disjoint Multipath Discovery  

A beneficial feature of LSR is its ability to increase the number of node-disjoint 

routes between a source and a destination. In many on demand ad-hoc and sensor 

network routing protocols, an intermediate node forwards the first announcement of a 

request and suppresses any following announcements, such as in AODV [55]. As a result, 

multiple routing paths may have common nodes in them. In LSR, each node, say B, backs 

off for a random time (Tr) before forwarding the REQ. During Tr, B buffers all the 

announcements of the same request. At the same time, B listens to any neighbor, say E, 

whose rush timer, Tr times out and which forwards one of its REQ copies. If B has the 

same REQ copy, from the same previous hop, as that forwarded by E, B deletes that copy 

from its buffer and thus will not be a candidate for REQ forwarding by B. An example is 

shown in Figure 5.1. Let B receive REQs from nodes W, Y, and Z, and let E be a neighbor 

of B which also receives from W. 
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Figure 5.1: Example of node-disjoint routes 

Let the REQ from W be the first to arrive at both B and E, Figure 5.1(a). If nodes 

B and E forward the first REQ they receive and drop the others as in AODV, then 

multiple paths will be formed with W in them, Figure 5.1(b). However, using our 

technique, assuming that the timer of E runs out before that of B and that E broadcasts the 

message it received from W, then B will drop W’s packet from its buffer. The resulting 

paths are thus disjoint, Figure 5.1(c). 

The destination replies to every REQ copy it receives through a different 

neighbor. An intermediate node creates a routing table entry when it forwards the reply 

for the first time. Subsequently, it does not forward any further replies to prevent itself 

from being inserted in multiple routes. In order to detect malicious behavior by its 

neighbors, each node monitors replies going out of the neighbors. If a neighbor forwards 

a specific reply more than once, it is considered malicious and dropped from all the 

routes the node has.  For example, let node B receive the REP packets for a given route 

creation procedure from two non-neighbor nodes W and Y. A correct node forwards only 

the first REP. However, if B is malicious, it may send the two replies to two different 

neighbors, say A and α respectively. Therefore, B succeeds in including itself in two 

“different routes”. However, in LSR, this misbehavior can be detected by W and Y since 

they overhear B’s forwarded REPs. Then they evict all the routes through B.  

5.3. Attacks and Countermeasures 

This section presents a representative control traffic attack and two representative 

data traffic attacks and show how they can be mitigated using DICAS. For the purpose of 

illustration, we use LSR as the underlying routing protocol since it is built to be 

compatible with DICAS. 
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5.3.1. ID Spoofing and Sybil Attacks 

In this attack, an attacker presents one (ID spoofing) or more (Sybil attack) 

spoofed identities to the network [57]. Those identities could either be new fabricated 

identities or stolen identities from legitimate nodes. The Sybil attack can have many 

adverse impacts, such as, multipath routing [101] and collaborative protocols that use 

aggregation and voting [42]. 

Using DICAS with LSR yields the following desirable properties to mitigate ID spoofing 

and Sybil attacks: 

 (i) The first-hop neighbor list data structure prevents a node from spoofing the 

identity of a none-neighbor node. A node will not accept (forward) traffic from (to) a 

none-neighbor node. (ii) The one-hop source authenticated broadcasting prevents a node 

from generating traffic using spoofed identity of a neighbor node since each node must 

authenticate its generated traffic to the neighbors. (iii) Local monitoring detects a 

forwarding node when spoofing a neighbor’s identity. As shown in Figure 2.1 (page 10), 

if A receives a packet from X, then A can not forward the packet claiming that it is being 

forwarded by one of its neighbors, say M. None of the guards of M over the link from X 

to M overhear such a packet; also the guards of A over the link from X to A accuse A of 

not forwarding the packet. 

5.3.2. Selective Forwarding Attack 

This is an example of a data traffic attack in which the adversary node selectively 

drops packets flowing through it. The attack can impact the end-to-end throughput in the 

network and if a reliable, continuous message stream is required, then this causes wastage 

of resources by inducing repeated retransmissions.  

DICAS enables the detection of selective forwarding as follows: 

Information about the incoming data packet is stored in the watch buffer of the 

guard node. If the incoming packet stays in the watch buffer unmatched beyond a 

threshold period of time, the guard node increments the MalC value for the node being 

monitored. In the case of the selective forwarding attack, the packet which is dropped by 
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the adversary node, will remain unmatched in the guard node’s watch buffer. The guard 

node monitors a fraction of the data traffic, with the packet to be monitored being chosen 

randomly. This decision is independent of the decision of the adversary node to drop 

packets and therefore there is a vanishingly small probability that the set of packets 

dropped and the set of packets not monitored will exactly match over the time window 

over which the MalC value is aggregated. The adversary node will thus be detected when 

the MalC value crosses the threshold. 

5.3.3.  Misrouting Attacks 

Misrouting attack is an example of data traffic attacks, where a malicious node 

indirectly drops data packets. Instead of dropping packets going through it, a malicious 

node just relay the packet to the wrong next-hop, which will result in a packet drop. To 

detect this attack both DICAS and LSR include additional functionality and information. 

The additional information includes collecting routing information during route 

establishment and adding extra routing information to the data packet header. To collect 

the routing information, the REQ current forwarder attaches the previous two hops to the 

REQ packet header. Let the previous hop of M be A for a route from source S to 

destination D, and the next hop from M be B. When M broadcasts the REQ received from 

A, it includes the identity of A and its own identity (M) in the REQ header <S, D, 

RREQ_id, A, M>. When B and the other neighbors of M get the REQ from M, they keep 

in a Verification Table (VT)  <S, D, RREQ_id, A, M, -> (last field is blank). When B 

broadcasts the REQ, the common neighbors of M and B update their VT tables to include 

B <S, D, RREQ_id, A, M, B>.   When B receives back a REP to be relayed to M, it 

includes in that REP the identity of the node that M needs to relay the REP to, which is A 

in this example. Therefore, all the guards of M now know that M not only needs to 

forward the REP but also that it should forward it to A not to a different neighbor, say X. 

The sequence of REQ and REP steps and the VT updates for the scenario shown in Figure 

5.2 are as follow, 
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Figure 5.2: Misrouting attack illustration example 

1. Node A broadcasts the REQ it got from Y: < S, D, REQ_id, Y, A> 

2. The neighbors of A that hear the REQ for the first time (G1,X,M): store in VT < S, D, 

RREQ_id,Y A> 

3. Assume M wins the broadcast, then M broadcasts: < S, D, REQ_id, A, M> 

4. The guards of M over the link A M (G1,X,A) update their existing VT entry: < S, D, 

REQ_id, Y, A, M> 

5. The neighbors of M that are not neighbors of A (B,G2) add an entry to their VT: < S, 

D, REQ_id, A, M> 

6. The process continues the same way until D gets the REQ 

7. Node D sends the REP back until B gets it 

8. Node B sends the REP to M: <REP, S, D, REQ_id, C, B, M> # note that local 

monitoring requires each node to explicitly include the identity of the previous-hop (C 

here) in the forwarded packet 

9. The guards of M over the link B M (such as G2) update their VT table entry, < S, D, 

REQ_id, A, M, B, C>, by adding C to the last field 
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10. Node M has to send the REP to A: <REP, S, D, REQ_id, B, M, A> # otherwise the 

guard of M over the link B M would detect M 

11. The guards of A over the link M A (such as G1 and X) update their VT table entry, < 

S, D, REQ_id, Y, A, M, B>, by adding B to the last field. 

Therefore, two tasks have been added to the functionality of the guards in 

monitoring the REP packets.  First, the guard G of a node N verifies that N forwards the 

REP to the correct next-hop. In the example above, G2 verifies that M forwards the REP 

to A. Second, G verifies that N has updated the forwarded REP header correctly. In the 

example shown above, G2 verifies that when the input packet to M from B is <REP, S, D, 

REQ_id, C, B, M>, then the output packet from M should be <REP, S, D, REQ_id , B, M, 

A>. Note that M and its guards over the link B M know that the next-hop is A from the  

information built in the VT table during the REQ flooding. 

Using the additional information and functionality mentioned above, DICAS 

detects misrouting attacks as follows, 

In the example above, assume that S  is sending a  data packet to D through a 

route that includes <Y,A,M,B,C>. The malicious node M can not misroute the data packet 

received from A to a node other than the next-hop, B. Remember that each guard of M 

over the link A M (G1,X) has an entry in its VT < S, D, REQ_id, Y, A, M, B>. Therefore, 

G1 and X know that M has to forward the data packet to B, otherwise, it is detected as 

conducting the misrouting attack. This results in a third additional checking activity for 

the guard node – verifying the data packet is forwarded to the correct next hop, as 

indicated by the entry in the guard node’s VT. 

5.4. DICAS Analysis 

5.4.1. Coverage Analysis 

In this section, we quantify the probability of missed detection and false detection 

of a generic control or data traffic attack as the network density increases and the 

detection confidence index varies. This analysis uses the same assumptions and notation 
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as that of Section 4.3.1. The analysis in Section 4.3.1 is presented in the context of the 

wormhole attack. In this section, we generalize the analysis for a generic control or data 

traffic attack that results from packet drop, delay, modification, fabrication, or 

misrouting. 

5.4.1.1. Analysis for Missed Detection  

Consider Figure 4.4(b) of Section 4.3.1, any of the five malicious actions (delay, 

drop, modification, misrouting, or fabrication) may be missed due to different 

combinations of events. Drop is missed if there is a collision on the S→G link, 

fabrication for the D→G link, and delay, misrouting, and modification for both S→G and 

D→G links. If the attacker delays packets with probability Pdelay, drops with probability 

Pdrop, fabricates with probability Pfab, misroutes with probability Pmr, and modifies with 

probability Pmod, then, the probability of missed detection is given by, 

 ( ) ( ) 2
M drop fab C mod delay mr CP P P P P P P P= + ⋅ + + + ⋅  (5.1) 

When plotting the probability of missed detection, we use equiprobable malicious 

actions (i.e., PM =  (1/5)(2PC+ 3PC
2)). Assume that m packet attacks (fabrication, modify, 

drop, etc.) occur within a certain time window, Twin, with the different attacks being 

equiprobable. Also assume that a guard must detect at least β attacks to cause the MalC 

for a node to cross the threshold, MalCth, and thus generate an alert. Moreover, assume 

that the increment to MalC is the same for each activity. Then, the probability of direct 

detection at a guard is given by, 

 ( ) ( ) ( )| 1 i i
direct M M

i

P P P
i

µ
µ

β

µ
β µ −

=

 
= − 

 
∑  (5.2) 

Thus, assuming independence of collision events among the different guards, the 

probability that at least g of the guards generate an alert, i.e., the probability of indirect 

detection is given by 

 ( )( ) ( )( )( ) | 1 |
g

i g i
indirect direct direct

i

g
P P P

iγ

γ β µ β µ
−

=

 
= − 

 
∑  (5.3) 

Therefore, the probability of detection at a guard is given by, 
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 ( ) ( ) ( ) ( )| |detect direct indirect direct indirectP P P P Pβ µ γ β µ γ= + −  (5.4) 

Based on Equation(5.4), Figure 5.3 shows the probability of detection as a 

function of the number of neighbors with m = 7, b = 5, g  = 3, the number of 

compromised nodes M = 2, and PC = 0.05 at NB = 3. Thereafter, PC is assumed to increase 

linearly with the number of neighbors (note that we do not use power control in the 

network). Since the number of guards increases as the number of neighbors increases, the 

probability of indirect detection increases since it becomes easier to receive the alarm 

from g guards. However, the collision probability also increases with increasing node 

density, and thus the probability of direct detection starts to fall rapidly at a point, which 

in turn decreases the indirect detection and the overall detection at a guard. However, 

note that the detection is still high (above 99%) at the relatively high density of each node 

having 35 neighbors since the reduction in the direct detection capability is compensated 

by the indirect detection.   

 
Figure 5.3: Probability of attack detection at a guard a against NB 

Figure 5.4 shows the probability of detecting the wormhole attack against γ with m 

= 7, b = 5, NB = 20, the number of compromised nodes M = 2, and PC = 0.33. As g 

increases, the probability of indirect detection at a guard decreases since it becomes 

harder to reach consensus among all the γ guard nodes. Therefore, the probability of 

detection decreases rapidly with increasing γ. However, note that the probability of 
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detection is still high even at the lowest point (above 0.92) since the probability of direct 

detection is not affected by γ. 

 
Figure 5.4: Probability of attack detection at a guard against γ 

5.4.1.2. Analysis for False Detection 

Consider Figure 4.4(b) again and recall that false alarm occurs due to falsely 

implicating a node for dropping, delaying, fabricating, misrouting, or modifying packets. 

The false detection of each activity is caused by a different set of events – drop through 

no collision on the S→G link and either collision on the S→D link or no collision on the 

S→D link and collision on the D→G link; fabrication through collision on the S→G link 

and no collision on the S→D link and the D→G link. According to DICAS model for 

analysis, a modified or misrouted packet cannot give rise to false detection and a delay is 

not possible either since it will map to drop at the guard. The events for drop and 

fabrication are disjoint and therefore the individual probabilities are summed to give the 

combined probability of false alarm as  

 ( ) ( )22 1 1FA C C C CP P P P P= ⋅ ⋅ − + ⋅ −  (5.5) 

Assume that S sends m packets to D for forwarding within a certain time window, 

T. The probability that D is falsely accused is the probability that D is suspected of 
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malicious actions for b or more packets. Therefore, the probability of direct false alarm 

(PDF) at a guard is given by, 

 ( ) ( ) ( )| 1i i
DF FA FA

i

P P P
i

µ
µ

β

µ
β µ −

=

 
= − 

 
∑  (5.6) 

The probability of indirect false alarm (PIF) is the probability that at least γ guards 

generate false alarms, which is given by  

 ( )( ) ( )( )( ) | 1 |
g

i g i
IF DF DF

i

g
P P P

iγ

γ β µ β µ
−

=

 
= − 

 
∑  (5.7) 

The probability of false alarm at a guard is given by, 

 ( ) ( ) ( ) ( )| |false DF IF DF IFP P P P Pβ ψ γ β ψ γ= + −  (5.8) 

Based on Equation (5.8), Figure 5.5 shows the probability of false alarm at a 

guard as a function of the number of nodes for the same parameters as in Figure 5.3 

except with PC=0.01 when NB=3. As the number of neighbors increases, so does the 

number of guards. This increases the probability that at least γ guards miss the packet 

from S to the guard but not from D to the guard, leading to increase in indirect false 

detection. Even though the increase in the number of neighbors increases the collision 

and thus decreases the direct false detection, the increase in the indirect false detection 

dominates. The worst case false alarm probability is still low (less than 0.035).  

 
Figure 5.5: Probability of false detection at a guard against NB 
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Figure 5.6 shows the probability of false alarm as a function of γ with PC = 0.01, 

β=5, µ=7, and NB=20. As g increases, the probability of indirect false detection decreases 

since it becomes harder to reach consensus among all the γ guard nodes. Moreover, recall 

that the probability of direct false detection does not change with γ. Therefore, the 

probability of false detection decreases with increasing γ. 

 
Figure 5.6: Probability of false alarm at a guard against γ 

5.4.2. Analysis of Node Being Framed 

This is exactly as the analysis of node being framed of Section 4.3.2. 

5.4.3. Cost Analysis 

The memory, computation, and bandwidth overhead of DICAS are tolerable for 

resource constrained environments, such as sensor networks. For memory, each node 

needs to store a first and a second hop neighbor list, a commitment key for each first hop 

neighbor, its own commitment string, a watch buffer, and an alert buffer. The runtime 

state with fluctuating size is the watch buffer, whose size is higher if the guard is 

monitoring a malicious node that is delaying or dropping packets. The time for which the 

packet is kept in the watch buffer is relatively small, being determined by the MAC layer 

delay for acquiring the channel. From the experiments presented in the next section, we 
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find that a watch buffer of size 50 is sufficient for all the experimental conditions. Each 

entry in the watch buffer is 14 bytes−2 bytes each for the immediate source, the 

immediate destination, and the original source, and 8 bytes for the sequence number of 

the REP (REQ). The computation overhead is negligible since the operations for each 

message is lookup and addition or deletion in the small watch buffer. The bandwidth 

overhead is incurred only during initialization and when an adversary is detected. 

Assuming nodes are awake, the listening due to the role of a guard does not incur any 

bandwidth overhead. 

5.5. Simulation Results 

5.5.1.  Control Attacks 

We use the ns-2 simulator [89] to simulate a data exchange protocol over LSR, 

individually without DICAS (the baseline) and with DICAS. We distribute the nodes 

randomly over a square area with a fixed average node density. Thus, the length of the 

square varies (80m to 300m) with the number of nodes (20-250).  This random 

distribution may result in situations where the number of good guards of some nodes goes 

below γ, which negatively impact the simulation results. The malicious nodes are 

randomly selected from the network nodes.  

Each node acts as a source and generates data according to a Poisson process with 

rate m. The destination is chosen at random and is changed using an exponential random 

distribution with rate x. A route is evicted if unused for TOutRoute time. Isolation latency 

is defined as the time between when the node performs its first malicious action to the 

time by which all the neighbors of the node have isolated it. The experimental parameters 

are given in Table 5.2. The results are averages over 30 runs. The malicious nodes are 

chosen at random such that they are more than 2 hops away from each other. 

Table 5.2: Input parameter values 

Parameter Value Parameter Value Parameter Value 
Tx Range (r) 30 m g 2-8 t, Nr 0.05 s, 5 
NB 8 m 100 BW 40 kbps 
TOutRoute 50 sec M 0-10 x 5 
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The wormhole attack has been simulated in Chapter 4 and the results are 

presented in Section 4.4. In this section, we simulate combined rushing and Sybil attacks 

over a network of 250 nodes deployed in a 300 m µ 300 m field. We compare the average 

number of node-disjoint paths discovered per route request for three different 

protocolsan ideal search algorithm, AODVM [106], and LSR with DICAS. In the ideal 

search, the topology of the entire network is known to the source that uses the shortest 

path first search algorithm. AODVM creates node-disjoint routes by having every node 

overhear neighboring nodes’ REP packets and deciding to forward its own REP such that 

a neighbor is not included in two routes for a given source-destination pair. However, it 

does not consider any control attacks.  

Figure 5.7 shows the average number of node-disjoint paths as a function of the 

number of hops in the shortest path between two nodes. The figure shows that, in a 

failure free environment, LSR and AODVM perform almost identically. In a malicious 

scenario (AODV malicious and DICAS malicious scenarios), each of 10 malicious nodes 

launches rushing and Sybil attacks. When a malicious node receives a REQ packet, it 

rushes to broadcast Nr copies of the REQ, each with a different fake identity. Figure 5.7 

shows that LSR with DICAS is robust to the attack (LSR and LSR_mal plots overlap), while 

the average number of node-disjoint paths in AODVM is reduced by 22% (for distant 

source-destination pairs) to 32% (for closer pairs). Note that as the length of the path 

increases, the effect of the attacks in AODVM decreases. This is because even though the 

multiple routes appear to be disjoint at the attacker they may converge at some other 

intermediate node. These are then discarded by the source thereby ultimately foiling the 

attacker’s goal. 
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Figure 5.7: Average number of node-disjoint paths in ideal case, AODVM, and LSR 

5.5.2. Data Attacks 

Adversary model: We simulate the selective forwarding attack launched by a group of 

malicious nodes in two attack scenarios. In the first scenario, the malicious nodes collude 

and establish wormholes in the network. The wormholes are established using out-of-

band direct channels between the colluding nodes. The out-of-band channel is emulated 

through allowing the malicious nodes to instantaneously exchange packets among them. 

In the second scenario, the malicious nodes are independent and each node performs 

selective forwarding without any collusion or coordination with other malicious nodes. 

Unless otherwise mentioned, we use the wormhole adversary nodes. Each node 

selectively drops a fraction 0.6 of the traffic that passes through it. 

Input metrics: Fraction of data monitored (fdat)–each guard node randomly monitors a 

given fraction of the data packets. At other times, it can be asleep from the point of view 

of a guard’s responsibility. Increment to malicious counter–This is the increment that a 

guard node does to the malicious counter for a given node for a single malicious action. 

Output metrics: Delivery ratio–The fraction of the number of packets delivered to the 

destination by the number of packets sent out by a node averaged over all the nodes. 

