

MITIGATION OF CONTROL AND DATA TRAFFIC ATTACKS IN WIRELESS

AD-HOC AND SENSOR NETWORKS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Issa Khalil

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2007

Purdue University

West Lafayette, Indiana

 ii

This thesis is dedicated to my parents

 iii

ACKNOWLEDGMENTS

Praises are due to Allah, the Almighty, who has bestowed upon me uncountable

bounties without which this work would have never been accomplished. Then, I am

obliged to express my sincere gratitude and appreciation to those individuals who advised

and supported me throughout my work. First of all, I am indebted to my advisors,

Professor Saurabh Bagchi and Professor Ness B. Shroff whose individual

recommendations and guidance were the cure for several obstacles during preparation

and planning as well as during writing this dissertation. As my graduate study advisors,

their insights and comments have enriched my knowledge not only in this piece of work

but also throughout my doctoral study. I am also thankful to my committee members,

Professor Arif Ghafoor and Professor Mike Attalah for serving in my committee despite

their full and busy schedule. I appreciate all their valuable comments and supportive

attitudes.

 iv

TABLE OF CONTENTS

LIST OF TABLES... VIII

LIST OF FIGURES .. IX

ABSTRACT...XII

1. INTRODUCTION .. 1

1.1. Background about Ad-Hoc and Sensor Networks .. 1
1.2. Need for Reliable Protocols in WAHAS Networks.. 2
1.3. Contributions... 3
1.4. Summary of Contributions.. 6
1.5. Problem Statement .. 7
1.6. Thesis Outline ... 7

2. LOCAL MONITORING: DETECTION AND ISOLATION PRIMITIVES 9

2.1. Local Monitoring Detection and Diagnosis Primitive .. 9
2.2. Local Monitoring Isolation Primitives .. 11

2.2.1. Local Response and Isolation.. 12
2.2.2. Global Response and Isolation.. 13

2.3. Selection of the Detection Confidence Index (γ) Value.. 13

3. KEY MANAGEMENT: SECOS.. 14

3.1. Description of SECOS .. 18
3.1.1. System Assumptions and Attack Model ... 18
3.1.2. Keys in SECOS ... 19
3.1.3. SECOS Structure ... 23
3.1.4. Topology Building and Maintenance.. 25
3.1.5. Assigning and Changing the Control Node... 26
3.1.6. Key Caches.. 29
3.1.7. Node to Node Communication within Control Group 29
3.1.8. Node to Node Communication across Control Groups................................. 30
3.1.9. Monitoring the Control Node.. 32

3.2. Security Analysis .. 32
3.2.1. Confidentiality Attacks ... 32

 v

3.2.2. Denial of Service (DoS) Attack .. 40
3.2.3. Authentication Attack ... 41

3.3. Determining Control Group Size .. 42
3.3.1. Maximum Control Group Size.. 43
3.3.2. Energy-Wise Optimal Control Group Size ... 45

3.4. Message Overhead .. 49
3.4.1. Building the Neighbor List.. 49
3.4.2. Setting the Control Node... 50
3.4.3. Key Establishment within the Same Control Group 50
3.4.4. Key Establishment across Control Groups.. 51

3.5. Experiments & Results.. 52

4. MITIGATION OF THE WORMHOLE ATTACK IN STATIC WAHAS NETWORKS:
LITEWORP .. 57

4.1. Wormhole Attack Modes .. 59
4.1.1. Wormhole using Encapsulation .. 59
4.1.2. Wormhole using Out-of-Band Channel .. 61
4.1.3. Wormhole using High Power Transmission ... 61
4.1.4. Wormhole using Packet Relay .. 62
4.1.5. Wormhole using Protocol Deviations ... 62

4.2. Defenses .. 63
4.2.1. System Model and Assumptions ... 63
4.2.2. Building Neighbor Lists .. 64
4.2.3. Detecting Different Modes of Wormhole Attacks using LITEWORP 65
4.2.4. Response and Isolation Algorithm .. 68

4.3. LITEWORP Analysis... 69
4.3.1. Coverage Analysis... 69
4.3.2. Analysis of a Node being Framed ... 75
4.3.3. Detection Latency Analysis .. 76
4.3.4. Cost Analysis... 79

4.4. Simulation Results .. 81

5. MITIGATING OTHER CONTROL AND DATA TRAFFIC ATTACKS IN STATIC
WAHAS NETWORKS: DICAS .. 90

5.1. Description of DICAS... 93
5.1.1. System Model and Assumptions ... 93
5.1.2. Primitives: Neighbor Discovery and One Hop Source Authentication......... 94
5.1.3. Application of Local Monitoring for Data Attacks....................................... 96
5.1.4. Local Response and Isolation.. 97

5.2. LSR: Lightweight Secure Routing ... 97
5.2.1. Route Discovery and Maintenance ... 97
5.2.2. Node-Disjoint Multipath Discovery.. 99

5.3. Attacks and Countermeasures ... 100
5.3.1. ID Spoofing and Sybil Attacks.. 101

 vi

5.3.2. Selective Forwarding Attack... 101
5.3.3. Misrouting Attacks.. 102

5.4. DICAS Analysis.. 104
5.4.1. Coverage Analysis... 104
5.4.2. Analysis of Node Being Framed ... 109
5.4.3. Cost Analysis... 109

5.5. Simulation Results .. 110
5.5.1. Control Attacks ... 110
5.5.2. Data Attacks .. 112

6. SLEEP-WAKE AWARE LOCAL MONITORING: SLAM 120

6.1. SLAM Protocol Description ... 122
6.1.1. System Model and Assumptions ... 122
6.1.2. The No-Action-Required SLAM Protocol.. 123
6.1.3. The Adapted SLAM Protocol ... 123
6.1.4. The On-Demand SLAM Protocol ... 125

6.2. Mathematical Analysis of On-Demand SLAM .. 133
6.2.1. Security Analysis... 133
6.2.2. Energy and End-to-End Delay Analysis ... 134

6.3. Simulation Results .. 139
6.3.1. Effect of Fraction of Data Monitored.. 141
6.3.2. Effect of Number of Malicious Nodes .. 144
6.3.3. Effect of Data Traffic Load (µ) ... 146
6.3.4. Wakeup Time Variations .. 147
6.3.5. Effect of Distance on Delay .. 149

7. MITIGATION OF THE WORMHOLE ATTACK IN MOBILE WAHAS
NETWORKS: MOBIWORP .. 151

7.1. Design Foundations... 153
7.1.1. Attack Model and Assumptions .. 153
7.1.2. Node Locations ... 154

7.2. Secure Node Integration Protocols.. 155
7.2.1. Fundamental Structures for Neighbor Determination Protocols................. 155
7.2.2. Selfish Move Protocol (SMP) ... 156
7.2.3. Connectivity Aided Protocol with Constant Velocity (CAP-CV) 160
7.2.4. Two Specific Attacks .. 161
7.2.5. Isolating a Malicious Node ... 162

7.3. Simulation Results .. 163
7.3.1. Temporal Behavior of Drop Ratio... 164
7.3.2. Effect of Detection Confidence Index (g) on Local Properties................... 165
7.3.3. Effect of g and Mmax on Global Properties .. 167
7.3.4. Scalability of MOBIWORP.. 169
7.3.5. Effect of Variation of the Number of Malicious Nodes.............................. 169
7.3.6. Effect of Motion .. 170

 vii

7.4. MOBIWORP Analysis ... 171
7.4.1. Overhead of ANUM Broadcast... 172
7.4.2. Latency Analysis of MOBIWORP... 173
7.4.3. Possibility of Framing ... 173
7.4.4. Overhead Analysis of MOBIWORP .. 173

8. RELATED WORK ... 177

8.1. Key Management .. 177
8.2. Wormhole Attack.. 181
8.3. Secure Neighbor Discovery .. 184
8.4. Multi-hop Wireless Data and Control Traffic Security Mechanisms 185
8.5. Sleep/Wake Mechanisms .. 187

9. CONCLUSION... 189

10. FUTURE WORK.. 195

10.1. Scheduling the Monitoring Activity.. 195
10.2. MOBIWORP Hierarchical Structure.. 197
10.3. Trusted Monitors... 198
10.4. Test-bed Implementations... 199

LIST OF REFERENCES.. 201

APPENDIX .. 211

VITA .. 215

PUBLICATIONS.. 216

 viii

LIST OF TABLES

Table 2.1: Elementary malicious activity and checking action .. 10
Table 3.1: Summary of relevant SECOS packet types .. 43
Table 3.2: Simulation Parameters for Evaluation ... 52
Table 4.1: Summary of wormhole attack modes .. 62
Table 4.2: Input parameter values for LITEWORP simulations ... 83
Table 5.1: Examples of vulnerable WAHAS network protocols to control and data traffic
attacks ... 91
Table 5.2: Input parameter values... 110
Table 5.3: MalC increment per malicious activity used for the experiments 114
Table 6.1: Default simulation parameters... 139
Table 7.1: Simulation’s input parameter values ... 164
Table A.1: Timers and Threshold Values in SECOS.. 211
Table A.2: SECOS Notations.. 212

 ix

LIST OF FIGURES

Figure 2.1: X, M, and N are guards of A over link X to A... 10
Figure 3.1: Initial key setup between base station and three sensing nodes 20
Figure 3.2: Key Refreshment and Counter Synchronization Procedure........................... 23
Figure 3.3: Three level hierarchy for key management in SECOS 24
Figure 3.4 : Building the Topology... 26
Figure 3.5: Challenging the Control Node.. 28
Figure 3.6: Control node refreshment... 29
Figure 3.7: (a) Intra-group communication; (b) Inter-group communication using two
control nodes. The two control nodes do not have a secure session when the process starts.
... 31
Figure 3.8: The Bounding Path between A and B ... 37
Figure 3.9: Probability of compromising a randomly selected link between two
uncompromised nodes as a function of the number of compromised nodes in the network.
... 39
Figure 3.10: Total power consumed in SECOS with varying control group size............... 48
Figure 3.11: Ratio of overhead energy expended for SPINS and SECOS with varying
cache sizes for different communication group sizes ... 53
Figure 3.12: Ratio of end-to-end data latency for SPINS and SECOS with varying cache
sizes for different communication group sizes ... 54
Figure 3.13: Ratio of overhead energy SPINS: SECOS ... 56
Figure 3.14: Ratio of packet delay for SECOS with key refreshment and control node
change: SECOS without these techniques .. 56
Figure 4.1: Wormhole through packet encapsulation ... 60
Figure 4.2: Wormhole through out-of-band channel .. 61
Figure 4.3: Wormhole detection for out-of-band and packet encapsulation modes 66
Figure 4.4: (a) The area from which a node can guard the link between S and D; (b)
Illustration for detection accuracy .. 70
Figure 4.5: Probability of attack detection at a guard against NB..................................... 72
Figure 4.6: Probability of wormhole detection at a guard against γ 73
Figure 4.7: Probability of false alarm at a guard against NB .. 74
Figure 4.8: Probability of false alarm at a guard against γ ... 75
Figure 4.9: Probability of node framing against the probability of compromising a given
node (g=5, NB=7).. 76
Figure 4.10: Sliding window illustration .. 77
Figure 4.11: Expected number of time slots E[Nts] before a single guard detects a
malicious node .. 77

 x

Figure 4.12: Lower and upper bound for expected number of activities before a malicious
node is detected by a guard... 79
Figure 4.13: The average number of nodes involved in the watch of a route reply 81
Figure 4.14: Cumulative number of dropped packets with and without LITEWORP 84
Figure 4.15: Fraction of dropped packets and malicious routes with and without
LITEWORP ... 85
Figure 4.16: Detection probability and latency with varying g .. 85
Figure 4.17: Percentage of framing .. 86
Figure 4.18: Percentage of malicious node isolation .. 86
Figure 4.19: Percentage of false isolation... 87
Figure 4.20: Percentage of malicious routes... 87
Figure 4.21: Percentage of false isolation... 88
Figure 4.22: Percentage of malicious routes... 88
Figure 5.1: Example of node-disjoint routes... 100
Figure 5.2: Misrouting attack illustration example... 103
Figure 5.3: Probability of attack detection at a guard a against NB 106
Figure 5.4: Probability of attack detection at a guard against γ 107
Figure 5.5: Probability of false detection at a guard against NB..................................... 108
Figure 5.6: Probability of false alarm at a guard against γ ... 109
Figure 5.7: Average number of node-disjoint paths in ideal case, AODVM, and LSR .. 112
Figure 5.8: Effect of MalC increment... 114
Figure 5.9: Effect of fraction of data monitored on delivery ratio.................................. 115
Figure 5.10: Percentage detection and percentage false alarms 116
Figure 5.11: Isolation latency and Watch buffer size ... 116
Figure 5.12: Energy consumed per node for monitoring.. 117
Figure 5.13: Delivery ratio as a function of malicious nodes ... 118
Figure 5.14: False alarms and detection as a function of number of malicious nodes ... 119
Figure 5.15: Isolation latency and watch buffer size as a function of number malicious
nodes ... 119
Figure 6.1: Relationship between communication and sensing ranges 124
Figure 6.2: n-hop route between S and D, neighbors of S, and guards of H1 and H2 127
Figure 6.3: Case I wakeup-sleep timing schedule for (a) a node in the data route; (b) a
guard node; (c) a neighbor to a node in the data route that is not valid guard (for A-SLAM
only) .. 132
Figure 6.4: Case II wakeup-sleep timing schedule for (a) a node in the data route; (b) a
guard node... 133
Figure 6.5: A bounding box over the path S D .. 135
Figure 6.6: Extra delay due to SLAM over Baseline-LM .. 139
Figure 6.7: Effect of fraction of data monitored on delivery ratio.................................. 142
Figure 6.8: Effect of fraction of data monitored on % of true isolation 142
Figure 6.9: Effect of fraction of data monitored on end-to-end delay 143
Figure 6.10: Effect of fdat on watch buffer size for local monitoring with and without
SLAM ... 143
Figure 6.11: Effect of number of malicious node on delivery ratio................................ 144
Figure 6.12: Effect of the number of malicious nodes on % of true isolation................ 145

 xi

Figure 6.13: Effect of the number of malicious nodes on % of false isolation............... 145
Figure 6.14: Effect of data traffic load on % false isolation... 146
Figure 6.15: Effect of data traffic load on isolation latency ... 147
Figure 6.16: Effect of data traffic load on end-to-end delay... 147
Figure 6.17: Variations on the percentage of monitoring wakeup time the fraction of data
monitored (fdat) varies ... 148
Figure 6.18: Variations on the percentage of monitoring wakeup time the number of
malicious nodes varies .. 148
Figure 6.19: Variations on the percentage of monitoring wakeup time as the data traffic
load varies ... 149
Figure 6.20: Variation of the end-to-end delay with the hop count for local monitoring
with and without A-SLAM... 150
Figure 6.21: The difference in the end-to-end delay with and without A-SLAM 150
Figure 7.1: SMP handshake between b and the CA .. 157
Figure 7.2: Node states based on the ANUM status ... 158
Figure 7.3: State transition diagram of node’s states.. 158
Figure 7.4: Schematic of SMP for movement of node β .. 159
Figure 7.5: Node integration by β in valid state ... 160
Figure 7.6: CAP-CV handshake between b and the CA ... 161
Figure 7.7: Global isolation algorithm.. 163
Figure 7.8: % data drop ratio (g=Mmax=3, m=4) ... 165
Figure 7.9: : % data drop ratio (Mmax=3, m=4) ... 165
Figure 7.10: Local & false isolation (m=4, N=60).. 166
Figure 7.11: Isolation time (m=4, N=60,Mmax=15)... 167
Figure 7.12: Global isolation and false isolation (m=4, N=60,Mmax=15) 168
Figure 7.13: Global isolation & false isolation against Mmax (m=4,g=∞)....................... 168
Figure 7.14: Scalability of MOBIWORP (g=Mmax=3, m=4) ... 169
Figure 7.15: % Isolation of MOBIWORP (g=Mmax=3) ... 170
Figure 7.16: % of Isolation (γ=Mmax=3, m=4, N=60).. 171
Figure 7.17: Performance of baseline & MOBIWORP (γ=Mmax=3,m=4,N=60) 171
Figure 7.18: A node travels from P0 to P1... 172
Figure 7.19: Traveled distance upper bound before ANUM broadcast in SMP............. 173

 xii

ABSTRACT

Khalil, Issa. PhD, Purdue University, December, 2006. Mitigation of Control and

Data Traffic Attacks in Multihop Wireless Ad-Hoc and Sensor Networks. Major

Professors: Saurabh Bagchi and Ness B. Shroff.

 Recently we have seen increasing adoption of wireless ad-hoc and sensor

networks (WAHAS) for security critical applications in military and civilian domains,

such as battlefield surveillance and emergency rescue and relief. However, they are often

exposed to a wide-range of control and data traffic attacks. Control attacks are directed to

control traffic in the network, such as routing and localization. Examples are wormhole,

Sybil, and rushing attacks. Control attacks are often easy to launch even without the need

for any cryptographic key and can be used to subvert the functionality of the network by

disrupting data flow. Data traffic attacks include selective forwarding and misrouting

attacks. We have pursued two lines of defense to secure WAHAS networks. The first is

attack prevention using low-cost key management for encryption and authentication. Our

protocol SECOS provides the guarantee that communication between any two nodes

remains secure despite compromise of any number of other nodes. The second line of

defense is control and data traffic attack detection, diagnosis, and isolation through local

monitoring and response. Each node oversees the traffic in its one-hop neighborhood and

maintains state for the behavior of each neighbor. We develop a suite of three protocols

for respectively static networks, mobile networks, and energy efficient sleep-awake

aware local monitoring. To demonstrate the protocols, we perform analysis and

simulations in ns-2. The metrics for evaluation include fraction of data received at the

destination, coverage and delay of isolation, likelihood of false positives, and overhead in

terms of resource consumption.

 1

1. INTRODUCTION

1.1. Background about Ad-Hoc and Sensor Networks

Research advances in highly integrated and low power hardware, wireless

communication technology, and highly embedded operating systems enable the

development and deployment of wireless mobile ad-hoc and sensor networks (WAHAS).

An ad-hoc network is an autonomous system of hosts connected by wireless RF links

without any static infrastructure such as base stations, fixed routing units, or wired links.

If two hosts are not within radio range, all message communication between them must

pass through intermediate hosts which can also act as routers. Sensor networks are a

particular class of wireless ad-hoc networks in which the nodes have micro-electro-

mechanical (MEMS) components, including sensors, actuators and RF communication

components. These nodes are multifunctional and capable of sensing, communication,

computation, and, sometimes, they can move. Sensor networks typically comprise of

large numbers of sensor nodes placed in the environment to be monitored and usually

communicate with each other through low-bandwidth communication links. For the

purpose of this exposition, we use sensor nodes to refer to sensor network nodes, ad-hoc

nodes to refer to ad-hoc network nodes, and Wireless Ad-hoc And Sensor nodes

(WAHAS) to refer jointly to the two classes.

WAHAS nodes cooperate among themselves for information gathering and

analysis, and are becoming an important platform in several domains, including military

warfare, civilian emergency operations, and monitoring of climate and biological

habitats. It is widely believed that WAHAS networks have the potential to evolve into an

infrastructure-less ubiquitous information collection, distribution, processing, and control

system, parallel to and complimentary to the existing cellular personal communication

systems. It will enable another wave of new services and further deepen the penetration

of information technology into everyone’s life.

 2

Consider two sample scenarios for the deployment of a WAHAS network. The

first is from the military domain where high cost and powerful ad-hoc nodes may be

carried by soldiers or in vehicles, while a large number of low cost and low-energy

sensor nodes may be distributed over the battlefield. In the civilian domain, the role of

the soldier is taken by emergency rescue personnel who are entering a domain in which

they are guided by information available through a locally deployed sensor network. In

both scenarios, nodes have varying levels of availability and trust, use loosely constrained

motion paths, and interact across node types, e.g. an ad-hoc node query a sensor node

about environmental conditions.

The traffic in WAHAS networks can be classified as data and control traffic.

Control traffic contains information needed to set up the network for data traffic to flow.

Typical examples of control traffic are routing, monitoring the liveness of nodes,

topology discovery, and system management. Looking further into routing traffic, we

find multiple kinds of messages–route request (broadcast) and route reply (unicast)

during the initial establishment phase, route maintenance during the lifetime of the data

route, and route teardown at the end. It is critical to guarantee the fidelity of control

traffic in WAHAS networks otherwise it can have a catastrophic effect which propagates

to hamper the data traffic. For example, if an adversary node manages to interpose itself

in an established route between two legitimate nodes, it can disrupt the data traffic flow

by selectively dropping the data packets. All other kinds of traffic where data is

communicated between WAHAS nodes is called data traffic.

1.2. Need for Reliable Protocols in WAHAS Networks

WAHAS networks have seen growing research interests in different areas —

devices, communication, network protocols, and applications. However, the open nature

of the wireless communication channels, the lack of infrastructure, the quick deployment

practices, and the hostile environments where they may be deployed, make them

vulnerable to a wide range of failures – both natural and malicious. The natural failures

could be node or link failures, permanent or transient, fail silent or otherwise. The

malicious attacks could involve eavesdropping, message tampering, or identity spoofing,

that have been addressed by cryptographic primitives for encryption and authentication

 3

customized for the wireless domain. Alternately, the attacks may be targeted at the

control or the data traffic in wireless networks. Such attacks are often times to be very

difficult to detect, unlike Denial of Service (DoS) attacks. Examples of data traffic

attacks include the blackhole and the selective forwarding attacks [76] in which a

malicious node drops all or some of the data traffic passing through it. Control traffic

attacks include (i) the wormhole attack [50],[53], (ii) the rushing attack [52], (iii) identity

spoofing, (iv) the Sybil attack [57], (v) the sinkhole attack, and (vi) the HELLO flood

attack [76]. Control traffic attacks are especially destructive since they can be launched

even without having access to any cryptographic keys or compromising any legitimate

node in the network, and they can be used to subvert the functionality of the network by

disrupting data flow.

Often WAHAS networks are deployed for applications where it is crucial to

collect the correct data or relay the correct information to nodes from a command and

control node. The critical nature of the applications hinges on the fact the human lives

may be at risk (say a military operation or an emergency rescue and relief operation),

important scientific data about a rare occurrence is being collected (using a sensor

network), or financial considerations may be at stake (say, a network for monitoring

corporate security). Therefore, for the applications to be successful, it is important to

design protocols for detecting failures and responding to them at runtime.

1.3. Problem Statement and Contributions

The focus of our work is on the design of dependable WAHAS networks that

behave reliably (who wants a toaster that overdoes the bread a third of the time) and

securely (who wants the phone book on her mobile erased at the most inopportune time).

Since many multi-hop wireless environments are resource constrained (e.g., bandwidth,

energy, or processing), providing detection and countermeasures to such attacks often

turn out to be more challenging than in wired networks. We believe that current

technology trends may remove some of the resource constraints in the foreseeable future,

such as memory and processing power, while the constraints of bandwidth and energy are

expected to remain for some time to come.

 4

In my thesis work, we have developed a primitive called local monitoring

whereby a node in the network can monitor the runtime behavior of neighboring nodes.

This primitive is generic and can be applied to the detection of any attack that manifests

through (i) packet dropping, (ii) packet delay, (iii) packet fabrication, (iv) packet

modification, and/or (v) packet misrouting. Based on local monitoring, we have

developed, analyzed, and prototyped protocols for detecting, diagnosing, and mitigating

attacks directed at control or data traffic in WAHAS networks. Moreover, we have

developed protocols to enable mobility in such environments, e.g., cars communicating

reliably and securely with one another in an ad-hoc network. There is no separation of the

WAHAS network into payload and monitoring systems, instead each node can potentially

play a role in both systems.

The idea of overhearing traffic in the vicinity is not new in wireless networks (e.g.

[56], [59], [60], [61], [62]). Previous work has used it to build trust relationships among

nodes in networks (e.g. [59], [61]), detect certain kinds of attacks (e.g. [60], [62]), or

discover routes with certain desirable properties, such as being node disjoint (e.g. [56]).

Our novelty lies in presenting the technique in a formal framework–local monitoring–

identify the parameters that affect its performance, and analyze its capabilities and

limitations. We systematically lay out the fundamental structures and the state to be

maintained at each node for mitigating some representative attacks–wormhole, Sybil,

rushing, and selective forwarding attacks. The first three are examples of attacks directed

to control traffic while the last one is an example directed at data traffic. Independent of

the detection mechanism, we propose a strategy to isolate malicious nodes locally in a

distributed manner.