Watch buffer size–This is the runtime count of the maximum size of the watch buffer 

being maintained at a guard, measured in number of entries. The maximum is taken over 

all the guards.  
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Simulation parameters: Here, we mention the parameter settings that are different from 

the experiments on control attacks, Section 5.5.1. Unless explicitly varied as a control 

parameter in an experiment, the total number of nodes in the network N = 100, 

destination change rate ξ = 50, g = 3, MalC threshold beyond which a node is determined 

to be erroneous is 150, and the number of malicious wormhole nodes M = 4. The 

simulation time is 1500 seconds. 

5.5.2.1. Algorithm for Selection of MalC Increment  

An important design parameter in DICAS is the increment to the malicious counter 

value upon detecting a malicious event. On the one hand, we want the increment to be 

large for higher detection probability, fast detection, and small watch buffer size. On the 

other hand, we want the increment to be small to reduce the percentage of false alarms. 

We conduct an experiment to design the malicious counter increment of a network with 

fdat = 0.4 and number of wormhole nodes = 4. For the purpose of this experiment, we look 

at the increment for dropped messages. 

Figure 5.8 shows that the percentage of false alarms increases as the MalC 

increment increases. With higher MalC increment, the chance that natural errors, such as 

collisions, cause the MalC to reach the threshold becomes higher, which results in an 

overall increase in the percentage of false alarms. The figure also shows that the detection 

percentage increases as the MalC increment value increases to a point (increment = 7) 

after which it remains approximately constant. As the size of the increment increases, a 

smaller number of events causes the MalC threshold to be reached which enhances the 

opportunity of detecting malicious nodes, even those that are involved in a small number 

of malicious events. The delivery ratio also increases with increasing MalC increment 

value to a point (MalC increment = 7) after which it remains approximately constant. 

Faster detection results in fewer numbers of dropped data packets. However, the rate 

slows down beyond a point since any additional increase does not substantially accelerate 

the process.  
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Figure 5.8: Effect of MalC increment 

For the rest of the experiments in the section, for each given fdat, we choose the 

increment as the lower of the two points–the point where the percentage detection 

reaches its maxima and the point where the knee of the false detection curve lies. This 

gives a reasonable combination of low false alarm rate and high detection. The values of 

MalC increment used for the rest of the experiments are summarized in Table 5.3. 

Table 5.3: MalC increment per malicious activity used for the experiments 

Fraction of data monitored MalC increment 
0.2 11 
0.4 8 
0.6 5 
0.8 2 
1.0 1 

5.5.2.2. Effect of Fraction of Data Monitored (fdat) 

The amount of data traffic is typically several orders of magnitude larger than the 

amount of control traffic. It is not reasonable for a guard node to monitor all the data 

traffic in its monitored links. Therefore a reasonable optimization, as proposed in Section 

5.1.3 is to monitor only a fraction of the data traffic. In this set of experiments, our goal is 

to investigate the effect of this optimization on the output metrics. 

Figure 5.9 shows the variations of delivery ratio as we vary fdat with four 

wormhole malicious nodes. The MalC increment for each fdat is designed as shown in 
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Section 5.5.2.1 with an inverse relation to the fdat. The selection of the MalC increment 

value according to the algorithm keeps the delivery ratio almost stable and above 95%, 

irrespective of fdat. 
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Figure 5.9: Effect of fraction of data monitored on delivery ratio 

Figure 5.10 shows that the percentage of false alarms decreases as fdat increases. 

More available data makes it easier to distinguish a good node from a malicious node. 

The higher the value of fdat, the lower is the increment to the malicious counter and thus 

the smaller the chance of reaching the malicious counter threshold by natural errors only. 

These two factors help reduce the probability of false alarms with increasing fdat. Figure 

5.10 also shows the variations of detection percentage as we vary fdat. By selecting the 

appropriate MalC increment value, we manage to keep the detection percentage almost 

stable and above 95% irrespective of fdat. As fdat increases, MalC increment decreases. 

This causes the MalC threshold to be reached slower at a guard node, which results in 

increasing the isolation latency of the malicious nodes, Figure 5.11. Also the higher fdat 

lays it open to the possibility of some packets being missed due to natural collisions and 

thereby preventing the increment to the malicious counter and therefore, reaching the 

threshold. Note however, that the delivery ratio is largely unaffected (Figure 5.9) since a 

malicious node may still not be completely isolated by all its neighbors. However, it does 

not have the opportunity for too much damage since most of its neighbors have already 

isolated it and when new routes are created, the malicious node is excluded. As the value 

of fdat increases, the size of the watch buffer expectedly increases (Figure 5.11). This 
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increases the overhead of local monitoring since a larger memory has to be maintained 

and searched in. 
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Figure 5.10: Percentage detection and percentage false alarms 
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Figure 5.11: Isolation latency and Watch buffer size 

Figure 5.12 shows the benefit in terms of energy overhead of monitoring only a 

small fraction of data. For this experiment, we implement the algorithm for storing 

packets in the watch buffer and searching in it through a linear search. The algorithm was 

implemented on a testbed consisting of Crossbow Mica2 motes. The algorithm takes the 

size of the watch buffer as input. For the experiment, the maximum size of the watch 

buffer over all the guard nodes from the simulations is used. The algorithm is executed to 

search for a random number between 0 and 0.2 million. Since the size of the watch buffer 

is much smaller, most of the searches are unsuccessful mimicking a guard node 
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overseeing a malicious node which is dropping packets. Since unsuccessful searches take 

longer than successful ones, this is another cause for overestimating the execution time. 

The network is considered to be synchronized and therefore wakes up and falls asleep in 

a synchronized manner. Therefore, there is no overhead at the guard due to listening (it 

would have been awake due to the synchronization anyway) and the only source of 

overhead is storing the watch buffer entries and searching in them. For the current draw, 

we use the parameters from the Mica2 motes: CPU active 8mA, idle 3.3mA, sleep  8µA, 

serial flash write 15mA, serial flash read 4mA, serial flash sleep 2µA. Since a smaller 

fraction of the data monitored results in smaller watch buffer sizes and fewer numbers of 

searches, the overhead with all the data being monitored is about 18 times the overhead 

with only a fraction 0.2 of the data being monitored. 
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Figure 5.12: Energy consumed per node for monitoring 

5.5.2.3. Effect of Number of Malicious Nodes 

Figure 5.13 shows the effect of increasing the number of malicious nodes when 

launching two different scenarios of attacks–the perfectly colluding wormhole nodes and 

the independent adversary nodes. Note that in both scenarios, the delivery ratio falls 

almost linearly as we increase the number of malicious nodes from 2 to 6. This is due to 

the packets dropped before the malicious nodes are detected and isolated. As the number 

of malicious nodes increases, this initial drop increases and thus the delivery ratio 

decreases. A second-order effect for the decrease in the delivery ratio is the decrease in 

the number of available guards making it more difficult to obtain agreement from γ guard 
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nodes. However, the delivery ratio is always above 92% for the wormhole scenario and 

above 96% for the independent scenario. Note also that the delivery ratio in the 

independent scenario is higher than that in the wormhole scenario. This is due to the 

aggressive nature of the wormhole which attracts traffic from many nodes through the 

malicious nodes and increases the initial traffic dropped before the malicious nodes get 

isolated. 
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Figure 5.13: Delivery ratio as a function of malicious nodes 

Figure 5.14 shows the percentage of false alarms and the percentage of detection 

as a function of the number of malicious nodes. The percentages of false alarms increases 

as the number of malicious nodes increases because not all guard nodes come to the 

decision to isolate a malicious node at the same time. Therefore a given guard node may 

suspect another guard node when the latter isolates a malicious node but the former still 

has not. For example, a guard node G1 detects a malicious node M earlier than the other 

guard nodes for the link to M. G1 subsequently drops all the traffic forwarded to M and is 

therefore suspected by other guard nodes for M. This problem can be solved by having an 

authenticated one-hop broadcast whenever a guard node performs a local detection. The 

detection percentage falls almost linearly as we increase the number of colluding 

malicious nodes from 2 to 6 due to the decrease in the number of available guards. 

However, the detection percentage is always above 88% in all our experiments. 
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Figure 5.14: False alarms and detection as a function of number of malicious nodes 

Figure 5.15 shows the isolation latency and the watch buffer size as a function of 

the number of malicious nodes. As the number of malicious nodes increases, the isolation 

latency slightly increases. This is due to the fact that an individual malicious node has 

less opportunity to do harm, which delays its detection and thus increases the average 

isolation latency. As we increase the number of malicious nodes, the watch buffer size 

increases since a larger number of packets stays longer in the watch buffer waiting to be 

matched since these packets are eventually dropped by the malicious nodes. 
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Figure 5.15: Isolation latency and watch buffer size as a function of number 

malicious nodes 
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6. SLEEP-WAKE AWARE LOCAL MONITORING: SLAM 

Local monitoring in wireless media (e.g., [48], [49], [59]-[62], [139], [140]) 

serves as a primitive building block for collecting information and evidence about 

activities that are going on in the network and has been used by many researchers. 

However, local monitoring could impose a high cost for energy-constrained networks 

such as sensor networks, since it requires the guard nodes to be awake all the time to 

oversee network behavior. To the best of our knowledge, no one has studied sleeping 

protocols for optimizing the energy overhead of monitoring while maintaining the quality 

of the monitoring service. The main challenge lies in providing a secure sleeping 

technique that is not vulnerable to security attacks and does not add to the vulnerability of 

the network. 

In this chapter, we propose a set of mechanisms called SLAM (SLeep-Wake Aware 

Local Monitoring) that adapt the existing local monitoring technique to significantly 

reduce the time a node needs to be awake for the purpose of monitoring. The proposed 

mechanism adapts itself depending on the kind of sleeping protocol used in the network, 

henceforth referred to as the baseline sleeping protocol (BSP). For networks that use 

synchronized sleeping algorithms (e.g., [70], [129]-[133]), i.e., nodes wakeup and go to 

sleep in a synchronized manner, SLAM does not need to do anything. For networks with 

an existing application-specific sleep/wake protocols (e.g., [118]-[124], [127]), SLAM 

updates these protocols to serve local monitoring as well by modifying their input 

parameters. Examples of application-specific sleeping algorithms include those protocols 

that maintain a given sensing coverage (each point should be sensed by at least k nodes), 

a given network connectivity level (each pair of nodes should have k disjoint paths), or 

both. The exact modification depends on the BSP itself and we provide in this chapter an 

example of adapting a coverage protocol. Finally, for those networks that have no 

existing BSP or have on-demand sleep-wake, i.e., nodes are woken up at arbitrary times 
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determined by the communication, SLAM provides a generic on-demand sleeping 

algorithm, called On-Demand SLAM. This algorithm assumes that in addition to the 

normal antenna, each node has a passive or a low-power wake-up antenna. A node that is 

not involved in network activities, such as, data forwarding is ordinarily sleeping 

according to the BSP. However, for monitoring purposes, it is woken up on demand by a 

neighboring node using the wake-up antenna 

On- demand SLAM has to account for the fact that wake-up antennas have a delay 

in waking up nodes while receiving the wake up signal. By a suitable design, we prevent 

the additional delay due to sleep-wake from becoming cumulative with the number of 

hops between the communicating pair of nodes. Instead, a pipelined effect is achieved 

and the additional delay becomes constant independent of the number of hops. We 

provide theoretical analysis for energy saving using On-Demand SLAM compared to the 

baseline monitoring protocol presented in Chapter 4, [48]. We build a simulation model 

for SLAM using ns-2 and perform a comparative evaluation of local monitoring with and 

without SLAM. The results show that the performance of local monitoring in terms of 

false and missed alarms is very close in both cases while the overhead of SLAM in terms 

of listening energy is between 30 to 129 times lower, depending on the network traffic. 

The results show the effect of the number of malicious nodes, the traffic load, and the 

fraction of data being monitored on the overhead of local monitoring. 

We summarize the contributions in this chapter as follows: 

• Provide a technique for conserving energy while performing local monitoring 

without significantly degrading its security performance. This we believe is 

fundamental to deploying local monitoring in any energy conscious network.  

• Propose a generic on-demand sleep-wake algorithm for network monitoring in 

scenarios where either no application-specific sleeping algorithm exists or the sleep-

wake is based on arbitrary communication pattern. 

• Analytically prove that SLAM does not add any vulnerability to the existing local 

monitoring technique. 
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• Conduct extensive simulation experiments on an existing local monitoring technique 

with and without SLAM and show a significant reduction in monitoring cost with 

negligible degradation in the monitoring quality of service.  

The rest of the chapter is organized as follows. Section 6.1 describes SLAM. 

Section 6.2 presents mathematical analysis of the energy overhead and security of SLAM. 

Section 6.3 presents the simulation experiments and results.   

6.1. SLAM Protocol Description 

The primary goal of SLAM is to minimize the time a node has to be awake to 

perform local monitoring, Chapter 2. SLAM adds one more task to the list of events that a 

guard node needs to monitor—verifying whether the node being monitored wakes up the 

requisite guards or fails to do so due to malicious motivations. Depending on the BSP 

used in the network, SLAM has three different mechanisms for sleeping in networks with 

local monitoring—The No-Action-Required SLAM protocol, the Adapted SLAM protocol, 

and the On-Demand SLAM protocol. 

6.1.1. System Model and Assumptions 

SLAM assumes that the network is static and the links are bi-directional. SLAM 

requires a pre-distribution pair-wise key management protocol (e.g. [64], [65]) such that 

any two nodes can acquire a key for encryption and authentication. In On-Demand SLAM, 

each node is equipped with either a passive [137] or a low-power wakeup antenna [134]. 

Any two nodes that need to communicate, establish a route between them using an 

underlying routing protocol. We assume that the source node is honest. No assumption is 

made about the adversary nodes following the sleep-wake protocol, only the honest nodes 

follow it. Each node knows its first-hop neighbors and the neighbors of each neighbor, 

e.g., using a technique as in [49]. Malicious behavior is manifested through delaying, 

dropping, fabricating, misrouting, or modifying packets. The malicious behavior of 

fruitlessly sending a wake-up signal to a node is not addressed since this potential exists 

in any on-demand wake-up protocol and SLAM neither exacerbates nor solves this 

problem. 
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6.1.2. The No-Action-Required SLAM Protocol 

This scheme is used in a network that has a sleeping algorithm which is 

completely compatible with local monitoring. Such sleep algorithms fall in a class of 

protocols in which the network (or the communicating parts of the network) is 

synchronized in its sleep-wake schedule and all the nodes wake up and go to sleep in 

distributed or centralized synchrony. Examples of such protocols include Span [70], S-

MAC [130], habitat monitoring [133], and those used in some applications of sensor 

networks as in [129], [131], [132]. In this kind of BSP, the guards for the communication 

would also be woken up since, by definition, the guards are one-hop neighbors of the two 

nodes that form the link on which the communication is taking place. Thus, for this class 

of protocols, no modification is necessary to support sleeping and waking up of guards 

for local monitoring purposes.  Local monitoring in such scenarios does not incur any 

additional overhead on the network aside from the computational overhead. 

6.1.3. The Adapted SLAM Protocol 

This scheme is used for the class of BSP comprising coverage and/or connectivity 

preserving sleep-wake protocols. Examples of such kinds of sleeping algorithms are 

[118]-[124], [127]. However, since these algorithms may be application-specific, each 

one of them may need to be adapted differently to support sleeping of guards as well. 

Here we consider a representative sub-class of BSP from this class.    

Consider for example the class of protocols that seeks to preserve Ks-coverage or 

Kc-connectivity in a network and puts nodes off to sleep without violating these 

properties. The property of Ks-coverage (s for sensing) denotes that every point in the 

field is sensed by at least Ks nodes. The property of Kc-connectivity (c for coverage) 

denotes that for critical communication, such as, between a node and the base station, at 

least Kc routes exist. The fundamental technique for adapting such sleeping algorithms to 

support sleeping of guards is to modify the value of Ks or Kc and invoke the original BSP.  

Consider a protocol that preserves coverage at Ks ([118]-[124]). Assume that the 

sensing range is Rs, the communication range is Rc, and the detection confidence is g. In 
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local monitoring, Chapter 2, γ is defined as the minimum number of neighbors of a node, 

S, to convince another neighbor of S, say D, that S is malicious if D does not directly 

detect S as malicious. Assume the requisite number of guards needed for detection with 

sufficiently low missed and false alarm rates is Γ (Γ ≥ γ). We find the relationship 

between Ks, Rs, Rc, and g with the help of Figure 6.1. What is the value of Ks to guarantee 

the number of guards is Γ? Let the density of the nodes in the network be ρ and the 

density of awake (or alive) nodes be ρl = Ks/πRs
2. Let the common communication area 

between S and D be Ac. Assume uniform distribution of the awake nodes 
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Figure 6.1: Relationship between communication and sensing ranges 

The number of nodes that are awake in Ac (Nw) is given by  
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The common communication area Ac for two nodes separated by a distance x is 

given by, 

 2 1 2 22 cos ( / 2 ) / 4c c c cA R x R x R x−= − −  (6.3) 

The minimum value of this is achieved when x = Rc and the value is given by 

Ac,min = 1.23Rc
2. Thus, the protocol needs to be invoked with a value of  
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This will guarantee that the requisite number of guard nodes is awake to provide 

detection through local monitoring. Thus, Adapted SLAM invokes the BSP with the 

increased value of the parameter Ks. 

6.1.4. The On-Demand SLAM Protocol 

This protocol is used in a network that either has no BSP in operation or employs 

an application-specific on-demand sleep-wake protocols. On-demand SLAM is a new 

sleep-wake protocol that enables the guards to go sleep when not required for monitoring. 

The high level approach we choose to enable guard sleep-wake is on-demand rather than 

scheduling the sleep-wake periods. The defining characteristic of on-demand sleep-wake 

protocols is that any node in the network may, at random, initiate communication with 

any other node in the network. On-demand sleep-wake protocols do not impose any fixed 

communication pattern in the network.  

To trigger a node wake up, On-Demand SLAM uses either low-power wake-up 

antennas (e.g., [68], [134]-[136]) or passive antennas with circuitry that can harvest 

signal [137],.  These kinds of antennas are commercially available (e.g. [136]) as well as 

in research labs (e.g., [137]). For example Austriamicrosystems provides a low-power 

wake-up receiver (AS3931) with data rate of 2.731 KB/s and current consumption in 

standby mode of 6.6uA [136]. Data transmission and reception require good channel 

quality, high speed, and thus complex and power consuming hardware, while channel 

monitoring has the sole purpose of getting binary information whether a packet targeted 

at this node is coming. In the rest of this chapter, for ease of exposition, we use the term 

“low-power wake-up radio” to mean either the low-power wake-up hardware or the 

passive wake-up hardware which consumes no power at all. 

In On-Demand SLAM, the low-power wake-up radio remains awake all the time 

while the normal radio is put to sleep when it is not sending or receiving data or is not 

required for monitoring. If a node is to send a packet out, it simply wakes up by itself; if a 

neighbor node is to send a packet to this node, the sender will send a short wake-up 

beacon using the wake-up radio channel, and on receiving this beacon the wake-up radio 

triggers the normal radio to be ready for the reception. The main disadvantage of the 
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mechanism is that it still consumes extra energy. Even though the power consumed is 

small compared to the normal antenna (1uW compared to 10mW in [68]), the energy is 

non-negligible due to long time of operation. 

Hence this mechanism has been modified to use passive wake-up antennas, 

known as radio-triggered power management mechanisms [137]. In this mechanism a 

special hardware component–a radio-triggered circuit–is connected to one of the interrupt 

inputs of the processor. The circuit itself does not draw any current and is thus passive. 

The node can enter sleep mode without periodic wake-up. The wake-up mode is the usual 

working mode with all the functional units ready to work, and the average wake-up mode 

current is 20mA [137]. In sleep mode, a node shuts down all its components except the 

memory, interrupt handler, and the timer and the sleep mode current is 100uA [137]. 

When a network node changes from sleep mode to wake-up mode, there is a surge 

current of 30mA for a maximum of 5ms [137]. When a power management message is 

sent by another node within a certain distance, the radio-triggered circuit collects enough 

energy to trigger the interrupt to wake up the node. Except for activating the wake-up 

interrupt, the radio-triggered circuit is independent of any other components on the node. 

If supported by hardware, the wake-up packet is sent at a special radio frequency. Other 

types of radio communication, at a different radio frequency, do not wake up the nodes 

even if the nodes are within the radio communication range. Note that hardware cost for 

adding multiple-frequency support is usually fairly low. Many recent low-end radio 

transceivers support multiple frequency operations [138]. 

The basic idea in designing On-Demand SLAM is for a node to wake up the 

requisite guard nodes to perform local monitoring on the communication it is going to 

send or forward on its outgoing link. The challenge in the design comes from the fact that 

any of the nodes (except the source) may be malicious and therefore may not faithfully 

wake up the guards. In Figure 6.2, α1 and β1 are the guards of H1 over the link S H1. 

Recall from local monitoring, Chapter 2, that information for each packet sent over the 

monitored link (e.g., S H1) is saved in a watch buffer at each guard for a time Tw. The 

information maintained depends on the particular attack primitive to be detected (i.e., 

drop, delay, modify, misrouting, or forge).   
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Figure 6.2: n-hop route between S and D, neighbors of S, and guards of H1 and H2 

We use the scenario depicted in Figure 6.2 to explain On-Demand SLAM. A 

source node S is sending data to a destination node D through an n-hop route 

S H1 H2 … Hn-1 D. In a network where all the nodes are honest, S will wake up 

the next hop H1 and the guard nodes (α1 and β1) before sending the packet to H1. In turn 

H1 will wake up H2 and guard nodes α2 and β2 before sending the packet on the next hop 

and so on, till the packet reaches D. Formally, according to Chapter 2, the responsibility 

of a guard node α of Hi+1 over a link Hi→Hi+1 is to verify that. 

1. Hi+1 forwards the packet within time Tw 

2. Hi+1 does not modify the packet it is forwarding 

3. Hi+1 only forwards a packet if a packet is sent on the Hi Hi+1 link 

SLAM introduces a fourth responsibility. 

4. Hi+1 should wake up the guards for the communication on the Hi+1→Hi+2 link 

before forwarding the packet on that link 

If a rule 1-3 is violated then the MalC value is incremented by appropriate 

amount; if rule 4 is violated, the MalC value increment is the maximum of the other 

MalC values because this rule violation may be used to mask violations of any of the 

rules 1-3. 

In general for any multi-hop route connecting a source node S to a destination 

node D, S is responsible for waking up the correct guards for H1, and Hi is responsible for 

waking up the correct guards of Hi+1 (1 ≤ i ≤ n-2). The correct guards for H1 are 

guaranteed to be woken up by the assumption of honest source S and whether Hi honestly 

wakes up the next hop guards is monitored by the guards of Hi according to rule 4 above. 
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In the following we present two variations of On-Demand SLAM depending on the 

wake-up mechanism a node follows to wake up the guards of the next-hop. 

6.1.4.1. Guards-Only On-Demand SLAM (G-SLAM) 

The high level design goal in G-SLAM is to minimize the energy wasted in waking 

up nodes that can not serve as guards. On average half of the nodes within a single 

transmission range are not guards over a certain link (according to Equation (4.8) in 

Section 4.3.1). In Figure 6.2, α1 and β1 are valid guards of H1 over the link from S to H1, 

while Z and W are not. Also, note that the energy spent in warm up (transition between 

sleep mode and wakeup mode) is relatively high (almost 3 times as much as the energy 

spent in listening for the antennas described in [137]). Therefore, waking up the 

appropriate nodes saves considerable amount of energy.  

For a guard node to verify honest wake-up, G-SLAM requires each node in the 

network to know, in addition to the identities of its first-hop and second-hop neighbors 

that are required by local monitoring, the location of each node within twice of its 

transmission range.  In Figure 6.2, a guard of H1, say α1, knows the location of its 

neighbor H1 and the location of all the neighbors of H1, S, β1, β2, α2, and H2. Using this 

information, α1 knows the common neighbors of H1 and H2, α2 and β2, which can act as 

the guards of H2 over the link H1 H2. Therefore, α1 can not be deceived by H1 waking 

up its neighbors that can not be guards for H2 (S and β1).  A disadvantage of G-SLAM is 

that it requires sophisticated wakeup hardware for a node to wake up a subset of nodes 

within the communication range using an id-attached beacon [137].  

We shall explain G-SLAM algorithm with the help of Figure 6.2. Assume that node S 

has some data to be sent for the destination D over the route S H1 H2 … Hn-1 D 

connecting S to D. G-SLAM uses the following steps to wake up the correct guards along 

the route from S to D, 

1. Node S sends a signal to wake up the first-hop node (H1) and the guards for H1 (a1, 

b1). This signal could be either unicast to each of H1, α1, and β1 or a multicast signal 
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that contains the identities of H1, α1, and β1. This signal is guaranteed to wake up the 

correct guards of H1 due to the assumption of honest source S. 

2. Node S sends the packets it has to H1 following the timing schedules presented in 

Section 6.1.4.3.  

3. Nodes H1, a1, and b1 after being woken up continue to remain awake for Tw. Tw is a 

parameter of local monitoring that captures the maximum time by which an entry in 

the watch buffer is evicted (beyond that is evidence of malicious action), Chapter 2. 

Each time a new packet is sent from S to H1, Tw is reinitialized. After Tw expires at a 

node, it goes back to sleep. 

4. Node H1, after being woken up, uses the timing schedule in Section 6.1.4.3 to 

schedule a wake-up signal for H2 and the guards of H2 over the link H1→H2 (a2,b2). 

The guards of H1 over the link S→H1 are responsible for verifying that H1 fulfills this 

requirement.  

5. The process continues at each step up to the destination. 

6.1.4.2. All-Neighbors On-Demand SLAM (A-SLAM) 

The high level design goal of A-SLAM is to relax the assumption that every node 

knows the location of its first-hop and second-hop neighbors, and to simplify the wakeup 

signal and the wakeup hardware.  Consider a node S that has some data to send for the 

destination D over the route S H1 H2 … Hn-1 D, Figure 6.2. A-SLAM uses the 

following steps to wakeup the guards along the route from S to D, 

1. Node S broadcasts a wake-up signal to all its first-hop neighbors (Z,W,H1,a1,b1). The 

wake-up signal includes the identity of both the current sender (S) and the next-hop 

(H1). 

2. Each neighbor of S, after being woken up, decides whether to stay awake or go back 

to sleep based on the role that it may play on the ongoing communication. If that 

neighbor is the next-hop (H1), it stays a wake to forward the data and to monitor the 

next-hop from it (H2). If that neighbor is a guard (α1,β1) for the next-hop (H1), it stays 

awake to monitor the behavior of H1. Finally, if that neighbor is neither a guard for H1 

nor a next-hop, it goes back to sleep immediately. 
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3. Node S sends the data packet it has to H1 following the timing schedules presented in 

Section 6.1.4.3.  

4. Nodes H1, a1, and b1 after being woken up continue to do so for Tw. Each time a new 

packet is sent from S to H1, Tw is reinitialized. After Tw expires at a node, it goes back 

to sleep. 

5. H1 does the same steps that S did to wake up the next-hop (H2) and its guards (α2,β2). 

6. The process continues at each step to the destination. 

This scheme results in an increase in the energy consumption compared to G-

SLAM due to the wake-up of the neighbors that are not guards. 

6.1.4.3. Timing of the Wakeup Signal 

In this section we generate the timing schedules for signaling the wake-up of 

nodes using On-Demand SLAM. This is important because the wake-up antennas have a 

warm-up period and this could increase the end-to-end delay of the communication. We 

design SLAM to send the wake-up signal at the earliest possibility so that the additional 

delay due to the sleep-wake protocol does not add up but is instead a constant 

independent of the number of hops.  

Let Tcontrol be the time to send the wake-up packet to the radio-triggered antenna, 

Twarmup be the time for a node to be fully awake and functional from the time it receives 

the wake-up packet (5 ms for Stankovic et al.’s antenna [137]), and Tdata be the time to 

send a data packet which includes the forwarding time at intermediate nodes, therefore, 

within Tdata, an intermediate node completely receives a data packet and it can 

immediately start sending it. Moreover, let Tw be the maximum time a guard, after being 

woken up, waits for the packet to be forwarded. If the packet is not forwarded in this 

time, malicious action is suspected. Finally, let Twake be the time a node continues to be 

awake after being woken up.  

Let us consider an isolated (no other flows interfere with it) flow between S and 

D, separated by h hops. The intermediate nodes are n1, n2, …, nh-1.  Let gi represents the 

guards of node ni over the link ni-1 ni. Let vi represents the neighbors of ni that are not 

guards of ni+1 over the link ni ni+1. Consider the following two disjoint cases based on 
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the relation between (Tcontrol + Twarmup) and Tdata. The analysis assumes a node is sleeping 

when it receives the wake-up signal. If not, the node just prolongs, if necessary, its wake-

up time to meet the requirement imposed by the new wake-up signal. For example, 

assume a guard node G is currently awake till Current_time + δ due to some other 

activity (forward data, guard for another link, etc.). Assume that G receives at 

Current_time a wakeup signal that require G to stay awake till Current_time + ∆. Then, if 

δ  ≥  ∆, G does not need to do anything, otherwise G prolongs its wake-up time by ∆-δ 

and goes to sleep at Current_time + ∆ instead of Current_time + δ. 

Case I: (Tcontrol + Twarmup) > Tdata with t = (Tcontrol + Twarmup) – Tdata 

Figure 6.3 shows the timing schedule for this case. Figure 6.3 (a) shows the 

timing schedule for a node in the route between the source and the destination. The node, 

n1, wakes up at T3 and goes to sleep at T8, where T8-T3 = Tdata (to receive data) + t (wait 

for the next-hop to be ready to receive the data) + Tdata (send the data to the next-hop) + 

{t + Tdata} (as a guard for n2) = 3Tdata+2t. Figure 6.3 (b) shows the timing schedule for a 

guard node. The guard, g1, wakes up at T3 and goes to sleep at T6, where T6-T3 = Tdata (to 

overhear incoming data to the node being monitored, n1) + t (wait for the next-hop to be 

ready to receive the data) + Tdata (to overhear outgoing data from the node being 

monitored, n1) = 2Tdata +t. Figure 6.3 (c), only meaningful for A-SLAM, shows the 

schedule for a node that is a neighbor to a node in the route from the source to the 

destination but is not a guard node. The node, v1, wakes up at T3, determines that it can 

not be a guard, and thus go back to sleep immediately. 
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Figure 6.3: Case I wakeup-sleep timing schedule for (a) a node in the data route; (b) 

a guard node; (c) a neighbor to a node in the data route that is not valid guard (for 

A-SLAM only) 

According to SLAM, each node sends a wake-up signal at the earliest possible 

opportunity (as soon as it is awake) to minimize the delay. From Figure 6.3, it can be 

seen that per hop, the delay incurred is Tcontrol + Twarmup and at the last hop, the delay due 

to data (Tdata) gets exposed. 

Case II: (Tcontrol + Twarmup) ≤ Tdata with t = Tdata – (Tcontrol + Twarmup)  

Figure 6.4 shows the timing schedule for this case. Figure 6.4 (a) shows the 

schedule for a node in the route between the source and the destination. The node, n1, 

wakes up at T3 and goes to sleep at T9, where T9-T3 = Tdata (to receive data) + Tdata (send 

the data to the next-hop) + Tdata (as a guard for n2) = 3Tdata. Figure 6.4 (b) shows the 

schedule for a guard node. The guard, g1, wakes up at T3 and goes to sleep at T7, where 

T7-T3 = Tdata (to overhear incoming data to the node being monitored, n1) + Tdata (to 
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overhear outgoing data from the node being monitored, n1) = 2Tdata. The timing schedule 

for a node that is a neighbor to a node in the route from the source to the destination but 

is not a guard node is the same as its peer in Case I. 
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Figure 6.4: Case II wakeup-sleep timing schedule for (a) a node in the data route; (b) 

a guard node 

6.2. Mathematical Analysis of On-Demand SLAM 

6.2.1. Security Analysis 

Here we prove that On-Demand SLAM does not degrade the security performance 

of local monitoring, Chapter 2. Specifically, we will prove the following premise.  

Premise: Due to the sleep-wake mechanism for guards in SLAM, no loss in detection 

coverage occurs.  

For this we prove that for any node Hi in the path S→D (i =1, …, n-1),  

i. Either, the guards for Hi+1 on the link Hi→Hi+1 are awake (and monitoring) at the time 

communication takes place on the link, or 

ii. Hi is suspected of malicious action 

We prove this using the first principle of mathematical induction. 
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Let the guards of H1 over the link S→H1 form the set G1, Hn-1→D the set Gn, and 

Hi-1→Hi the set Gi.  

Base case: The source S is honest and therefore it wakes up the guard nodes in G1. 

Inductive hypothesis: All nodes H1, …, Hi (i ≥ 1) are honest and have woken up the 

appropriate guards, or have been suspected of malicious action. 

To prove: Node Hi+1 is either honest and wakes up the guard nodes in Hi+2 or will be 

suspected of malicious action. 

Case 1: One or more of the nodes H1, …, Hi have been suspected of malicious action. 

Case 2: All the nodes H1, …, Hi have woken up the appropriate guards. 

Proof Case 1: In this case, the malicious action(s) could be detected by rules 1-3 or rule 4 

of Section 6.1.4. If the former, then it does not affect a guard being woken up and all 

guards in sets G2, …, Gi have been woken up. If the latter, then one or more of the guard 

nodes in the sets G2, …, Gi have not been woken up. If the node, say Hk, does not wake 

up the requisite guards, then it will be suspected by rule 4 and its MalC counter value will 

be incremented.  

Proof Case 2: All the nodes in H1, …, Hi have woken up the guards in the sets G2, …, 

Gi+1.  

Now Gi+1 is monitoring if Hi+1 is sending a wake-up signal to the guards of Hi+2 

over the link Hi+1→Hi+2 i.e., Gi+2. If Hi+1 is honest and performs this action, rule 4 is not 

triggered. But if Hi+1does not perform this action, then rule 4 is triggered and Hi+1 is 

suspected of malicious action. 

Therefore, by the principle of mathematical induction, it is proved that either all 

guards are woken up at the time of monitoring a communication or the malicious nodes 

are suspected. Since the detection of the guards according to rules 1-3 is not changed 

from baseline local monitoring, this proves that no loss of detection coverage happens 

due to SLAM. 

6.2.2. Energy and End-to-End Delay Analysis 

Here we calculate the worst case end-to-end delay of communication with local 

monitoring without sleep-wake (Baseline-LM) and with On-Demand SLAM. Moreover, 
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an upper bound in the consumed energy is computed for SLAM and for the case with on-

demand sleep-wake and no monitoring (Baseline-OD). For SLAM, the energy is 

calculated separately for a node which is forwarding packets (and, by definition, acting as 

a guard node), a node which is acting just as a guard, and a node that is in the vicinity of 

the path but is neither a forwarder nor a guard.  

In addition to the notations defined in Section 6.1.4.3, let Atransmit be the current to 

transmit (at the middle of the transmit range), which is 27mA for Mica2 motes [141]. Let 

Awarmup be the current consumed during the transition from sleep to wakeup (warm up), 

which is 30mA for Mica2 motes [141]. Finally, let Aactive be the current in the 

computationally active mode = the current in the idle listening mode = the current in 

receive mode, which is 8mA for Mica2 motes [141]. 

Let us consider a flow between S and D, separated by h hops. The intermediate 

nodes are n1, n2, …, nh-1. The bounding box around S and D covers all possible nodes, 

including forwarding nodes and guard nodes that may be involved in the communication 

between S and D. The size of the bounding box is 2r(h+1)r = 2r2(h+1), where r is the 

transmission range, Figure 6.5. For On-Demand SLAM, consider the two wakeup-sleep 

scheduling cases of Section 6.1.4.3. 

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

 
Figure 6.5: A bounding box over the path S D 

Case I: (Tcontrol + Twarmup) > Tdata with t = (Tcontrol + Twarmup) – Tdata 

From Figure 6.3 it can be seen that delay at the first link (S n1) is Tcontrol + 

Twarmup + Tdata. Over each of the succeeding links, the delay is Tcontrol + Twarmup since the 

delay due to data (Tdata) gets exposed. This is due the sleep-wake schedule process that 
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SLAM uses where the wake-up signal is sent at the earliest opportunity. Therefore, the 

end-to-end delay in SLAM, ΩSLAM(h), for the communication from S to D is, 

   ( ) ( 1)( ) ( )SLAM contol warmup data control warmup control warmup datah T T T h T T h T T TΩ = + + + − + = ⋅ + +  (6.5) 

The end-to-end delay in Baseline-LM is  

 ( )Base LM datah h T−Ω = ⋅  (6.6) 

In this case, the additional end-to-end delay imposed by SLAM depends on the 

number of hops between S and D 

 ( ) ( ) ( )SLAM Add SLAM Base LM datah h h h Tτ− −Ω = Ω − Ω = ⋅ +  (6.7) 

Next, we compute the consumed energy for both Baseline-OD and On-Demand 

SLAM. 

Baseline-OD: here only the forwarding nodes are involved in the sleep-wake protocol. 

Using Figure 6.3 (a), a forwarding node ni (i = 1, …, h-1) spends Twarmup = T3-T2 warming 

up with current consumption of Awarmup, Tdata = T4-T3 receiving data with current 

consumption of Aactive, t = T5-T4 idle waiting for the next-hop to be ready with current 

consumption of Aactive, and Tdata = T6-T5 sending data with current consumption of 

Atransmit. Therefore, the energy expended by a forwarding node ni (i = 1, …, h-1) is,  

 ,     ( )   f base warmup warmup control warmup active data transmitT A T T A T Aε = ⋅ + + ⋅ + ⋅  (6.8) 

Node S spends Tcontrol + Twarmup = T3-T1 idle waiting for n1 to wake up with Aactive 

and Tdata = T4-T3 transmitting data with Atransmit. Therefore, the energy expended by S is  

 ,  ( )   S base control warmup active data transmitT T A T Aε = + ⋅ + ⋅  (6.9) 

Node D spends Twarmup warming up with Awarmup and Tdata receiving data with 

Aactive. Therefore, the energy expended by D is, 

 ,     D base warmup warmup data activeT A T Aε = ⋅ + ⋅  (6.10) 

On-Demand SLAM: here the sleep-wake protocol involves, in addition to S and D, the 

forwarding nodes, the guard nodes, the neighbors of the forwarding nodes that are not 

guards. We shall compute separately for the three kinds of nodes (i) forwarding nodes; 

(ii) guard nodes that do not act as forwarders; (iii) remaining nodes. The energy of S and 

D is the same as that of Baseline-OD.  
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i. Energy expended by a forwarding node ni (i = 1, …, h-1)  εf,SLAM ≤  εf,base + Tw . Aactive. 
The additional energy is consumed because ni has to look to see if ni+1 forwards the 

packet that it was just handed by ni. The inequality comes in because Tw is the worst 

case time in case ni+1 is malicious. 

ii. Energy expended by a guard node that is not a forwarding node εg,SLAM ≤ Twarmup . 

Awarmup + Tdata . Aactive + Tw . Aactive. Consider for example the guard g1 of n1 over the 

link S n1. g1 has to listen to the communication between S to n1 and then has to stay 

listening for a maximum of Tw to see that n1 forwarded the packet. 

iii. Energy expended by a node in the bounding box around S and D that is neither a 

forwarding node nor a guard node (the “other node”, hence the notation “o” in the 

subscript). For G-SLAM where the wake-up signal is directed to the relevant guard 

nodes εo,G-SLAM = 0. For A-SLAM where the wake-up signal is broadcast in a one-hop 

neighborhood εo,A-SLAM = Twarmup . Awarmup. 

Case II: (Tcontrol + Twarmup) ≤ Tdata with t = Tdata – (Tcontrol + Twarmup)  

The end-to-end delay for SLAM in this case is exactly the same as that of Case I 

(Equation (6.6)) after exchanging Tdata with (Twarmup + Tcontrol),  

 ( ) ( 1)( ) ( )SLAM contol warmup data data data control warmuph T T T h T h T T TΩ = + + + − = ⋅ + +  (6.11) 

The end-to-end delay for Baseline-LM is exactly the same as that of Case I, 

Equation (6.6). In this case, the additional end-to-end delay imposed by SLAM is fixed 

and does not depend on the number of hops between S and D 

 ( ) ( ) ( )SLAM Add SLAM Base LM control warmuph h h T T− −Ω = Ω − Ω = +  (6.12) 

For the energy, again we consider both Baseline-OD and On-Demand SLAM. 

Baseline-OD: the energy for S and D are exactly the same as that of Case I (Equations 

(6.9) and (6.10)). The energy of the forwarding nodes is the same as that of Case I after 

replacing (Twarmup + Tcontrol) with Tdata. 