Local monitoring is an efficient attack-detection mechanism in WAHAS

networks; however, it could come at a high cost for energy constrained sensor networks,

since it requires each node to be awake all the time, even if it is not involved in any

network activity, to oversee network behavior of neighboring nodes. Therefore, we have

modified the basic technique to a sleep/wake aware local monitoring primitive to

significantly reduce the time a node needs to be awake for the purpose of monitoring. The

 5

main challenge lies in providing a secure sleeping technique that is not vulnerable to

security attacks and does not add to the vulnerability of the network.

Another challenge to local monitoring is the issue of mobility. A mobile

adversary can hop from one part of the network to another and in the absence of

distributed knowledge sharing, can inflict unbounded damage. We develop a variant of

local monitoring that can deal with mobile adversaries. It turns out that local monitoring

requires an efficient mechanism for dynamic, secure two-hop neighbor verification.

Moreover, it requires an efficient mechanism to track the malicious behavior of an

adversary node accumulated over multiple locations in the network. We come up with a

distributed protocol that operates locally in a neighborhood and when the adversary

moves, the state is remembered and transferred to nodes in the new location using a

centralized entity.

Independent of the detection mechanism, the issue of mitigation, much neglected

in existing literature in comparison to detection, is addressed in this work and results in a

failing node being unable to cause further damage in the network. We have developed

response strategies to mitigate the effect of the adversary nodes, either locally in a

distributed manner which we call local response, or globally using a centralized entity

which we call centralized response. For the response strategy to be successful, the

response traffic has to be protected from eavesdropping, tampering, and masquerading to

prevent incorrect responses such as blackmailing. Cryptography is the foundational

technology that has been used for protecting and securing such traffic. This technology

relies on keys as the centerpieces, and many attacks focus on disclosing these keys. This

makes the management of the keys (the process by which keys are generated, stored,

protected, distributed, used, and destroyed) in a large-scale network of up to hundreds of

thousands of nodes a very important and challenging problem. The protocols in this

domain (e.g. [63], [64], [65]) suffer from one or more of the following problemsweak

security guarantees if some nodes are compromised, lack of scalability, high energy

overhead for key management, and increased end-to-end data latency. We have

developed a protocol called SECOS that mitigates these problems in static sensor

networks. SECOS provides the guarantee that the communication between any two sensor

 6

nodes remains secure despite the compromise of any number of other nodes in the

network.

The control attack mitigation approach that we propose targets a fairly general

attack model. An adversary node can be either an external node or an internal node. An

external adversary node does not have access to cryptographic keys as the legitimate

network nodes, while an internal adversary node, also referred to as a compromised node,

does. An adversary node may behave in an arbitrary or Byzantine manner. The adversary

node can be more powerful than the legitimate nodes. Thus, it may have access to higher

computational power, communication power (higher transmission radius or high

bandwidth out-of-band channel), and energy resources. The adversary nodes may also

collude among themselves and it may be assumed that there exist out-of-band channels

linking each adversary node to another. We do not protect against brute force denial of

service attacks, such as physical destruction of the nodes or physical layer jamming.

1.4. Summary of Contributions

1. Develop a scalable protocol for key management called SECOS with the following

properties:

a) Secos is Sensitive to the sensor node’s resource constraints, including

computation, communication, and bandwidth.

b) SECOS is an energy efficient method for key management and substantial energy

savings are demonstrated without introducing specialized high cost nodes in the

network.

c) SECOS guarantees that the communication between two uncompromised nodes

cannot be exposed, irrespective of the number of other nodes that are

compromised. Similarly, the protocol can tolerate some nodes being unavailable

due to natural failures.

2. Develop a mechanism called local monitoring that is used to detect any generic

control or data traffic attack in static WAHAS networks that manifests itself in one of

dropping, misrouting, modifying, forging, injecting, or delaying of packets.

 7

3. Develop a toolset based on local monitoring that can be mapped to detecting different

classes of attacks. We analyze this toolset for different metrics, such as, false alarm

probability, missed alarm probability, and latency of isolation.

4. Develop local and global mechanisms that, based on information collected by the

detection toolset, allows for diagnosing and isolating the malicious nodes.

5. Develop protocols, based on the previous toolset, that mitigate wormhole, ID-

spoofing, Sybil, rushing, sinkhole, blackhole, and grayhole attacks in static WAHAS

networks.

6. Provide a technique for conserving energy while performing local monitoring without

significantly degrading its security performance. This we believe is fundamental to

deploying local monitoring in any network that is parsimonious in its energy

consumption.

7. Provide a primitive that prevents a node from claiming to exist at more than one

position in mobile WAHAS networks. This primitive can be used in detecting several

different attacks in mobile WAHAS networks such as the Sybil attack. We use this

primitive to develop a protocol called MOBIWORP that detects, diagnoses, and isolates

wormhole attacks in mobile networks.

8. We demonstrate the effectiveness of all the protocols we have developed through

extensive simulation with the network simulator ns-2.

1.5. Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents local

monitoring. Chapter 3 describes our key management protocol (SECOS). Chapter 4

presents a protocol called LITEWORP for mitigating the wormhole attack in static

WAHAS networks. Chapter 5 extends LITEWORP and presents a protocol called DICAS

for mitigating other control and data traffic attacks in static WAHAS networks. Chapter 6

presents a sleep-wake aware version of local monitoring that largely reduces the

monitoring overhead head energy. Chapter 7 presents a protocol called MOBIWORP for

mitigating the wormhole attack in mobile WAHAS networks. Chapter 8 presents the

 8

related work. Chapter 9 provides conclusion of the thesis work. Finally, Chapter 10

describes the future research problems.

 9

2. LOCAL MONITORING: DETECTION AND ISOLATION
PRIMITIVES

2.1. Local Monitoring Detection and Diagnosis Primitive

Local monitoring is a collaborative detection strategy whereby each node in the

network monitors the traffic of its neighbors. There is no separation of the WAHAS

network into payload and monitoring systems, therefore, each node can potentially play a

role in both systems. Local monitoring is the primitive that is used by all the protocols

that we have developed to detect various control and data traffic attacks in WAHAS

networks and diagnoses the malicious nodes involved in these attacks. Local monitoring

requires that (i) each node in the network knows the identity of its first-hop neighbors and

the neighbors of each neighbor, and (ii) each packet forwarder explicitly announces the

immediate source of the packet it is forwarding. The first requirement holds by design of

the routing protocol and the second requirement is satisfied through secure neighbor

discovery protocols. The complexity of the secure neighbor discovery protocols vary

between static and mobile WAHAS network and is thus one of the main challenges that

we have addressed in this work, Chapter 4 and Chapter 7 respectively.

For a node M to be able to monitor a node A over the link from X to A, M must be

a neighbor of both A and X. In such a case, we call M a guard node of A over the link

from X to A. In Figure 2.1, nodes M, N, and X are the guards of A over the link from X to

A. For a link (i, j), the sender i is always a guard node for node j. Information for each

packet sent from X to A is saved in a watch buffer at each guard for a time t. The

information maintained depends on the particular attack under consideration. A malicious

counter (MalC(i,j)) is maintained at each guard node, i, for every node, j, which i is

monitoring over a sliding window of length Twin. The value of MalC(i,j) is incremented

for any suspect malicious activity of j that is detected by i. The increment to MalC value

 10

depends on the nature of the malicious activity, being higher for more severe infractions.

To account for intermittent natural failures that can occur at legitimate nodes, a node is

determined to be misbehaving, only if the MalC goes above a threshold (MalCth) over

Twin. Examples of natural failures include collisions at the wireless media, environmental

conditions, or passing barriers that may block or reduce the communication range. These

natural failures may cause False alarms in which a “legitimate” node mistakenly consider

another “legitimate” node to be malicious.

DB X

M

N

A

A
X

YY The transmission
range of node Y

A guard node

Figure 2.1: X, M, and N are guards of A over link X to A

In a general sense, the elementary activities underlying a large set of attacks in

WAHAS networks are comprised of the following actions performed by the adversary

node on an incoming packet–delay, drop, modify, misroute, and fabricate. There are

elementary checking actions on the watch buffer for detecting each of these elementary

malicious activities. The exact information stored in the watch buffer depends on the type

of checking action–if delay, drop, misrouting, or fabrication is to be detected, then only

the header information that uniquely identifies the packet (in my implementation, the

sender and the sequence number) need be stored. If however, modification to the payload

is also to be detected, then the payload body or a hash of it has also to be stored. The

actions are specified in Table 2.1. These checking actions form the basis of my detection

protocol. In this thesis, we discuss the detection for a representative set of attacks, though

the elementary checking activities can be combined to detect a larger class of attacks.

Table 2.1: Elementary malicious activity and checking action

Elementary malicious activity Elementary checking action

Delay A packet lies unmatched in the buffer for time

 11

greater than an application dependant threshold.
Drop Same as in delay.
Modify The outgoing packet does not match with the

packet in the watch buffer. The matching may be
either a bit-wise comparison of the unchanging
fields in the packet (such as, the data, the original
source and destination) or matching the hash
values computed on these fields.

Fabricate The outgoing packet does not have a
corresponding packet in the watch buffer.

Misrouting If the packet is forwarded to a next-hop node that
is different from the one stored in the watch buffer.

Consider Figure 2.1 again, a node, say M, that can directly monitor the malicious

behavior of its neighbor, say A, may be able to detect that neighbor. However, a node

such as D that can not directly monitor the behavior of its neighbor, A, relies on alerts

from other neighbors (M, X, N). When D gets enough alert messages about A, it believes

in that A is malicious even though it has not directly noticed that. The notion of enough

number of alerts is quantified by the detection confidence index (γ), Section 2.3. Each

node maintains memory of nodes that it has revoked through a local blacklist so that a

malicious node cannot come back to its neighborhood and claim to be blameless. Each

entry in the blacklist consists of two fieldsthe identity of the malicious node and a one-

bit flag to indicate whether this malicious node has been detected directly or through the

reception of g or more alerts from other nodes.

2.2. Local Monitoring Isolation Primitives

A node is said to be integrated in the network if some of its first-hop neighbors

accept its communication and is said to be revoked or isolated when all its first-hop

neighbors reject its communication. Therefore, a revoked node can not receive any traffic

from the network nor it can pass any traffic to the network. A node in the network only

accepts traffic from or passes traffic to nodes that appear in its first-hop neighbor list. A

node X revokes its neighbor node Y by deleting the entry of node Y in the first-hop

neighbor list of X.

 12

2.2.1. Local Response and Isolation

When a node is determined to be malicious, it is important to take some action to

neutralize the ability of the node to cause further damage. This is done by causing all the

first-hop neighbors of the malicious node to revoke it. The local response and isolation

primitive is used to propagate the detection knowledge to the first-hop neighbors of the

malicious node and to take the appropriate response to isolate it from the network. Since

detection knowledge propagates among neighbors of the malicious nodes, an

authentication mechanism is assumed to exist in the network to prevent false accusation.

The following local response algorithm is triggered by a guard node a when a node A is

suspected because it’s malicious counter (MalC(α,A)) crosses the threshold, Ct.

1. Node a removes A from its neighbor list, and sends to each neighbor of A, say D, an

authenticated alert message indicating that A is a suspected malicious node. The

communication is authenticated using a shared symmetric key between a and D to

prevent false accusations. Alternately, if the clocks of all the nodes in the network are

loosely synchronized, a can do local two-hop authentic multicast as in TESLA

[72],[73] or mTESLA [63] to inform the neighbors of A. Note the α isolates A without

waiting for γ alerts from other nodes since a node definitely to trust itself.

2. When D receives the alert, it verifies its authenticity, that a is a neighbor to A, and

that A is D’s neighbor. It then stores IDa in an alert buffer associated with A.

3. When D receives enough alerts, γ, about A, it isolates A by marking A’s status as void

in the neighbor list.

4. After isolation, D does not accept any packet from or forward any packet to A.

In addition to removing the malicious nodes from the network, this primitive

makes the response process fast since the detection knowledge need not propagate

throughout the network. This module is lightweight in the number of messages (one to

 13

each neighbor of A, only on detection) and the number of hops each message traverses

(maximum two hops).

2.2.2. Global Response and Isolation

The process of local isolation described in the previous section is quick and

lightweight, and has the desired effect of removing the potential for mischief of static

malicious nodes. However, a mobile malicious node can move to a new location and

perform some malicious activities before it is detected. Hence, the local isolation by itself

is not enough to isolate mobile malicious nodes. In mobile scenarios a global mechanism

is required to track and accumulate the malicious behavior of the mobile malicious nodes

over all the locations it moves to. In such scenarios we introduced a central authority to

track the malicious node’s behavior. The global response and isolation primitive is

specific to mobile WAHAS network scenarios and is explained along with the protocols

for mitigating attacks against mobile WAHAS networks, Chapter 7.

2.3. Selection of the Detection Confidence Index (γ) Value

The detection confidence index is a design parameter in local monitoring used to

enhance the capability of detection. However, γ introduces the possibility of framing

among nodes. Framing is the process by which an innocent node is deliberately proved to

be malicious by a quorum of malicious nodes. Therefore, the value of γ has to be chosen

judiciously. The exact value of γ is application-specific and may range between one and

infinity. A small value for g increases the chance of successful framing, while a large

value of g increases the rate of harm a malicious node causes the network before being

locally detected and isolated. If we set g to be infinity it means that a node only trusts

itself in revoking a suspicious node, thus the local framing probability goes to zero. Any

malicious node can be fully isolated as long as γ or more good guards detect it. However,

if the number of good guards is less than γ, the node is only partially isolated from the

network. Only the good guards that directly detect the malicious activity of the node

isolate the malicious node. However, other neighbors of the malicious node continue to

consider the malicious node as a legitimate node.

 14

3. KEY MANAGEMENT: SECOS

Cryptographic keys are needed for secure communication between legitimate

WAHAS nodes. The cryptography protocols for encryption and authentication use the

keys. However, the security guarantees of any of these protocols are conditioned on the

keys being available to all the legitimate nodes and no other nodes. The management of

the keys (the process by which keys are generated, stored, protected, distributed, used,

and destroyed) in a large-scale network of up to hundreds of thousands of sensor nodes is

thus an important problem. Many WAHAS nodes are constrained in their energy

availability, memory and computational resources, and communication bandwidth. These

constraints make it impractical to use asymmetric algorithms for key management. These

algorithms are computationally intensive, and consequently, energy intensive since at

their heart they involve exponentiation and modulus operations of large numbers. The

common approach, therefore, is to use symmetric key cryptography where the two end-

points of a communication share a secret key. The challenge is to manage the keys for

symmetric cryptography in a scalable manner. The scalability goal implies that the end-

to-end communication delay, energy overhead for key management, and the dollar cost of

deployment should increase gradually with increasing the size of the sensor network.

Since WAHAS nodes may be placed in hostile environments, we must also design for the

possibility that some nodes may be taken over or compromised. The WAHAS nodes are

inherently less reliable than wired platforms and therefore, a protocol must be designed to

function in the face of some nodes being unavailable. Radio communication is

recognized as more energy consuming than computation by several orders of magnitude

[41]. Consequently, the key management protocol should minimize the number of

overhead control messages and the overhead number of bytes added to data messages.

 15

Some symmetric key management protocols rely on a common shared secret key

between all the nodes in the network leading to a highly insecure deployment. At the

other end of the spectrum, some protocols have a separate shared key for each pair of

nodes, which leads to a large amount of key storage that grows as the square of the

number of nodes, and is therefore not scalable. The requirement to minimize

communication overhead makes most of the proposed purely symmetric algorithms

impractical for many WAHAS networks such as sensor networks since they add a fixed

size overhead number of bytes to the payload and sensor networks typically have small

sized packets.

In this chapter, we propose and analyze a protocol called SECOS (Scalable &

Energy-Efficient Secure Communication On Sensors) for key management in sensor

networks that uses symmetric cryptography. The high-level design goals in SECOS are to

(i) provide a scalable and secure key distribution channel for any-to-any communication

in a large-scale sensor network, (ii) minimize the adverse fallout of compromising any

sensor node, (iii) make key management energy efficient, and (iv) reduce the end-to-end

delay of secure data communication.

Using the well-known approach of node clustering [36]-[40], SECOS divides the

sensor field into multiple control groups and assigns a rotating control node to each

group. Communication within a group occurs through the use of keys exchanged with the

help of the control node, while inter-group communication involves establishing a secure

channel between the respective control nodes through the involvement of the base station.

Effectively, SECOS imposes a three-level hierarchy of the nodes – a single base station,

multiple control nodes, and a large number of sensing nodes. Of these, only the base

station is fixed, assumed to be secure and assumed not to have any resource constraints,

while all the rest, including the control nodes, are generic sensor nodes. Although node

clustering is a well-known technique, it has to be used with special care for key

distribution to protect the network against the compromised nodes that play a special role

in node clustering. The control nodes are assumed to be susceptible to compromise and

are monitored and can be removed from their privileged role. SECOS also provides

techniques for secure initial deployment and revocation of suspect nodes.

 16

A key decision choice in SECOS is the control group size. We present a simple

mathematical analysis to determine an upper bound on the control group size, due to the

resource constraints on the control node and the allowable security. We then present an

equation that quantifies the energy cost of key management in terms of several factors,

including the control group size, and derive the optimal control group size for the most

energy-efficient key management.

A promising approach for sensor key management has been proposed in a system

called SPINS [63]. SPINS uses the base station as an intermediary for secure

communication between any two nodes. We create a simulation model for comparing

SECOS and SPINS with respect to end-to-end data latency and energy overhead of key

management. For a fair comparison, we make the key caches also available to SPINS,

though the original work does not mention caches. The simulation results show that

SECOS reduces the energy consumption by a factor ranging from 1.2 to 7 and the end-to-

end data latency by a factor of 1.05 to 1.50 depending on the communication pattern and

the cache size. A large cache means keys are available locally and then SECOS performs

comparably to SPINS. However, this also implies additional storage requirement and the

deployment is less secure to nodes being compromised. We provide a mathematical

analysis to quantify the probability of exposing the communication between two

legitimate nodes as a function of the number of compromised nodes. This is done for

SECOS, SPINS [63], and a key pre-distribution protocol due to Du [64] and SECOS is

shown to perform better for large operating regions.

Many key management protocols for ad-hoc networks have been proposed in the

literature. They suffer from one or more of the problems of weak security guarantees if

some nodes are compromised, lack of scalability, high energy overhead for key

management, and increased end-to-end data latency. In general, the key pre-distribution

protocols [1],[9],[13]-[16],[63],[64], [18]-[20],[25] expose the security of the whole

network when a certain fraction of nodes is compromised. Kerberos-like protocols (such

as [62]) divide the network into several sections with privileged nodes for key

management in each section. If the privileged node fails or is compromised, secure

 17

communication in the entire section becomes impossible. A detailed comparison with

existing schemes is presented in Section 8.1.

The contributions of this work can be summarized as follow,

1. It provides a scalable protocol for key management that is sensitive to the sensor

node’s resource constraints, including computation, communication, and bandwidth.

We believe that current technology trends may remove some of the resource

constraints, such as memory and processing power, in the foreseeable future, while

the constraints of bandwidth and energy are expected to remain for some time to come.

2. It presents an energy efficient method for key management and substantial energy

savings are demonstrated without introducing specialized high cost nodes in the

network.

3. The protocol is resilient to some nodes being compromised due to attacks. In fact, it

guarantees that, under a given set of assumptions, the communication between two

uncompromised nodes cannot be exposed, irrespective of the number of other nodes

that are compromised. Similarly, the protocol can tolerate some nodes being

unavailable due to natural failures.

SECOS uses several techniques well-known in the network security domain, such

as node clustering, key refreshment, and neighborhood watch. Its contribution lies in

synthesizing the different techniques into a cohesive protocol and applying that to the

sensor network environment, with its distinctive constraints, chiefly, energy and

susceptibility of the nodes to being physically compromised. We show that SECOS

performs better with respect to existing state-of-the-art protocols for large parts of the

normal operating region of sensor networks. In this paper, we do not describe the design

in SECOS to address all forms of ID spoofing attacks and secure node addition to the

existing network.

The rest of this section is organized as follows. Section 3.1 presents the design of

SECOS. Section 3.2 discusses how SECOS handles different classes of attacks. Section 3.3

presents a mathematical analysis for the maximum control group size and the energy-

wise optimal control group size. Section 3.4 describes the message overhead in SECOS.

Section 3.5 describes the experiments and the results.

 18

3.1. Description of SECOS

We use the following basic techniques in the design of SECOS.

1. Refreshing the keys and purging the caches. The keys are periodically refreshed and

the key caches are purged regularly for two important security goals. The first is to

minimize the adverse fallout of compromising some nodes in terms of the number of

old messages that are exposed. The second goal is to defeat possible cryptanalysis

attacks by analyzing plaintext and ciphertext pairs processed with the same encryption

key.

2. Changing the nodes which play a privileged role. We do not wish to assume a large

number of specialized well-protected nodes in our environment. Therefore, we design

for the possibility of the nodes with special key management functionality being

compromised and provide for them to be changed either on a time schedule, or when

triggered by anomalous events. Another important goal of the control role rotation

among the members of the control group is to achieve load balancing and even energy

drain since the control node’s activities are more demanding.

3. Neighborhood watch. Each node maintains a list of its immediate neighbors and can

overhear neighborhood traffic in order to detect compromised nodes.

3.1.1. System Assumptions and Attack Model

Attack model: A malicious node can be either an external node that does not know the

cryptographic keys, or an insider node, that possesses the keys. An insider node may be

created, for example, by compromising a legitimate node. All these malicious nodes can

exhibit Byzantine behavior and can collude amongst themselves. Any malicious node can

for example eavesdrop on the traffic, inject new messages, replay and change old

messages, spoof other identities, or pass traffic from one location of the network to a

colluding node in another location (wormhole attack).

System assumptions: SECOS assumes that the links are bi-directional, which means that if

a node A can hear node B then B can hear A. Also, it assumes that the network has a static

topology, though the functional roles a node plays (e.g., cluster head, data aggregator,

 19

etc.) may change. SECOS also assumes that the sensor nodes are distributed uniformly on

the sensor field. Moreover, it is assumed that the base station in SECOS is secure, not

prone to failures, and does not have any resource constraints (bandwidth, energy, etc.).

Protection against failures can be achieved by fault tolerant techniques such as

redundancy for natural failures, or through a variety of possibly expensive security

mechanisms, such as tamper proof hardware, for malicious failures. SECOS assumes that

there is a certain amount of time from a node’s deployment, called the compromise

threshold time (TComp) that is minimally required to compromise the node. We believe as

in [20], [43], [44], that a sensor node deployed in a security critical environment must be

designed to sustain possible break-in attacks at least for a short interval (say several

seconds) when captured by the adversary; otherwise, the adversary could easily

compromise all the nodes and thus take over the network. Therefore, instead of assuming

that sensor nodes are tamper resistant which often turns out not to be true and very

expensive, we assume there exists a lower bound on the time interval Tcomp that is

necessary for an adversary to compromise a sensor node, and that the time TND for a

newly deployed sensor node to discover its immediate neighbors is smaller than Tcomp. In

practice, we expect TND to be of the order of several seconds, so we believe it is a

reasonable assumption that Tcomp > TND. The current generation of sensor nodes can

transmit at the rate of 40 Kbps [45] whereas the size of an ID announcement message is

very small (12 bytes if an ID is 4 bytes and the hardware address size is 8 bytes).The

probability of collision is quite small when a non-persistent CSMA protocol is used for

medium access control [46]. Moreover, a node can broadcast its ID multiple times to

increase the probability that it is received by all its neighbors. Furthermore, SECOS

assumes that no external node exists in the network during the neighbor discovery.