 ,     ( + )f base warmup warmup data active transmitT A T A Aε = ⋅ + ⋅  (6.13) 

On-Demand SLAM: All energy computations are the same as in Case I. 

Now consider that there are η concurrent flows going on in the network. The total 

energy consumed by all the nodes is maximized when there is no spatial and temporal 
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overlap between the multiple flows. In this case the total number of nodes involved is the 

sum of the number of nodes involved in each flow. (This arises from the fact that 

11
i i

ii

A A
η η

==

≤∑∪ .)  

The area of the bounding box, Figure 6.5, as a function of the number of hops 

between S and D, h, is A(h) = 2r2(h+1). The total number of nodes in the bounding box 

N(h) = A(h)ρ, where ρ is the density. The number of forwarding nodes F(h) = h-1. The 

number of guard nodes G(h) = 0.51N(h)-F(h) (Equation (4.8)). The number of other 

nodes O(h) = N(h)-(F(h)+G(h)). Next, we compute the total expected energy over all the 

flows for both Baseline-OD and On-Demand SLAM, ignoring the energy of S and D. 

Baseline-OD: The expected energy expended by the entire set of forwarding nodes for a 

single flow is 

 { },1. ,[ ] [ ( )]f base f baseE E F hε ε= ⋅  (6.14) 

On-Demand SLAM: The expected energy expended by the entire set of nodes in the 

bounding box for a single flow is  

 { },1, , , ,[ ] [ ( )] [ ( )] [ ( )]N SLAM f SLAM g SLAM o SLAME E F h E G h E O hε ε ε ε≤ ⋅ + ⋅ + ⋅  (6.15) 

These computations depend on the value of E[h]. To compute E[h], consider the 

source S at the center of a set of concentric circles – the first one of radius r (the 

transmission range), the second of radius 2r, and so on. The nodes in the second ring are 

two hops away from S, those in the third ring are three hops away, and so on. Let the 

number of nodes in ring i be mi. Assuming a Poisson process for distribution of the nodes 

with rate ρ. mi = πr2ρ when i=1 and mi= π[((i+1)r)2-(ir)2] when i>1. In general, through 

simplification, mi = πr2ρ(2i-1) and,  

 
1 1

[ ] ,  where  is such that i
j

i j

mE h i m n
n

Γ Γ

= =

= ⋅ Γ =∑ ∑  (6.16) 

In Figure 6.6, we plot the extra delay of SLAM over Baseline-LM for cases I 

(Equation(6.7)) and II (Equation(6.12)) above with Tdata = 7ms and t =1ms. The figure 

shows that the additional delay due to SLAM increases linearly with the number of hops 

for Case I while it remains constant for Case 2.  
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The expected value of the total energy expended (for all the η concurrent flows) is 

upper-bounded by η times the energy for a single flow. 
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Figure 6.6: Extra delay due to SLAM over Baseline-LM 

6.3. Simulation Results 

We use the ns-2 simulator [89] to simulate a data exchange protocol over a 

network with local monitoring enabled according to the protocol in Chapter 4. We 

simulate two scenarios individually without A-SLAM (the baseline) and with A-SLAM. 

The baseline is an implementation of the local monitoring protocol presented in Chapter 

4. A-SLAM scenario is built on top of the baseline scenario to provide sleep-wake service 

for the guards. Nodes are distributed randomly over a square area with a fixed average 

node density, 100 nodes over 204m×204m. Each node acts as a source and generates data 

according to a Poisson process with rate m. The destination is chosen at random and is 

changed using an exponential random distribution with rate λ. A route is evicted if 

unused for TOutRoute time. The experimental parameters are given in Table 6.1. The 

results are averages over 30 runs. The malicious nodes are chosen at random so that they 

are more than 2 hops away from each other. 

Table 6.1: Default simulation parameters 

Parameter Value Parameter Value 
Tx Range (r) 30 m Destination change rate (λ) 0.02/ sec
Number of neighbors (NB) 8 Number of malicious nodes (M) 4 
TOutRoute 50 sec Packet generation rate (m) 0.1 / sec 
Channel BW 40 kbps Warm up time (Twarmup) 5ms 
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Simulation time 1500 sec Fraction of data monitored (fdat) 0.6 
Watch time (Tw) 30ms Number of nodes (N) 100 

 

Adversary model: We are simulating a selective forwarding attack launched by a group 

of malicious nodes that collude and establish wormholes in the network, Chapters 4 and 

5. During the wormhole attack, a malicious node captures packets from one location in 

the network, and “tunnels” them to another malicious node at a distant point, which 

replays them locally. This makes the tunneled packet arrive either sooner or with a lesser 

number of hops compared to the packets transmitted over normal multihop routes. This 

creates the illusion that the two end points of the tunnel are very close to each other. The 

two malicious end points of the tunnel may use it to pass routing traffic to attract routes 

through them and then launch a variety of attacks against the data traffic flowing on the 

wormhole, such as selectively dropping the data packets. Unless otherwise mentioned, 

each node selectively drops a packet passing through it with uniform probability of 0.6. 

Variable input metrics: (i) Fraction of data monitored (fdat)–each guard node randomly 

monitors a given fraction of the data packets. At other times, it can be asleep from the 

point of view of a guard’s responsibility. (ii) Data traffic load (µ). (iii) Number of 

malicious nodes (M)–the number of malicious nodes that collude to establish wormholes 

and afterwards selectively drop the data. 

Output metrics: Delivery ratio–the ratio of the number of packets delivered to the 

destination to the number of packets sent out by a node averaged over all the nodes in the 

network. Watch buffer size–the runtime count of the maximum size of the watch buffer 

being maintained at a guard, measured in number of entries. The maximum is taken over 

all the guards. % Average monitor wakeup time–the time a node has to wakeup 

specifically to do monitoring averaged over all the nodes as a percentage of the 

simulation time. Average end-to-end delay–the time it takes a data packet to reach the 

final destination averaged over all successfully received data packets. % True isolation–

the percentage of the total number of malicious nodes that is isolated. % False isolation–

the percentage of the total number of nodes that is isolated due to natural collisions on the 

wireless channel. Isolation latency–the time between when the node performs its first 
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malicious action to the time by which all the neighbors of the node have isolated it 

averaged over all isolated malicious nodes.  

Note that the goal is not to show the variation of the output metrics with the input 

parameters for local monitoring, since that has been amply covered in Chapters 4 and 5. 

The goal here is to study the relative effect on local monitoring with ASLAM and without. 

6.3.1. Effect of Fraction of Data Monitored 

The amount of data traffic is typically several orders of magnitude larger than the 

amount of control traffic. It may not be reasonable for a guard node to monitor all the 

data traffic in its monitored links. Therefore a reasonable optimization is to monitor only 

a fraction of the data traffic. In this set of experiments, the goal is to investigate the effect 

of this optimization quantified by the fraction fdat on the output metrics. 

Figure 6.7 shows the variations of delivery ratio as the fraction of data monitored 

(fdat) varies. The figure shows that the % delivery ratio is almost stable above 90% 

irrespective of the value of fdat. This desirable effect is achieved by proper selection of the 

MalC increment for each value of fdat. The MalC increment is designed with an inverse 

relation to the fdat.. Importantly, the delivery ratio in A-SLAM is close to the baseline for 

all values of fdat. However, the results in A-SLAM are slightly worse than those of the 

baseline. This is because some of the data packets are additionally dropped in A-SLAM by 

forwarding, destination, or guard nodes that happen to be asleep when the data packet 

arrives. This unwanted sleep may occur due to collision in the sleep-wake control channel 

which prevents the respective nodes from waking up. Although the control channel is a 

separate channel, contention still occurs, where a guard of two consecutive links are sent 

separate wake-up signals concurrently. 
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Figure 6.7: Effect of fraction of data monitored on delivery ratio 

Figure 6.8 shows the variations of the % of true isolation as the value of fdat 

varies. The trend in the figure is the same as that of Figure 6.7 above and the results 

follow the same reasoning.  
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Figure 6.8: Effect of fraction of data monitored on % true isolation 

Figure 6.9 shows the variations of end-to-end delay as the fraction of data 

monitored (fdat) varies. The figure shows that the end-to-end delay is slightly higher for 

A-SLAM due to the additional warm up time required when the source sends a packet to 

the first hop. 
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Figure 6.9: Effect of fraction of data monitored on end-to-end delay 

Figure 6.10 shows the variations of watch buffer size as the value of fdat varies. As 

the fraction of data monitored increases , the watch buffer size increases due the increase 

in the number of packets monitored. This shows the benefit in terms of overhead by 

monitoring only a small fraction of packets while maintaining almost the same detection 

coverage (Figure 6.7). However, note that even though the watch buffer sizes in A-SLAM 

and the baseline are close, that in A-SLAM is slightly higher. This is due to the extra delay 

in packet forwarding in A-SLAM due to warm up of the nodes before sending the data. 

This delay causes the monitored packets to stay longer in the watch buffer thereby 

increasing its size. 
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Figure 6.10: Effect of fdat on watch buffer size for local monitoring with and without 

SLAM 



 144

6.3.2. Effect of Number of Malicious Nodes 

In this section, we study the relative effect of varying the number of malicious 

nodes on the output metrics. 

Figure 6.11 shows the variations of % delivery ratio, as the number of malicious 

nodes (M) varies. The figure shows that the % delivery ratio slightly decreases as M 

increases. This is due to the packets dropped before the malicious nodes are detected and 

isolated. As the number of malicious nodes increases, this initial drop increases and thus 

the delivery ratio decreases. The % delivery ratio in A-SLAM is slightly lower than that of 

the baseline due to the unwanted sleep described in the explanation of Figure 6.7. 
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Figure 6.11: Effect of number of malicious node on delivery ratio 

Figure 6.12 shows the variations of % delivery ratio, as the number of malicious 

nodes (M) varies. The figure shows that the % true isolation slightly decreases as we 

increase M. This is because the number of available guards in the network decreases as 

more and more nodes get compromised. The % of true isolation in A-SLAM is slightly 

lower than that of the baseline due to the unwanted sleep described in the explanation of 

Figure 6.7.  
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Figure 6.12: Effect of the number of malicious nodes on % of true isolation 

Figure 6.13 shows the variations of % false isolation, as the number of malicious 

nodes (M) varies. The figure shows that the % false isolation increases as we increase M. 

This is because not all guard nodes come to the decision to isolate a malicious node at the 

same time. Therefore, a given guard node may suspect another guard node when the latter 

isolates a malicious node but the former still has not. The occurrence of this situation 

increases with M and hence the % of false isolation increases with M. For example, a 

guard node G1 detects a malicious node M earlier than the other guard nodes for the link 

to M. G1 subsequently drops all the traffic forwarded to M and is therefore suspected by 

other guard nodes of M. This problem can be solved by having an authenticated one-hop 

broadcast whenever a guard node performs a local detection. The % false isolation in A-

SLAM is lower than that of the baseline. Again, this is because some of the packets that 

may falsely identify a node as malicious may get lost in A-SLAM due to unwanted sleep. 
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Figure 6.13: Effect of the number of malicious nodes on % of false isolation 
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6.3.3. Effect of Data Traffic Load (µ) 

In this section, we study the effect of varying the data traffic load on the output 

metrics. 

Figure 6.14 shows the variations of % false isolation as the data traffic load (1/µ) 

varies. The figure shows that the % false isolation increases as the traffic load increases 

(1/µ increases). As the traffic load increases, the probability of collision increases. This in 

turn increases the possibility of false accusation since a guard, say G, may falsely accuse 

a node, say A, of not forwarding a packet if either G has a collision when A forwards or A 

has a collision while receiving the packet. The explanation of the relative performance 

with and without A-SLAM is the same as for Figure 6.13. 
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Figure 6.14: Effect of data traffic load on % false isolation 

Figure 6.15 shows the variations of isolation latency as the data traffic load (1/µ) 

varies. The figure shows that the isolation latency increases as the traffic load increases. 

As the traffic load increases, the MalC increment decreases. This causes the MalC 

threshold to be reached slower at a guard node, which results in increasing the isolation 

latency of the malicious nodes. Also the higher traffic load lays it open to the possibility 

of some packets being missed due to natural collisions and thereby preventing the 

increment to the malicious counter and therefore, reaching the threshold faster. Note that 

the isolation latency in A-SLAM is higher than that of the baseline because of the 

additional packets missed due to the unwanted sleep. 
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Figure 6.15: Effect of data traffic load on isolation latency 

Figure 6.16 shows the variations of isolation latency as the data traffic load (1/µ) 

varies. The figure shows that end-to-end delay increase as the traffic load increases due 

the higher contention for the channel. The relative explanation of end-to-end delay with 

and without A-SLAM is the same as that of Figure 6.10. 
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Figure 6.16: Effect of data traffic load on end-to-end delay 

6.3.4. Wakeup Time Variations 

In this section, we study the effect of varying the fraction of data monitored (fdat), 

the number of malicious nodes (M), and the data traffic load (µ) on the percentage of time 

that a node needs to stay awake using A-SLAM to fulfill the quality of service measures 

imposed by the underlying local monitoring scheme. 
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Figure 6.17 shows that the percentage of wakeup time required for monitoring 

increases as the fraction of monitored data increases due to the increase in the number of 

data packets that a node needs to overhear in its neighborhood 
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Figure 6.17: Variations on the percentage of monitoring wakeup time the fraction of 

data monitored (fdat) varies 

. Figure 6.18 shows that the percentage of wakeup time decreases as we increase 

the number of malicious nodes. As the number of malicious nodes increases, the number 

of data packets in the system decreases since the malicious nodes are isolated and 

disallowed from generating data packets. Therefore, the number of packets that need to 

be monitored decreases, which results in a decrease in the average percentage of wakeup 

monitor time. 
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Figure 6.18: Variations on the percentage of monitoring wakeup time the number of 

malicious nodes varies 
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 Figure 6.19 shows that the average percentage of monitoring wakeup time 

increases as the data traffic load increases due the increase of data packets that need to be 

monitored. 
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Figure 6.19: Variations on the percentage of monitoring wakeup time as the data 

traffic load varies 

Overall, compared to the no sleeping case, A-SLAM saves 30%-129% listening 

energy for different amounts of data traffic load (1/µ). 

6.3.5. Effect of Distance on Delay 

We evaluate here the variations of the end-to-end delay with the number of hops 

between the source and destination pairs. Figure 6.20 shows that the end-to-end delay in 

A-SLAM is always higher than that of the baseline due to the warm-up time needed to 

wake up the nodes before sending the data. However, due the scheduling strategy in A-

SLAM in which each node sends a wake-up signal at the earliest possible opportunity 

(Section 6.1.4.3),  the warm-up time is only in the critical path at the first hop and 

therefore, the delay is not cumulative with the number of hops.  
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Figure 6.20: Variation of the end-to-end delay with the hop count for local 

monitoring with and without A-SLAM 

Figure 6.21 shows that the difference in the end-to-end delay has a horizontal 

trend–it fluctuates between 6.5 and 10 ms due to the randomness in the traffic pattern and 

the location of the source-destination pair. The standard deviation in the difference is 

only 9.1%, expressed as a percentage of the baseline delay. This horizontal trend of the 

additional delay due to SLAM follows the trend obtained analytically in Section 6.2.2 for 

the case when (Tcontrol + Twarmup) < Tdata which is true in these simulation settings. 
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Figure 6.21: The difference in the end-to-end delay with and without A-SLAM 
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7. MITIGATION OF THE WORMHOLE ATTACK IN MOBILE 
WAHAS NETWORKS: MOBIWORP 

This chapter uses local monitoring to provide a set of primitives for mitigating the 

wormhole attack in mobile WAHAS networks. Mitigation involves detection of the 

attack, diagnosis of the adversary nodes, and nullifying their capability for further 

damage. Chapter 4 above presented a protocol called LITEWORP for mitigating the 

wormhole attack in static WAHAS networks. However, LITEWORP breaks down in 

mobile scenarios. The limitation arises from the inability to securely determine neighbors 

at arbitrary points in the lifetime of the network. Existing work on secure neighbor 

discovery cannot be applied to the problem because it hinges on one or more of the 

following features:  (i) the requirement of extremely accurate clocks, (ii) the assumption 

of no delay in the network apart from the propagation delay [52], and (iii) the 

requirement of directional antennas and measurement of exact angle of reception [51]. 

The large volume of work on location determination relies on inaccurate measures, such 

as received signal strength, and is distinct from the problem of location verification of a 

possibly malicious node, which is what we need. A second challenge arises from the 

possibility of a mobile adversary that may perform malicious actions at one location and 

move. LITEWORP only performs local isolation of the adversary and leaves the network 

open to unbounded amount of damage through the mobile adversary. 

The contributions of this chapter include, 

• Providing a primitive that prevents a node from claiming to exist at more than one 

position in the network. This primitive can be used in detecting several different 

attacks such as the Sybil attack ([57], [108]). 

• Developing a protocol called MOBIWORP that detects and diagnoses wormhole attacks 

in mobile networks.  
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• Providing a technique in MOBIWORP to isolate malicious nodes from the network, 

thereby removing their ability to cause future damage. 

• Analyzing the detection latency and overhead of MOBIWORP and providing extensive 

simulations to study the efficacy of our approach. 

MOBIWORP uses local monitoring of neighborhood communication by each node 

as a primitive. It does not require specialized hardware at the network nodes, but instead 

relies on a secure central authority (CA) for position tracking of the mobile nodes and 

keeping track of adversarial behavior by a mobile node. The use of CA appears to fly in 

the face of the holy design grail of completely distributed protocols. However, the CA is 

contacted only in the event of motion and the protocol can continue to operate through 

periods when the CA is unreachable. To improve scalability and availability, the 

architecture can accommodate a hierarchical CA structure with each CA responsible for 

part of the network. 

The detection in MOBIWORP is of two types–local detection and global detection. 

In the former, the adversarial node is detected by the guards in its current neighborhood 

in a distributed fashion similar to LITEWORP.  In the latter, the adversary is detected on a 

global network scale by the CA aggregating reports from guards at multiple locations. 

The first protocol proposed under MOBIWORP is called the Selfish Move protocol (SMP). 

In SMP, the mobile node can generate, send, and receive its own traffic but cannot 

forward any traffic. This design arises from the insight that a node can only launch a 

wormhole attack if it can forward packets. However, SMP may cause the network to be 

disconnected if a large fraction of the nodes are mobile at the same time. This scenario is 

expected to occur in only the most mobile networks. 

To address this case, we develop a second protocol called Connectivity Aided 

Protocol with Constant Velocity (CAP-CV). This protocol eliminates the aforementioned 

lack of connectivity problem by allowing the mobile node to also forward packets. 

However, this protocol comes with some requirement: the node has to file an 

“approximate flight plan” with the CA giving the average velocity between the current 

and the new position. Note that in the SMP, the node does not need to determine a priori 

its trajectory from the source to the destination while in the CAP_CV, it does. 
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MOBIWORP provides a technique that isolates the malicious nodes from the 

network thereby removing their ability to cause future damage. The isolation is achieved 

in two phases–locally, whereby the malicious node is removed from the current 

neighborhood and globally using global information at the CA so that a peripatetic mobile 

node cannot cause unbounded damage in the network. The detection and the isolation 

process are done judiciously to minimize the possibility of victimizing innocent nodes 

due to false alarms caused by natural collisions in the wireless medium or deliberate 

framing by malicious nodes. The simulation results show that, for the network densities 

we simulate, MOBIWORP can achieve more than 90% local and global isolation of 

malicious nodes. Moreover, the data packet drop ratio goes to zero with time due to the 

capability of MOBIWORP to isolate malicious nodes that are involved in packet dropping. 

For an appropriate choice of design parameters, MOBIWORP can completely eliminate 

local framing at the cost of slight increase in the data packet drop ratio. 

The rest of the paper is organized as follows. Section 7.1 lays out the design 

foundations while 7.2 describes the protocols for secure location estimation. Section 7.3 

gives the simulation experiments and the results. Section 7.4 presents the analysis for 

resource overhead, detection latency, and possibility of framing of good node.  

7.1. Design Foundations 

7.1.1. Attack Model and Assumptions 

Assumptions: MOBIWORP assumes that the network consists of a mix of static and 

mobile nodes with a single level of transmission power and bi-directional links. Each 

mobile node is capable of determining its destination location before moving and knows 

its current location. Such location information may be obtained using the Global 

Positioning System (GPS) [148] or through location discovery algorithms that depend on 

beacon nodes such as [146], [147], [150], and [151]. Furthermore, MOBIWORP assumes 

that the network is very loosely time-synchronized, in the range of tens of milliseconds. 