3.1.2. Keys in SECOS

 SECOS uses five types of keys: the master key, the volatile secret key, the session

key, the authentication key (MAC key), and the pseudo random number generator key

(seed). The following notations for keys are used throughout this chapter. KAB (=KBA)

refers to any secret key shared between A and B. The five kinds of keys – the master key,

 20

the volatile secret key, the session key, the Authentication (MAC) key, and the random

number generator key, will be denoted respectively as MKAB, VKAB, SKAB, AKAB, and RKAB

Figure 3.1. E(K,X) denotes the encryption of a message X using key K. MAC(K,Z⊕X||Y)

refers to the application of the MAC algorithm, keyed by key K, to the result of the

concatenation of Y with the result of Z xor-ed with X. H(X) is the hash value of X. Any

symmetric key encryption algorithm suitable for sensor networks may be used for

encryption and decryption. It is desirable that the cipher text be the same length as the

plaintext in order to reduce the message transmission overhead. An example of such a

protocol is the counter mode (CTR) of block ciphers [12],[14]. Any underlying block

cipher algorithm could be used with the CTR mode, e.g. DES [32] and its variants 3DES

and DES-X, Rijindael [33], AES [33], TEA [34], and RC5 [35].

{MKMA, MKMB, MKMC}, {VKMA, VKMB, VKMC}
{CounterMA, CounterMB, CounterMC}

(a)

{JKMA, JKMB, JKMC}, J=M,S,A

{H(VKMA), H(VKMB), H(VKMC)}

MKBM

SKBM

AKBM

RKBM

H(VKBM)

MKCM

SKCM

AKCM

RKCM

H(VKCM)

MKAM

SKAM

AKAM

RKAM

H(VKAM)

SKXY = MAC(MKXY,SC(X,Y)⊕ VKXY|| 1); AKXY = MAC(MKXY, SC(X,Y)⊕ VKXY|| 2); Secure Session
RKXY = MAC(MKXY,SC(X,Y)⊕ VKXY|| 3); New VKXY = H(VKXY), the hash value of VKXY.

(b)

MKAM

CounterAM

VKAM

MKBM

CounterBM

VKBM

MKCM

CounterCM

VKCM

M

A B C

M

A B C

M

A B C

M

A B C

Figure 3.1: Initial key setup between base station and three sensing nodes

The master key is burnt into each sensor node at manufacture time and is shared

with the base station. It is not used for encrypting message communication channels, but

instead to generate other keys to be used for encryption and authentication.

Compromising the communication channel does not reveal the master key since it is not

used in any channel communication. The volatile secret key is also shared between the

node and the base station. It is used, along with the master key, to generate the session

and MAC keys. After each generation of session and MAC keys, a new volatile secret key

is generated by applying a hash function to the current volatile secret key, after which the

 21

current one is deleted and replaced by the new one. This provides SECOS with forward

secrecy; if a node gets compromised, previous communications of the node are not

exposed. This is due to the fact that the attacker is not able to generate the old keys since

the earlier volatile secret keys are not available at the time of compromise, even though

the master key is. As in the case of the master key, crypt-analyzing the communication

does not reveal the volatile secret key since it is not used in any channel communication.

The base station also shares two counters with each sensing node, one for each

direction (sending and receiving) of communication SC(M,S) and RC(M,S). These

counters are kept synchronized by incrementing them on messages sent or received

between the sensor and the base station. During synchronization, the receive-counter

value at one party is matched with the send-counter value at the other party. However, the

counters need not to be exactly synchronized; they can be off by some known number

Sync_diff. When the counters are not synchronized, the key generated at the base station

using SC(M,S) may not match the one generated at the sensor node using RC(S,M).

Therefore, the sensor node adjusts (increments/decrements) RC(S,M), generates the key,

and compares the key with that generated by M. The sensor node continues to do that

until the keys are either matched or the number of adjustments to RC(S,M) equals

Sync_diff. In the latter case the sensor nodes initiate counter synchronization with the

base station. In addition to the conventional use of counters to achieve semantic security,

they are used in SECOS as a variable input for key generation. The semantic security

prevents a malicious node from replaying old, properly authenticated messages that was

used to establish keys between legitimate nodes. The use as the variable input is required

in the key generation process to introduce randomness. These counters are used to replace

the job of a nonce or a sequence number that ordinarily would be attached to every

message to prevent the replay of old messages. However, due to the fact that

communication is far more energy consuming than computation [49], we use the shared

synchronized counters to minimize the transmission overhead of the sequence number or

the nonce with every message. Figure 3.2 presents an algorithm that is used to

synchronize the counters during key refreshment. Therefore, for most of the time, the

counter synchronization does not incur any overhead and comes as a by-product of key

 22

refreshment. For example during the course of our simulations no counter

synchronization is required beyond that with the key refreshment. New keys are

generated by applying MAC and hash functions over data that includes these counters.

Figure 3.1 (a) shows the initial keying material that includes the master key, the volatile

secret key, and the counters.

The rest of the keys are derived from the previous two keys with the help of MAC

(e.g. HMAC) and hash (e.g. SHA-1) functions that are preloaded on the base station and

the sensors. The session key between the base station and a sensor node is generated by

the base station, by applying a MAC function over the result of concatenating the binary

representation of the number 1 with the result of the SC(M,S) XOR-ed with the volatile

secret key. The same session key is generated by the sensor node by applying a MAC

function over the result of concatenating the binary representation of the number 1 with

the result of the RC(S,M) XOR-ed with the volatile secret key. The MAC function is

keyed by the master key as shown in the bottom of Figure 3.1 for SKXY. The purpose of

the session key is to provide data confidentiality for communication between two nodes.

A similar mechanism is used to generate a shared authentication key between the base

station and the sensing node with concatenation of the binary representation of the

number 2 instead of the number 1, as shown in the bottom of Figure 3.1 for AKXY. SECOS

uses independent keys for encryption and authentication since it prevents any potential

interaction between the primitives that might introduce a weakness and is therefore a

good security design principle. SECOS uses the standard key refreshment procedure for

the session key and the authentication key. The session key and the authentication key are

refreshed periodically or when triggered by a certain event, such as the detection of an

attack. The pseudo random key is generated by each entity by applying a MAC function

over the same parameters as for the session key with concatenation of the binary

representation of the number 3. This key is used as a seed for the pseudo random number

generator (e.g. RC4), which is used to produce the stream cipher such as in the CTR

mode of DES [14]. This key is refreshed only when the pseudo random string it generates

is exhausted, which depends on the pseudo random number generator algorithm used.

 23

1. M generates a new session key: SKMS = MAC(MKMS, SC(M,S) ∆ VKMS || 1).

2. M generates a new Authentication key: AKMS = MAC(MKMS, SC(M,S) ∆ VKMS || 2).

3. M S: CounterMS, Change, MAC (AKMS, CounterMS || Change).

4. S generates a new session key: new (SKSM) = MAC(MKSM, RC(S,M) ∆ VKSM || 1).

5. S generates a new Authentication key: new (AKSM) = MAC(MKSM, RC(S,M) ∆ VKSM || 2).

6. S generates the next volatile secret key: VKSM = H(VKSM).

7. S M: CounterSM, MAC(AKSM, CounterSM).

8. M generates the new volatile secret key: new (VKMS) = H(VKMS).

9. After the key refreshment is completed, all the old keys are purged. 4,5,6,8&9

37

1,2&9

SS

MM

Figure 3.2: Key refreshment and counter synchronization procedure

Sometimes a packet sent from a source may not reach its final destination either

due to a malicious event such as a compromised node in the path dropping the packet or

due to natural node or link failure. As a result, the shared counters between these two

parties may become unsynchronized, and a procedure has to be invoked to resynchronize

them. Key refreshment is accompanied by shared counter synchronization between the

two parties. However, the counter synchronization could be launched without the need to

refresh any key. Figure 3.2 shows the key refreshment procedure between, the base

station, M, and a regular sensor node, S. The one-bit flag, Change, is used if the counter

synchronization is accompanied by key refreshment.

3.1.3. SECOS Structure

A flat layout with a powerful base station and sensing nodes distributed through the

sensor field and the base station being responsible for key management is clearly not

scalable to a large number of nodes. This motivates the hierarchical structure of SECOS.

The hierarchical structure we propose for SECOS has clusters of sensor nodes based on

geographical proximity. Each cluster has a specially designated node called the Control

Node, which plays a privileged role for key management. The cluster is called a Control

Group. SECOS does not impose any special requirements on the control node, and it can

be any ordinary sensor node in the cluster. This has the advantage of reducing the

possibility of targeted DOS attacks to the specialized nodes. The control node acts as the

intermediary for key management. It is periodically changed for the purpose of security

 24

(the control node may get compromised), and for more even energy drain (the control

node and its neighboring relay nodes drain energy faster). This hierarchical structure

shown in Figure 3.3 consists of three levels of nodes. The root is the base station that is

assumed to have powerful resources and is well protected. The internal nodes are regular

sensor nodes selected to play the role of control nodes. The leaves are regular sensor

nodes.

M

C1 CB. . .

S S. . .SS SS. . . S SS. . . S S. . .SS SS.
S: Sensing Node Ci : Control Node M: Base Station

Control GroupControl Group

C2

Figure 3.3: Three level hierarchy for key management in SECOS

An important parameter in SECOS is the size of the control group. The size has two sets

of determining factors, which exert opposing effects. The size has to be bounded within a

maximum due to three factors―the resource constraints of the control node, such as the

communication bandwidth and the computation capacity; the security concerns of not

exposing too many nodes if the control node is compromised; and limiting the energy

overhead of intra-group key management by bounding the distance between a sensor

node and its control node. However, the size has to be kept above a threshold so that most

communication occurs within a control group rather than involving multiple control

groups since intra-group communication is more energy efficient than inter-group

communication. Section 3.3 provides a detailed mathematical analysis of the control

group size.

 25

3.1.4. Topology Building and Maintenance

It is necessary for the base station to have information about the topology of the

network and for each node to have some local topology information. Here, we discuss

how such information is initially obtained and subsequently how it is updated and

maintained.

As mentioned earlier in Section 3.1.2, each sensor shares a master key, a volatile

secret key, and two counters with the base station from which each sensor node, upon

deployment, computes shared session and MAC keys with the base station. As a result, a

secure session is established between each node in the network and the base station. Also,

in the initial deployment phase of the network, each node builds a list of its neighbors and

communicates this list to the base station. SECOS assumes that a node cannot be

compromised and no external malicious nodes exist within the time it takes to build this

list, thus implying that the base station gets a correct view of the neighbor information.

We say that two nodes, X and Y, are neighbors if X can hear the transmission of Y. Since

SECOS only considers bi-directional links, this implies that Y can also hear the

transmission of X. The list of neighbors at each sensor node is built by locally

broadcasting a HELLO message, which is a small packet holding the ID of the sender,

and then receiving a reply message, which is also a small packet holding the ID of the

sender from each node that heard the HELLO message. As soon as the sensor nodes are

spread in the sensor field, each node S broadcasts the HELLO message. For each reply

received, S adds the sender ID to its neighbor list. Then S sends the full list to the base

station authenticated using the authentication key shared between S and M (AKMS). Note

that neighbor discovery is secure based on our assumption that no malicious nodes exist

in the network during the neighbor discovery. Also note that neighbor discovery incurs a

relatively negligible overhead since it is performed only once during the deployment of

the network which is assumed to be static. This process is shown in Figure 3.4. The base

station uses these lists to build a connectivity graph that represents the initial network

topology and from that the control groups. The connectivity graph is built using an NµN

connectivity matrix that is initialized to 0. For every member i in the neighbor list of S

that M receives, M sets the entry (S,i) of the connectivity matrix to 1. The base station

 26

generates the control groups using the connectivity matrix and the knowledge of the

limits on the control group size and the maximum number of hops in the control group.

For example, to generate the first control group, M adds node number 1 to the group, then

the neighbors of node 1 are added, then the neighbors of each neighbor are added, and so

on until the full control group is generated.

1. S one hop broadcast: HELLO.

2. X S: HELLO reply.

3. S: adds the ID of X to its neighbor list (Snl).

4. S: repeats 2 and 3 for every HELLO reply.

5. S M: MAC(AKSM, Snl || SC(S,M)).

M

5

S

X
1

2
The communication range of S.

A neighbor of S (e.g. X).

3&4

1
1 1

1

Figure 3.4 : Building the topology

Alternately, a secure routing protocol such as INSENS [23] can be used to build

the topology information and communicate it to the base station during the routing table

construction.

The base station has a global view of the entire network topology. When a

compromised node is detected, its neighbors are informed, possibly through authenticated

multicast [22].

3.1.5. Assigning and Changing the Control Node

The base station divides the network, based on the topology it built during the

setup phase, into control groups consisting of geographically proximal nodes. For each

control group, it then designates a node as a control node, say C, and sends it a list of

session keys that the base station generates for each node in the group. The list of keys is

sent in a message that is encrypted using the shared session key between the control node

and the base station (SKMC). The session key is not sent to the sensing nodes in the group.

Each sensing node generates that key on its own by applying a MAC function over the

 27

result of concatenating the binary representation of 1 with the result of the RC(S,M)

XOR-ed with the volatile secret key shared between the sensor node and the base station.

The MAC function is keyed by the master key. This process is exactly identical to how

the shared session key between the sensor node and the base station is generated

independently by both parties as shown in the lower part of Figure 3.1 for SKXY.

When a sensor node serves as a control node, it does not perform any sensing and

uses all its available storage to store the keys. The motivation for this is to restrict the

functionality of the control node to key management to facilitate control node monitoring

by its neighbors. If the control node were to also send sensory data, it would be

impossible for the neighbors to distinguish between control and data traffic since both are

encrypted. Also, the key management functionality drains more energy than the regular

sensing functionality and we wish to have as even a drain among the different nodes as

possible. Finally, the control node requires memory resources to store the keys and does

more computations to facilitate key management and we wish to reserve as much

resource as possible for the control node to serve its control role. Typically sensor

networks have redundant deployments whereby an event can be detected by multiple

sensors. This leads us to believe that a reasonable number of nodes (the control nodes)

may be exempted from the sensing functionality without adversely affecting the coverage

on the sensor field.

After the control node, C, receives the list of nodes in the control group, it

broadcasts to the group members a message claiming that it is the new control node for

the group. This message includes the list of neighbors of the control node that was built

during the initial topology discovery phase. When a group member receives the claim, it

buffers the claim. When the member needs to use C, it challenges C. The heart of the

challenge lies in generating a random number using the random number generation key

introduced earlier, authenticating it with the MAC key that should be available at the

legitimate control node, asking C to do some processing on the number, and send it back

authenticated. During this challenge the two nodes establish two shared counters between

them. These two counters provide the same functionality as the SC(M,S) and RC(M,S)

that are shared between each node and the base station. If the new control node

 28

successfully passes the challenge, the sensor node replaces its current control node with

the new one and if it is a neighbor node to the control node, it stores the list of neighbors

of the new control node for the purpose of control node monitoring (Section 3.1.9). Note

that now the node has a shared session key with the control node, which is different from

the shared session key with the base station. The initial control node set up is shown in

Figure 3.6. Figure 3.5 shows how a node, S, challenge a new control node, say C, in

addition to the establishment of the shared counters between them.

1. S hears the claim of C as a control node and buffers that claim.

2. If S needs to use C, it generates two keys, SKSC and AKSC.

3. S selects a random value using the pseudo-random number generator to be used as its SC(S,C).

4. S C: SC(S,C), MAC(AKSC, SC(S,C)).

5. C sets its RC(C,S) = SC(S,C).

6. C selects a random value using the pseudo-random number generator to be used as its SC(C,S).

7. C S: SC(C,S), MACKSC(3)(AKCS, SC(C,S) ∆ SC(S,C)).

8. S sets its RC(S,C) = SC(C,S).

SS

CC

2&3

1

5

64

Broadcasting

Figure 3.5: Challenging the control node

As mentioned in Section 3.1, we want to minimize the adverse fall out of a

control node being compromised and provide tolerance against control node failures by

regularly changing the control node. The control node is changed by the base station

based on a certain time schedule, or when some anomalous events are detected, e.g., a

compromised control node is detected. When the base station decides to initiate the

change, it follows the same procedure as outlined above in this section for a new control

node being assigned. In response to the announcement from the new control node, the

previous control node, after challenging the new control node and being satisfied, flushes

all the cryptographic data in its cache and returns to its normal sensing mode.

 29

M

A

B

C

1&2
3

4

M

A

B

C

1&2
3

4

1- The base station, M, selects a new control node, C, for the control group, G.

2- M generates a new session key for each node, i, in G.

SKiC = MAC(MAMi, SC(M,i) ⊕ VKMi || 1)

3- M sends to C a list of these generated session values

M C: E(SKMC, {SKiC, IDi}), MAC(AKMC, E(SKMC, {SKiC, IDi}) || SC(M,C))

4- C announces its presence

C G members: I am a control node for group G

Figure 3.6: Control node refreshment

3.1.6. Key Caches

Each sensor node has two types of caches: (i) Regular cache: stores the session

keys used to encrypt data in message communication between itself and any other node.

(ii) Key request cache: When a node initiates a data exchange and it does not have the

session key for the receiver, it initiates a key establishment process. Subsequently, it may

generate more data packets for the same receiver, before the key has been established.

The key request cache stores the IDs of such receivers.

 In addition, a control node has two types of cache: (i) Ring cache: It stores the

session keys between itself and each node in its control group. (ii) Control cache: It

stores the session keys with other control nodes, which are used for inter-group

communication.

3.1.7. Node to Node Communication within Control Group

When a node, say A, needs to communicate with another node within its control

group, say B, it first checks in its regular cache for the session key. If present, it uses the

cached key. If not present, A generates two random keys K and iK and encrypts one of

them (iK) using the other (K) as a key. Let us call K the Envelop. Node A sends the

encrypted message E(K, iK) to B. Node A encrypts the key (K) and sends it to the control

node C as E(SKAC,K). The control node recovers the key K, encrypts it E(SKBC,K), and

forwards it to the destination B. When B receives the key K from the control node, it can

 30

decrypt and obtain the key iK that will be used as the shared session key between A and B.

When B receives the message that A sent, it stores the message temporarily for the key to

arrive from the control node. If B does not receive the key from the control node within a

specified time, it drops the packet. Nodes A and B store the session key in their regular

cache and continue to use it till the control node is changed, or the key is evicted due to

cache replacement. The intra-group communication is shown schematically in Figure

3.7(a), and the detailed message communication is shown below:

1. A B: A, B, K(iK)

2. A C: A, B, E(SKAC,K), H(K), MAC(AKAC, A || B || E(SKAC,K) || H(K) ||SC(A,C)).

3. C A: A, B, E(SKBC,K), H(K), MAC(AKBC, A || B || E(SKBC,K) || H(K) || SC(C,B))

The MAC function is taken over the encrypted value of the Envelop. This has the

advantage that the receiver doesn’t have to decrypt the Envelop if the MAC authentication

fails, which saves some computation.

3.1.8. Node to Node Communication across Control Groups

If node A wishes to communicate with a node that lies in a different control group,

then two control nodes are involved. Say A lies in group G1 and B in G2 and the

respective control nodes are C1 and C2. If A does not have the session key with B cached,

A generates two random keys (K and iK) and sends the encrypted message E(K, iK)

directly to B. Node A encrypts the key (K) and sends it to C1 as E(SKAC1, K). Node C1

checks its control cache for the session key between itself and C2. If not present, C1

generates a key, say U, and sends it encrypted to the base station as E(SKC1M, U). The

base station forwards the key encrypted to C2 as E(SMC2, U). Notice that there is no need

to send a direct packet from the source control node to the destination control node as in

the communication between two nodes within a control group, since the base station is

assumed to be trusted. After the session key between C1 and C2 is established (SKC1C2 =

U), C1 sends the key K to C2 as E(SKC1C2, K), and C2 forwards the key to B as E(SKC2B,

 31

K). Node B now has the key K and the message E(K, iK) from A and proceeds as in the

intra-group communication to extract iK and use it as the session key.

H(K):The hash value of K; SKxy: Session key between X & Y; M: Base Station;
A,B: Sensing Nodes; C: Control Node; (K,) : the Envelop and the key between A
and B; U : the session key between C1 and C2.

: A secure session

M

A

B

C

(1) E(K,)
(2) E(SKAC, K),H(K)
(3) E(SKCB, K),H(K)
(4) New secure session

2

31

M

BA

C1 C2

1

2
3

4

6
7

(1) E(K,); E(SKAC1, K), H(K)
(2) E(SKC1M, U)
(3) E(SKMC2, U)
(4) Secure Session (C1,C2)

(5) E(KC1C2, K), H(K)
(6) E(K C2B, K), H(K)
(7) Secure Session (A,B)

(a) (b)

4

1

5

~

K

~

K
~

K

Figure 3.7: (a) Intra-group communication; (b) Inter-group communication using

two control nodes. The two control nodes do not have a secure session when the

process starts.

The inter-group communication is shown schematically in Figure 3.7(b), and the

detailed message exchange is shown in the following steps:

1- A B: A, B, E(K, iK)
2- A C1: A, B, E(SKAC1, K), H(K), MAC(AKAC1, A || B || E(SKAC1, K) || H(K)

||SC(A,C1))
3- C1 checks its control cache for C2, if an entry exists go to step 6
4- C1 M: C1, C2, E(SKC1M, U), MAC(AKC1M, C1 || C2 || E(SKC1M, U) || SC(C1,M))
5- M C2: C1, C2, E(SMC2, U), MAC(AKMC2, C1 || C2 || E(SMC2, U) || SC(M,C2))
6- C1 C2: A, B, E(SKC1C2, K), H(K), MAC(AKC1C2, A || B || E(SKC1C2, K) || H(K)

||SC(C1,C2))
7- C2 B : A, B, E(SKC2B, K), H(K), MAC(AKC2B, A || B || E(SKC2B, K)|| H(K)

||SC(C2,B))

 32

3.1.9. Monitoring the Control Node

The control node plays a privileged role in key management and a compromised

control node can substantially affect the security of the network. Hence, it is important to

monitor that the control node’s behavior does not deviate drastically from the expected

functionality for key management. Occasional deviation is expected due to naturally

occurring failures. Local monitoring, presented in Section 2.1, is used to detect any

deviation in the functionality of the control node. If the control node is suspected as a

malicious node, then the local response algorithm (Section 2.2.1) is called to propel the

node from the network. However, it is more involved to detect if the control node C

forwards a garbage packet instead of the Envelop. Since the communication from source

A to C and C to the destination B are both encrypted, Figure 3.7 (a), local monitoring

cannot observe the traffic. To solve the problem, A appends the hash of the Envelop to

the packet. The hash is compared by C and if correct, re-appended to the packet before

forwarding to B. Local monitoring can observe the hash values coming in and out of C

and thus provide detection if the incoming and the outgoing hash values are different. If,

however, the values are identical and B detects a mismatch, then C is considered

suspicious by B that calls the local response algorithm (Section 02.2.1) to inform the

neighbors of C about the detected suspicious activity.

3.2. Security Analysis

In this section, we discuss the ability of SECOS to deal with the three major classes

of security attacks–confidentiality violation, denial of service attacks, and authentication

violation.

3.2.1. Confidentiality Attacks

The key exchange protocol between two end points of a communication is

described in Sections 3.1.7 and 3.1.8. We now show that this key exchange protocol does

not reveal the shared key between two legitimate nodes irrespective of the number of

compromised nodes if either of the following features is used. Note that these features

are individually sufficient but not necessary for the proposition to hold.

 33

1. The initial message E(K, iK) sent by the initiator of the key exchange, A, to the

destination, B, cannot be obtained by the control node, or

2. The two parties involved in the key exchange, A and B, share an old session key in

addition to iK and use a combination of the new and previous session key for the

communication. For example, if the previous session key was K , then A can use iK ⊕

K as the current session key for communication with B. In case a previous shared

session key is not available, nodes A and B must establish the session through the

secure base station and not through the control node.

Proposition: Under feature 1 or 2 above, it follows that compromising any number of

nodes other than the two end-points does not reveal the shared key between them. This

proposition holds even if the control node for the two end points is compromised.

Proof:

Case1: If feature number 1 is valid, then B is the only node in possession of the

encrypted packet holding the key E(K, iK). Thus, the control node, C, does not have it

and though it has K, it can never obtain the shared key iK .

Case2: If feature number 2 holds, the proposition can be proved using mathematical

induction as follows.

Base case: Let the number of compromised nodes in the network be NC. If NC = 0,

there is no compromised node and the claim is trivially satisfied. If NC =1, this

compromised node could be either the control node of A and B or any other node.

If it is not the control node then the session can not be disclosed since only the

control node, other than A, can decrypt the packet holding the Envelop. Consider

that the single compromised node is the control node. Two cases are possible. (1)

Nodes A and B have a previous shared key using an old control node. The current

compromised control node does not know this key because the old control node

was not compromised since the current control node is the only compromised node

in the network by assumption. (2) Nodes A and B do not have a previous shared

old key so they use the secure base station to start up the shared key and not the

compromised control node. In both cases 1 and 2, the compromised control node

cannot disclose the secure session between A and B.

 34

Inductive step: Assume that the session between A and B is secure under (NC -1)

compromised nodes, we want to show that it will be secure when a new node gets

compromised for a total of NC compromised nodes.

Inductive proof: If the NC
th compromised node is not the control node, the claim is

trivially satisfied. If the NC
th node is the control node, then as in the base case, two

cases are possible. (1) Nodes A and B share an old key (Kold), or (2) nodes A and B

do not share an old key. In case (1), by the induction hypothesis, none of the (NC -

1) compromised nodes know the key, Kold. The new compromised node does not

know Kold since the key was exchanged before the node got compromised. So if

the new key exchanged through the compromised control node is Knew , then the

new session key will be (Kold ∆ Knew). While the compromised node can know

Knew, it cannot know Kold. In case (2), nodes A and B do not share an old key and

hence obtain their key directly from the secure base station. This exchange is done

using the shared session key with the base station and therefore the key is

unknown to the control node. This completes the proof of the proposition.

Comments: The proof excludes the following cryptanalysis scenario. Assume the two

nodes A and B have the startup key Kold from the main base station and then they

use the Knew1 from control node C1, Knew2 from control node C2, …, Knewm from

control node Cm. An attacker may capture the packet holding Kold and crypt-

analyze it to obtain Kold. By the time this is done, the control node is Cm. Then the

session key at that time will be Kold∆Knew1∆Knew2∆…∆Knewm. To know this key,

the attacker must either compromise all the control nodes C1 up through Cm or

crypt-analyze all the packets holding the keys Knew1 up through Knewm . It is

expected that m will be a large number due to the small number of cipher packets

the adversary has to crypt-analyze a key. It will be practically infeasible to

compromise selectively all the control nodes C1, …, Cm, especially considering

that control nodes are pseudo-randomly chosen from among the ordinary sensor

nodes. Alternatively, it will be practically infeasible to crypt-analyze all the keys

Knew1, …, Knewm.

 35

However, it is possible, though difficult, that neither of the features mentioned

above are satisfied. In feature 1, the control node may be able to buffer all packets

between A and B, either directly or with the help of other malicious colluding nodes, and

attempt to decrypt them and thus acquires iK . Even if the communication of the initial

message and the Envelop are randomized in time and order, it is possible that C buffers

all messages within a window. Feature 2 is violated if the two parties do not share an old

key and are unwilling to initiate key exchange using the main base station, possibly

because it is far from either party. Section 3.2.1.1 presents a mathematical analysis of the

probability of disclosing the secure session between A and B under certain number of

compromised nodes if neither of the above features is used.

3.2.1.1. Probability of Secure Session Disclosure

In this subsection we provide a mathematical analysis of the probability of

compromising the link between two arbitrary nodes A and B lying in the same control

group with the number of compromised nodes in the network being a parameter. For the

purpose of comparison with other key management protocols, we assume in this analysis

that only compromised nodes may exist in the network (no external malicious nodes). We

perform the analysis for SECOS, SPINS (a representative Kerberos like protocol), and a

protocol by Du et al. [64] (a representative key pre-distribution protocol), and compare

the results. We assume that SPINS has as many base stations as the number of control

groups in SECOS (NB) and that the nodes are uniformly distributed in the sensor field.

For the mathematical analysis, we use a restricted version of SECOS which does

not use the two features mentioned in Section 3.2.1, i.e., the node does not use the

multiple keys from previous control nodes or the communication with the base station

and the control node may overhear communication between the two nodes in its control

group. This serves as a plausible operating region for the protocol where resources are

constrained, the control group size is small, or the control node colludes with a neighbor

of the source-destination pair. The restriction on SECOS also serves to shed light on the

advantages obtained by a specific feature of SECOS, namely using two packets–K(K�) and

the Envelop for key exchange between two arbitrary nodes. Note that if we use the

 36

unrestricted version of SECOS, the analysis would become trivial since the probability of

compromising the link between an uncompromised source-destination pair would be

zero.

To disclose the session key between A and B, an attacker must obtain both the

Envelop (K) and the packet that is sent directly from A to B (E(K, iK)). To obtain the

Envelop, the control node for A and B must be compromised. To analyze the probability

of capture of E(K, iK), we create a bounding path between A and B which is the

rectangular bounding box containing nodes that may overhear the communication from A

to B. This is shown by the dotted box in Figure 3.8. This is an overestimate since we use

a square that circumscribes the circular transmission range of a node. To capture E(K,
iK), there must be at least one node in the bounding path from A to B that is

compromised (we assume no compromised nodes exist in the network). Let the average

number of hops between a pair of nodes in the control group be Hctrl, the density of nodes

in the sensor field be D, and the communication range be R. The probability of capturing

E(K, iK)is less than or equal to the probability of having at least one compromised node

in the bounding path. Let N be the total number of nodes in the sensor field and

SGctrl=N/NB is the size of a control group. Let the number of compromised nodes in the

network be NC and assume that the compromised nodes are uniformly distributed in the

field. Let E2 represent the event that there is at least one compromised node in the

bounding path.

The identity of the current control node in a control group can be easily deduced

by an attacker. However, as mentioned in the assumptions, it takes a finite amount of

time Tcomp to compromise a node. The period of rotation of the control node is smaller

than Tcomp. Thus, starting from an uncompromised network, it will be impossible for an

attacker to compromise the control node after identifying it. So the attack model for the

analysis is that the attacker randomly picks a node to compromise. Let E1 be the event

that this randomly chosen node is a control node, for some arbitrary source-destination

pair A and B.

 37

A B
R2R

(H+1)R

R

Communication rangeA sensor node A-B Bounding path

A B
R2R

(H+1)R

R

Communication rangeCommunication rangeA sensor nodeA sensor node A-B Bounding pathA-B Bounding path

Figure 3.8: The bounding path between A and B

The probability of E1 is

 ()1
#

#
CNCompromised NodesP E

Nodes in Network N
= = (3.1)

The probability of compromising the link between A and B (PA-B) is given by

 () () ()1 2 2 1 1|A BP P E E P E E P E− = = (3.2)

The number of nodes within the bounding path Nbp is given by its area times the density

of nodes in the network.

 () 21 2 2(1)bp ctrl ctrlN H R R D H R D= + ⋅ ⋅ = + (3.3)

Let E3 be the event that the control node exists in the bounding path. Then the probability

of E3 is

 ()3
bp

ctrl

N
P E

SG
= (3.4)

Note that in the previous formula, we consider the size of the control group since A and B

lie within the same control group.

 2 1 2 1 3 3 2 1 3 3(|) (|) () (|) ()P E E P E E E P E P E E E P E= + (3.5)

Let NG = N-NC represents the number of uncompromised (good) nodes in the network.

The number of ways in which we can choose Nbp good nodes is

2
2

G

bp

N
N

− 
 − 

 (3.6)

 38

The total number of ways in which we can choose Nbp nodes is

2
2bp

N
N

− 
 − 

 (3.7)

Since A and B both are assumed to be non-compromised nodes, they are subtracted from

Nbp, NG, and N.

 2 1 3

2
2

(|) 1 2
2

G

bp

bp

N
N

P E E E N
N

 − 
  −  = − −  
  −   

 (3.8)

()

()

()

() 3 3

2

2

2
2

1 1 () 1. ()2
2

2

2 1 2
1 1 (2

2 1 2

G

bpC
C A B

bp

C

ctrlC

ctrl

N
NNP P E P ENN

N

N N

R D HN PNN
R D H

−

   − 
    −      = − − +    −          −     

  − −  
    + −     = − −    −        + −    

()3 3) ()E P E

 
 
 + 
 
 
 

 (3.9)

In SPINS [63], which represents an example of the Kerberos-like protocols, the

base stations are fixed. In order to make the sensor network economical, the authors

assume that the base stations are not equipped with any specialized mechanisms or

hardware to prevent compromise. They only assume that the base station has sufficient

battery power to surpass the lifetime of all sensor nodes, sufficient memory to store

cryptographic keys, and means for communicating with outside networks. Therefore the

base stations in SPINS are equally likely to be compromised as any other sensor nodes.

The model for the adversary is that it can target the base stations for compromising them.

The attacker can identify the base stations and they are fixed so the adversary has enough

time to try to compromise them. Thus,

 ()

 if

1 if

C
C B

BC A B

C B

N N N
NP

N N
−

 <= 
 ≥

 (3.10)

 39

 The protocol by Du et al. [64] represents an example of a key-pre-distribution

scheme and is summarized by us in Section 8.1. The authors present a corresponding

calculation of PC(A-B) as

 ()
1

1
CCN

C
C A B

i

N iN
P

iδ

τ τ
ω ω−

= +

−   = −   
   

∑ (3.11)

Where d is the key space threshold, i.e. compromising (d+1) nodes will

compromise the whole key space. w is the size of the key space’s pool, i.e. there are w

key spaces for each node to pick from. t is the number of different key spaces that each

node holds. The memory requirement at each node is mem = (d+1)µt . Also, they provide

the formula for the probability that any two neighboring nodes can establish a secure

session between them as

()()

()

2
!

1
2 ! !actualP

ω τ
ω τ ω

−
= −

−
 (3.12)

0.00

0.20

0.40

0.60

0.80

1.00

30 80 130 180 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930

Number of Compromised Nodes

Pr
ob

ab
ili

ty
 o

f
Li

nk
 D

is
cl

os
ur

e

SECOS
SPINS
DU

Figure 3.9: Probability of compromising a randomly selected link between two

uncompromised nodes as a function of the number of compromised nodes in the

network.

Figure 3.9 shows the comparison among these three schemes (SECOS, SPINS, Du)

using: w = 50, mem = 200, t=5, and Pactual=0.42 as parameters for Du’s scheme (d is

 40

calculated as 39 based on the memory constraint mem), NB = 20 for SPINS, and. N =

2000, R = 30, D = 15 neighbors for each node, and Hctrl = 10 as parameters for SECOS.

Notice that Du’s scheme has only 0.42 for Pactual while SECOS and SPINS both have

100% probability for any two nodes to establish a secure session between them.

According to Figure 3.9, SECOS has lower probability of compromising a link than the

other two protocols over a large range of the operating region. The probability goes to

one for SPINS when the number of compromised nodes is greater than the number of

base stations. Also, the link disclosure probability goes to one for Du’s scheme when the

number of compromised nodes is greater than the d threshold. However, for a small

number of compromised nodes, Du’s scheme is the most robust.

3.2.2. Denial of Service (DoS) Attack

1. DOS attack against a control node. This may be launched through a compromised

node when it repeatedly asks the control node for forwarding a key. This kind of

attack is handled by keeping a state vector at the control node for the currently active

nodes that have recently requested key forwarding, and ignoring and sending

feedback to the base station if a node behaves abnormally, e.g., asking for keys to

communicate more than the feasible data rate. The feasible data rate is determined

using a running window of the last m key requests and considers the communication

bandwidth and the key cache size.

2. DOS attacks by a compromised control node: We reduce the probability of the

presence of a compromised control node by a judicious selection of the control node

based on trust level by periodically changing the control node. However, for the time

period when a compromised node serves as a control node, it can prevent two

legitimate nodes, A and B, from establishing a common key between them. In such a

situation when the initiator cannot establish the secure session using the control node,

it can perform the key exchange using the base station as an intermediary. Each of A

and B share a session key with the base station, which is distinct from the shared

session key with the control node, and this can be used to establish a secure channel.

This solution is also valid when control node is unavailable due to a natural failure.

 41

The base station verifies that the requests for Envelop forwarding are coming from a

legitimate node in the network and if it finds the control node is non-existent, installs

a new control node. This scheme is identical to that used in SPINS in the general no-

attack case.

3. DoS attacks against regular nodes: It is relevant to talk of only those DoS attacks

against regular nodes that are enabled by mechanisms in SECOS. One possible DoS

attack that may be launched against a legitimate node, B, is storage exhaustion by

sending garbage packets to B, which buffers it in the expectation that the key needed

to decrypt the packet is forthcoming from the control node. Requiring B to limit the

number of unencrypted packets received from a specific source, accompanied by the

inability of that source to launch an ID spoofing attack due to the neighbor watch

(Section 3.2.3) alleviates this attack.

3.2.3. Authentication Attack

Another possible class of attacks is The ID spoofing and Sybil attacks in which a

node impersonates other nodes [57] [76]. Through this attack, a compromised node can

obtain knowledge of shared keys between other nodes. This class of attacks may be

launched by a compromised control node, a regular node, or multiple nodes in collusion.

SECOS handles the problem of regular nodes trying to masquerade as the control node by

providing the control node challenge mechanism (Section 3.1.5) and for control nodes

trying to masquerade as a different sensing node by using local monitoring (Section

3.1.9). The two kinds of authentication attack whereby a node impersonates a

neighboring node or a non-neighboring node are detected by the neighbor watch

mechanism by the neighbors of the compromised node according to the scheme described

in Section 3.1.9. Note also that many key management protocols (e.g. [63],[9]) do not

address the authentication problem. Key management protocols in [15] and [64] are

examples which address authentication is an inherent property of their protocol.

If the control node, C, is compromised, it may launch the following attack to

uncover the key between two nodes in its control group, A and B. Node C sends to B a

key iK encrypted using the Envelop K claiming that it is from A. Node C performs the

 42

same communication with A, claiming it is from B. Then C sends the Envelop K to both A

and B after encrypting it with the respective session keys. The communication between A

and B is now under the control of C. In SECOS, this attack is prevented through local

monitoring in two different ways. First, if C tries to impersonate B and sends a packet,

any of its neighbors, which does not have B in its neighbor list detects this while A itself

will not be able to detect the impersonation. Second, if C generates the spurious messages

and claims it is forwarding the message from B through a neighbor, say O, this is detected

by the guard nodes for the communication through O, while it can not be detected by the

destination, A.

We quantify the overhead in terms of control messages for each of the operations

in SECOS, such as key establishment within and across control groups, neighbor watch,

and control node monitoring.

3.3. Determining Control Group Size

In this section, we perform mathematical analysis to determine the optimal control

group size in SECOS based on the constraints of the sensor network and the desired level

of security. We introduce some notations for this analysis. The regular cache size at each

node is SC, the hit rate in the cache aC, and the miss rate bC =1-aC. The control cache size

is SCC, and its hit and miss rates are aCC and bCC, respectively. The hit rate is the

probability that an item is found in the cache while the miss rate is the probability that an

item is missed from the cache. The control group size that is to be optimized is SGctrl, and

the communication group size is SGcom. We introduce the communication group for a

node as the neighborhood of that node, with which it predominantly communicates. The

quantitative meaning of predominant is made clear in the particular discussion. For the

analysis in this section, we assume that the communication happens completely within

the communication group. Each node generates packets according to a Poisson process

with rate 1/λ. The destination is chosen at random from the communication group. The

destination is changed once every µ seconds on an average, again using an exponential

distribution. The control node has an average lifetime of Tctrl. S(Pkt) gives the size of the

Pkt packet. Hcom, Hctrl, and Hall are the average number of hops between nodes within the

same communication group, between a node and the control node, and between a node

 43

and the base station. Energy gives the energy for transmission and reception of one bit. The

summary and notations for some of the control packets used are given in Table 3.1.

Table 3.1: Summary of relevant SECOS packet types

Packet Notation Description Packet Notation Description

K_req The Envelop from the

source to the control node

or from the control node to

the destination.

K_repf Relay the Envelop from one

control node to another,

used in inter-group key

establishment

Data Data packet K_rep The encrypted key from the

source to the destination

3.3.1. Maximum Control Group Size

The maximum allowable size of the control group is determined by three factors–

computational capabilities of the control node, bandwidth available around the control

node, and the storage capacity for keys in the control node. These factors are discussed

below. Here, GCOMP is the maximum control group size under the computational

limitation only, GBW is the maximum control group size under the bandwidth limitation

only, and GSTORE is the maximum control group size under the storage limitation only.

1. Computational Capabilities (GCOMP). The computational capability of the control node

to service key requests from nodes in its group is one of the factors that bound the

control group size. Assume that the computational capability of the control node

allows it to process IP instructions per second and the encryption algorithm for the

Envelop encryption and decryption, the hash function computation, and the MAC

encryption and decryption according to the steps shown in Figure 3.7(a) require IK

instructions. The maximum number of keys that can be serviced is IP/IK keys per

second. So if the node changes a destination every µ seconds and the miss rate in the

regular cache is bC, a request is generated by a single node once every µ/bC seconds.

 COPM
C

IPG
IK

µ
β
⋅

≤
⋅

 (3.13)

 44

2. Channel Bandwidth (GBW). On average the available bandwidth for each node given

channel bandwidth BW is BW/Nnbr where Nnbr is the number of one-hop neighbors of

the node. Given the range of wireless transmission (r) and the density of nodes (ρ): D

= Л r2 ρ. Part of this traffic bandwidth is consumed by data. Thus the available BW

for control communication (BWc) is the total bandwidth per node minus the amount of

data traffic

 2 ()
c

BW S DataBW
D λ

= − (3.14)

Each new session key served generates 2S(K_req) amount of traffic. Taking into

account the regular cache misses and the key request rate this term is multiplied by

(bC.1/µ).

 (2 (_))(/) /(2 (_)(/))c BW C BW c CBW G S K req G BW S K reqβ µ β µ≥ ⋅ ⇒ ≤ ⋅ (3.15)

3. Storage Capacity (GSTORE).The storage refers to the ring cache in the

control node which stores the keys of nodes in the control group. If the storage

requirement of each key is SKey and the available flash memory for the ring cache is

FM, then the storage upper bound is given by

 /STORE KeyG FM S≤ (3.16)

The maximum size of the control group is the minimum of those calculated from

equations (3.13),(3.15), and (3.16) above.

 max min(, ,)COMP BW STOREG G G G= (3.17)

The previous three factors came from resource constraints. A fourth factor arises

from the security requirement. This is the security tolerance (GSEC) when a control node

gets compromised. GSEC represents the maximum size of the control group under a

certain acceptable number of compromised sessions or exposed messages. It is assumed

that all the sessions that are established after the control node is compromised are

disclosed.

4. Security tolerance (GSEC). We want to limit the amount of communication that will

become exposed due to the control node being compromised. Let N(s) be the

acceptable number of message communications that can be exposed. Let the rate at

which nodes are compromised be λSEC. Consider a round as the time a control node

 45

maintains its privileged position. The length of a round is Tctrl. Consider an

infinitesimally small time slice dt, after time t has elapsed in a round. The number of

nodes that can be compromised in this time slice is λSECdt. In the worst case, all the

compromised nodes are control nodes. As a result of compromising these control

nodes, the number of communication sessions that will become exposed are

GSEC.((Tctrl-t)/µ)µbC. Integrating over the entire round, we have

 () 2

0

()
2

ctrlT
SEC SEC C ctrl SEC SEC C

ctrl

G T t Gdt T N S
λ β λ β

µ µ
−

= ≤∫ (3.18)

 2

2 ()
SEC

SEC C ctrl

N SG
T

µ
λ β

≤ (3.19)

The maximum size of the control group becomes,

 min(, , ,)max COMP BW STORE SECG G G G G= (3.20)

3.3.2. Energy-Wise Optimal Control Group Size

Here we wish to find the optimal control group size based on security and energy

concerns. For this analysis, we consider the energy consumed in the entire network per

unit time, which is equivalent to the power requirement of the network. We want to

increase the security by minimizing the time between control node refreshments and we

want to decrease the overhead energy of the protocol. The security requirement favors

decreasing the time to refresh the control nodes and the smallest is the best while a larger

period is more optimal energy wise. So we shall proceed to optimize the energy

overhead. In doing so, we face two conflicting factors. The first is the number of nodes

that can be served by the same control node, and the second is the average number of

hops to the control node. The first factor favors increasing the control group size, since

that will reduce the occurrence of the energy expensive inter-control group key setup

communication. The second factor favors decreasing the control group size, since that

will reduce the number of hops between a sensing node and the control node.

Three factors are to be considered for the overhead energy consumption of SECOS:

the destination of the packet to be sent (whether within the same control group or

 46

outside), the probability of regular cache hit, and the probability of control cache hit. In

the following derivation, we assume that the average number of hops between nodes is

proportional to the number of nodes under the same density and traffic conditions, such

that: Hctrl = max (Hcomµ SGctrl /SGcom,,1). From these we derive the following four cases:

Case 1: Hit in the regular cache. This occurs with probability aC that can be calculated

as follows:

1

0

1 1 11 1
1 1

C
k N kS

C
C

kcom

NS
KSG N N

λ λα
µ µ

− −

=

 − ×       = + − −      × − −        
∑ (3.21)

The term (SCµl)/(SGcomµm) represents the probability that the key is found in the

regular cache during the send of the first packet and the subsequent terms represent the

probability that the second, the third, the fourth, etc packets hit. We assume that the size

of the regular cache is greater than the number of packets sent in µ seconds. However, aC

= 1 if the cache size is greater than the communication group size (SC > SGcom). If there is

a hit in the regular cache, no overhead energy is spent.

Weighted energy overhead = Energy overhead per miss. Probability = 0.

Case 2: Miss in the regular cache and the destination is in the same control group. The

probability of regular cache miss is bC = 1- aC. The probability of communication within

one control group is SGctrl/SGcom. If SGctrl>SGcom, i.e., the control group is larger than the

communication group, then the communication is always within one control group and

the probability is one.

Weighted energy overhead = Energy overhead per miss. Probability =

 ()2 (_) (_) ctrl
ctrl nergy c

com

SGS k req S k rep H E
SG

β
 

× + × × × × 
 

 (3.22)

Case 3: Miss in the regular cache, the destination is outside the control group and hit in

the control cache. The probability of control cache hit, given that the number of control

groups within the communication group is NBC=SGcom/SGctrl, is given by: aCC =

SCC/(N(SGcom)-1) = SCC/((SGcom/SGctrl)-1) = SGctrlµSCC/(SGcom-SGctrl). However, if SGctrl >

SGcom/(SCC+1), aCC = 1.

Weighted energy overhead =Energy overhead per miss. Probability =

 47

(){ }2 (_) (_) (_)

1

ctrl com nergy

ctrl ctrl com
C

com com ctrl

S K req S K rep H S K repf H E

SG SG SG
SG SG SG

β

× + + ×

  ×
× −  −  

 (3.23)

Case 4: Miss in the regular cache, the destination is outside the control group, and miss in

the control cache .The probability of control cache miss bCC = 1 - aCC = 1 - SGctrlµSCC

/(SGcom-SGctrl) = (SGcom-SGctrl-SGctrlµSGcom)/(SGcom-SGctrl)

Weighted energy overhead = Energy overhead per miss. Probability

(){ }2 (_) (_) (_) 2 (_)

 1 1

ctrl com all nergy

ctrl CC ctrl
C

com ctrl com

S K req S K rep H S k repf H S K req H E

SG S SG
SG SG SG

β

× + × + × + ×

  ×
× − −  −  

 (3.24)

The total overhead energy of the protocol equals the sum of the contributions of

the above four cases. Let the size of the key reply be SR, i.e. S(K_rep)= SR. And since the

size of key request equals the size of key reply forward which is approximately three

times the size of the key reply, we have S(K_req) = S(K_repf) = 3SR. The total overhead

energy TE is written as several separate equations each for a region bounded by

discontinuities:

If SGctrl > SGcom then

 7E R ctrl nergy CT S H E β= × × × × (3.25)

If SGctrl < SGcom and SGcom < SGctrl (SCC+1) then

7

(7 3) 1

ctrl
E R ctrl nergy C

com

ctrl
R ctrl R com nergy C

com

SGT S H E
SG

SGS H S H E
SG

β

β

 
= × × × × 

 
   + × × + × × × −  
   

 (3.26)

If SGcom > SGctrl (SCC+1) then

 48

()

7

(7 3) 1

7 3 6

1

ctrl
E R ctrl nergy C

com

ctrl ctrl CC
R ctrl R com nergy C

com com ctrl

R ctrl R com R all nergy

ctrl ctrl CC
C

com

SGT S H E
SG

SG SG SS H S H E
SG SG SG

S H S H S H E

SG SG S
SG S

β

β

β

 
= × × × × 

 
   × + × × + × × × × −   −    

+ × × + × × + × ×

  ×
× − 

  com ctrlG SG
 
 − 

 (3.27)

We substitute Hctrl = 1 when SGctrl µHcom <SGcom and Hctrl = SGctrl µHcom / SGcom

when SGctrl µHcom ¥ SGcom in the above set of equations.