The nodes may or may not be resource constrained, however, MOBIWORP attempts to be 

parsimonious in its own resource consumption. The network has a trusted central 

authority (CA) and each node has a shared key with the CA. The CA does not have any 
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resource constraint. Each node in the network can have a symmetric shared key with each 

other node and is capable of verifying public key certificates issued by the CA. 

Attack model: The adversary node may be external or internal (i.e. possessing the 

cryptographic keys) and it may be more resource-rich than a regular node, such as having 

unlimited energy source, high speed motion, and high powered transmission capability. 

Multiple adversary nodes may collude. A node cannot assume multiple identities, a 

problem that has been solved in [57]. MOBIWORP assumes that there is a maximum limit 

(Mmax) on the number of internal nodes that an attacker can capture. Such assumptions are 

commonly made in WAHAS networks as in [9] and [149]. The wormhole attack can be 

launched in one of four modes according to the classification in Section 4.1 such as high 

powered transmission and packet encapsulation. Without loss of generality, the mode that 

is simulated here is the out-of-band high bandwidth channel between the malicious 

nodes. 

7.1.2. Node Locations 

The physical location of the node is the location where the node physically exists. 

The logical location of the node is the location that the node announces to the CA. A 

node α is considered integrated at a position (X, Y) if there exists at least one node within 

one transmission range of (X, Y) which considers α to be its first-hop neighbor. If no 

node at all exists in the vicinity of (X, Y), then the condition of integration is trivially 

satisfied. The property guaranteed by MOBIWORP is that a node α can only be integrated 

in its logical location. The physical location and the logical location of a good node are 

the same but may not be for a malicious node. If a node is integrated at a location, it can 

send, receive, and forward packets from its neighbors in that location. If a node is not 

integrated at a location it cannot do that irrespective of its physical location. In this 

chapter, we use location to mean the logical location, unless explicitly stated otherwise.  

The determination of first- and second-hop neighbors plays a crucial role in the 

detection of the wormhole attack using local monitoring. A node does not accept or send 

packets to a node that is not recognized as a first-hop neighbor. Also, a node acts as a 

guard depending on its knowledge of first-hop neighbors. The second-hop neighbor 
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information is required to detect when a node falsifies information about the immediate 

sender. In a static scenario, the neighbor list is built once at the time of deployment when 

the network is assumed adversary-free as in Chapter 4. However, in a mobile scenario, 

the neighborhood may change during the lifetime of the network and therefore dynamic 

secure neighbor discovery is required. The problem of neighbor determination is a subset 

of the problem of verifying the location of each node that lies within two transmission 

ranges. Hence, verifying the location of a node is the core of MOBIWORP and forms the 

topic of the discussion in the next section. 

7.2. Secure Node Integration Protocols 

In this section we describe node integration within the network. Node integration 

includes secure neighbor verification and the determination of the role that a node is 

allowed to play after being integrated. 

7.2.1. Fundamental Structures for Neighbor Determination Protocols 

The integration of a node in the network is preceded by an exchange of control 

messages between the mobile node and the CA, called the node-to-CA handshake. 

MOBIWORP introduces the concept of the Authentication Neighbor Update Message 

(ANUM), which is akin to a certificate given by the CA to a node. The node uses this 

ANUM to convince other nodes of its logical location. The ANUM is signed with the 

private key of the CA and thus can be verified by each node. It carries an expiry time with 

it, which is the maximum time for which the node can remain integrated in the given 

location with the current ANUM.  

Every node in the network has a structure called neighbor list, which is a list of 

nodes that are within two transmission range distances and the location of each node. The 

neighbor list is updated as the node moves through the network or new nodes move to its 

neighborhood. A monitoring round of guard node a for the monitored node i is defined as 

the period which starts when they become first-hop neighbors and ends when they no 

longer remain first-hop neighbors, may be due to the mobility of either α or i. The 

MalC(α,i) counter value at node α for node i is not remembered across monitoring 
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rounds. A node can be revoked from the network either locally (Section 2.2.1) or 

globally, when its suspicion goes beyond application defined thresholds. Local 

revocation of a node a means that all the first-hop neighbors of a stop interacting with it. 

Global revocation of a means that a is revoked at the CA and therefore it can not perform 

any network function in any part of the network.  

The CA maintains a global suspicion table (STglob) which is an (N+1)×N matrix, 

where N is the number of nodes in the network. The entry (i, j) has MalC(i,j) and a status 

field (Sf) indicating if node i has locally revoked node j. The (N+1)th row has the global 

opinion of the CA about a given node. Thus entry STglob[N+1,i] has a counter field (Cntr) 

for how many nodes have flagged node i to be malicious and a status field (Sf) set to one 

if Cntr > Mmax. This serves as the trigger for the CA to globally revoke node i. The CA 

aggregates the MalC values of node a about i over multiple monitoring rounds. 

Therefore, even if MalC(a,i) does not cross the threshold MalCth during any single 

monitoring round, MalC(a,i) may cross the threshold if aggregated at the CA over more 

than one round. 

7.2.2. Selfish Move Protocol (SMP) 

This section presents SMP in the following stages–how does a node handshake 

with the CA, how it behaves when in motion, and how the node gets integrated with the 

network in the new position. The fundamental insight that is leveraged here is that a node 

cannot launch a wormhole if it is not allowed to forward any traffic and therefore, if a 

node’s credentials are unsure, it is safe to allow it only to send and receive its own 

packets. The overall process flow for SMP is shown in Figure 7.4. 

7.2.2.1. Node-to-CA Handshake 

A node b at position (X0, Y0) tries to obtain an ANUM for position (X1, Y1), which 

may be the same as (X0, Y0) using the following Node-to-CA handshake algorithm 

presented in Figure 7.1.  
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1. When the current ANUM of b expires, it sends a message to the CA with 
the time till which b expects to stay at the new location Tpause(X1, Y1). 
This message is called ANUM Request and it is sent by β to the CA
encrypted using the shared symmetric key.

2. The CA checks its database for b to verify that b has no previous valid 
ANUM and that b has not been previously revoked. If β has a previous 
valid ANUM, the CA drops the ANUM Request and the handshaking 
stops at this point. If β has been revoked, the CA sends an ANUM 
Reject signed by the private key of the CA back to β.

3. If the checks in the previous step are negative, the CA prepares an 
ANUM Reply that contains the identity of b,  the expiration time of the 
ANUM, which is equal to the time when the CA replies to the ANUM 
Request plus Tpause(X1, Y1), and the new location of  b (X1, Y1). This 
message is signed by the CA and sent back to b. 

4. When b receives the ANUM Reply,  b verifies its integrity through the 
public key of the CA.

5. If the CA sends an ANUM Reject to b, then every node that overhears or 
forwards the ANUM Reject along its path from the CA to β adds β to its 
local blacklist after verifying the ANUM Reject. 

6. If b does not receive any reply within a timeout period, it retries the 
handshaking for three times. If none of these attempts succeeds, b
selects a backoff time after which it repeats the process until it succeeds. 

 
Figure 7.1: SMP handshake between b and the CA 

Two questions arise: What if b cannot renew the ANUM due to unavailability or 

disconnectedness from the CA? How does b communicate while moving from one 

location to another? 

The fundamental requirement in both cases is to prevent the node from launching 

a wormhole. SMP allows a moving node to send and receive its own traffic but not 

forward any other traffic. However, SMP wants to limit the time from the expiry of a 

node’s ANUM for which it can even do this. This requirement gives rise to the concept of 

a grace period (tgrace) from the expiry time of the ANUM. The rationale behind the grace 

period is to give the CA the ability to prevent a malicious node from performing any 

function in the network permanently. This is guaranteed by requiring the node to go back 

to the CA after the expiration of the grace period to renew its ANUM at which point the 

CA can reject the request. 

Based on ANUM status, a node can be in one of the four states presented in 

Figure 7.2. Recollect that an ANUM has an associated position and expiry time. Figure 

7.3 shows the state transition diagram between these states. It is important for the 



 158

neighbors of a node a (NBa) to determine its state, so that each member of NBα can make 

decisions about the packets to forward to or from α. A member of NBα can determine the 

valid and incorrect states of α unambiguously but cannot generally differentiate between 

invalid and revoked states. However, if a member of NBα hears the ANUM Reject for α, 

it concludes that α is revoked. 

Valid: The current position is the same as the one mentioned in the
ANUM and the ANUM is not expired. In this state,  the node can
send, receive, and forward packets, i.e. full network functionality.  

Incorrect: The current position is different from the one mentioned in the
ANUM (Incorrect Remote), the ANUM is expired but within the
grace period (Incorrect Expired), or both. In this state, the node
can only send and receive its own packets. 

Invalid: The ANUM is expired beyond the grace period. In this 
state, the node cannot send, receive, or forward any
packet except the handshaking packets with the CA. 

Revoked: The node has been globally revoked from the network. In this
state, the node is completely cut off from the network. 

 
Figure 7.2: Node states based on the ANUM status 
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Figure 7.3: State transition diagram of node’s states 
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Figure 7.4: Schematic of SMP for movement of node β 

7.2.2.2. Secure Neighbor Discovery and Node Integration Algorithm  

After getting, and verifying the ANUM, b comes to the valid state and uses the 

ANUM to get integrated at the location associated with ANUM through the algorithm 

presented in Figure 7.5. A node b in the incorrect state carrying an ANUM with position 

(X0, Y0), that is currently at (X1, Y1) likely due to the fact that β is moving to (X0, Y0), 

integrates with the network using the same algorithm presented in Figure 7.5 with two 

changes. In the first step of the algorithm, b attaches its current location (X1, Y1) with the 

ANUM broadcast and in the third step, a neighbor a marks in its neighbor list entry that b 

can only send and receive its own traffic. A node in the invalid state can not integrate in 

the network until it gets an ANUM through the node-to-CA handshake algorithm, Section 

7.2.2.1. Finally, a node in the revoked state cannot get an ANUM nor can it integrate in 

any part of the network. 
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1. Node b sends a two-hop broadcast of its ANUM, ANUM Discover, 
seeking to discover neighboring nodes.

2. A neighbor a that receives the ANUM Discover, verifies the signature of 
the CA and if its expiry time is in the future. Recollect that the clocks of 
the different nodes are loosely synchronized.

3. Node a computes the distance to b, adds b to its first-hop or second-hop 
neighbor list based on the computed distance between the position in the 
ANUM and its own position. Then it stores  β’s location and the 
expiration time of its ANUM. 

4. Node a then sends its own ANUM to b. Along with this, node α sends its 
local blacklist to β authenticated using the shared key. 

5. Node b verifies the ANUM of node a using the signature of the CA and 
its expiry time,  updates its neighbor list to include  node α based on the 
computed distance between the position in the ANUM of a and its own  
position, and stores the blacklist of a. 

6. After b discovers its first-hop neighbors, it sends an authenticated one-
hop broadcast of its  blacklist to them.  This broadcast is authenticated 
individually using the shared key between b and each first-hop neighbor.

7. Each malicious node in the blacklist of b (similarly, α) that is directly 
detected by b (similarly, α)  serves as an alert of malicious detection to 
the first-hop neighbors of b (similarly, to b).  

8. When the ANUM of b expires, node a removes b from its neighbor list, 
and vice-versa. 

 
Figure 7.5: Node integration by β in valid state 

7.2.3. Connectivity Aided Protocol with Constant Velocity (CAP-CV) 

SMP suffers from two shortcomings. In network scenarios with a high number of 

concurrently moving nodes, a large fraction of the nodes is disallowed from forwarding 

packets, thereby disconnecting the network. A second problem is that SMP prevents a 

node which needs communication while moving, from doing so after the grace period. 

Therefore, we provide in this section a protocol called CAP-CV that preserves the same 

connectivity conditions of the mobile network and allows the moving nodes to travel any 

distance. However, CAP-CV requires the mobile nodes to declare to the CA the average 

velocity with which it will move to (X1, Y1).  

CAP-CV allows any moving node to vary its promised velocity (v), as long as the 

difference between the actual position and the expected position is less than a threshold 

value Dth. The value Dth should be high enough to account for the inaccuracy of location 

determination systems such as GPS. However, the tradeoff is that a high value of Dth 
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reduces the possibility of detecting a malicious node that intentionally lies about its 

physical location (for detection procedure see Section 7.2.4).  Alternately, the node may 

declare to the CA its entire trajectory from the source to the destination. The node to CA 

handshake that happens in CAP-CV is presented in  Figure 7.6 

1. Node b sends an ANUM Request to the CA with (X0, Y0), (X1, Y1), the 
start time of motion Tmove, and an anticipated velocity v. 

2. Identical to step 2 of the SMP node-to-CA handshake protocol.
3. If the checks in the previous step are negative, the CA sends a signed 

ANUM Reply to β that contains the identity of b, (X0, Y0), (X1, Y1), the 
moving start time Tmove, v, and the expiration time of the ANUM which 
is equal to the anticipated arrival time of b at (X1, Y1). This message 
is signed using the private key of the CA.

4. When b receives the ANUM Reply, it verifies its integrity. Then b
can use the ANUM to discover the neighbors and prove its existence 
while moving to (X1, Y1).

5. &  6. Identical to steps 5 & 6 of the SMP node-to-CA handshake 
algorithm of SMP, where the CA generates an ANUM Reject. 

 
 Figure 7.6: CAP-CV handshake between b and the CA  

The protocol to integrate node β at location (Xi, Yi) on the moving path is the same 

as the one described in Figure 7.1 of the SMP with two important changes. In step one, 

before b can broadcast its ANUM to discover the neighborhood, it checks whether the 

anticipated position (computed using velocity v) and its actual position are different by 

more than Dth. If it is, b  refrains from communication and does not proceed in the 

integration because it may be accused as malicious by some other nodes. Otherwise, b 

proceeds in the integration process. Also, in step three, when a node α determines β to be 

its neighbor, it assigns an expiry timer to β’s entry which depends on when the distance 

between them gets larger than twice the transmission range. This in turn depends the 

velocities of α and β, as given in their ANUMs. 

7.2.4. Two Specific Attacks 

False location information: MOBIWORP enables a new malicious behavior called 

location deviation in which a malicious node lies about its location by presenting a 

logical location that differs from its physical location. This kind of malicious behavior 

cannot help the malicious nodes to establish wormholes since our protocols for node 
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integration guarantee that any node can be integrated in the network with forwarding 

capability while in the valid state only. This can only happen at exactly one location at 

any time. However, this malicious activity can be detected without incurring any 

additional overhead. Recall that in node integration, Section 7.2.2.2, a node M broadcasts 

its ANUM two hops away and the ANUM carries the location of M. A node a  that 

receives the ANUM of M, computes the distance between itself and M. If the distance is 

greater than the transmission range by more than Dth, a concludes that M is malicious–

either transmitting at a higher transmission power or has a physical location different 

from its logical location.  

DoS against MOBIWORP: MOBIWORP is a self-healing protocol in that if an intermediate 

node tries to launch a denial of service attack by dropping ANUM packets, it can be 

detected by local monitoring since the traffic is part of control traffic. A node cannot 

exhaust resources of a neighbor by sending false ANUM broadcasts or ANUM Requests 

since they can be detected respectively by a neighbor and the CA. This reasoning relies 

on the assumption that the node cannot assume multiple identities, which is provided by 

any protocol that mitigates the Sybil attack [57].  

7.2.5. Isolating a Malicious Node 

When a node is determined to be malicious, it is important to take some action to 

neutralize the ability of the node to cause further damage. This aspect is not addressed by 

any of the previous work on wormhole detection except LITEWORP for static networks. 

The process of local revocation described in Section 2.2.1 is quick and lightweight, and 

has the desired effect of removing the potential for mischief of static malicious nodes. 

However, a mobile malicious node can move to a new location and perform some 

malicious activities before it is detected. Hence, MOBIWORP uses the CA’s capability to 

limit the potential for damage by a mobile adversary node. When a guard directly detects 

a malicious node, it sends an alert packet to inform the CA of the identity of the malicious 

node. The CA collects alerts for a node from all the guards that can detect the malicious 

behavior of the monitored node. When the number of alerts for a certain node exceeds a 

threshold, Mmax, the CA globally revokes the node by preventing it from getting any 
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ANUM in the future. This eventually results in isolating the malicious node from the 

whole network. The global isolation protocol is shown in Figure 7.7. 

1. When node a detects node M to be malicious through local 
monitoring, it sends an alert message to the CA with  the identity 
of node M signed using the shared symmetric key. 

2. When the CA receives the alert message from a, it updates the 
data structure described in Section 4.1 to reflect that node a has 
revoked node M, i.e., it sets the entry STglob [a,M].Sf to one. Node 
α can inform the CA of its MalC value for node M when the 
monitoring round of α for M ends. Node α piggybacks the counter 
values it has for its neighbors with its ANUM Request. The CA
performs aggregation of MalC(α, M) across monitoring rounds 
and if it determines M to be malicious, it sets the entry STglob
[α,M).Sf to one.

3. If  any counter value, say for node M, crosses the threshold
MalCth, the CA increments STglob[ N+1,M].Cntr by one. If 
STglob[N+1,M].Cntr exceeds Mmax, the CA globally revokes M by 
setting STglob[N+1,M].Sf to one. This means that node M can 
never receive a valid ANUM from the CA in the future. 

 
Figure 7.7: Global isolation algorithm 

7.3. Simulation Results 

In this section ns-2 simulation environment [89] is used to simulate a random any-

to-any data exchange protocol, in the baseline case without any protection and with 

MOBIWORP. We initially distribute a given number of nodes randomly over a square field 

of constant dimensions, 1500 m µ 1500 m. Thus the density increases with the number of 

nodes. The mobile nodes move according to the random waypoint model with velocity 

chosen from the uniform distribution (vmin, vmax).The CA is placed randomly at a certain 

location in the deployment field and it may be disconnected from some nodes at certain 

times during the network operation due to mobility.  

The simulation model uses a generic on-demand shortest path routing protocol 

that floods route requests and unicasts route replies in the reverse direction. A route, once 

established, is not used forever but is evicted from the cache after a timeout period 

expires (TOutRoute). A wormhole is established through an out-of-band channel simulated 

by allowing the malicious nodes to exchange control packets among themselves 

instantaneously. After a wormhole is established, the malicious nodes at each end of the 

wormhole drop all the packets forwarded to them. Each node acts as a data source and 
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generates data using an exponential random distribution with inter-arrival rate of m. The 

destination is chosen at random and is changed using an exponential random distribution 

with rate x. The input parameters with the experimental values are given in Table 7.1. As 

in the protocol description, m is the number of malicious nodes, Mmax the maximum 

number of malicious nodes in the network, γ the detection confidence, and N the total 

number of nodes. The simulation accounts for losses due to natural collisions, 

unreachable destinations, and route breaks due to mobility. The output parameters that we 

present here are obtained by averaging over 30 runs. For each run, the malicious nodes 

are chosen randomly, introduced at a random time from the start of the simulation picked 

from a uniform random distribution (0s, 100s). The total simulation time is 1500s and 

unless otherwise specified, each output parameter is measured at the end of the 

simulation time. 

Table 7.1: Simulation’s input parameter values  

Parameter Value Parameter Value 
Tx Range (r) 250 m TOutRoute 50  s 
Avg. # of neighbors 4-9 # of nodes (N) 50-100 
Channel BW 2Mbps m 0.2 s 
(vmin,vmax) (10,30) x 0.02 s 

7.3.1. Temporal Behavior of Drop Ratio 

In this experiment, we calculate the percentage of data packets dropped with 

simulation time for both the baseline and the MOBIWORP case. The drop ratio is 

calculated as (# data packets received at the destination−# data packets sent from the 

source)/# data packets sent from the source. From Figure 7.8, it is seen that the drop ratio 

is lower with MOBIWORP and that the values tend to zero with increasing time, while 

with the baseline a steady state is reached and the percentage stabilizes. With MOBIWORP 

the malicious nodes are identified and isolated, however, some cached routes through 

these malicious nodes continue to be used and hence the percentage of dropped packets 

does not immediately go to zero on isolation of all wormhole nodes. The higher the 

number of nodes, the smaller is the fraction of malicious nodes and therefore the lower 

the percentage of dropped packets.  
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Figure 7.8: % data drop ratio (g=Mmax=3, m=4) 

Figure 7.9 compares the percentage of drop ratio as a function of time for two 

different values of g. The results show the same trend as in Figure 7.8, with drop ratio 

increasing slightly for γ=∞. This indicates that for the particular network density, all the 

guards see nearly the same view of the monitored node and therefore, the difference in 

time between a guard detecting the event itself and being told by other guards is small. 

Importantly, the benefit of eliminating all framing (γ=∞) comes at a relatively low cost of 

increase in drop ratio. 

0

5

10

15

20

0 200 400 600 800 1000 1200 1400
Simulation Time (seconds)

%
 D

ro
p 

R
at

io

GAMMA=Infinity
GAMMA=2

 
Figure 7.9: : % data drop ratio (Mmax=3, m=4) 

7.3.2. Effect of Detection Confidence Index (g) on Local Properties 

In this experiment the detection confidence (g) is varied. The percentage of local 

isolation is defined as the number of malicious nodes locally isolated to the total number 
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of malicious nodes, while percentage of local false isolation is defined as the number of 

nodes falsely isolated locally by the total number of good nodes. False detection happens 

when a good node is mistakenly flagged as malicious due to natural collisions, Section 

4.3.1. 

Figure 7.10 shows that with increasing γ, the percentage of local isolation 

becomes lower since it becomes more difficult to get agreement on malicious behavior 

from at least γ guards. However, the percentage of local false isolation also decreases 

since it becomes less likely that γ nodes will incorrectly assume malicious behavior due 

to collisions. 
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Figure 7.10: Local & false isolation (m=4, N=60) 

Figure 7.11 shows the local isolation time, which is the time interval between 

when a malicious node starts attack at a neighborhood to when it is locally revoked by all 

its first-hop neighbors. Expectedly, with increasing γ, the isolation time increases because 

it takes longer to get an agreement of  g  the guard nodes. 
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Figure 7.11: Isolation time (m=4, N=60,Mmax=15) 

7.3.3. Effect of g and Mmax on Global Properties 

In this experiment we evaluate the effect of changing g and Mmax on the global 

isolation coverage and global isolation time. For a fixed high value of Mmax (25% of N), 

the global isolation (Figure 7.12) is very low for low values of g. This is because only the 

guards that directly detect the malicious node report to the CA. With a low γ, most nodes  

take the opinion of the few who have detected the malicious node through their own 

observation. Thus, the contribution of each neighborhood in the global isolation is small 

and the malicious node has to move and be detected at many neighborhoods before being 

globally isolated. As g increases the global isolation percentage increases since fewer 

neighborhoods are enough to reach Mmax.  The global false isolation is always zero since 

it is highly unlikely that greater than Mmax nodes mistakenly accuse a good node due to 

natural collisions. 
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Figure 7.12: Global isolation and false isolation (m=4, N=60,Mmax=15) 

Figure 7.11 above shows that the global isolation latency decreases with 

increasing γ. Even though the local isolation latency increases as g increases, the global 

latency decreases due to more number of alerts from each neighborhood and the latter 

effect dominates. 

Figure 7.13 shows the trend of global isolation coverage as Mmax increases with 

infinite g. As Mmax increases, it becomes harder to get an agreement from Mmax guards 

about any node which decreases the global isolation and the global false isolation. The 

figure also shows that the global parameters are insensitive to network density as the 

results for the 60-node and the 100-node network are close. 
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Figure 7.13: Global isolation & false isolation against Mmax (m=4,g=∞) 
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7.3.4. Scalability of MOBIWORP 

In this set of experiments we bring out the scalability of MOBIWORP with 

increasing number of nodes. As the number of nodes increases, the density in the network 

increases leading to increased collisions and thus increasing false isolation (for the same 

value of g and Mmax, the global and local parameters are almost the same), Figure 7.14. 

The percentage of isolation, however, increases due to an increase in the number of guard 

nodes. The increase in isolation percentage is not high since the minimum neighbor 

density is greater than g, therefore, there is always sufficient number of guards (in 

average) in all scenarios. However, if we continue increasing N, we expect the isolation 

probability to eventually decrease due to collisions. 
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Figure 7.14: Scalability of MOBIWORP (g=Mmax=3, m=4) 

7.3.5. Effect of Variation of the Number of Malicious Nodes 

In this set of experiments we bring out the effect of changing the number of 

malicious nodes on the baseline and the MOBIWORP cases. Figure 7.15 shows that the 

percentage of isolation increases with increasing the number of nodes reaffirming the 

conclusions from Figure 7.14. The isolation percentage is high even with 6 malicious 

nodes in the network with perfect capability for collusion, 90% for 80 nodes. The figure 

also shows relatively constant trend with the number of malicious nodes due to the 

uniform distribution of the malicious nodes in the simulation. 
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Figure 7.15: % Isolation of MOBIWORP (g=Mmax=3) 

The trend in false isolation is found to be almost constant with m (figure not 

shown), which is a desirable trend. The trend of isolation time with the number of 

malicious nodes (figure not shown) is relatively constant since the malicious nodes are 

likely far apart in the network and the isolation process for the multiple nodes is 

independent. 

7.3.6. Effect of Motion 

The duty cycle of motion is defined as the ratio between the time a node spends 

moving to the total simulation time and is varied by varying the pause time. From Figure 

7.16, it is seen that the percentage of isolation decreases with the increase in the 

frequency of motion. When a node moves frequently, it often moves before Twin, i.e. the 

MalC value at a guard is not checked. The CA does not aggregate across different guards, 

i.e. guards at the old location and those at the new location if there is no overlap between 

them. This causes the isolation coverage to decrease as well as the drop ratio to increase.  

The percentage of false isolation also decreases because MalCth is not crossed by the time 

the node moves. In Figure 7.17, the decrease in the drop ratio in the baseline case is due 

to the fact that frequent motion causes the wormhole routes to get broken. 
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Figure 7.16: % Isolation (γ=Mmax=3, m=4, N=60) 
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Figure 7.17: Performance of baseline & MOBIWORP (γ=Mmax=3,m=4,N=60) 

7.4. MOBIWORP Analysis 

In this section we analysis the ANUM communication overhead, the resource 

consumption overhead, the detection latency, and the possibility of framing in 

MOBIWORP. The analysis shows that MOBIWORP can operate in resource constrained 

settings. Also, the analysis of the probability of a good node being framed locally can be 

set to zero by setting γ to infinity, and the possibility of a good node being framed 

globally can be set close to zero by increasing the value of Mmax. 
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7.4.1. Overhead of ANUM Broadcast  

Here we derive an upper bound on the number of ANUM broadcasts if a node (a) 

needs continuous communication while it is moving from its current location P0 to a new 

location P1 using SMP protocol. Assume that the traveled distance is X and one node is 

enough for a to be connected to the network. Assuming the nodes that are static while a 

is moving, are uniformly distributed with density d. 

Consider Figure 7.18, the shaded area, Area(X), represents the area of common 

neighbors of a at P0 and P1. If the number of neighbors in Area(X) is greater than zero, 

then a does not need to rebroadcast the ANUM at P1.  We need to calculate the value of 

the maximum traveled distance X (call it x), such that the probability that there is at least 

one node in Area(X) is greater than some threshold Rth. Due to our assumption of uniform 

distribution of nodes in the sensor field, the number of nodes in the shaded area follows a 

Poisson distribution with rate Area(X).d, where  
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Figure 7.18: A node travels from P0 to P1 

The number of neighbors of a node is 2
BN r dπ= ⋅ . Therefore, a needs to 

rebroadcast its ANUM every R/x distance, where x is the maximum value of X that 

satisfies the following inequality, 

 ( ) 11 ( ) ln(1 )Area X d
th the R Area X R

d
− ⋅− ≥ ⇒ ≤ − −  (7.2) 

The upper bound on the traveled distance (x0) as a function of the number of 

neighbors (NB) is shown in Figure 7.19. The figure shows that the maximum distance 
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before a required ANUM broadcast, to maintain connectivity using SMP while moving, 

increases with the network density but the increase slows down. It shows that with 

densities of 20 neighbors and above, the traveled distance is more than the transmission 

range. 

 
Figure 7.19: Traveled distance upper bound before ANUM broadcast in SMP 

7.4.2. Latency Analysis of MOBIWORP 

The latency analysis of MOBIWORP is the same as that of LITEWORP. Please refer 

to Section 4.3.3. 

7.4.3. Possibility of Framing 

The analysis of a node being framed in MOBIWORP is the same as that of 

LITEWORP. Please refer to Section 4.3.2. 

7.4.4. Overhead Analysis of MOBIWORP 

In this subsection, we analyze the memory, the computation, and the bandwidth 

overhead of MOBIWORP in order to estimate the resource needs it puts on the mobile 

network. This can lead to the determination of the suitability of the protocol to resource 

constrained networks, such as sensor networks. An important metric to analyze is the 
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coverage–probability of isolation and probability of false isolation. Since the basic 

detection mechanism in MOBIWORP is identical to that in LITEWORP, the overhead for 

static node follows the one in Section 4.3.4 and is not repeated here. 

Memory overhead: Every node in the network needs to store the first and the second 

hop neighbor list, the watch buffer, the alert buffer, and the black list. If the identity of a 

node in the network is 2 Bytes, the size of neighbor list is NBL = p (2r)2 d entries, where r 

is the communication range and d is the average node density. Each entry in the NBL 

requires 9 Bytes; 2 for identity of the neighbor, 1 for the MalC associated with that 

neighbor, 4 for the x-y coordinate of the neighbor, and 2 for the expiration time of the 

entry. So the total NBL storage, NBLS = 9p (2r)2 d. For example, for an average of 10 

neighbors per node, NBL is 40 and NBLS is less than half a kilobyte. The alert buffer has at 

most g number of 2 byte entries.  

Recall that the number of nodes involved in monitoring a route reply 

is 22 ( 1)REPN r h d= +  (Section 4.3.4). Thus, given N as the total number of nodes in the 

network, each node is involved in watching ( / )REPN N f  route replies per unit time. If the 

time delay for packet forwarding is TFWRD, using Little’s law the length of the watch 

buffer LW = TFWRD(NREP/N)f . TFWRD depends on the processing time at the intermediate 

node and the MAC-layer contention delay. The processing time is negligible for route 

reply forwarding since replies are not hop-by-hop authenticated and negligible processing 

is required at an intermediate node. The MAC-layer delay for the binary exponential 

backoff for light to moderate loads has the mean TMAC = Gn2 ([152]-[154]), where G is 

the proportionality constant that depends on the network load, and n  is the number of 

nodes contending for transmission which is equal to the number of first hop neighbors (p 

r2 d) here. According to [152][153], G=0.01. Therefore, LW = G n2(NREP/N)f. Each entry 

in the watch buffer consists of 10 bytes combined for the identity of the source, the 

destination, the intermediate source, the intermediate destination, and the packet 

sequence number. For example, if N = 100 nodes, h = 4 hops, and f = 100 routes every 

one time unit, then NREP = 17, and each node watches only 17 route replies every one 

time unit. Therefore, LW = 0.01 × 100 ×17 = 17 entries, and the total size is 170 bytes. 
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Each entry in the black list consists of 2 Bytes and the size of the list depends on 

the number of malicious nodes that has been detected. The maximum size of the buffer 

equals Mmax + the number of nodes that could be falsely isolated. 

Computation overhead: The main computational overhead is in computing the signature 

over the ANUM by the CA and verifying the signature by the rest of the nodes. If RSA is 

used for ANUM signing, then the cost of generating a b-bit signature is O(b3) and the 

cost of verifying the signature is O(b2). The signature generation is only done by the CA 

when the node moves. The signature verification is done during the neighbor discovery 

by the moving node and its first-hop and second-hop neighbors. Also during the neighbor 

discovery a node has to compute the distance to the neighbor using the position 

information, which is a simple constant time operation. The other part of computation 

overhead is in maintaining the neighbor list and the watch buffers by inserting, deleting 

and searching the buffers. These buffers, as we saw in the storage overhead computation, 

are relatively small data structures, so if we use single link list implementation, then 

insertion can be done in constant time at the head of the list, and deleting an old entry 

involves searching and manipulation of two pointers. The searching overhead is linear in 

the size of the buffer. 

Bandwidth overhead: The bandwidth overhead is incurred by three sources. The first is 

the ANUM handshake with the CA, which consists of an ANUM-Request by the node 

and an ANUM-Reply or Reject by the CA. This is incurred only once every time a node 

moves. Second, the neighbor discovery in which the moving node sends a two-hop 

broadcast of its ANUM and receive a one-hop unicast from its first-hop neighbors and a 

two-hop unicast from its second-hop neighbors. Thus the total number of one-hop 

ANUM transmissions is (1+p r2 d ) for broadcasting (one by the original source and the 

remaining by the first hop neighbors) and (p (2r)2 d)  for unicasting by each node within 

the two-hop transmission radius. The last ingredient in the communication overhead 

comes from the alert propagation by a guard node upon detection of a malicious node. 

The guard sends an alert message to the CA through multihop routes, broadcasts one-hop 

alert to inform the common neighbors of the guard and the malicious node, and several 

two-hop unicasts to inform the nodes that are first-hop neighbors to the malicious node 
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and second-hop neighbors of the guard. This overhead is incurred only upon malicious 

node detection and can thus be considered negligible when amortized over extended 

periods of failure free operation. 
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8. RELATED WORK 

8.1. Key Management 

It is a well accepted fact that asymmetric key cryptography is not well suited to 

sensor networks because of high computational expense. Hence, asymmetric key 

algorithms for key management in sensor networks ([2],[3],[27] for survey) look 

infeasible except under energy rich environments. Symmetric key techniques appear 

better suited for sensor networks. Different flavors of symmetric key techniques have 

been used. Some of these flavors either rely on a common shared secret key between all 

the nodes leading to a relatively insecure deployment, or have a separate shared key 

between each pair leading to a large amount of key storage for the large-scale sensor 

networks we are targeting. Examples of these protocols are the pre-deployed keying with 

variations of group-wise pre-deployed keying, secret sharing pre-deployed keying, and k-

Secure t-limited group-wise pre-deployed keying [4],[5],[9],[11]. The requirement of 

keeping radio communication minimal makes many of the proposed purely symmetric 

algorithms impractical since they add a fixed size overhead number of bytes to a small 

payload packet [6],[8]. 

Many key management protocols for sensor networks fall in the category of key 

pre-distribution [1],[9],[13],[15],[16],[63][18],[19],[20],[24],[25],[64], [65]. Eschenauer 

and Gligor [9] present a key management scheme for sensor networks based on 

probabilistic key pre-deployment. They use a large pool of keys from which they select m 

keys at random, which are loaded into each sensor node before deployment. In order to 

communicate, any two nodes either use a common key they share. If such a common key 

does not exist, a series of intermediate nodes, which pair-wise have a common key, are 

used to exchange a key securely. However, compromising any node reveals all the keys 

in the node. This may compromise communication between other nodes that may use a 
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shared key, which happened to be within the keys of the compromised node. 

Furthermore, the key establishment process is open to compromise since the identifiers 

are broadcast to a receiver set that has not yet been authenticated. Chan et al. [1] extend 

this scheme by requiring more than one key to be shared between any two nodes to 

establish a secure communication. They also use partial key exchanges on multiple paths 

to ensure security from some nodes on the path being compromised. Its major drawback 

is that it adds substantial overhead in finding multiple disjoint paths and a larger fraction 

of nodes than [1] may not be able to establish secure sessions with each other. Zhu et al. 

[24] present an approach for establishing a pair-wise key that is exclusively known to a 

pair of nodes with overwhelming probability, based on the combination of probabilistic 

key sharing and threshold secret sharing. 

In [13], Blom proposes a key pre-distribution scheme that allows any pair of 

nodes to find a secret pair-wise key between them. Compared to the (N-1) pair-wise key 

pre-distribution scheme, Blom’s scheme only uses d+1 memory spaces with d much 

smaller than N. The tradeoff is that, unlike the (N-1) pair-wise key scheme, Blom’s 

scheme is not perfectly resilient against node capture. On one hand if (d+1) nodes are 

compromised all pair-wise keys of the entire network are compromised. On the other 

hand, as d increases, the computational and storage overhead increase, which make the 

scheme unscalable. Du et al. [64] extend the work done by Blom in a manner motivated 

by the proposed q-composite extension [1] of the random key pre-distribution scheme 

[9]. In [64] the scheme uses multiple key spaces (numbering τ) and generates with a high 

probability a common pair-wise key between any two nodes. This enables them to 

increase the network’s resilience to node capture without increasing the memory 

requirements compared to [13]. While the scheme enhances the resilience of the network 

against compromised nodes, the resource requirements are still nontrivial. Each node 

needs to store τ(d+1) entries each equal to the key length. For each communication, a 

node needs to generate two vectors each of size d+1, one for the source and the other for 

the destination and perform a dot product of the two vectors. Furthermore, the key 

agreement between two nodes that don’t share a common space is done through other 
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nodes, which expose it to disclosure if any one of the nodes involved in the key exchange 

is compromised.   

In [15], for each sensor i, the setup server computes a polynomial share of a 

bivariate t-degree symmetric polynomial f(x, y) computed for node i and hands it to the 

node. Thus node i is loaded with f(i, y). For any two sensor nodes i and j, node i can 

compute the polynomial f(i, j) by evaluating f(i, y) at point j. Likewise, node j can 

compute f(j,i), which is identical to f(i,j) by choice of the polynomial. This serves as the 

common key between i and j. Again [65]extends this work in a manner motivated by the 

proposed q-composite extension [1] of the random key pre-distribution scheme [9]. In a 

following paper [18], the authors integrate location-based knowledge to provide higher 

probability to establish pair-wise keys between neighbor sensors, better resistance against 

node captures, and better scalability. 

Pietro et al. [19] present an incremental update to random key pre-deployment by 

considering pseudo-random key deployment based on previous work [16]. This method 

enhances the channel establishment procedure but adds to the storage requirement at each 

sensor. These kinds of protocols are infeasible in situations where a node may 

communicate with any other node in the network. This is because each time a new 

destination is considered; the entire key establishment procedure has to be initialized 

unless there is a large memory to store, in addition to the initial keys and their indices, the 

transformed keys with all possible destinations. 

Du et al. [25] present a scheme to use pre-deployment knowledge to improve network 

connectivity in terms of secure links and resilience against node capture. It was presented to 

improve the memory requirement compared to [9], but this improvement can benefit any of 

the key pre-distribution schemes.  

We note that all the key pre-distribution schemes provide either no security or 

probabilistic security against compromised nodes. Probabilistic security assumes 

thresholds for the number of compromised nodes, beyond which the entire network 

becomes exposed. The threshold may be exceeded in the event of a localized security 

breach that affects all the nodes in a geographical region. Our approach, in contrast, 
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provides deterministic security. Compromising any number of nodes is incapable of 

exposing the communication channel between two uncompromised nodes.  

The second flavor of key management protocols is the Kerberos-like protocols 

[63],[11],[21]. Node clustering technique has been used in different areas in sensor 

networks. Secure data aggregation [21], self-assembling deployment and configuration of 

large number of nodes [36], energy saving for data aggregation [37], power optimal 

routing [38], control and management of routing protocols [39], and energy and 

communication cost optimization [40] present examples of these areas. However, the idea 

of using clusters of nodes for key management is first suggested by the work on secure 

Pebble-nets [11]. The authors propose using a single key called the group key for group 

membership and authentication, and another globally shared key called the Traffic 

Encryption Key (TEK) to secure channel communication. A subset of nodes called the 

backbone nodes has the responsibility of generating and distributing the TEK. The main 

disadvantage of this work is that it is totally insecure; the compromise of even a single 

node renders the entire scheme vulnerable. Perrig et al. [63] present SPINS, which is 

based on a master secret key shared between each node and the base station and hash 

functions to calculate session and MAC keys. To establish a secure channel between any 

two nodes in the network, a shared session key is obtained from the base station. SPINS 

guarantees data confidentiality, two-party data authentication, and data freshness as long 

as the base station is not compromised. SPINS uses multiple specialized higher cost base 

stations with large energy, memory and communication resources to create a tree in the 

network. Since these base stations are fixed, they are potential targets for security attacks. 