By minimizing TE with respect to SGctrl, we get a value of SGctrl = Genergy_opt that

minimizes the overhead energy of SECOS. This does not give a closed form solution since

there are discontinuities due to aC, aCC, and Hctrl. The equation can be solved numerically

as shown below.

If the above analysis gives a control group size that is smaller than the maximum

size calculated in Section 3.3.1, then we choose that. Else, we are bounded by the

maximum control group size. Mathematically, the chosen control group size is SGctrl =

min (Genergy_opt, Gmax).

Optimal Control Group Size

0.0

0.4

0.8

1.2

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Control Group Size/Communication Group Size

To
ta

l P
ow

er
 (m

W
)

Cc = 1
Cc = 4
Cc = 9

Figure 3.10: Total power consumed in SECOS with varying control group size.

 49

Figure 3.10 presents a numerical solution for the optimal control group size for

optimizing the total power consumption for a network of 2000 nodes with Hall = 100,

Hcom = 10, SGcom = 200, βc = 0.2, Energy = 100 pJ, SR = 128 bit, and three different values

for SCC 1, 4, and 9. As Figure 3.10 shows, the optimal group size occurs when SGctrl =

SGcom/(SCC+1). The consumed power starts very high for small control group sizes

relative to the communication group size because a large portion of the communication

goes through the costly inter-group communication. As the control group size increases,

the power decreases due to the decrease in the inter-group communication to the point

where the number of control groups within the communication group equals the size of

the control cache. Thus, decreasing the number of control groups, by increasing the

control group size beyond this point does not provide any additional gains since all inter-

group communication hits in the control cache. Increasing the control group size after this

point starts increasing the power linearly due to the increase in the average number of

hops to the control node within the same control group. In our analysis, the increase in

the number of hops is assumed to be linear with the size of the control group.

3.4. Message Overhead

In this section, we analyze the overhead in terms of control messages for each of

the operations in SECOS. The overhead is calculated as the product of the number of bytes

and the number of hops.

Some Notation: Let Nnbr be the average number of neighbors of a node, Hcmax be the

maximum number of hops between any two nodes in the control group, and D be the

density of nodes in the network. Further, R is the range of transmission, and Hcom, Hctrl,

and Hall are the average number of hops between nodes within the same communication

group, between a node and the control node, and between a node and the base station,

respectively.

We now calculate the overhead involved in the various functions of SECOS

3.4.1. Building the Neighbor List

The following messages are required to build the neighbor list:

 50

(i) One HELLO message from a node to its neighbors, (ii) Nnbr HELLO reply messages

from the neighbors to the node, and (iii) one message containing the list of neighbors

from the node to the base station. The size of each HELLO or the HELLO reply message

is 9 bytes; 8 for the IDs of the sender and the receiver, and one holding the packet data.

The size of the neighbor list packet is 4(Nnbr +2) bytes. The HELLO message travels one

hop where the neighbor list message travels Hall hops on average to the base station. The

total overhead in byte-hop product equals 9 (Nnbr +1) + 4(Nnbr +2)Hall.

3.4.2. Setting the Control Node

The following messages are required to setup the control node:

(i) One message holding the list of members of the control group from the base station to

the control node, (ii) one message for control announcement from the control node to the

members of control group, and (iii) one message for neighbor list announcement from the

control node to its neighbors. The member list message travels Hall hops on average and

its size equal to 12µSGctrl bytes; 4 bytes for each member node ID and 8 bytes for the

session key between the member and the control node. The size of the control

announcement is 5 bytes and it travels Hcmax hops. The number of nodes involved in

broadcasting the announcement depends on the range of transmission R and density of

nodes in the network D. This number equals to pµ(RµHcmax)2 D. The size of the neighbor

list is 4 Nnbr and it travels one hop. The total overhead in byte-hop product equals

12µSGctrlµHall+ 5p (RµHcmax)2 D + 4 (Nnbr +1).

3.4.3. Key Establishment within the Same Control Group

The following messages are required to setup a key between two nodes within the

same control group:

(i) One message holding the key from the initiator to the target, (ii) one message holding

the Envelop from the initiator to the control node, and (iii) one message holding the

Envelop from the control node to the target. The message holding the key travels Hctrl

hops on average and its size equals to 16 bytes, 8 bytes for the IDs of the initiator and the

 51

target and 8 bytes for the key. The message holding the Envelop also travels Hctrl hops on

average and its size equals 44 bytes, 8 bytes for the IDs of the initiator and the target of

the communication, 8 bytes for the IDs of the intermediate sender and receiver of the

message, 8 bytes for the key, 10 bytes for the hash value of the key, and 10 bytes for the

MAC value, which provides freshness to the message. The total overhead in byte-hop

product equals 104µHctrl.

3.4.4. Key Establishment across Control Groups

The following messages are required to setup a key across control groups when a

shared key already exists between the corresponding control nodes:

(i) One message holding the key from the initiator to the target, (ii) one message holding

the Envelop from the initiator to its control node, (iii) one message holding the Envelop

from the control node of the initiator to the control node of the target, (iv) one message

holding the Envelop from the target’s control node to the target. Message (i) travels Hcom

hops on average and its size equals to 16 bytes, 8 bytes for the ID’s of the initiator and

the target and 8 bytes for the key. Message (ii) or message (iv) travels Hctrl hops on

average and its size equals to 44 bytes, 8 bytes for the ID’s of the initiator and the target,

8 bytes for the ID’s of the intermediate sender and receiver of the message, 8 bytes for

the key, 10 bytes for the hash value of the key, and 10 bytes for the MAC value, which

provides freshness to the message. Message (iii) travels Hcom hops on average and its size

equals to 44 bytes, 8 bytes for the ID’s of the initiator and the target, 8 bytes for the ID’s

of the intermediate sender and receiver of the message, 8 bytes for the key, 10 bytes for

the hash value of the key, and 10 bytes for the MAC value, which provides freshness to

the message. The total overhead in byte-hop product equals 60µHcom + 88µHctrl.

And the messages that are required to setup a key across control groups with no

shared key between the corresponding control nodes are the same messages as in the

previous case in addition to (i) one message holding a key from the initiator’s control

node to the base station and (ii) one message holding the same key from the base station

to the target’s control node. The size of each of these messages equals to 16 bytes, 8

 52

bytes for the ID’s of the initiator and the target and 8 bytes for the key, each of them

travels Hall hops. The total overhead in byte-hop product equals 32µHall.

3.5. Experiments & Results

We build simulation models for SECOS and SPINS using the network simulator,

ns-2. We generate a grid topology for the sensor field and distribute the nodes randomly

on it. We distribute the nodes into control groups based on geographical location and

place the base station at the top right corner of the field. We simulate 9 different

communication patterns by changing the communication group size and the average

percentage of communications that go within that group, for example 90/10

communication means that 90% of the destinations are chosen from within the

communication group while the rest are picked randomly from the whole network. Four

different values of the relative size of the communication and control group are chosen

for the experiment – 0.5, 1, 2, and 4. The simulation parameters are shown in Table 3.2.

Table 3.2: Simulation parameters for evaluation

Bandwidth 40 Kbps Control group size (G) 10
Transmission range in meters 50 Ring cache size 20
Number of nodes in sensor field 200 Regular cache size (C) 0,5,10
The topology in square meters 120X600 Simulation Time 105 s
Freq. of destination change (µ) 20 s Freq. of packet generation (λ) 200 s
Frequency of control node
change (τ)

5 s Frequency of session key
refreshment

200 s

Number of control groups 20 Control cache size 5

We measure two parameters for both SECOS and SPINS: the total overhead energy

due to key management and the average end-to-end delay of data packets. The end-to-end

delay of a data packet is the sum of the delay of key management and data transmission

delay. For the plots, we use the ratio of the SPINS value to the SECOS value. A higher

value on the plot implies better performance by SECOS with a value of one being the

crossover point.

In the first experiment, we vary the size of the regular cache at each sensing node

and observe the output parameters for 4 different sizes of the communication group. The

100%:0% and 90%:10% communication patterns show identical trends but the 90%:10%

 53

case is less favorable to SECOS because occasionally the destinations could be far, outside

the control group. Focusing on the less favorable 90%:10% case, we show the results in

Figure 3.11 and Figure 3.12.

In the first experiment, we vary the size of the regular cache at each sensing node

and observe the output parameters for 4 different sizes of the communication group. The

100%:0% and 90%:10% communication patterns show identical trends but the 90%:10%

case is less favorable to SECOS because occasionally the destinations could be far, outside

the control group. Focusing on the less favorable 90%:10% case, we show the results in

Figure 3.11 and Figure 3.12.

Note that in these results, the two energy consuming but security enhancing parts

of SECOS are simulated, namely, the periodic refreshment of the session keys, and the

periodic change of the control node. From these graphs we find that SECOS outperforms

SPINS both in terms of saving energy and reducing end-to-end delay. SECOS reduces the

energy consumption by a factor ranging from 1.2 to 5.7, depending on the

communication pattern and the cache size.

90%/10%

0

1

2

3

4

5

6

0 5 10
Cache size (# entries)

En
er

gy
(S

PI
N

S)
/

En
er

gy
(S

EC
O

S)

SGcom/SGctrl=0.5
SGcom/SGctrl=1
SGcom/SGctrl=2
SGcom/SGctrl=4

Figure 3.11: Ratio of overhead energy expended for SPINS and SECOS with varying

cache sizes for different communication group sizes

 54

90%/10%

1

1.1

1.2

1.3

1.4

1.5

0 5 10
Cache size (# entries)

D
el

ay
(S

PI
N

S)
/

D
el

ay
(S

EC
O

S)

SGcom/SGctrl=0.5
SGcom/SGctrl=1
SGcom/SGctrl=2
SGcom/SGctrl=4

Figure 3.12: Ratio of end-to-end data latency for SPINS and SECOS with varying

cache sizes for different communication group sizes

If the cache can store the keys of all the nodes that a node may communicate with,

SPINS performs comparably in energy to SECOS. But this is inadvisable from the point

of view of forward security since a number of old sessions may be exposed if the node

gets compromised. If we use the most secure configuration with no cache, SECOS has a

2.8-5.7 fold energy reduction. As the cache size increases, the need for key exchange

decreases and thus the difference between SECOS and SPINS decreases until the point

when the cache can hold all the needed keys. For the simulation parameters here, the

maximum benefit to SECOS is when the control group size equals the communication

group size. As the communication group size increases beyond this, SECOS is favored less

and less. The difference between SECOS and SPINS decreases as more inter-group

communication takes place and this process is more energy consuming in SECOS than in

SPINS. However, a reasonable sized control cache as used in these experiments still

ensures that SECOS performs better than SPINS. This is explained by the fact that the

control cache eliminates the necessity of a control node to create a new secure channel

with another control node using the base station as the intermediary for every inter-group

communication. It is seen that the difference between SECOS and SPINS decreases more

sharply for SGcom/SGctrl=0.5 and 1. This is due to the fact that for these ratios, SECOS

initially far outperformed SPINS with small cache sizes. The trend in delay is identical to

 55

that for the energy overhead. The reason behind the lower energy consumption is that the

number of hops to exchange the keys is lower, which translates directly to a lower delay.

Next, we consider the communication pattern where any node can talk to any

other node in the sensor field, which is referred to as all-to-all communication. The

results are shown in Figure 3.13. In all-to-all communication, the energy ratio decreases

as the cache size increases for a reason similar to that in the other communication

patterns. However, it is seen that the reduction becomes flat beyond 10 cache entries.

With 20-entry control cache, which effectively mimics an infinite cache, SECOS consumes

58% less energy and incurs 8.8% less delay. This indicates that even if the possibility of a

sensing node being compromised can be disregarded, and the cache size made arbitrarily

large, SECOS outperforms SPINS. This is explained by the fact that relative to the number

of control groups in the entire network, the control cache is large enough that SECOS does

not have to resort frequently to the expensive inter-group communication. In a real-world

deployment, it is likely that the communication group of a node will not span too many

control groups, since a node is unlikely to communicate frequently with nodes

geographically very distant from it. Therefore, with reasonable control cache sizes,

SECOS will perform well.

Finally, we bring out the overhead SECOS incurs due to two mechanisms for

improving security, namely refreshment of session keys, and change of the control node.

Figure 3.14 shows that the energy overhead of SECOS is 25% compared to SECOS-no-

refresh when there is no cache. Relative overhead of SECOS with respect to SECOS-no-

refresh increases as the cache size increases since SECOS increasingly sees the

performance impact of purging the cache. At higher cache sizes, 93% energy may be

saved if refreshment and control node change are suppressed. The reduction in delay is

about 9% at high cache sizes.

 56

All-to-all communication

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20
Cache size (# entries)

En
er

gy
(S

PI
N

S)
/

En
er

gy
(S

EC
O

S)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
el

ay
(S

PI
N

S)
/

D
el

ay
(S

EC
O

S)

Energy ratio
Delay ratio

Figure 3.13: Ratio of overhead energy SPINS: SECOS

All-to-all communication

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Cache size (# entries)

En
er

gy
(S

EC
O

S)
 w

/o

re
fr

es
h:

w
/ r

ef
re

sh

1

1.05

1.1

1.15

D
el

ay
(S

EC
O

S)
 w

/
re

fr
es

h:
w

/o
 r

ef
re

sh

Energy ratio
Delay ratio

Figure 3.14: Ratio of packet delay for SECOS with key refreshment and control node

change: SECOS without these techniques

 57

4. MITIGATION OF THE WORMHOLE ATTACK IN STATIC
WAHAS NETWORKS: LITEWORP

The wormhole attack [50],[53],[76],[95] is a particularly severe control attack that

can be launched without having access to any cryptographic keys or compromising any

legitimate node in the network. During the attack, a malicious node captures packets from

one location in the network, and “tunnels” them to another malicious node at a distant

point, which replays them locally. The tunnel can be established in many different ways,

such as through an out-of-band hidden channel (e.g., a wired link), packet encapsulation,

or high powered transmission. This tunnel makes the tunneled packet arrive either sooner

or with lesser number of hops compared to the packets transmitted over normal multihop

routes. This creates the illusion that the two end points of the tunnel are very close to

each other. A wormhole tunnel can actually be useful if used for forwarding all the

packets. However, in its malicious incarnation, it is used by attacking nodes to subvert

the correct operation of ad-hoc and sensor network routing protocols. The two malicious

end points of the tunnel may use it to pass routing traffic to attract routes through them.

They can then launch a variety of attacks against the data traffic flowing on the

wormhole, such as selectively dropping the data packets. The wormhole attack can affect

network routing, data aggregation and clustering protocols, and location-based wireless

security systems.

In this chapter, we present a simple lightweight protocol, called LITEWORP, to

detect and mitigate wormhole attacks in WAHAS networks. LITEWORP uses the secure

two-hop neighbor discovery and local monitoring of control traffic to detect nodes

involved in the wormhole attack. It provides a countermeasure technique that isolates the

malicious nodes from the network thereby removing their ability to cause future damage.

We provide a novel taxonomy of the different ways in which wormhole attacks can be

launched and show how LITEWORP can be used to handle all but one of these attack

 58

modes. LITEWORP has several features that make it especially suitable for resource-

constrained wireless environments, such as sensor networks. LITEWORP does not require

any specialized hardware, such as directional antennas or fine granularity clocks. It does

not require any time synchronization between the nodes in the network. It does not

increase the size of the network traffic, and incurs negligible bandwidth overhead, only at

initialization and on detection of a wormhole. The lightweight feature of LITEWORP is in

contrast to other countermeasures for wormhole attacks, which have requirements (e.g.

directional antennas [51], highly accurate time measurement [75], and clock

synchronization [53]) that often make them impractical for sensor networks and

infeasible for many classes of ad-hoc networks. Finally, in LITEWORP, detection and

isolation are done judiciously to minimize the possibility of victimizing innocent nodes

due to false alarms caused by natural collisions in the wireless medium or due to

malicious framing.

In the coverage analysis that we present in Section 4.3.1, we show the relation

between the number of nodes required for local monitoring, the guards, and the

probability of false or missed detection. Moreover, we present an analysis for the

isolation latency and the framing probability with various parameters such as the number

of malicious nodes. We build a simulation model for LITEWORP using the network

simulator ns-2 and perform a comparative evaluation of a network with and without the

technique. The results show that with a large number of guards, LITEWORP can achieve

98.9% non-malicious routes, with 12% of the network nodes compromised. For this

configuration, the possibility of false detection (due to natural collisions) or framing (due

to malicious reporting) is negligible. Further, the detection and isolation of the nodes

involved in the wormhole can be achieved in a negligible time after the attack starts, and

the cumulative number of lost packets and malicious routes established saturates with

time because wormholes are identified and isolated. Finally, we analyze the storage,

computational, and bandwidth overheads incurred by LITEWORP, and demonstrate its

lightweight nature.

The rest of this Chapter is organized as follows. Section 4.1 describes taxonomy

of the wormhole attack modes. Section 4.2 describes the LITEWORP protocol and its

 59

defenses against the various modes of the wormhole attack. Section 4.3 presents coverage

and cost analysis of LITEWORP. Section 4.4 presents simulation results.

4.1. Wormhole Attack Modes

In this section we classify the wormhole attack based on the techniques used for

launching it.

4.1.1. Wormhole using Encapsulation

Wormhole attacks are particularly severe against many ad-hoc and sensor network

routing protocols, such as the two ad-hoc on-demand routing protocols DSR [54]and

AODV [55], and the sensor TinyOS beaconing routing protocol [76]. First, we

demonstrate how a generic wormhole attack is launched against such routing protocols,

using DSR as an example. In DSR, if a node, say S, needs to discover a route to a

destination, say D, S floods the network with a route request packet. Any node that hears

the request packet transmission processes the packet, adds its identity to the source route,

and rebroadcasts it. To limit the amount of flooding through the network, each node

broadcasts only the first route request it receives and drops any further copies of the same

request. For each route request D receives, it generates a route reply and sends it back to

S. The source S then selects the best path from the route replies; the best path could be

either the path with the shortest number of hops or the path associated with the first

arrived reply. However, in a malicious environment, this protocol will fail. When a

malicious node at one part of the network hears the route request packet, it tunnels it to a

second colluding party at a distant location near the destination. The second party then

rebroadcasts the route request. The neighbors of the second colluding party receive the

route request and drop any further legitimate requests that may arrive later on legitimate

multihop paths. The result is that the routes between the source and the destination go

through the two colluding nodes that will be said to have a wormhole between them. This

prevents nodes from discovering legitimate paths that are more than two hops away.

 60

A

BC

X

Y

D E
Good node Malicious node

U V W
Z

a
b

g
d

Figure 4.1: Wormhole through packet encapsulation

One way for two colluding malicious nodes can involve themselves in a route is

by simply giving the false illusion that the route through them is the shortest, even though

they may be many hops away. Consider Figure 4.1 in which nodes A and B try to

discover the shortest path between them, in the presence of the two malicious nodes X

and Y. Node A broadcasts a route request (REQ), X gets the REQ and encapsulates it in a

packet destined to Y through the path that exists between X and Y (U-V-W-Z). Node Y

demarshalls the packet, and rebroadcasts it again, which reaches B. Note that due to the

packet encapsulation, the hop count does not increase during the traversal through U-V-

W-Z. Concurrently, the REQ travels from A to B through C-D-E. Node B now has two

routes, the first is four hops long (A-C-D-E-B), and the second is apparently three hops

long (A-X-Y-B). Node B will choose the second route since it appears to be the shortest

while in reality it is seven hops long. So X and Y succeed in involving themselves in the

route between A and B. Any routing protocol that uses the metric of shortest path to

choose the best route is vulnerable to this mode of wormhole attack.

This mode of the wormhole attack is easy to launch since the two ends of the

wormhole do not need to have any cryptographic information, nor do they need any

special capabilities, such as a high speed wire line link or a high power source. A simple

way of countering this mode of attack is a by-product of the secure routing protocol

ARAN [74], which chooses the fastest route reply rather than the one which claims the

shortest number of hops. This was not a stated goal of ARAN, whose motivation was that

a longer, less congested route is better than a shorter and congested route.

 61

4.1.2. Wormhole using Out-of-Band Channel

This mode of the wormhole attack is launched by having an out-of-band high-

bandwidth channel between the malicious nodes. This channel can be achieved, for

example, by using a long-range directional wireless link or a direct wired link. This mode

of attack is more difficult to launch than the previous one since it needs specialized

hardware capability.

A

BC

X Y

D E F

Good node Malicious node

a

b

d

g
Z

Out-of-band channel

Figure 4.2: Wormhole through out-of-band channel

Consider the scenario depicted in Figure 4.2. Node A is sending a route request to

node B, nodes X and Y are malicious having an out-of-band channel between them. Node

X tunnels the route request to Y, which is a legitimate neighbor of B. Node Y broadcasts

the packet to its neighbors, including B. Node B gets two route requests—A-X-Y-B and A-

C-D-E-F-B. The first route is both shorter and faster than the second, and is thus chosen

by B; this results in a wormhole being established between X and Y in the route between

A and B.

4.1.3. Wormhole using High Power Transmission

 In this mode, when a single malicious node gets a route request, it broadcasts the

request at a high power level, a capability which is not available to other nodes in the

network. Any node that hears the high-power broadcast rebroadcasts it towards the

destination. By this method, the malicious node increases its chance to be in the routes

established between the source and the destination even without the participation of a

colluding node. A simple method to mitigate this attack is possible if each node can

 62

accurately measure the received signal strength and has models for signal propagation

with distance. In that case, a node can independently determine if the transmission it

receives is at a higher than allowable power level. However, this technique is

approximate at best and dependent on environmental conditions. The local monitoring

approach used in LITEWORP provides a more feasible defense against this mode.

4.1.4. Wormhole using Packet Relay

 In this mode of the wormhole attack, a malicious node relays packets between

two distant nodes to convince them that they are neighbors. It can be launched by even

one malicious node. Cooperation by a greater number of malicious nodes serves to

expand the neighbor list of a victim node to several hops. For example, assume that node

A and node B are two non-neighbor nodes with a malicious neighbor node X. Node X can

relay packets between nodes A and B to give them the illusion that they are neighbors.

4.1.5. Wormhole using Protocol Deviations

 Some routing protocols, such as ARAN [74], choose the route with the shortest

delay in preference to the one with the shortest number of hops. During the route request

forwarding, the nodes typically back off for a random amount of time before forwarding.

This is motivated by the fact that the request forwarding is done by broadcasting and

hence, reducing MAC layer collisions is important. A malicious node can create a

wormhole by simply not complying with the protocol and broadcasting without backing

off. The purpose is to let the request packet it forwards arrive first at the destination. This

increases the probability that the route between the source and the destination will

include the malicious node. This is a special form of the rushing attack described in [52].

Summarizing, the different modes of the wormhole attack along with the

associated requirements are given in Table 4.1.

Table 4.1: Summary of wormhole attack modes

Mode name Min. # of compromised nodes Special requirements
Packet encapsulation Two None

 63

Out-of-band channel Two Out-of-band link
High power transmission One High energy source
Packet relay One None
Protocol deviations One None

Many applications in ad-hoc and sensor networks become vulnerable once a

successful wormhole attack has been launched. Routing is an important example. As we

discussed in 4.1.1, on demand ad-hoc routing protocols like DSR and AODV, and the

sensor TinyOS routing protocol are highly vulnerable to the attack. Other routing

protocols like SEAD [77], Ariadne [78], ARRIVE [85], directed diffusion [80], multipath

routing [81], minimum cost forwarding [82], rumor routing [83], and even secure routing

protocols presented in [79] and [60] are also vulnerable to wormhole attacks. For further

details on the vulnerability of routing protocols, the reader may refer to [53]. Moreover,

all the protocols that are used in building neighbor lists and, by extension, the routing

protocols (e.g. DSDV [84], OLSR [86], and TBRPF [87]) that use these lists, are

vulnerable as well..

4.2. Defenses

In this section, we describe the process for wormhole detection in LITEWORP

followed by the process for isolation of the malicious nodes.

4.2.1. System Model and Assumptions

Attack model: In the attack model that we consider, the wormhole is launched by a

malicious node, which may be either an external node that does not have the

cryptographic keys, or an insider node, that possesses the keys. The insider node may be

created, for example, by compromising a legitimate node. All these malicious nodes can

exhibit Byzantine behavior and can collude amongst themselves. The malicious node can

be a powerful entity that can establish out-of-band fast channels or have high powered

transmission capability.

System assumption: LITEWORP assumes that the communication links are bi-directional,

which means that if a node A can hear node B then B can hear A. LITEWORP assumes that

a finite amount of time is required from a node’s deployment for it to be compromised.

 64

LITEWORP further assumes that no external or internal malicious nodes exists before the

completion of the neighbor discovery. However, this assumption can removed by using

one of the protocols for secure neighbor discovery such as the one by Hu and Evans using

directional antennas [51] or by using trusted and more powerful nodes as in [155]. There

is an obvious tradeoff here between cost (advanced hardware resources) and benefit

(more relaxed set of assumptions). Moreover, LITEWORP assumes that the network has a

static topology. This does not rule out route changes due to node failures, malicious node

isolation, route evictions from the routing cache, or the change in the role that a node

practices (e.g., cluster head, data aggregator, etc.). From the point of view of LITEWORP,

incremental deployment of a node in the network is identical to having a mobile node

move to its location. This is handled using the protocol for wormhole mitigation in

mobile multi-hop wireless networks, Chapter 7. LITEWORP requires each packet

forwarder to explicitly announce the immediate source of the packet it is forwarding, i.e.,

the node from which it receives the packet. Finally, LITEWORP assumes a key

management protocol, such as SECOS [66],[63]-[65], is used to pre-distribute pair-wise

keys in the network.

4.2.2. Building Neighbor Lists

This protocol is used to build the data structure of the first-hop neighbors of each

node and the neighbors of each neighbor. This data structure is used in local monitoring

to detect malicious nodes and in local response to isolate the detected malicious nodes. A

neighbor of a node, X, is any node that lies within the transmission range of X. As soon as

a node, say A, is deployed in the field, it does a one-hop broadcast of a HELLO message.

Any node, say B, that hears the message, sends back a reply to A. Node A accepts all the

replies that arrive within a timeout. For each reply, A adds the responder to its neighbor

list RA. Then, A does a one-hop broadcast of a message containing the list RA. When B

hears the broadcast, it stores RA. Hence, at the end of this neighbor discovery process,

each node has a list of its direct neighbors and the neighbors of each of its direct

neighbors. Note that this requires a larger memory than simply keeping a list of first-hop

and second-hop neighbors. This process is performed only once in the lifetime of a node

 65

and is assumed to be secure. Henceforth, a node will not accept a packet from a node that

is not a neighbor nor forward to a node that is not a neighbor. Also, second-hop neighbor

information is used to determine if a forwarded packet comes from a neighbor of the

forwarder. If a node C receives a packet forwarded by B purporting to come from A in the

previous hop, C discards the packet if A is not a second-hop neighbor. After building its

first- and second-hop neighbor list, node A activates local monitoring.

4.2.3. Detecting Different Modes of Wormhole Attacks using LITEWORP

In this section, we use local monitoring (Section 2.1) to build the detection

algorithm individually for each of the first four wormhole attack modes and show how

existing approaches can be used to detect the fifth mode.

4.2.3.1. Detecting Out-of-Band and Packet Encapsulation Wormholes

Recall, from local monitoring (Section 2.1), that a guard node α of a node A over

the link from a node X to A performs the following steps as part of its role in monitoring

the network communication,

1. The guard node a , saves information from the packet header of each control packet

going over the link from X to A and time stamps it with the deadline t.

2. Node a overhears every packet going out of A. For all the packets that A claims has

come from X, α looks up the corresponding entry in its watch buffer.

3. If an entry is found, a drops that entry since the corresponding packet has been

correctly forwarded.

4. If an entry is not found, then A must have fabricated the packet. Therefore, a

increments MalC (a,A) by Vf.

5. If an entry for a packet sent from X to A stays in the watch buffer beyond t, then A is

accused of dropping the corresponding packet. Node a increments MalC(a,A) by Vd.

6. If the incoming packet to A is different from the corresponding outgoing packet from

A, then A is accused of modifying the packet. Therefore, α increments MalC(α,A) by

Vm.

 66

Now, consider the scenario in Figure 4.3. M1 and M2 are two malicious nodes

wishing to establish a wormhole between the two nodes S and D. When M1 hears the

REQ packet from S, it directs the packet to M2. Node M2 rebroadcasts the REQ packet

after appending the identity of the previous hop from which it got the REQ. Node M2 has

two choices for the previous hop—either to append the identity of M1, or append the

identity of one of M2’s neighbors, say X. In the first choice all the neighbors of M2 will

reject the REQ because they all know, from the stored data structure of the two-hop

neighbors, that M1 is not a neighbor to M2. In the second case, the knowledge of the first-

hop and second-hop neighbor lists is not sufficient for all the guards to detect the attack.

However, using local monitoring, all the guards of the link from X to M2 (X, m, and l)

will detect M2 as fabricating the route request since they do not have the information for

the corresponding packet from X in their watch buffer. In both cases M2 is detected, and

the guards increment the MalC value of M2.

S

D
C

M1 M2

A E F

Good node Malicious node

a

b

d

g
Z

The legitimate path without wormhole
An out-of-band channel between M1 and M2

A path between M1 and M2 for encapsulation

X

l

m
y

Figure 4.3: Wormhole detection for out-of-band and packet encapsulation modes

In addition, the REP packet may also be used for detection of M1 and M2. When D

gets the REQ, it generates a route reply packet, REP, and sends it back to M2. The guards

of the link from D to M2 (D, m, and y) overhear the REP and save an entry in their watch

buffers. Node M2 sends the route reply back to M1 using the out-of-band channel or

packet encapsulation. After t time units, the timers in the watch buffers of the guards D,

m, and y run out, and thus the guards detect M2 as dropping the REP packet and

increment the MalC of M2. However if M2 is smarter, it can forward another copy of the

REP through the regular slower route. In this case, MalC of M2 is not incremented. When

 67

M1 gets the REP from M2, M1 forwards it back to S after appending the identity of the

previous hop. As before, M1 has two choices—either to append the identity of M2, or

append the identity of one of M1’s neighbors, say Z. In the first choice, node S rejects the

REP because it knows that M2 is not a neighbor to M1. Also, all the neighbors of M1 know

that M2 is not a neighbor to M1. In the second case, all the guards of the link from Z to M1

detect M1 as forging the REP since they don’t have the corresponding entry from Z in

their watch buffers.

4.2.3.2. Detecting High Power Transmission Wormhole

This mode is detected using the assumption of symmetric bi-directional channels.

Suppose a malicious node, say X, tries to use high power transmission to forward a

packet P1 to it is final destination, or to cross multiple hops to introduce itself in the

shortest path. Then all the nodes for which X is not in their neighbor lists detect the

malicious behavior of X and reject P1.

4.2.3.3. Detecting Packet Relay Wormhole

This mode is detected using the stored neighbor lists at each node. Suppose a

malicious node X is a neighbor to two non-neighbor nodes A and B and tries to deceive

them by relaying packets between them. Both A and B detect the malicious behavior of X

since they know that they are not neighbors and reject the relayed packet.

4.2.3.4. Detecting Protocol Deviation Wormhole

This mode can not be detected using LITEWORP. Researchers have proposed

techniques for countering selfish behavior in specific protocols. Selfishness refers to the

property that nodes may tend to deny providing cooperating services to other nodes in

order to save their own resources, e.g., battery power. Kyasanur et al. have addressed the

problem of greediness at the MAC layer [88], while Capkun et al. have addressed

selfishness in packet forwarding [75]. Hu et al. have proposed a solution to an attack,

 68

called the rushing attack, in which nodes greedily forward the route request passing

through them without back off [52].

4.2.4. Response and Isolation Algorithm

Detection of an ongoing attack is only the first step towards protecting the network.

The local response and isolation module is used to diagnose the attacker and take

appropriate response to isolate it from the network and thereby removing its ability to

cause future damage. This module is controlled by the local monitoring module and

invoked upon the detection of a malicious node. In the local response approach, the

detection knowledge propagates only locally, within two hops from the suspect node.

This action is implemented by deleting the suspect node from the first-hop and the

second-hop neighbor list. The local response algorithm presented in Section 2.2.1 is

called when a monitor, say a, detects a malicious behavior of a node, say A, during the

course of local monitoring. However, for the convenience of reading, we reprint the

algorithm below,

1. When MalC(a,A) crosses a threshold, Ct , a revokes A from its neighbor list, and sends

to each neighbor of A, say D, an authenticated alert message indicating A is a

suspected malicious node. This communication is authenticated using the shared key

between a and D to prevent false accusations. Alternately, if the clocks of all the

nodes in the network are loosely synchronized, a can do authenticated local two-hop

multicast as in TESLA [72],[73] or mTESLA [63] to inform the neighbors of A. Note

the α isolates A without waiting for γ alerts from other nodes since a node is assumed

to trust itself.

2. When D gets the alert, it verifies the authenticity of the alert message, that a is a

neighbor to A, and that A is D’s neighbor. It then stores the identity of a in an alert

buffer associated with node A.

3. When D gets enough alert messages, γ, about A, it isolates A by marking A’s status as

void in the neighbor list. γ is the detection confidence index.

4. After isolation, D does not accept any packet from or send any packet to A.

 69

In addition to removing the malicious nodes from the network, this primitive

makes the response process fast since the detection knowledge need not propagate

throughout the network. This module is lightweight in the number of messages (one to

each neighbor of A, only on detection) and the number of hops each message traverses

(maximum two hops). Note that the detection confidence (g) is useful for reducing the

possibility of framing with a higher value being favored for this purpose. Framing is the

attack where a malicious node, acting as a guard, sends alert about a correct node. If g is

set to infinity, then a node only trusts itself and the framing probability is zero.

4.3. LITEWORP Analysis

4.3.1. Coverage Analysis

In this section, we quantify the probability of missed detection and false detection

of the wormhole attack as the network density increases and the detection confidence

index (γ) varies. The results provide some interesting insights. For example, we am able

to find the required network density d to detect p% of the wormhole attacks for a given γ.

Consider a homogeneous network of N nodes uniformly distributed with density d

in a deployment field. For simplicity, assume that the field is large enough that edge

effects can be neglected in our analysis. Consider any two randomly selected neighbor

nodes, S and D, as shown in Figure 4.4(a). Nodes S and D are separated by a distance X,

and the communication range is r. Then, X is a random variable with range (0,r) and

probability density function of

 2

2()X
xf x

r
= (4.1)

To see this, note that the number of nodes within a distance x (0≤ x ≤r) of a

randomly selected node W is πx2d. This follows from the assumption of uniform

distribution of the nodes. The number of neighbors of W is πr2d, where the neighbor of

W is any node that lies within the transmission range of W (r). The probability that a

neighbor of W is at a distance X that is less or equal x is the cumulative probability

density function (cdf) of the random variable X (FX(x)) which is given by

 70

 ()
2 2

2 2()X
x d xF x P X x
r d r

π
π

= ≤ = = (4.2)

The probability density function (pdf) of X is the derivative of the cumulative

probability density function, which is given by Equation(4.1).

G

S D

(a) (b)

S X

r

DS X

r

DD

Figure 4.4: (a) The area from which a node can guard the link between S and D; (b)

illustration for detection accuracy

The guard nodes for the communication between S and D are those nodes that lie

within the communication range of S and D, the shaded area in Figure 4.4 (a). This area is

given by

2

2 1 2() 2 cos
2 4
X XArea X r X r
r

−  = − − 
 

 (4.3)

The minimum value of Area(X), Areamin, is when X = r. Therefore, the minimum

number of guards is

 2
min min 1.23g Area d r d= = ⋅ (4.4)

The expected value of the area

 [] ()
2

2 1 2 2
2

0

2() 2 cos 1.84
2 4

r x x xE Area X r x r dx r
r r

−
     = − − ≈ ⋅    

     
∫ (4.5)

Therefore, the expected number of guards is

 2[()] 1.84g E Area X d r d = = ⋅  (4.6)

 The number of neighbors of a node is given by

 2
BN r dπ= (4.7)

Therefore,

 71

 0.59 Bg N≈    (4.8)

Now, as in [67] where IEEE 802.11 was analyzed, we assume that each packet

collides on the channel independently with a constant probability, PC. As shown in Figure

4.4 (b), a guard G will not detect a fabricated packet sent by D, claiming it was received

from S, if G experienced a collision at the time that D transmits. Therefore, the

probability of missed detection is PC. Assume that S sends y packets to be forwarded by

D within a time window Twin. Assume that D selectively fabricates (to evade detection)

packets with probability Pfab. Then, the number of packet fabrications (m) that occur

within Twin is y•Pfab. Also assume that the MalC threshold over time window of Twin is b

(Ct =β) and each malicious activity increases the MalC by one. Then, the probability of

detection by direct observation (henceforth shortened as “direct detection”) at a guard is

given by

 () () ()| 1 i i
direct C C

i

P P P
i

µ
µ

β

µ
β µ −

=

 
= − 

 
∑ (4.9)

Now consider the case of detection through evidence furnished by γ or more

guards, shortened as “indirect detection.” Assuming independence of collision events

among the different guards, the probability that at least g of the guards generate an alert is

given by

() ()() ()()

() ()|
1

0

| 1 |

(| , , 1) ! (1)
(, 1) (1)!()!

direct

g
i g i

indirect direct direct
i

P
direct g

g
P P P

i

B P g g u u du
B g g

γ

β µ
γ γ

γ β µ β µ

β µ γ γ
γ γ γ γ

−

=

− −

 
= − = 

 

− +
= = −

− + − −

∑

∫
 (4.10)

Where, (, 1)B gγ γ− + is the Beta function and ()(| ; , 1)directB P gβ µ γ γ− + is the

incomplete Beta function. This gives the probability of indirect detection at a guard.

Therefore, the probability of detection at a guard is given by,

 () () () ()| |detect direct indirect direct indirectP P P P Pβ µ γ β µ γ= + − (4.11)

Based on Equation(4.11), Figure 4.5 shows the probability of detecting at a guard

as a function of the number of neighbors with m = 7, b = 4, g = 3, Pfab=1, the number of

compromised nodes M = 2, and PC = 0.05 at NB = 3. Thereafter, PC is assumed to increase

 72

linearly with the number of neighbors. The number of guards is determined from NB

using Equation (33). Since the number of guards increases as the number of neighbors

increases, the probability of indirect detection increases since it becomes easier to receive

the alarm from g guards. However, the collision probability also increases with the

number of neighbors, and thus the probability of direct detection starts to fall rapidly

beyond a point, which in turn decreases the indirect detection and the overall detection at

a guard. However, note that the detection is still high (above 98.5%) at the relatively high

density of each node having 35 neighbors since the reduction in the direct detection

capability is compensated by the indirect detection.

Figure 4.5: Probability of attack detection at a guard against NB

Figure 4.6 shows the probability of detecting the wormhole attack against γ with m

= 7, b = 4, NB = 20, the number of compromised nodes M = 2, and PC = 0.33. As g

increases, the probability of indirect detection at a guard decreases since it becomes

harder to reach consensus among all the γ guard nodes. Therefore, the probability of

detection decreases rapidly with increasing γ. However, note that the probability of

detection is still high even at the lowest point (above 0.88) since the probability of direct

detection is not affected by γ.

 73

Figure 4.6: Probability of wormhole detection at a guard against γ

Recollect that false alarm is caused by a “legitimate” node mistaking another

“legitimate” node to be malicious because of imperfections in the wireless channel. As

shown in Figure 4.4 (b), a false alarm occurs when D receives a packet sent from S, while

G does not receive that packet, and later, G receives the corresponding packet forwarded

by D. Thus, the probability of false alarm is

 2(1)FA C CP P P= − (4.12)

Assume that S sends y packets to D for forwarding, within Twin. The probability

that D is falsely accused directly by a guard is the probability that b or more packets are

falsely suspected as fabricated. Therefore, the probability of direct false alarm (PDF) at a

guard is given by,

 () () ()| 1i i
DF FA FA

i

P P P
i

ψ
ψ

β

ψ
β ψ −

=

 
= − 

 
∑ (4.13)

The probability of indirect false alarm (PIF) is the probability that at least γ guards

generate false alarms, which is given by

() ()() ()() ()

()|
1

0

(| , , 1)
| 1 |

(, 1)

! (1)
(1)!()!

DF

g
i g i DF

IF DF DF
i

P
g

g P g
P P P

i g

g u u du
g

γ

β ψ
γ γ

β β ψ γ γ
γ β ψ β ψ

β γ γ

γ γ

−

=

− −

− + 
= − =  − + 

= −
− −

∑

∫
 (4.14)

 74

The probability of false alarm at a guard is given by,

 () () () ()| |false DF IF DF IFP P P P Pβ ψ γ β ψ γ= + − (4.15)

Based on Equation(4.15), Figure 4.7 shows the probability of false alarm at a

guard as a function of the number of nodes for the same parameters as in Figure 4.5. The

non-monotonic nature of the plot can be explained as follows. As the number of

neighbors increases, so does the number of guards. Initially, this increases the probability

that at least γ guards miss the packet from S to the guard but not from D to the guard,

leading to increase in indirect false detection. But beyond a point, the increase in the

number of neighbors increases the collision probability. This increases the probability

that both of these packets are missed at the guard and thus does not lead to false

detection. The worst case false alarm probability is still low (less than 1.2×10-3).

Figure 4.7: Probability of false alarm at a guard against NB

Figure 4.8 shows the probability of false alarm as a function of γ with PC = 0.05,

β=4, µ=7, and NB=20. As g increases, the probability of false detection decreases since it

becomes harder to reach consensus among all the γ guard nodes. Moreover, recall that the

probability of direct false detection does not change with γ. Therefore, the probability of

false detection decreases with increasing γ.

 75

Figure 4.8: Probability of false alarm at a guard against γ

Figure 4.16 (Section 4.4) shows the probability of indirect detection against γ,

both through analysis and simulation

4.3.2. Analysis of a Node being Framed

Using the same notation of previous section with N be the total number of nodes

in the network, Nm be the number of malicious nodes, Pm=Nm/N be the probability that a

node gets compromised, d be the density of nodes in the network, r be the range of

communication, and NB = pr2d be the number of neighbors of a node.

Assuming that false detection is zero, then, the probability that a good node X is

locally framed equals the probability that there are at least g malicious nodes among X’s

neighbors which is given by,

 ()() 1
B

B
N

N iB i
frame m m

i

N
P P P

iγ

γ −

=

 
= − 

 
∑ (4.16)

The probability of node framing (Pframe) as a function of the probability of node

compromise for g = 5 and NB = 7 is plotted in Figure 4.9 From the figure, we see that the

probability of framing increases exponentially with the probability of node compromise

but up to the upper end of the range, it is still less than 0.03.

 76

Figure 4.9: Probability of node framing against the probability of compromising a

given node (g=5, NB=7)

4.3.3. Detection Latency Analysis

Here, we analyze the amount of time it takes to detect a malicious node. Assume

the traffic distribution and the bandwidth capacity allows a maximum of m packets to be

forwarded by a malicious node M within a time window Twin. Assume that M selectively

fabricates (to evade detection) packets with probability Pfab. Let G be the guard node of

M over the link from X to M that collects and keeps a malicious counter (MalC(G,M)) for

M over a window of length Twin which slides by d units, Figure 4.10. Assume the MalC

threshold Ct over this time window is b and that each malicious activity increases the

MalC by one. Let Twin/d = h. When h=1 in Figure 4.10 (a), the sliding windows are non-

overlapping and therefore, the events detected in any two windows are independent.

δ

Twin

(b) Twin/ δ = η >1
δ

Twin

δ

Twin

(b) Twin/ δ = η >1

Twin= δ
(a) Twin/δ = η = 1

 77

Figure 4.10: Sliding window illustration

The probability that G detects M during a certain time window (PgdM) equals the

probability that M fabricates at least b packets within Twin, which is given by

 ()1
i i

gdM fab fab
i

P P P
i

µ µ

β

µ −

=

 
= − 

 
∑ (4.17)

The expected time of detection is calculated from the number of Twin time slots

(Nts) that pass before the guard G detects the malicious node M. The probability that Nts =

k is

 () 1
() 1

k

ts gdM gdMP N k P P
−

= = − (4.18)

Using Bernoulli trials, the expected value for Nts is given by E[Nts] =1/PgdM. The

expected number of time slots (E[Nts]) before a single guard detects a malicious node is

plotted in Figure 4.11. The plot shows that the latency decreases very fast with increasing

probability of malicious behavior.

Figure 4.11: Expected number of time slots E[Nts] before a single guard detects a

malicious node

For the case with overlapping sliding windows (η>1), Figure 4.10 (b), the

analysis becomes more difficult and we use Martingale Theory [96] to obtain bounds on

the delay. Here, we assume rate-based detection, i.e., a node is determined to be

malicious if the rate of malicious activities goes above a threshold α. We present this

 78

analysis for g = ∞ since it eliminates framing and is shown to give reasonable detection

rates as shown through the simulations (Section 4.4).

 Let Xi be an i.i.d. Bernoulli random variable that tracks the number of malicious

actions by a node, such that Xi=1 (malicious activity) with probability λ and zero,

otherwise. Thus, E[Xi] = λ. Consider that the guard observes the node for Nact activities

(packet forwarding actions). Define

1

act

act

N

N i act
i

Z X N λ
=

= −∑ (4.19)

Then it can easily be shown that ZNact is a zero-mean martingale process.

Similarly, YNact defined below is also a zero-mean martingale process

2

(1)
act

act

N

N i act
i

Y X N λ
=

= − −∑ (4.20)

Now, let N0 be the number of activities at which the guard detects the node to be

malicious. Then,

 0
1

min
act

act

N

i actN i
N X Nα

=

= ≥∑ (4.21)

Our goal is to find E[N0]. From elementary probability,

 0 0 0 0 0 0 0[] [| 1] (1) [| 1] (1)E N E N N P N E N N P N= = ⋅ = + > ⋅ > (4.22)

Note that E[N0|N0=1]P(N0=1) = 1×λ = λ. Also P(N0>1) = P(X1=0) = 1-λ.

 Next we find E[N0|N0>1]. Note that since YNact is a martingale, using the

Optional Stopping Theorem [96], E[YN0] = E[Y2] = 0. Also, note that given N0>1,

 0
2

min
act

act

N

i actN i
N X Nα

=

= ≥∑ (4.23)

This means that given N0>1,

 0 min (1)
act

act
N act actN

N Y N Nλ α= + − ≥ (4.24)

 In other words, YN0 ≥ (α-λ)N0 + λ. Taking expectations on both sides,

 0 0 0

0 0 0

[| 1] () []

() [] 0 [| 1] /()
NE Y N E N

E N E N N

α λ λ

α λ λ λ λ α

> ≥ − ⋅ + ⇒

− ⋅ + ≤ ⇒ > ≥ −
 (4.25)

 79

 Therefore, de-conditioning, we get the lower bound as

 0[] (1) /()E N λ λ λ λ α≥ + ⋅ − − (4.26)

For the upper bound we can repeat the arguments. Therefore, define

0 0 0 1NZ N Nλ α+ ⋅ < ⋅ + (4.27)

 The last term is because Xi≤1. Now, choosing α such that, λ < α (i.e., the rate of

malicious activity is less than the detection threshold) and taking expectations we obtain

 0 00 [] () 1 [] 1/()E N E Nλ α λ α+ ⋅ − < ⇒ < − (4.28)

Therefore, the bounds for the expected number of activities after which the guard

will detect the node as malicious is,

 0(1) /() [] 1/()E Nλ α λ α λ α⋅ − − < < − (4.29)

We plot Equation (4.29) in Figure 4.12 and find that the bounds asymptotically

converge and exist only for λ > α.

Figure 4.12: Lower and upper bound for expected number of activities before a

malicious node is detected by a guard

4.3.4. Cost Analysis

In this section, we show the memory, the computation, and the bandwidth

overheads of LITEWORP to evaluate its suitability to resource-constrained environments.