Compromising, destroying, or jamming a base station used in SPINS renders it 

impossible to create new secure sessions in the whole section controlled by that base 

station. Also, if the base station is compromised, the confidentiality of the 

communication of any node in its group can be destroyed. Since a potentially far-away 

base station acts as the intermediary for key management, key management in SPINS can 

be energy inefficient and can lead to high end-to-end delay. Also SPINS does not take 

into account the possibility of disclosure of the master key by compromising the sensor 

node. This will result in disclosing all the old communications with this node, if an 
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adversary buffers these communications. It is assumed that session and MAC keys are 

valid throughout the life time of the sensor node, which results in weak security for 

networks that have a long life time. Since all the node-to-node key agreement is 

established through the base station, it may result in flooding the base station and 

exhausting the energy of sensor nodes in the routing path. 

Deng et al. [21] proposes a protocol for secure data aggregation with base station, 

sensing node, and aggregators, which act as collectors of data. It establishes mutual trust 

between a sensor and its assigned aggregator using shared keys. The trust model is used 

by the sensors to verify the commands of the aggregators and by the aggregators to verify 

the integrity of the data sent by the sensors. The protocol enables secure communication 

to and from aggregators but does not solve the general case of secure any-to-any 

communication between any two nodes.  

In general, the proposed Kerberos-like protocols suffer from one or more of the 

following problems: lack of scalability, high energy over head, high end-to-end delay, 

and vulnerability to denial of service or compromise targeted at the specialized key 

management nodes. 

There is a large volume of work on secure broadcast or multicast in wireless, and 

specifically, sensor networks [7],[10],[17],[22]. The problem addressed there is distinct 

from our problem definition since they target the secure one-to-many and one-to-all 

problems, while our focus is one-to-one communication. [26], [27], [28], [29], [30], and 

[31] present examples of foundational key management protocols that are indirectly 

related to the key management protocols in sensor networks, presented here for further 

reading. 

8.2. Wormhole Attack  

The wormhole attack in wireless networks was independently introduced by Hu et 

al. [53], Dahill et al. [74], and Papadimitratos et al. [79]. Initial proposals to thwart 

wormhole attacks suggest using secure modulation of bits over the wireless channel that 

can be demodulated only by authorized nodes. This only defends against outside 

attackers who do not possess cryptographic keys. A similar approach called RF 

watermarking [90] modulates the radio waveform in a specific pattern and any change to 
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the pattern is used as the trigger for detection. This mechanism will fail to prevent a 

wormhole if the waveform is accurately captured at the receiving end of the wormhole 

and exactly replicated at the transmitting end. 

Hu et al. [53] introduce the concept of geographical and temporal packet leashes 

for detecting wormholes. They define a leash to be any added information to the packet 

for the purpose of defending against the wormhole. The geographical leashes ensure that 

the recipient of the packet is within a certain distance from the sender. They require each 

node to know its own location, and require all the nodes to have loosely synchronized 

clocks. When sending a packet, the sending node includes in the packet an authenticated 

version of its own location and the time at which it sent the packet. The receiving node 

uses these values, in addition to its own location and the time at which it receives the 

packet, to compute an upper bound on the distance to the sender. The temporal leashes 

ensure that the packet has an upper bound on its lifetime, which restricts the maximum 

travel distance. They require that all nodes have tightly synchronized clocks. The sender 

includes in each packet an authenticated version of the time of sending. The receiver 

compares this value to the time at which it received the packet. Based on the time delay 

and the speed of light, the receiver can determine if the packet has traveled too far. An 

implicit assumption is that packet processing, sending, and receiving delays are 

negligible. Both geographical and temporal leashes need to add authentication data to 

each packet to protect the leash, which add processing and communication overhead. In 

addition, a large amount of storage is needed at each node since a hash tree based 

authentication scheme (Merkle hash trees) is used [91]. If only loose time 

synchronization is possible, the smallest packet size that can be authenticated becomes 

large (e.g., 4900 bytes with 1 s synchronization). Perhaps, more importantly, packet 

leashes do not nullify the capacity of the compromised nodes from launching attacks in 

the future since they do not isolate detected malicious nodes.  

Capkun et al. [75] present SECTOR, a set of mechanisms for the secure 

verification of the time of encounters between nodes in multi-hop wireless networks. 

They show how to detect wormhole attacks without requiring any clock synchronization 

through the use of MAD (Mutual Authentication with Distance-Bounding). Each node u 
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estimates the distance to another node v by sending it a one bit challenge, which node v 

responds to instantaneously. Using the time of flight, node u detects if node v is a 

neighbor or not. The approach uses special hardware for the challenge request-response 

and accurate time measurements. Again, this approach does not nullify the capacity of the 

compromised nodes from launching attacks in the future. 

Hu and Evans [50] use directional antennas [92],[93] to prevent the wormhole 

attack. To thwart the wormhole, each node shares a secret key with every other node and 

maintains an updated list of its neighbors. Neighbor lists are built in a secure manner by 

using the direction in which a signal is heard from a neighbor with the assumption that 

the antennas on all the nodes are aligned. To discover its neighbors, a node, called the 

announcer, uses its directional antenna to broadcast a HELLO message in every direction. 

Each node that hears the HELLO message sends its identity and an encrypted message, 

containing the identity of the announcer and a random challenge nonce, back to the 

announcer.  Before the announcer adds the responder to its neighbor list, it verifies the 

authenticity of the message using the shared key, and that it heard the message in the 

opposite directional antenna to that reported by the neighbor. This approach is suitable 

for secure dynamic neighbor detection. However, it only partially mitigates the wormhole 

problem. Specifically, it only prevents the kind of wormhole attacks in which malicious 

nodes try to deceive two nodes into believing that they are neighbors. This is only one of 

the five wormhole attack modes that we describe in Section 4.1. The requirement of 

directional antennas on all nodes may be infeasible for some deployments. Finally, the 

protocol may degrade the connectivity of the network by rejecting legitimate neighbors in 

their conservative approach to prevent wormholes from materializing.  

Wang et al. [98] present a method for graphically visualizing the occurrence of 

wormholes in static sensor networks by reconstructing the lay-out of the sensors using 

multi-dimensional scaling. However, their approach is centralized and only detects the 

existence of wormholes but does not isolate malicious nodes involved in the attack. Lazos 

et al. [95] propose a technique for neighbor discovery that prevents external nodes from 

forming wormholes by using the references to trusted specialized guards (the guards are 
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trusted, higher range, know their locations) and it prevents local nodes from forming the 

wormhole attack using a global preloaded key in the sensors.  

Awerbuch et al. [94] present a protocol called ODSBR that does not prevent the 

wormhole from happening but tries to mitigate its consequences through discovery and 

avoidance. The technique suffers from the drawback that every single packet needs to be 

acknowledged by the destination and many packets could be lost before the wormhole is 

discovered. 

8.3. Secure Neighbor Discovery 

A fundamental building block for detecting control and data traffic attacks in 

WAHAS networks using local monitoring is a protocol for secure neighbor discovery. 

Neighbor discovery can be looked upon as a subset of the problem of location 

determination under the condition that the location of a node can be determined by other 

nodes. Several physical properties of the received signal are used for one hop location 

estimation–signal strength, time of flight, and angle of arrival [142]. The time of flight 

approach is similar to the temporal leash [53] and suffers from the same drawbacks. 

Typically the location determination protocols have an explicit localization phase when 

beacon messages are exchanged after which each node determines its relative location 

with respect to its neighbors. However, this is not secure since a powerful adversary can 

increase its transmission power for just this phase. The plethora of existing protocols for 

a node to determine its own location (e.g. [143]-[145]), sometimes in the presence of 

malicious beacon nodes [110], are asymmetric to the secure neighbor discovery problem 

where the determination has to be done securely by the neighbors of a node which is 

better called neighbor verification. 

There are few solutions proposed in the literature for secure neighbor verification. 

The approach by Evans [51] uses directional antennas on each node with precise 

alignment of the nodes. The approach by Perrig [52] is presented in the context of 

designing a route discovery component that is secure to the rushing attack. The approach 

relies on the time of flight and thus assumes very accurate time measurement and 

disregards all sources of delay other than the propagation delay. The MAC delay in 

networks of even moderate density can make this assumption dubious. Many schemes 
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use beacons sent by powerful nodes to enable location determination by other nodes. 

Sastry et al. [151] tackle the problem of a node securely verifying the location of possibly 

malicious beacon nodes that send spurious information about their own location. This 

problem definition is similar to my definition of secure neighbor discovery for local 

monitoring, except that we need to verify the location of any arbitrary node in a fast, 

cheap, and energy-efficient way. Their approach uses a very fast (e.g., radio frequency) 

and a relatively slow (e.g., ultrasound) signal to derive distance from the time delay. 

While this kind of capability can be mounted on a limited set of beacon nodes, it is 

infeasible to do this on all the nodes in the network. 

8.4. Multi-hop Wireless Data and Control Traffic Security Mechanisms 

In the last few years, researchers have been actively exploring many mechanisms 

to ensure the security of control and data traffic in wireless networks. The set of 

mechanisms presented in the previous section (Section 8.2) is applicable only to one 

control attack, namely, the wormhole attack. In general, the security mechanisms of 

control and data traffic attacks in multi-hop wireless networks can be broadly categorized 

into the following classes–(i) cryptographic building blocks used as support for key 

management, authentication and integrity services, (ii) protocols that rely on path 

diversity, (iii) protocols that overhear neighbor communication, (iv) protocols that use 

specialized hardware, (v) and protocols that require explicit acknowledgements. The 

cryptographic primitives are also used as building blocks for protocols of the other 

classes.  

In the context of ad-hoc networks, HMAC and digital signatures [12] have been 

used to provide end-to-end authentication of the routing traffic [79],[79]. Intermediate 

node authentication of the source traffic has been achieved via broadcast authentication 

techniques using digital signatures [74], hash trees [77], or m-TESLA [78]. One-way key 

chains and Merkle hash trees were also used as a defense against Sybil attacks [108]. 

These protocols are restrictive and only capable of providing basic security guarantees, 

namely confidentiality and authenticity of the control and data traffic, or address only a 

specific attack such as Sybil. In addition, these protocols are not appropriate for 

especially resource-constrained multi-hop wireless networks such as sensor networks. 



 186

The public key cryptography is beyond the capabilities of sensor nodes and the 

symmetric key based protocols used in [74], [77], [78], and [108]  are too expensive in 

terms of node state and communication overhead. A specific solution for the wormhole 

attack proposed in [95] uses keys known in a local region to prevent a message replayed 

by a malicious node from being decrypted at a distance. The solution uses specialized 

trusted nodes which cannot be affected by any wormhole. 

The path diversity techniques increase route robustness by first discovering multi-

path routes [56], [74], [94], [105] and then using these paths to provide redundancy in the 

data transmission between a source and a destination [104] The data is encoded and 

divided into multiple shares sent to the destination via different routes. The method is 

effective in well-connected networks, but does not provide enough path diversity in 

sparse networks. Moreover, many of these schemes are expensive for sensor networks 

due to the data redundancy and are vulnerable to route discovery attacks, such as the 

Sybil attack, that prevent the discovery of non-adversarial paths.  

Mechanisms to overhear neighbor communication in a wireless channel have been 

used to minimize the effect of misbehaving nodes [56],[60],[59]-[62]. One example is the 

watchdog scheme [60], where the sender of a packet watches the behavior of the next-

hop node for that packet. If the next-hop node drops or tampers with the packet, the 

sender announces it as malicious to the rest of the network. The scheme is vulnerable to 

framing, does not work correctly when malicious nodes collude, and can have a high 

error-rate due to collisions in the wireless channel. Neighbor watch has also been used to 

build trust relationships among nodes in the network [59],[61], to build cooperative 

intrusion detection systems [62] or to discover multiple node-disjoint routes [56]. 

However, all these protocols use communication overhearing as an existing service 

without studying its feasibility, requirements, limitations, or performance in the resource-

constrained networks such as sensor networks. 

Examples of protection mechanisms that require specialized hardware are [51], 

[53], [109], [110]. The first scheme uses directional antennas while the second, called 

packet leashes, uses either tight time-synchronization or location awareness through GPS 

hardware to detect wormhole attacks.  The work in [109] relies on hardware threshold 
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signature implementations to prevent one node from propagating errors or attacks in the 

whole network. In [110], the protocol uses locators with high powered directional 

antennas that broadcast beacons which are used by sensors to localize themselves. 

Another technique proposed to detect malicious behavior that results in 

degradation of delivery ratio due to selective dropping of data, relies on explicit 

acknowledgement for received data using the same channel [94] , or out-of-band channel 

[111]. This method incurs high communication overhead which may be unsuitable for 

highly resource-constrained networks such as sensor networks and it has to be augmented 

by other techniques for diagnosis and isolation of the malicious nodes. A natural 

extension would be to reduce the control message overhead by reducing the frequency of 

ack-ing to one in every N data messages (in the above papers N=1). However, this is the 

subject of ongoing work and the challenge is to make the adversary detection be fast and 

occur before significant damage results. 

Few of the protocols mentioned discuss the method for removing the malicious 

nodes from causing further damage in the network and even fewer provide a quantitative 

analysis of the detection coverage, which may be affected due to a faulty detector or 

environmental conditions.  

8.5. Sleep/Wake Mechanisms 

Node sleeping is an important mechanism to prolong the life time of sensor 

networks. This topic has been discussed extensively in the literature and many protocols 

have been proposed for various types of applications such as object tracking [115], [116]. 

It has been realized that under current hardware designs, the maximum energy savings 

can be achieved through putting nodes to sleep—three orders of magnitude less current 

draw than in an idle node for the popular Mica mote platform for sensor nodes.  

Primarily three different mechanisms are used to put nodes to sleep. The first is 

called synchronized wakeup-sleep scheduling in which the nodes in the network are put 

to sleep and woken up at the same time in a centralized (e.g., [132], [133]) or a 

distributed manner (e.g.[70], [129]-[131]). A disadvantage of such protocols is that the 

duty cycle is application dependent and not known a priori. Most importantly, they 

require the network to have an accurate time synchronization service. Furthermore, in 
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scenarios with rare event detection, no event happens and the nodes enter sleep mode 

again in most of the wakeup periods. This means that nodes wake up too often resulting 

in wastage of energy. The second mechanism is based on selecting a subset of nodes to 

be woken up to maintain some properties in the network, such as sensing coverage (e.g., 

[118]-[124]), network connectivity (e.g., [58], [70], [102], [125], [126]), or both coverage 

and connectivity (e.g. [127]). The third mechanism is based on on-demand sleep-wake 

protocols. These protocols use either special purpose low-power wake-up antennas (e.g., 

[68], [134]-[136]) or passive wake-up antennas [137]. These antennas are responsible for 

receiving an appropriate beacon from a neighbor node and waking up the node for its full 

operation. Thus, for environments where events of interest are relatively rare, the time for 

the low power operation with the wake-up antennas being on, dominates. Further details 

about the operation of the antennas are mentioned in Section 6.1.4 where SLAM uses 

these antennas for waking up guard nodes. 

Many sensor applications require security and reliability; therefore, researchers 

consider designing dependable sensor networks that behave reliably and securely. 

Neighbor monitoring (Chapter 2) is a well-known technique that is used for securing 

sensor network protocols. However, to the best of my knowledge none of the local 

monitoring protocols consider operating in a network where nodes may need to be put to 

sleep for energy conservation. Therefore, we are the first to address this issue. 
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9. CONCLUSION 

In this thesis, we have addressed the detection, diagnosis, and mitigation of 

control and data traffic attacks in wireless multi-hop ad-hoc and sensor networks, which 

we call WAHAS networks throughout the thesis. Sensor networks are a particular class of 

wireless ad-hoc networks that usually comprised of a large number of small, low-cost, 

resource-limited (battery, bandwidth, CPU, memory) nodes.   

WAHAS networks are emerging as a promising platform that enable a wide range 

of applications in both military and civilian domains such as battlefield surveillance, 

medical monitoring, biological detection, home security, smart spaces, inventory 

tracking, etc. WAHAS networks are especially attractive in scenarios where it is difficult 

or expensive to deploy any significant networking infrastructure. However, the open 

nature of the wireless communication channels, the lack of infrastructure, the quick 

deployment practices, and the hostile environments where they may be deployed, make 

them vulnerable to a wide range of failures–both natural and malicious. 

The second chapter of this thesis presented local monitoring as a primitive for 

mitigating data and control attacks in WAHAS networks. Local monitoring is a 

collaborative monitoring strategy in which a node monitors traffic in and out of its 

neighboring nodes. Two conditions are required for local monitoring to be successfully 

used for mitigating data and control traffic attacks. The first condition is the availability 

of secure first-hops neighbors and the neighbors of each neighbor. The second condition 

is that each packet forwarder has to explicitly announce the previous hop node in the 

forwarded packet. We used local monitoring as a tool that helps in mitigating security 

attacks against WAHAS networks. Therefore, we have analyzed its capabilities and 

limitations particularly in the context of WAHAS networks, which is a less robust, 

collision prone, coverage-limited environment. Assumptions taken for granted in wired 
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networks are no longer valid in wireless communication. Moreover, we have identified 

the parameters on which the effectiveness of local monitoring depends and used it to 

mitigate many control and data traffic attacks against WAHAS networks.  

Local monitoring is used to protect WAHAS networks against certain kinds of 

attacks, namely the control and data traffic attacks. However, cryptography is also needed 

to provide data integrity, freshness, and authentication for WAHAS networks. An 

essential requirement for that is the availability of a key management service, which 

provides different nodes in the network with the required cryptographic keys. Therefore, 

we have presented in the third chapter the design of a key management protocol called 

SECOS for resource constrained static WAHAS networks. SECOS divides the sensor field 

into control groups with a control node in each group. Key exchange between nodes 

within a control group happens through the mediation of the control node while inter-

group communication involves establishing a secure channel between two control nodes 

with the mediation of the base station. In SECOS, the keys are refreshed and the control 

nodes are changed periodically to ensure higher security. Simulation runs are conducted 

to bring out the difference in overhead energy expended and data delay between SECOS 

and SPINS. SECOS is seen to perform better under a wide variety of communication 

patterns and cache sizes. A security analysis of SECOS is presented and a comparison is 

performed with previous protocols. The analysis shows that SECOS can outperform these 

protocols in terms of the number of compromised nodes that it can tolerate. A 

mathematical analysis is performed to determine the optimal control group-size in terms 

of energy overhead. An upper and a lower bound are derived based on the memory, 

computational, and bandwidth constraints, the level of security tolerance afforded, and 

the energy expended in key management. 

In the fourth chapter, we have introduced the wormhole attack and presented a 

taxonomy of the attack modes that may be used to launch the wormhole attack in 

WAHAS networks. We have presented a protocol called LITEWORP that incorporates a 

detection protocol and an isolation protocol. The detection protocol uses local monitoring 

and can be applied for detecting each mode of the wormhole attack except the protocol 

deviation. LITEWORP isolates the malicious node and removes its ability to cause future 
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damage. The coverage analysis of LITEWORP brings out the variation of probability of 

missed detection and false detection with increasing network density. The cost analysis 

shows that LITEWORP has low storage, processing, and bandwidth requirements. These, 

together with the fact that no specialized hardware is required, make the protocol ideally 

suited to resource-constrained WAHAS networks, such as sensor networks. We built a 

simulation model for LITEWORP using the network simulator ns-2 and perform a 

comparative evaluation of a network with and without the technique. The results show 

that with a large number of guards, LITEWORP can achieve 98.9% non-malicious routes, 

with 12% of the network nodes compromised. For this configuration, the possibility of 

false detection (due to natural collisions) or framing (due to malicious reporting) is 

negligible. Further, the detection and isolation of the nodes involved in the wormhole can 

be achieved in a negligible time after the attack starts, and the cumulative number of lost 

packets and malicious routes established saturates with time because wormholes are 

identified and isolated. 

The fifth chapter of the thesis presented an extension of the LITEWORP in two 

directions. In the first direction, we expand the set of control and data traffic attacks that 

can be mitigated using local monitoring. The set includes the Sybil attack, identity 

spoofing, selective forwarding, and misrouting attacks. More generally, the set may 

include any data or control traffic attack that results from delaying, dropping, misrouting, 

modifying, or fabricating of control or data traffic. In the second direction, we expand the 

monitoring to include not only the control traffic but also the data traffic. The key 

distinction of data traffic monitoring from control traffic monitoring is the volume of 

traffic. Therefore, each guard node selects a fraction of the data traffic to monitor. The 

fraction of traffic monitored is calculated over a given time window. 