 80

4.3.4.1. Memory Overhead

We need to store the first and the second hop neighbor lists, the watch buffer, and

the alert buffer. The identity of a node in the network is 4 bytes. Reusing the notation

from the previous section, the size of neighbor list is NBL = pr2d entries. Each entry in

the NBL needs 5 bytes; 4 for identity of the neighbor and 1 for the MalC associated with

that neighbor. So the total NBL storage, NBLS=5(πr2d)2. For example, for an average of

10 neighbors per node, NBLS is less than half a kilobyte. The alert buffer has g number of

4 byte entries. The watch buffer size depends on the average number of hops between a

source-destination pair, h, the frequency of route establishment, f, as well as the density

of the nodes, d. To find the average number of nodes involved in watching a REP, we

create a rectangular bounding box containing nodes that may overhear the REP sent from

A to B (Figure 4.13). This is an overestimate since we use a square that circumscribes the

circular transmission range. The number of nodes involved in monitoring is

 22 (1)REPN r h d= + (4.30)

Thus, given N as the total number of nodes in the network, each node is involved

in watching (/)REPN N f route replies per unit time. For example, if N=100 nodes, h = 4

hops, and f = 1 route every 4 time units, then NREP = 17, and each node watches only 4

route replies every 100 time units. Because the time t for which the packet is kept in the

watch buffer is relatively small (may be less than one time unit), a watch buffer size of 4

entries is more than enough for this example. Each entry in the watch buffer is 20 bytes: 4

bytes each for the immediate source, the immediate destination, and the original source,

and 8 bytes for the sequence number of the REP. If we include the route request in the

watch, then each node will be involved in watching (/)REPf N N f+ . That requires each

node to watch 4 packets every 16 time units; again 4 entries are still sufficient for the

watch buffer.

 81

A B
r2r

(h+1)r

r

Communication rangeA sensor node A-B Bounding path

Figure 4.13: The average number of nodes involved in the watch of a route reply

4.3.4.2. Computation and Bandwidth Overhead

Each watched route reply requires one lookup for the current source and the

current destination in the neighbor list, adding an entry to the watch buffer (incoming) or

deleting an entry from the watch buffer (outgoing), and may be another addition and

deletion from the watch buffer (if a node is a guard for two consecutive links). Since the

size of the watch buffer and the neighbor list structure are relatively small, the

computation time required for these operations is negligible. For example, a lookup in a

100 entry buffer takes the MICA mote with an Atmega128 4-MHZ processor, about 2m

seconds. The bandwidth overhead is incurred after deployment of a node for neighbor

discovery and in the case of wormhole detection for informing the neighbors of the

detected node. This is therefore a negligible fraction of the total bandwidth over the

lifetime of the network.

From the above analysis, we can conclude that LITEWORP has relatively modest

memory, computation, and bandwidth overhead. This makes it especially suitable for

resource-constrained sensor and ad-hoc networks.

4.4. Simulation Results

We use the ns-2 simulation environment [89] to simulate a data exchange

protocol, individually in the baseline case without any protection, and with LITEWORP.

We distribute the nodes randomly over a square field with a fixed average node density.

Thus, the field size varies (80×80 m to 204×204 m) with the number of nodes. We use a

 82

generic on-demand shortest path routing that floods route requests and unicasts route

replies in the reverse direction. A route, once established, is not used forever but is

evicted from the cache after a timeout period expires (TOutRoute). When a malicious node

hears a route request, it directs the request to all the malicious nodes in the network using

an out-of-band channel or using packet encapsulation. For packet encapsulation, we

assume that the colluding nodes always have a route between them. We simulate the out-

of-band channel by letting the compromised nodes deliver the packets instantaneously to

their colluding parties. These two schemes exercise the principal feature of LITEWORP,

namely, local monitoring and are the most challenging to mitigate. Hence, we simulate

them in preference to other modes of attack. After a wormhole is established, the

malicious nodes at each end of the wormhole drop all the packets forwarded to them.

Furthermore, a malicious node always frames its good neighbors.

The simulation also accounts for losses due to natural collisions. The guards

inform all the neighbors of the detected malicious node through multiple unicasts. For

each run, malicious nodes are chosen at random such that they are more than 2 hops away

from each other.

Input parameter: Each node acts as a data source and generates data using an

exponential random distribution with inter-arrival rate of φ. The destination is chosen at

random and is changed using an exponential random distribution with rate x. We use M

for the number of malicious nodes, γ for the detection confidence, and N for the total

number of nodes. The input parameters with the experimental values are given in Table

4.2. A design parameter in LITEWORP is the increment to the malicious counter value

upon detecting a malicious event. On the one hand, we want the increment to be large for

higher detection probability, fast detection, and small watch buffer size. On the other

hand, we want the increment to be small to reduce the percentage of false alarms. We

conduct an experiment to design the malicious counter increment. We choose the

increment as the lower of the two points–the point where the percentage detection

reaches its maxima and the point where the knee of the false detection curve lies. This

gives us a reasonable combination of low false alarm rate and high detection rate. The

value of the MalC increment used for the experiments is given in Table 4.2.

 83

Output parameters: The output parameters include (i) the isolation latency which is

defined as the time between when the node performs its first malicious action to the time

by which all the neighbors of the node have isolated it, (ii) the fraction of data packets

dropped due to the wormhole to the data packet sent, (iii) the fraction of malicious routes

to the total number of routes established. This parameter quantifies the amount of harm

caused by the malicious nodes,, (iv) the percentage of framing, which is defined as the

percentage of the number of good nodes that could be framed to the total number of

nodes, (v) the percentage of false isolation, which is defined as the percentage of the

number of nodes that have been isolated due to natural causes to the total number of

nodes, and the percentage of malicious node isolation, which is defined as the number of

malicious nodes isolated to the total number of malicious nodes.

All the output parameters that we present here are measured at the end of the

simulation time (1500 seconds) unless otherwise stated. The output parameters are

obtained by averaging over 30 runs. Finally, the figures we present are for the 100-node

scenario unless otherwise stated.

Table 4.2: Input parameter values for LITEWORP simulations

Parameter Value Parameter Value Parameter Value
Tx Range (r) 30 m g 3,5,7, infinity # nodes (N) 20,50,100,150
MalC incr. 10 φ 0.2 sec x 0.02 sec
TOutRoute 50 sec M 0-6 BW 40 kbps
Ct 150 t 0.5 sec Twin 200

Data packet drop: Figure 4.14 shows the number of packets dropped as a function of the

simulation time for 2 and 4 colluding nodes both with LITEWORP and without LITEWORP.

The attack is started 50 sec after the start of the simulation. Since the numbers are vastly

different in the two cases, they are shown on separate Y-axes; the axis on the left

corresponds to the baseline case and the axis to the right corresponds to the system using

LITEWORP. In the baseline case, since wormholes are not detected and isolated, the

cumulative number of packets dropped continues to increase steadily with time. But in

the LITEWORP case, as wormholes are identified and isolated permanently, the

cumulative number stabilizes. Notice that the cumulative number of packets dropped

 84

grows for some time even after the wormhole is locally isolated, due to the cached routes

that contain the wormhole and continue to be used till route timeout occurs.

0
500

1000
1500
2000
2500
3000
3500

0 50 100 200 300 400 500 600
Simulation time

w
/o

 L
ite

W
or

p

0
20
40
60
80
100
120
140
160

W
ith

 L
ite

W
or

p

4 w/o LiteWorp
2 w/o LiteWorp
4 w/ LiteWorp
2 w/ LiteWorp

Figure 4.14: Cumulative number of dropped packets with and without LITEWORP

Figure 4.15 shows a snapshot, at the end of the simulation time, of the fraction of

data packets dropped and the fraction of malicious routes. This is shown for 0-4

compromised nodes for the baseline and with LITEWORP. With 0 or 1 compromised node,

there is no adverse effect on normal traffic since no wormhole is created. The relationship

between the number of dropped packets and the number of malicious routes is not linear.

This is because the route established through the wormhole is more heavily used by data

sources due to the aggressive nature of the malicious nodes at the ends of the wormhole.

If we track these output parameters over time, with LITEWORP, they would tend to zero

as no more malicious routes are established or packets dropped, while without LITEWORP

they would reach a steady state as a fixed percentage of traffic continues to be affected by

the undetected wormholes.

 85

0.00

0.20

0.40

0.60

0.80

0 1 2 3 4
#of malicious nodes

w
/o

 L
ite

W
or

p

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

W
ith

 L
ite

W
or

p

fr. drop
fr. mal routes
fr. drop-LiteWorp
fr. mal route-LiteWorp

Figure 4.15: Fraction of dropped packets and malicious routes with and without

LITEWORP

Figure 4.16 bears out the analytical result for the detection probability as γ is

varied with NB = 15 and M= 2. As γ increases, the detection probability goes down due to

the need for alarm reporting by a larger number of guards, in the presence of collisions.

Also the isolation latency goes up, though it is very small (less than 30 s) even at the right

end of the plot.

50-node scenario

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Detection confidence index

P(
D

et
ec

tio
n)

0

6

12

18

24

30

Is
ol

at
io

n
la

te
nc

y
Sim P(detection)
Ana P(detection)
sim isolation latency

Figure 4.16: Detection probability and latency with varying g

Framing: Figure 4.17 shows the percentage of framing with various values of g. As the

number of malicious nodes increases, the chances of getting g malicious nodes framing a

good node increases and thus the framing percentage increases. As we increase g, the

percentage of framing decreases since it becomes more difficult to get g malicious nodes

 86

to frame a good node. When the value of g is greater or equal to 7, the probability of

framing goes to zero since no node has more than 7 neighbors in this simulation setup,

therefore, it is impossible for framing to occur.

0

7

14

21

28

35

2 6 10 14 18 22 26 30
Number of malicious nodes

%
 F

ra
m

ed
_n

od
es

GAMMA=1
GAMMA=3
GAMMA=7

Figure 4.17: Percentage of framing

Varying the number of malicious nodes: Figure 4.18 shows the percentage of malicious

nodes isolated at the end of the simulation time for three different values of g. The

isolation percentage falls almost linearly as we increase the number of colluding

malicious nodes from 2 to 6 due to the decrease in the number of available guards. Note

that as g increases, the percentage of malicious nodes isolated decreases slightly due the

requirement of higher number of guards to agree on the detection. However, the %

malicious nodes isolated is above 90% for 6 malicious nodes with infinite g.

80

84

88

92

96

100

2 3 4 5 6
#Mal_nodes

%
 M

al
. N

od
e

Is
ol

at
io

n

GAMMA=3
GAMMA=1
GAMMA=7

Figure 4.18: Percentage of malicious node isolation

 87

Figure 4.19 shows that the percentage of false isolation increases as the number of

malicious nodes increases. This is because not all guard nodes come to the decision to

isolate a malicious node at the same time. Therefore, a given guard node may suspect

another guard node when the latter isolates a malicious node but the former still has not.

For example, a guard node G1 detects a malicious node M earlier than the other guard

nodes for the link to M. Node G1 subsequently drops all the traffic forwarded to M and is

therefore suspected by other guard nodes for M. This problem can be solved by having an

authenticated one-hop broadcast whenever a guard node performs a local isolation.

0

0.4

0.8

1.2

1.6

2

2 3 4 5 6
#Mal_nodes

%
 F

al
se

_I
so

la
tio

n

GAMMA=3
GAMMA=Infinity

Figure 4.19: Percentage of false isolation

Figure 4.20 shows that the percentage of malicious routes increases as we

increase the number of malicious nodes. As the number of malicious nodes increases, the

percentage of damage that occurs before each of the nodes is detected and isolated

increases.

0

0.3

0.6

0.9

1.2

1.5

2 3 4 5 6
#Mal_nodes

%
 M

al
_r

ou
te

s

GAMMA=3
GAMMA=Infinity

Figure 4.20: Percentage of malicious routes

 88

Varying g:: Figure 4.21 shows the percentage of false isolation as a function of g. As g

increases the false isolation decreases since it becomes more and more unlikely to get g

nodes falsely accuse a good node as malicious. As the number of malicious nodes

increases the false isolation increases for the same reasoning as in Figure 4.17.

0

1.2

2.4

3.6

4.8

6

1 3 5 7 Infinity
Detection Confidence (GAMMA)

%
 F

al
se

_I
so

la
tio

n
Mal_nodes=6
Mal_nodes=2

Figure 4.21: Percentage of false isolation

Figure 4.22 shows that the percentage of malicious routes increases with g. As g

increases, the detection and isolation of nodes decreases and takes longer time which

gives the malicious nodes more chance to establish more malicious routes. Moreover, as

the number of malicious nodes increases, the percentage of damage (malicious routes)

increases intuitively.

0.1

0.4

0.7

1

1.3

1.6

1 3 5 7 Infinity
Detection Confidence (GAMMA)

%
 M

al
_r

ou
te

s

Mal_nodes=6
Mal_nodes=2

Figure 4.22: Percentage of malicious routes

 89

The observation from all the experiments is that an infinite value of γ appears to

be a desirable operating region. We find that it eliminates framing and minimizes the

percentage of false isolation. On the other hand, it only slightly increases the percentage

of malicious routes and slightly decreases the percentage of malicious nodes isolated.

However, these values are acceptable and close to the case when g is small. This is

because the guards of a node over a certain link are likely to see the same view of the

node and therefore, they are likely to reach to the same reasoning about the monitored

node whether individually or through the reports of other guards. This reduces the

importance of having guards inform each other of their view about the monitored node

which results in little change when we increase the value of g to infinity.

 90

5. MITIGATING OTHER CONTROL AND DATA TRAFFIC
ATTACKS IN STATIC WAHAS NETWORKS: DICAS

The traffic in WAHAS networks can be broadly classified into data and control

traffic. Control traffic contains information needed to set up the network for data traffic

to flow. Typical examples of control traffic include routing, monitoring the liveness of

nodes, topology discovery, and system management. Examples of data traffic include

sensor readings and alert messages in surveillance environments.

As mentioned earlier in the introduction (Chapter 1), the wireless media makes

the traffic of WAHAS networks more susceptible to various kinds of attacks against both

control and data traffic. Control traffic attacks include the (Ci) wormhole attack

([51],[53]), (Cii) the rushing attack [52], (Ciii) the Sybil attack [57], (Civ) the sinkhole

attack [76], and (Cv) the HELLO flood attack [76]. Therefore, the wormhole attack

presented in the previous chapter (Chapter 4) is one of many control traffic attacks

against WAHAS networks. Control attacks are especially dangerous because they can be

used to subvert the functionality of the routing protocol and create opportunities for a

malicious node to launch data traffic attacks such as dropping all or a selective subset of

data packets.

In addition to control traffic attacks, WAHAS networks are also vulnerable to

data traffic attacks. The most notable data traffic attacks are (Di) blackhole, (Dii)

selective forwarding, (Diii) artificially delaying of packets, in which respectively a

malicious node drops data (entirely or selectively) passing through it, or delays its

forwarding, and (Div) misrouting attack in which the attacker relays packets to the wrong

next-hop in an intention to indirectly drop them. The attacks could result in a significant

loss of data or degradation of service.

 91

These control and data traffic attacks affect many WAHAS network protocols

presented in the literature. Table 5.1 enumerates some of theses protocols and their

respective vulnerabilities summarized from the work presented by Karlof et al. [76].

Table 5.1: Examples of vulnerable WAHAS network protocols to control and data

traffic attacks

Routing protocol name Attacks
Directional diffusion ([80], [81]) Ciii, Civ, Cv, Dii
GPSR [99] Ciii, Dii
Minimum cost forwarding [82] Ci, Civ, Cv, Dii
LEACH [58], PEGASIS [103] Cv, Dii
Rumor routing [83] Ci, Ciii, Civ, Dii
SPAN [101] Ciii, Cv

In this chapter, we extend the work presented in the previous chapter (Chapter 4)

through providing new mitigation techniques for additional control and data traffic

attacks in static WAHAS networks. We present a lightweight framework called DICAS

(Detection, Diagnosis, and Isolation of Control and Data Attacks in Sensor Networks),

which mitigates many control and data traffic attacks in static WAHAS networks. Again,

DICAS not only detects the occurrence of an attack, but also diagnoses the malicious

nodes involved in it and removes their capability of launching future attacks by isolating

them from the network. The detection and isolation mechanisms are executed locally,

without incurring a significant overhead. DICAS is especially suited to the low cost point

of sensor networks since it does not require any specialized hardware (such as directional

antennas [1] or GPS) nor does it require time-synchronization among the nodes [53].

DICAS achieves its security goals by exploiting local monitoring (Section 2.1). We

systematically lay out the fundamental structures and the state to be maintained at each

node for mitigating some representative attacks – Sybil, wormhole, rushing, selective

forwarding, and misrouting attacks. The first three are examples of attacks directed to

control traffic while the last two are examples of attacks directed at data traffic.

Independent of the detection mechanism, we use local isolation (Section 2.2.1) to isolate

malicious nodes locally in a distributed manner.

 92

In this chapter we consider the possibility of monitoring the data traffic in

addition to the control traffic to mitigate various control and data traffic attack. This is in

contrast to the previous chapter in which guards monitor only the control traffic. This

enables us to detect and isolate the attacker at any point during the network activity, even

if we fail to do so using the control traffic or the adversary stays benign during exchange

of control traffic. It is important to be able to use the data traffic in detection and isolation

of attackers since in some network scenarios, the frequency of control traffic exchange

may not be sufficient to detect malicious nodes if the protocol wants to maintain a low

incidence of false detection. However, monitoring data traffic is not trivial because of the

vastly increased volume compared to control traffic. Hence, we investigate the effect of

partial sampling of data traffic on the metrics of detection and isolation.

We use DICAS to create a novel lightweight secure routing protocol called LSR

that withstands known attacks against the routing infrastructure and provides additional

protection against data attacks by supporting secure node-disjoint multiple route

discovery. We analyze the detection coverage and the probability of false detection of

DICAS. We also evaluate the memory, communication, and computation overhead of

DICAS. Finally, we simulate the wormhole attack in ns-2 and show its effect on the

network performance with and without DICAS. The results show that DICAS can achieve

100% detection of the wormholes for a wide range of network densities. They also show

that the detection and isolation of the nodes involved in the wormhole can be achieved in

a fairly short time after an attack starts. In addition, we simulate a combined Sybil and

rushing attack to bring out the adverse impact on node-disjoint multipath routing and

show the improvement using DICAS. The results show that LSR using DICAS is resilient to

the combined attack and that the average number of node-disjoint routes discovered is not

reduced. Our experiments with data monitoring show the feasibility of detecting the

selective forwarding attack while monitoring only a fraction of the data traffic.

In summary, the contributions in this chapter include,

• Proposing a mechanism to detect any control or data attack that directly manifests

itself in one of dropping, delaying, modifying, misrouting, or fabricating of packets.

 93

• Developing a toolset based on overheard information that can be mapped to detecting

different classes of attacks. We analyze this toolset for different metrics, such as, false

alarm probability, missed alarm probability, and latency of isolation.

• Proposing a mechanism that, based on information collected by the toolset, allows for

diagnosing and isolating the malicious nodes.

• Demonstrating the effectiveness of the toolset applied to both data and control attacks

through simulations.

The rest of this chapter is organized as follows. Sections 5.1 describes DICAS.

Section 5.2 describes LSR. Section 5.3 presents representative examples of control and

data attacks and their mitigation using LSR with DICAS. Section 5.4 analyzes the coverage

and overhead of DICAS, while Section 5.5 presents simulation results.

5.1. Description of DICAS

In its goal of providing detection and isolation to control and data attacks, DICAS

provides the following primitives - neighbor discovery and one-hop source

authentication (Section 5.1.2). These two primitives are used with local monitoring

(Section 2.1) and local response (Section 2.2.1) to provide mitigation for various attacks.

5.1.1. System Model and Assumptions

Attacker model: This model is the same as that of LITEWORP (Section 4.2.1), however

we repeat it here for convenience. An attacker can control an external node (i.e., a node

that does not know the cryptographic keys that allows it to be authenticated by the rest of

the nodes), or an internal node, (i.e., a node that possesses all the keys required for it to

be authenticated by other nodes in the network, but exhibits malicious behavior). An

insider node may be created, for example, by compromising a legitimate node. A

malicious node can perform all the attacks mentioned in the introduction of this chapter,

by itself or by colluding with other nodes. A malicious node can establish out-of-band

fast channels (e.g., a wired link) or have a high powered transmission capability.

 94

System assumptions: These assumptions the same as those of LITEWORP (Section 4.2.1),

however, we repeat them here for convenience. DICAS assumes that all the

communication links are bi-directional. A finite amount of time is required from a node’s

deployment for it to be compromised, and to perform the first- and second-hop neighbor

discovery protocol. We assume that no external or internal malicious nodes exist before

the completion of the neighbor discovery. However, we can remove this assumption and

use one of the protocols for secure neighbor discovery such as the directional antenna by

Hu and Evans [51]at the additional cost of using directional antennas or by using trusted

and more powerful nodes as in [95]. DICAS assumes that the network has sufficient

redundancy, such that each node has more than an application defined threshold number

of legitimate nodes as guards. DICAS assumes that the network has a static topology. This

does not rule out route changes due to natural and malicious node failures or route

evictions from the routing cache. Moreover, DICAS assumes that each packet forwarder

explicitly announces the immediate source of the packet it is forwarding. Finally, DICAS

assumes a key management protocol, e.g., [64], is used to pre-distribute pair-wise keys

such that any two nodes in the network can securely communicate with each other.

5.1.2. Primitives: Neighbor Discovery and One Hop Source Authentication

Neighbor discovery: This protocol is used to build a data structure of the first hop

neighbors of each node and the neighbors of each neighbor. The data structure is used in

local monitoring to detect malicious nodes and in local response to isolate these nodes. A

neighbor of a node, W, is any node that lies within the transmission range of W. As soon

as a node, say A, is deployed in the field, it sends a one-hop broadcast of a HELLO

message. Any node that receives the message sends a reply back to A. For each reply

received within a pre-defined timeout (TROUT,), A adds the responder to its neighbor list,

RA. Let RA = W1, ..., Wp and Msg = RA||Kcommit(A), where Kcommit(A) is the commitment key A

uses later to authenticate itself to its neighbors. Node A then sends a one-hop broadcast of

Msg. A node Wj that receives Msg, stores RA (Wj’s second-hop neighbors) and Kcommit(A).

Hence, at the end of this neighbor discovery process, each node has a list of its direct

neighbors and their neighbors as well as the commitment key of each one of its direct

 95

neighbors. This process is performed only once in the lifetime of a node and is secure in

static wireless networks that follow our assumptions of attack-free environment during

neighbor discovery.

Commitment key generation and update: This protocol is used to generate and update

the commitment key used by the one-hop source authentication protocol. The values of

the commitment key at a node S (Kcommit(S)) are derived from a random seed (Kseed(S)) as

Kcommit(S) = H(i) (Kseed(S)), where H is a one-way collision resistant hash function [112]-

[114], i takes values between 0 and l(¥2), and l is the length of the sequence of values of

Kcommit(S) that we call the commitment string. The first value of the commitment key

Kcommit(S) that is exchanged with the neighbors during neighbor discovery is H(l)(Kseed(S)) =

vl. The subsequent values of the commitment key (vl-1,…, v0) are progressively disclosed

to the neighbors during subsequent transmissions. Before the current commitment string

{vl, vl-1,…, v0} is exhausted, a new one is generated at S {ul, ul-1,…,u0}. The commitment

key ul from the new string is authenticated to the neighbors using the last undisclosed key

from the current string with the one-hop source authentication protocol.

One-hop source authentication: This protocol allows a node to distinguish between its

neighbors to prevent identity spoofing among them. A node S authenticates its

transmitted packets to the neighbors by attaching the last undisclosed value from the

commitment string Kcommit(S). This authentication is only used with the source of the

packet, not at every hop in the path of the packet from the source to the destination .

When a neighbor of S, say B, receives the packet, it verifies the validity of Kcommit(S) by

computing a hash function over it and comparing the result with the stored value of

Kcommit(S). If Kcommit(S) is valid, B stores it as the new commitment key value of S.

However, this protocol may fail to provide the required authentication if an attacker

blocks the transmission range of a certain source from the rest of network except itself.

Therefore, the attacker can impersonate that source and generate valid packets. In such

case, we revert to the well-known mTESLA authentication scheme [62][63] which

countermeasures such attacks.