We have presented a distributed protocol, called DICAS, for detection, diagnosis, 

and isolation of malicious nodes involved in launching these control or data traffic 

attacks. DICAS uses local monitoring to detect control and data traffic misbehavior, and 

local response to diagnose and isolate the suspect nodes. On top of DICAS, we built a 

secure lightweight routing protocol, called LSR, which supports node-disjoint path 

discovery. We analyze the security guarantees of DICAS and show its ability to handle 
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attacks through a representative set of these attacks. We also analyze the probability of 

framing, the detection coverage, and the probability of false detection of DICAS. 

Moreover, we have evaluated the memory, communication, and computation overhead of 

DICAS. We build a simulation model for DICAS using ns-2 and show its effect on the 

network security and performance. The results show that DICAS can achieve 100% 

detection of attacks for a wide range of network densities. They also show that the 

detection and isolation of the nodes involved in the attack under consideration can be 

achieved in a fairly short time after the attack starts. In addition, we simulate a combined 

Sybil and rushing attack to bring out the adverse impact on node-disjoint multipath 

routing and show the improvement using DICAS. The results show that LSR using DICAS 

is resilient to the combined attack and that the average number of node-disjoint routes 

discovered is not reduced. The experiments with data monitoring show the feasibility of 

detecting the selective forwarding attack while monitoring only a fraction of the data 

traffic. 

In addition to the applications we have presented in the previous chapters, local 

monitoring is also used for intrusion detection, building trust and reputation among 

nodes, and in building secure routing protocols. However, local monitoring could come at 

a high cost for energy-constrained WAHAS networks, since it requires the guard nodes to 

be awake all the time to oversee network behavior. Therefore, chapter six adapts local 

mentoring presented in chapter two to optimize the energy overhead of monitoring 

through sleeping of guards while maintaining the quality of the monitoring service. The 

main challenge lies in providing a secure sleeping technique that is not vulnerable to 

security attacks and does not add to the vulnerability of the network. We have presented a 

protocol called SLAM to make local monitoring in sensor networks energy-aware while 

maintaining the detection coverage. We classify the domain of sleep-wake protocols into 

three classes and SLAM correspondingly has three manifestations depending on which 

baseline sleeping protocol (BSP) is used in the network. For the first class (synchronized 

sleep-wake), local monitoring needs no modification. For the second class (connectivity-

coverage preserving sleep-wake), local monitoring can call the BSP with changed 

parameter values. For the third class (on-demand sleep-wake), adapting local monitoring 
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is the most challenging and requires hardware support as low-power or passive wake-up 

antennas. We propose a scheme whereby before communicating on a link, a node 

awakens the guard nodes responsible for local monitoring on its next hop. We design the 

scheme to work with adversarial node behavior. Moreover, we prove analytically that 

On-Demand SLAM does not weaken the security property of local monitoring. The ns-2 

simulation experiments show that over a wide range of conditions, the performance of 

local monitoring with SLAM is comparable to that without SLAM, while listening energy 

savings of 30-129 times is realized, depending on the network load. 

Chapter seven of the thesis addresses the problem of mitigating control and data 

traffic attacks in mobile WAHAS network scenarios. Recall that a basis for local 

monitoring is the ability of a node to securely determine its first-hop and second-hop 

neighbors. For static scenarios the neighbor list is discovered once for the lifetime during 

the initial period of network deployment. By being static and with the assumption of 

malicious-free environment during network deployment, the node itself and the neighbors 

are correct at the time the protocol executes. However, if the node moves from its current 

location then the neighbor list membership may change at many nodes (the moving node, 

the old neighbors of the moving node, and the new neighbors of the moving node). In  

this chapter, we proposed a protocol called MOBIWORP for mitigating the wormhole 

attack in mobile WAHAS networks. MOBIWORP uses a secure central authority (CA) for 

global tracking of node positions. MOBIWORP incorporates two protocols SMP and CAP-

CV for differing degrees of functionality afforded to a mobile node. Local monitoring is 

used to detect and isolate malicious nodes locally. Additionally, when sufficient 

suspicion builds up at the CA, it enforces a global isolation of the malicious node from 

the whole network. The effect of MOBIWORP on the data traffic and the fidelity of 

detection is brought out through extensive simulation using ns-2. The results show that as 

time progresses, the data packet drop ratio goes to zero with MOBIWORP due the 

capability of MOBIWORP to detect, diagnose and isolate malicious nodes. With an 

appropriate choice of design parameters, MOBIWORP is shown to completely eliminate 

framing of a legitimate node by malicious nodes, at the cost of a slight increase in the 
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drop ratio. The results also show that increasing mobility of the nodes degrades the 

performance of MOBIWORP. 
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10. FUTURE WORK  

The research work presented in this thesis provides a foundation to explore 

several research avenues in the area of WAHAS network security. Below, we summarize 

several directions, in which our work can be pursued, 

1. Scheduling the monitoring activity to increase the detection coverage. 

2. Scalable MOBIWORP through hierarchical structure of certificate authorities (CAs). 

3. Incorporating mobile stealthy trusted monitors in local monitoring. 

4. Test-bed implementation of local monitoring to study its real life capabilities and 

limitations.  

10.1. Scheduling the Monitoring Activity 

It has been shown in Chapter 6 that putting guards to sleep and waking them up 

on-demand saves a considerable amount of power. Additional power may be saved if we 

wake up only a sufficient subset of the guards while leaving the rest sleeping. Moreover, 

it is has been shown in Section 4.3.1 that collisions may reduce the probably of attack 

detection and increase the probability of false alarms. The collisions at different guards 

are not independent. Therefore, we would like to explore a strategy to schedule the 

monitors to decrease the possibility of correlated failures among them and thus enhancing 

the detection coverage. 

Two research questions may be asked in this direction. The first question is, how 

many guards are sufficient to obtain a good balance between detection coverage and 

framing? This question has been answered in Section 2.3 through the selection of the 

detection confidence index value. The second question that still needs to be answered is, 

what is the scheduling criterion to wake up the monitors (a subset of the available 

guards)?  
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Three different approaches may be used. In the first approach, we randomly select 

the monitors from the set of possible guards and send the rest of the guards to sleep. This 

approach is simple but does not take into account correlated failures or load balancing 

across the guards. 

In the second approach, rather than selecting the monitors randomly, a scheduler 

(for now, assume an omniscient centralized scheduler for each link to be monitored) 

chooses the highest qualified guards as monitors. The highest qualified guard is the guard 

with the highest remaining energy. To do so, the scheduler has to be aware of the 

remaining energy in the guard nodes. This knowledge can be obtained by directly polling 

the guard about its remaining energy level. However, the overhead is high and the 

information given may be incorrect. This may be due to a greedy guard, which wants to 

save energy and avoid participating in local monitoring and, therefore, underreports the 

level of remaining energy. Alternately, the incorrect reporting may be due to a malicious 

guard, which wants to be elected as a monitor so that it can turn a blind eye and suppress 

reports of erroneous events. Therefore, the guard over reports the level of remaining 

energy. An alternate approach is to estimate the remaining energy level at a guard 

without the help of that guard. This can be done by keeping the energy level of the guard 

as a state at the scheduler. This energy level state is decremented every time the guard is 

selected as a monitor by a value which is estimated based on the length of the monitoring 

period. This energy level state is not accurate since it does not take into account other 

monitoring activities of the guard node (e.g., by selection for other links) or regular 

sensing and forwarding activities of the guard. 

The third approach in selecting the monitors is motivated by minimizing the 

possibility of correlated failures among monitors. Correlated failures are caused by 

collisions and result in missed detection and false detection. A simple way to achieve this 

is by maximizing the distance between the selected monitors. This is based on a simple 

correlation model in which the farther the distance between two nodes, the less is the 

correlation of the collisions occurring at these nodes. However, a better correlation model 

needs to be considered to take the global effect of network topology and the traffic 

pattern into account. We are interested in not just the choice of monitors that will 
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minimize the possibility of correlated failures, but also a quantitative estimate of this 

minimum probability. This model assumes that the scheduler needs to know the positions 

of the guard nodes. Knowledge of directionality is important in this regard. There are 

approaches using directional antennas that combine information on which antenna 

received the signal and which antenna of another node sent it [50]. The challenge is to 

perform this determination at the scheduler without information queried from the node 

whose location is to be determined.  

10.2. MOBIWORP Hierarchical Structure 

MOBIWORP (Chapter 7) uses a centralized trusted entity named the central 

authority (CA) to keep track of node locations and providing authenticated certificates of 

these locations. This introduces the problem of scalability in large network scenarios. 

This problem can be solved through the use of a hierarchical structure of central 

authorities. The network is divided into geographic zones, each of which is controlled by 

a different central authority.  Each distributed central authority only needs to know the 

topology of its own zone. For a three level hierarchy, the root of the hierarchical tree is 

the main central authority which manages the other central authorities. The second level 

is a set of small central authorities each of which is responsible for one zone of the 

network. The last level of the hierarchy is the mobile nodes. The protocol when nodes 

move within the same zone is the same as MOBIWORP. However, when a node moves 

from one zone to another zone an inter-zone coordination occurs between the two zones’ 

CAs. This coordination is transparent to the moving nodes. This moves the responsibility 

from the possibly resource constrained mobile nodes to the distributed central authorities. 

If the movement is across zones, the central authorities coordinate amongst themselves. 

Thus a mobile node is unaware of whether it is moving within the same zone or to a 

different zone. The reader may be struck by a parallel with handoffs of mobile stations 

(MS) between multiple base stations (BS) in cellular systems. The handoff in these 

systems can be mobile controlled handoff (MCHO), network controlled handoff 

(NCHO), or mobile assisted handoff (MAHO) [71]. Clearly only the last two are possible 

candidates. However, these also do not absolve the MS of all responsibility. It is still 

responsible for monitoring the channel quality with different BSs, contacting a BS, and 
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selecting from among multiple BSs. We will work out the coordination protocol among 

the multiple distributed central authorities to take the responsibility out of the individual 

nodes.  

10.3. Trusted Monitors 

In applications of WAHAS networks which have high security requirements, we 

may be open to paying the cost of some specialized highly capable nodes deployed in the 

field. Such nodes are called special purpose intrusion detection units (IDU) and they are 

capable of managing, storing, and correlating large amounts of event logs from other 

nodes in the network. Every regular (non-IDU) node maintains a short-term buffer of the 

local events, e.g., information on the packets of each type sent, received, and forwarded. 

The determination of what information needs to go into the short term buffer is made by 

the IDUs based on the kind of attacks that need to be tolerated. For example, for detecting 

the wormhole attack, the route request received and forwarded and route reply received 

and forwarded along with information about the source and the immediate previous hop 

are maintained. The IDUs collect the buffer information from the regular nodes through 

multi-hop routes either by polling the regular nodes, based on regular schedules, or when 

triggered by an event, such as the short term buffer becoming full or the detection of an 

important event. For example, let M be an IDU and let S be a node that transmits to a 

node D. Let P1 (P2) be a multi-hop path between S (D) and M. Let S send n packets to D 

before the buffer of either becomes full. In a secure and failure free environment, S and D 

each inform M of the n packets it has sent or received. However, natural failures of links 

between S and D or in the path P1 or the path P2 may cause a difference in the views of S 

and D, and therefore M must calculate thresholds for divergence between the information 

received from S and D to account for these natural failures. Also, malicious actions by 

one or more of S, D, or nodes on P1 and P2 may affect the monitoring. So we suggest 

adding redundancy and authentication to mitigate these malicious causes of the view 

differences. Redundancy could be achieved by having multiple node-disjoint routes 

between M and both S and D [56]. Authentication of the packets between S and D, S and 

M, and D and M can prevent compromised nodes in the routes to M from tampering with 

the messages sent on these links. 
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The research issues that we need to address are how many IDUs are needed in a 

given WAHAS network? A balance will have to be made between detection coverage 

and the economic cost of deploying specialized IDUs. Next, are the IDUs fixed or 

roaming units? If the IDUs are mobile, then instead of sending the logs through multiple 

hops, it can move close to the regular node and pull the data directly. Of course mobility 

reduces the overhead of collecting the logs and prevents attacks directed to the IDUs but 

increases the cost of the IDUs. The idea of using mobile nodes to collect data from 

sensing nodes by moving close to the cluster heads has been explored in ([155] [156]).  

They presented three schedules for mobile data collectors to visit the cluster heads for 

purposes of collecting the data to be sent to the central command control stations. The 

schedules were Round Robin (each cluster head is visited in a round robin manner), Rate 

based (the frequency of visit is determined by the rate), and Min Movement (the 

movement of the collector is minimized). A challenging and wide open problem is the 

diagnosis of the malicious node(s) from the available data streams. Exiting work on 

redundant routing paths enables masking of errors but not diagnosis. We consider 

diagnosis to be important since it can trigger the response algorithm described in Section 

2.2 for isolating the malicious nodes. 

10.4. Test-bed Implementations 

Many protocols addressing different problems of WAHAS networks have been 

proposed. However, they were demonstrated in a simulation environment. Therefore, one 

of my important research agenda items is to implement WAHAS security protocols on 

real world scenarios using the available WAHAS technologies. Through these, we plan to 

come up with better programming environments for WAHAS networks, which have 

support for secure collective operations (such as, collecting the data from nodes in a 

geographical region) and secure individual operations. The programming environment 

will have support for health monitoring of the nodes in a scalable manner and some work 

in this regard has already been started [XXX]. 

XXX: Our SUTC paper. Do a search for Bagchi, Herbert. Also “Correctness 

Monitoring for Wireless Sensor Networks Using Distributed and Multi-level Run-Time 

Invariant Checking” Herbert, D. and Sundaram, V. and Lu, Y.H. and Bagchi, S. and Li, 
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Z., Under review for ACM Transactions on Sensor Networks, submission date: October 

2006. 
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APPENDIX .  

Timers, Threshold Values, and Notations used for SECOS 

The following table presents a summary of the timers and the threshold values 

used in SECOS. 

Table A.1: Timers and Threshold Values in SECOS 

Name Description Tradeoffs 
1 Session & 

authentication 
key 
refreshment 
timer 

When the timer expires, the session 
and authentication keys are refreshed 
applying a MAC function on the 
SC(M,S) XOR-ed with the volatile 
secret key and concatenated with 1 
for the session key and 2 for the 
authentication key. 

A higher value makes it 
less secure by facilitating 
cryptanalysis and allowing 
past communication of a 
compromised node to be 
divulged.  
A lower value makes it 
energy inefficient. 

2 Control node 
refreshment 
timer (Tctrl) 

When the timer expires the control 
node is changed. A new control node 
is selected and delivered the list of 
control group members.  
The old control node returns to the 
normal sensing mode. 

A higher value makes it 
less secure in case the 
control node gets 
compromised. 
A lower value makes it 
energy inefficient. 

3 Opinion 
counter 
threshold value 
(Tcounter_threshold) 

When the opinion counter at a node, 
X, crosses the threshold for a certain 
monitored node, Y, then X sends the 
opinion counter value and the ID  of Y 
to the base station  

A higher value makes it 
less secure since many 
malicious events may not 
be detected because they 
do not increment the 
opinion counter to the 
threshold value. 
A lower value makes it 
energy inefficient. 

4 Alert 
collection 
timer 
(Tsuspect_collection)  

When the timer fires, the base station 
either starts correlating the received 
alerts if they are sufficient, or polls 
certain nodes to send their opinion 

A higher value allows 
sufficient alerts from most 
involved observer nodes to 
arrive to the base station. 



 212

counters to collect sufficient alerts. But it makes the network 
less secure by delaying the 
malicious event detection 
and response. 

 
5 Trust level 

threshold  
(Ttrust_level) 

When the trust level of a node, X, in 
the network goes below the threshold, 
the base station declares X as a 
malicious node. 

A higher value makes it 
more secure since only 
highly trusted nodes are 
allowed in the network. 
But it may result in high 
node revocation due to 
false alarms by natural 
faults and communication 
errors. 

 
 The following table provides a summary of the notations used throughout SECOS 

(Chapter 3). 

Table A.2: SECOS Notations 

Acronym Description Acronym Description 
S A generic sensor node C A generic control node 
M The base station N The total number of nodes 

in the network 
D The density of the nodes in the 

network 
R The communication range 

MAC Message Authentication Code E(K,X) Encryption of  message X 
using key K 

MAC(K,
Z⊕X||Y) 

The application of the MAC 
algorithm, keyed by key K, to 
the result of  the concatenation 
of Y with the result of  Z  XOR-
ed with X 

H(X) The hash value of  the 
message X 

MKAB The master key shared between 
A and B 

VKAB he volatile secret 
key shared by A and B 

SKAB The session 
(encryption/decryption) key 
shared between A and B 

AKAB The Authentication (MAC)  
key shared between A and 
B 

RKAB The random number generator 
key shared between A and B 

KAB 
(=KBA) 

Any secret key 
(MKAB,VKAB, SKAB, AKAB, 
RKAB) shared between A 
and B 

SGctrl The size of the control group 
(i.e., the number of nodes in the 

S(Pkt) The size of the Pkt packet. 
Pkt is one of the packets 
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control group) defined in Table 3.1 
SGcom The communication group size SR Size of the key reply (i.e., 

SR=S(K_rep)) 
SKey The amount of storage required 

to store a cryptographic key 
such as the session key 

Hctrl The average number of 
hops between a pair of 
nodes in a control group 

Hcom The average number of hops 
between a pair of nodes in the 
communication group 

Hall The average number of 
hops between a pair of 
nodes in the whole network 

NBC The number of control groups 
within one communication 
group 

NG The number good 
(uncompromised) nodes in 
the network 

NC The number of compromised 
nodes in the network 

NB The number of control 
groups in the network 

MalC(i,j) The malicious counter at node i 
about node j 

MalCmax Maximum value of the 
malicious counter 

Nm(i) The number of monitors of 
node i that report their opinions 
to the base station 

Tcounter_thres

hold 
The threshold value of the 
malicious counter above 
which a node becomes 
suspicious 

Lassurance The level of detection 
assurance at a monitoring node 
a bout a suspected event 

Ltrust(i) The trust level of node i 
that is maintained by the 
base station 

Ttrust_level The trust level threshold 
beyond which the base station 
identify a node as malicious 

Sync_diff The maximum acceptable 
difference between the 
counters shared by a pair of 
nodes in the network 

Tsuspect_coll

ection 
The time the base station waits 
to collect more opinions a bout 
a suspected event starting from 
time of the first arrived opinion 

SC(i,j) The sending counter value 
of node i that is shared with 
node j (SC(i,j) = RC(j,i)) 

RC(i,j) The receiving counter of node i 
that is shared with node j 
(RC(i,j) = SC(j,i)) 

Counetrij Refers to both SC(i,j) and 
RC(i,j) 

TComp The time that is minimally 
required to compromise a node 

E1 The event that the control 
node of a certain control 
group is compromised 

E2 Thee event that there is at least 
one compromised node in the 
bounding path between a pair 
of nodes in the  control group 

E3 The event that the control 
node lies in the bounding 
path between a pair of 
nodes in the same control 
group 

PC(A-B) The probability of 
compromising the link between 
A and B 

Nbp The number of nodes 
within the bounding path 
between a pair of nodes in 
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the same control group 
PLerr The probability of natural error 

in a packet over a link between 
a pair of neighbor nodes 

PCD The probability that a node 
is compromised and 
dropping packets 

SC The regular cache size at each 
node 

SCC The control cache size at 
each node 

aC The hit rate in the regular  
cache (i.e., the probability of 
finding an element in the 
cache) 

bC The miss rate in the regular 
cache (i.e., the probability 
of not finding an element in 
the cache, bC =1-aC) 

aCC The hit rate in the control  
cache (i.e., the probability of 
finding an element in the 
cache) 

bCC The miss rate in the control 
cache (i.e., the probability 
of not finding an element in 
the cache, bCC =1-aCC) 

Tctrl The average time a node stays 
in the control role for a single 
round 

Energy The energy for the 
transmission and the 
reception of a single bit 

GComp The maximum control group 
size under the computational 
limitation only 

GBW The maximum control 
group size under the 
bandwidth limitation only 

GSEC The maximum control group 
size under an acceptable 
number of compromised 
sessions. 

GStore The maximum control 
group size under the 
storage limitation only 

m The reciprocal of the rate of the 
Poisson process used for 
changing the destination of a 
packet (i.e., a new destination 
is selected on average every m 
time units) 

l The reciprocal of the rate 
of the Poisson process used 
for data packet generation 
(i.e., one packet is 
generated on average every 
l time units) 

BW The channel bandwidth Nnbr The average number of one 
hope neighbors of a node 

TE The total overhead energy   
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