 96

5.1.3. Application of Local Monitoring for Data Attacks

Chapter 4 presents the application of local monitoring to the wormhole attack

through monitoring the control traffic. Moreover, Chapter 2 presents the elementary

activities underlying a large set of attacks in an ad-hoc multi-hop network. These

activities are comprised of the following actions performed by the adversary node on an

incoming packet – delay, drop, modify, and fabricate. Also, Chapter 2 presents the exact

information stored in the watch buffer for each malicious action and the corresponding

checking details of each.

This section expands the attack-set mitigated by local monitoring to include data

attacks. DICAS refers to data attacks as the general class of attacks directed at the data

traffic after the route has been established. The objective of these attacks is to disrupt the

end-to-end transmission of data between a source and a destination. The disruption can be

done through leaking information or through launching denial of service by manipulating

the data. When leaking information, the adversary node does not manipulate the data but

gathers information based on data that flows through it. In the denial of service attack, the

adversary actively manipulates the data packets through delay, drop, fabrication, or

modification. Information leaking is difficult to detect by monitoring the data traffic

alone. This mode of attack becomes particularly insidious when the adversary uses

control attacks such as the wormhole attack to create an opportunity to control a

disproportionately large portion of the routes in the network. We use the local monitoring

approach applied to the control traffic to mitigate this mode of attack.

For the second class of data attacks (DoS by manipulating the data), local

monitoring can be applied to the data traffic using the elementary checking activities

mentioned in Table 2.1. This approach is useful in particular where an adversary node is

in the position of having large amounts of data traffic flowing through it due to its

strategic position in the network, without the need to launch a wormhole attack. The

detection of data traffic manipulation in such a case can significantly improve the

delivery ratio of the network.

Recall that in local monitoring, the guard node maintains in its watch buffer a data

structure containing the following information about the observed packets: immediate

 97

source, immediate destination, original source, final destination, packet id (unique wrt a

sender), and packet information. The packet information may be the unchanging fields in

the packet header, the hash value of the unchanging fields in the header and the payload,

or the entire packet itself. The elementary checking actions mentioned in Table 2.1 are

performed on this information. The key distinction of data traffic monitoring from control

traffic monitoring is the volume of traffic. Therefore, each guard node selects a fraction

of the data traffic to monitor. In the current design, this is a global parameter for all the

nodes. The fraction of traffic monitored is calculated over a given time window. Also for

detecting modification, only hash values are matched, using a collision free yet

computationally inexpensive hashing technique, such as SHA-1 [107].

5.1.4. Local Response and Isolation

This is the same as that of Section 2.2.1 and Section 4.2.4.

5.2. LSR: Lightweight Secure Routing

LSR is an on-demand routing protocol, sharing many similarities with the AODV

[55] protocol. However, LSR has significant differences in order to enhance security. The

design features of LSR described below make it resilient to a large class of control attacks

such as wormhole, Sybil, and rushing attacks, as well as authentication and ID spoofing

attacks. Combined with DICAS, LSR can deterministically detect and isolate nodes

involved in launching these attacks.

5.2.1. Route Discovery and Maintenance

Route request: When a node, say S, needs to discover a route to a destination, say D, it

generates a route discovery packet (REQ) that contains: a flag to indicate that it is a route

request packet (FREQ), the sender’s identity (IDS), the destination’s identity (IDD), and a

unique sequence number (SN). The SN is incremented with every new REQ and is used to

prevent the replay of the REQ packet. Node S then calculates a message authentication

code (MAC) of the packet using the shared key between S and D (KSD). Finally, S

 98

generates and attaches the next value of the commitment key Kcommit(S) to the REQ packet

and broadcasts it.

1. [At S] REQ = FREQ || IDS || IDD || SN

2. S Broadcast→REQ||MACKSD(REQ)||Kcommit(S)||IDS

A neighbor Z of S accepts the REQ packet if the associated Kcommit(S) is valid. Then

Z removes Kcommit(S) from the REQ, attaches IDZ, and forwards the REQ.

An intermediate node B that is not a direct neighbor to S stores the first REQ

packet it receives. Node B also keeps the identity of every different neighbor that

forwards a subsequent copy of the same REQ during a rush time, Tr, selected randomly

from [Tmin, Tmax], as in [52]. When Tr runs out or when a certain number of requests, Nr, is

collected, whichever occurs first, B broadcasts a randomly selected copy of the REQ

copies that it has. Assume, without loss of generality, that B selects the one forwarded by

W. For each source-destination pair, node B keeps the identity of the node from which it

receives the forwarded REQ (IDW). Node B then appends IDB and IDW to the REQ and

broadcasts it. The process continues until the REQ reaches D.

3. B Broadcast→ REQ||MACKSD(REQ)||IDW|| IDB

Route reply: When D receives the REQ packet, it verifies the authenticity of the source

using the shared key KSD. Then D generates a route reply packet REP that contains: a flag

to indicate that it is a route reply packet (FREP), the sender identity (IDS), the destination

identity (IDD), and a SN. Node D then calculates a MAC value over the packet using KSD.

Node D generates and attaches the next value of the commitment key Kcommit(D) to the

REP packet. Finally, D unicasts the REP packet back to the previous hop as determined

by the REQ packet. Let A be the immediate previous hop from D and C the immediate

previous hop from A.

1. [At D] REP = FREP||IDS||IDD|| SN

2. D A:REP|| MACKSD(REP) || Kcommit(D)||IDD||IDA

 99

When A receives the REP packet, it verifies and removes Kcommit(D), updates its

routing table as follows - <Destination, Next-hop>: {D, D}, {S, C}. Node A then appends

IDD||IDA||IDC and sends the REP packet to C.

3. [At A] Verify and remove Kcommit(D). Set <Destination, Next-hop>: {D, D}, {S, C}

4. A C: REP||MACKSD(REP)|| IDD || IDA || IDC

The REP continues to propagate using the reverse path of the corresponding REQ

towards S. Node S verifies the authenticity of the reply using KSD and updates its routing

table to node D.

The route maintenance in LSR, as in AODV, is triggered when a broken link is

detected and a new route is discovered by using the above protocol for route discovery.

Note that in LSR, the source chooses the route corresponding to the fastest route

reply and not the shortest-hop route, to guard against attacks that modify the hop count. A

longer but less congested route is preferred to a shorter but congested route, as in [73].

5.2.2. Node-Disjoint Multipath Discovery

A beneficial feature of LSR is its ability to increase the number of node-disjoint

routes between a source and a destination. In many on demand ad-hoc and sensor

network routing protocols, an intermediate node forwards the first announcement of a

request and suppresses any following announcements, such as in AODV [55]. As a result,

multiple routing paths may have common nodes in them. In LSR, each node, say B, backs

off for a random time (Tr) before forwarding the REQ. During Tr, B buffers all the

announcements of the same request. At the same time, B listens to any neighbor, say E,

whose rush timer, Tr times out and which forwards one of its REQ copies. If B has the

same REQ copy, from the same previous hop, as that forwarded by E, B deletes that copy

from its buffer and thus will not be a candidate for REQ forwarding by B. An example is

shown in Figure 5.1. Let B receive REQs from nodes W, Y, and Z, and let E be a neighbor

of B which also receives from W.

 100

B

E
W

Y

Z
B

E
W

Y

Z
B

E
W

Y

Z
B

E
W

Y

Z
B

E
W

Y

Z
B

E
W

Y

Z

(a) (b) (c)
Figure 5.1: Example of node-disjoint routes

Let the REQ from W be the first to arrive at both B and E, Figure 5.1(a). If nodes

B and E forward the first REQ they receive and drop the others as in AODV, then

multiple paths will be formed with W in them, Figure 5.1(b). However, using our

technique, assuming that the timer of E runs out before that of B and that E broadcasts the

message it received from W, then B will drop W’s packet from its buffer. The resulting

paths are thus disjoint, Figure 5.1(c).

The destination replies to every REQ copy it receives through a different

neighbor. An intermediate node creates a routing table entry when it forwards the reply

for the first time. Subsequently, it does not forward any further replies to prevent itself

from being inserted in multiple routes. In order to detect malicious behavior by its

neighbors, each node monitors replies going out of the neighbors. If a neighbor forwards

a specific reply more than once, it is considered malicious and dropped from all the

routes the node has. For example, let node B receive the REP packets for a given route

creation procedure from two non-neighbor nodes W and Y. A correct node forwards only

the first REP. However, if B is malicious, it may send the two replies to two different

neighbors, say A and α respectively. Therefore, B succeeds in including itself in two

“different routes”. However, in LSR, this misbehavior can be detected by W and Y since

they overhear B’s forwarded REPs. Then they evict all the routes through B.

5.3. Attacks and Countermeasures

This section presents a representative control traffic attack and two representative

data traffic attacks and show how they can be mitigated using DICAS. For the purpose of

illustration, we use LSR as the underlying routing protocol since it is built to be

compatible with DICAS.

 101

5.3.1. ID Spoofing and Sybil Attacks

In this attack, an attacker presents one (ID spoofing) or more (Sybil attack)

spoofed identities to the network [57]. Those identities could either be new fabricated

identities or stolen identities from legitimate nodes. The Sybil attack can have many

adverse impacts, such as, multipath routing [101] and collaborative protocols that use

aggregation and voting [42].

Using DICAS with LSR yields the following desirable properties to mitigate ID spoofing

and Sybil attacks:

 (i) The first-hop neighbor list data structure prevents a node from spoofing the

identity of a none-neighbor node. A node will not accept (forward) traffic from (to) a

none-neighbor node. (ii) The one-hop source authenticated broadcasting prevents a node

from generating traffic using spoofed identity of a neighbor node since each node must

authenticate its generated traffic to the neighbors. (iii) Local monitoring detects a

forwarding node when spoofing a neighbor’s identity. As shown in Figure 2.1 (page 10),

if A receives a packet from X, then A can not forward the packet claiming that it is being

forwarded by one of its neighbors, say M. None of the guards of M over the link from X

to M overhear such a packet; also the guards of A over the link from X to A accuse A of

not forwarding the packet.

5.3.2. Selective Forwarding Attack

This is an example of a data traffic attack in which the adversary node selectively

drops packets flowing through it. The attack can impact the end-to-end throughput in the

network and if a reliable, continuous message stream is required, then this causes wastage

of resources by inducing repeated retransmissions.

DICAS enables the detection of selective forwarding as follows:

Information about the incoming data packet is stored in the watch buffer of the

guard node. If the incoming packet stays in the watch buffer unmatched beyond a

threshold period of time, the guard node increments the MalC value for the node being

monitored. In the case of the selective forwarding attack, the packet which is dropped by

 102

the adversary node, will remain unmatched in the guard node’s watch buffer. The guard

node monitors a fraction of the data traffic, with the packet to be monitored being chosen

randomly. This decision is independent of the decision of the adversary node to drop

packets and therefore there is a vanishingly small probability that the set of packets

dropped and the set of packets not monitored will exactly match over the time window

over which the MalC value is aggregated. The adversary node will thus be detected when

the MalC value crosses the threshold.

5.3.3. Misrouting Attacks

Misrouting attack is an example of data traffic attacks, where a malicious node

indirectly drops data packets. Instead of dropping packets going through it, a malicious

node just relay the packet to the wrong next-hop, which will result in a packet drop. To

detect this attack both DICAS and LSR include additional functionality and information.

The additional information includes collecting routing information during route

establishment and adding extra routing information to the data packet header. To collect

the routing information, the REQ current forwarder attaches the previous two hops to the

REQ packet header. Let the previous hop of M be A for a route from source S to

destination D, and the next hop from M be B. When M broadcasts the REQ received from

A, it includes the identity of A and its own identity (M) in the REQ header <S, D,

RREQ_id, A, M>. When B and the other neighbors of M get the REQ from M, they keep

in a Verification Table (VT) <S, D, RREQ_id, A, M, -> (last field is blank). When B

broadcasts the REQ, the common neighbors of M and B update their VT tables to include

B <S, D, RREQ_id, A, M, B>. When B receives back a REP to be relayed to M, it

includes in that REP the identity of the node that M needs to relay the REP to, which is A

in this example. Therefore, all the guards of M now know that M not only needs to

forward the REP but also that it should forward it to A not to a different neighbor, say X.

The sequence of REQ and REP steps and the VT updates for the scenario shown in Figure

5.2 are as follow,

 103

Y A CBM

X

G1 G2

Malicious nodeGood node

Figure 5.2: Misrouting attack illustration example

1. Node A broadcasts the REQ it got from Y: < S, D, REQ_id, Y, A>

2. The neighbors of A that hear the REQ for the first time (G1,X,M): store in VT < S, D,

RREQ_id,Y A>

3. Assume M wins the broadcast, then M broadcasts: < S, D, REQ_id, A, M>

4. The guards of M over the link A M (G1,X,A) update their existing VT entry: < S, D,

REQ_id, Y, A, M>

5. The neighbors of M that are not neighbors of A (B,G2) add an entry to their VT: < S,

D, REQ_id, A, M>

6. The process continues the same way until D gets the REQ

7. Node D sends the REP back until B gets it

8. Node B sends the REP to M: <REP, S, D, REQ_id, C, B, M> # note that local

monitoring requires each node to explicitly include the identity of the previous-hop (C

here) in the forwarded packet

9. The guards of M over the link B M (such as G2) update their VT table entry, < S, D,

REQ_id, A, M, B, C>, by adding C to the last field

 104

10. Node M has to send the REP to A: <REP, S, D, REQ_id, B, M, A> # otherwise the

guard of M over the link B M would detect M

11. The guards of A over the link M A (such as G1 and X) update their VT table entry, <

S, D, REQ_id, Y, A, M, B>, by adding B to the last field.

Therefore, two tasks have been added to the functionality of the guards in

monitoring the REP packets. First, the guard G of a node N verifies that N forwards the

REP to the correct next-hop. In the example above, G2 verifies that M forwards the REP

to A. Second, G verifies that N has updated the forwarded REP header correctly. In the

example shown above, G2 verifies that when the input packet to M from B is <REP, S, D,

REQ_id, C, B, M>, then the output packet from M should be <REP, S, D, REQ_id , B, M,

A>. Note that M and its guards over the link B M know that the next-hop is A from the

information built in the VT table during the REQ flooding.

Using the additional information and functionality mentioned above, DICAS

detects misrouting attacks as follows,

In the example above, assume that S is sending a data packet to D through a

route that includes <Y,A,M,B,C>. The malicious node M can not misroute the data packet

received from A to a node other than the next-hop, B. Remember that each guard of M

over the link A M (G1,X) has an entry in its VT < S, D, REQ_id, Y, A, M, B>. Therefore,

G1 and X know that M has to forward the data packet to B, otherwise, it is detected as

conducting the misrouting attack. This results in a third additional checking activity for

the guard node – verifying the data packet is forwarded to the correct next hop, as

indicated by the entry in the guard node’s VT.

5.4. DICAS Analysis

5.4.1. Coverage Analysis

In this section, we quantify the probability of missed detection and false detection

of a generic control or data traffic attack as the network density increases and the

detection confidence index varies. This analysis uses the same assumptions and notation

 105

as that of Section 4.3.1. The analysis in Section 4.3.1 is presented in the context of the

wormhole attack. In this section, we generalize the analysis for a generic control or data

traffic attack that results from packet drop, delay, modification, fabrication, or

misrouting.

5.4.1.1. Analysis for Missed Detection

Consider Figure 4.4(b) of Section 4.3.1, any of the five malicious actions (delay,

drop, modification, misrouting, or fabrication) may be missed due to different

combinations of events. Drop is missed if there is a collision on the S→G link,

fabrication for the D→G link, and delay, misrouting, and modification for both S→G and

D→G links. If the attacker delays packets with probability Pdelay, drops with probability

Pdrop, fabricates with probability Pfab, misroutes with probability Pmr, and modifies with

probability Pmod, then, the probability of missed detection is given by,

 () () 2
M drop fab C mod delay mr CP P P P P P P P= + ⋅ + + + ⋅ (5.1)

When plotting the probability of missed detection, we use equiprobable malicious

actions (i.e., PM = (1/5)(2PC+ 3PC
2)). Assume that m packet attacks (fabrication, modify,

drop, etc.) occur within a certain time window, Twin, with the different attacks being

equiprobable. Also assume that a guard must detect at least β attacks to cause the MalC

for a node to cross the threshold, MalCth, and thus generate an alert. Moreover, assume

that the increment to MalC is the same for each activity. Then, the probability of direct

detection at a guard is given by,

 () () ()| 1 i i
direct M M

i

P P P
i

µ
µ

β

µ
β µ −

=

 
= − 

 
∑ (5.2)

Thus, assuming independence of collision events among the different guards, the

probability that at least g of the guards generate an alert, i.e., the probability of indirect

detection is given by

 ()() ()()() | 1 |
g

i g i
indirect direct direct

i

g
P P P

iγ

γ β µ β µ
−

=

 
= − 

 
∑ (5.3)

Therefore, the probability of detection at a guard is given by,

 106

 () () () ()| |detect direct indirect direct indirectP P P P Pβ µ γ β µ γ= + − (5.4)

Based on Equation(5.4), Figure 5.3 shows the probability of detection as a

function of the number of neighbors with m = 7, b = 5, g = 3, the number of

compromised nodes M = 2, and PC = 0.05 at NB = 3. Thereafter, PC is assumed to increase

linearly with the number of neighbors (note that we do not use power control in the

network). Since the number of guards increases as the number of neighbors increases, the

probability of indirect detection increases since it becomes easier to receive the alarm

from g guards. However, the collision probability also increases with increasing node

density, and thus the probability of direct detection starts to fall rapidly at a point, which

in turn decreases the indirect detection and the overall detection at a guard. However,

note that the detection is still high (above 99%) at the relatively high density of each node

having 35 neighbors since the reduction in the direct detection capability is compensated

by the indirect detection.

Figure 5.3: Probability of attack detection at a guard a against NB

Figure 5.4 shows the probability of detecting the wormhole attack against γ with m

= 7, b = 5, NB = 20, the number of compromised nodes M = 2, and PC = 0.33. As g

increases, the probability of indirect detection at a guard decreases since it becomes

harder to reach consensus among all the γ guard nodes. Therefore, the probability of

detection decreases rapidly with increasing γ. However, note that the probability of

 107

detection is still high even at the lowest point (above 0.92) since the probability of direct

detection is not affected by γ.

Figure 5.4: Probability of attack detection at a guard against γ

5.4.1.2. Analysis for False Detection

Consider Figure 4.4(b) again and recall that false alarm occurs due to falsely

implicating a node for dropping, delaying, fabricating, misrouting, or modifying packets.

The false detection of each activity is caused by a different set of events – drop through

no collision on the S→G link and either collision on the S→D link or no collision on the

S→D link and collision on the D→G link; fabrication through collision on the S→G link

and no collision on the S→D link and the D→G link. According to DICAS model for

analysis, a modified or misrouted packet cannot give rise to false detection and a delay is

not possible either since it will map to drop at the guard. The events for drop and

fabrication are disjoint and therefore the individual probabilities are summed to give the

combined probability of false alarm as

 () ()22 1 1FA C C C CP P P P P= ⋅ ⋅ − + ⋅ − (5.5)

Assume that S sends m packets to D for forwarding within a certain time window,

T. The probability that D is falsely accused is the probability that D is suspected of

 108

malicious actions for b or more packets. Therefore, the probability of direct false alarm

(PDF) at a guard is given by,

 () () ()| 1i i
DF FA FA

i

P P P
i

µ
µ

β

µ
β µ −

=

 
= − 

 
∑ (5.6)

The probability of indirect false alarm (PIF) is the probability that at least γ guards

generate false alarms, which is given by

 ()() ()()() | 1 |
g

i g i
IF DF DF

i

g
P P P

iγ

γ β µ β µ
−

=

 
= − 

 
∑ (5.7)

The probability of false alarm at a guard is given by,

 () () () ()| |false DF IF DF IFP P P P Pβ ψ γ β ψ γ= + − (5.8)

Based on Equation (5.8), Figure 5.5 shows the probability of false alarm at a

guard as a function of the number of nodes for the same parameters as in Figure 5.3

except with PC=0.01 when NB=3. As the number of neighbors increases, so does the

number of guards. This increases the probability that at least γ guards miss the packet

from S to the guard but not from D to the guard, leading to increase in indirect false

detection. Even though the increase in the number of neighbors increases the collision

and thus decreases the direct false detection, the increase in the indirect false detection

dominates. The worst case false alarm probability is still low (less than 0.035).

Figure 5.5: Probability of false detection at a guard against NB

 109

Figure 5.6 shows the probability of false alarm as a function of γ with PC = 0.01,

β=5, µ=7, and NB=20. As g increases, the probability of indirect false detection decreases

since it becomes harder to reach consensus among all the γ guard nodes. Moreover, recall

that the probability of direct false detection does not change with γ. Therefore, the

probability of false detection decreases with increasing γ.

Figure 5.6: Probability of false alarm at a guard against γ

5.4.2. Analysis of Node Being Framed

This is exactly as the analysis of node being framed of Section 4.3.2.

5.4.3. Cost Analysis

The memory, computation, and bandwidth overhead of DICAS are tolerable for

resource constrained environments, such as sensor networks. For memory, each node

needs to store a first and a second hop neighbor list, a commitment key for each first hop

neighbor, its own commitment string, a watch buffer, and an alert buffer. The runtime

state with fluctuating size is the watch buffer, whose size is higher if the guard is

monitoring a malicious node that is delaying or dropping packets. The time for which the

packet is kept in the watch buffer is relatively small, being determined by the MAC layer

delay for acquiring the channel. From the experiments presented in the next section, we

 110

find that a watch buffer of size 50 is sufficient for all the experimental conditions. Each

entry in the watch buffer is 14 bytes−2 bytes each for the immediate source, the

immediate destination, and the original source, and 8 bytes for the sequence number of

the REP (REQ). The computation overhead is negligible since the operations for each

message is lookup and addition or deletion in the small watch buffer. The bandwidth

overhead is incurred only during initialization and when an adversary is detected.

Assuming nodes are awake, the listening due to the role of a guard does not incur any

bandwidth overhead.

5.5. Simulation Results

5.5.1. Control Attacks

We use the ns-2 simulator [89] to simulate a data exchange protocol over LSR,

individually without DICAS (the baseline) and with DICAS. We distribute the nodes

randomly over a square area with a fixed average node density. Thus, the length of the

square varies (80m to 300m) with the number of nodes (20-250). This random

distribution may result in situations where the number of good guards of some nodes goes

below γ, which negatively impact the simulation results. The malicious nodes are

randomly selected from the network nodes.

Each node acts as a source and generates data according to a Poisson process with

rate m. The destination is chosen at random and is changed using an exponential random

distribution with rate x. A route is evicted if unused for TOutRoute time. Isolation latency

is defined as the time between when the node performs its first malicious action to the

time by which all the neighbors of the node have isolated it. The experimental parameters

are given in Table 5.2. The results are averages over 30 runs. The malicious nodes are

chosen at random such that they are more than 2 hops away from each other.

Table 5.2: Input parameter values

Parameter Value Parameter Value Parameter Value
Tx Range (r) 30 m g 2-8 t, Nr 0.05 s, 5
NB 8 m 100 BW 40 kbps
TOutRoute 50 sec M 0-10 x 5

 111

The wormhole attack has been simulated in Chapter 4 and the results are

presented in Section 4.4. In this section, we simulate combined rushing and Sybil attacks

over a network of 250 nodes deployed in a 300 m µ 300 m field. We compare the average

number of node-disjoint paths discovered per route request for three different

protocolsan ideal search algorithm, AODVM [106], and LSR with DICAS. In the ideal

search, the topology of the entire network is known to the source that uses the shortest

path first search algorithm. AODVM creates node-disjoint routes by having every node

overhear neighboring nodes’ REP packets and deciding to forward its own REP such that

a neighbor is not included in two routes for a given source-destination pair. However, it

does not consider any control attacks.

Figure 5.7 shows the average number of node-disjoint paths as a function of the

number of hops in the shortest path between two nodes. The figure shows that, in a

failure free environment, LSR and AODVM perform almost identically. In a malicious

scenario (AODV malicious and DICAS malicious scenarios), each of 10 malicious nodes

launches rushing and Sybil attacks. When a malicious node receives a REQ packet, it

rushes to broadcast Nr copies of the REQ, each with a different fake identity. Figure 5.7

shows that LSR with DICAS is robust to the attack (LSR and LSR_mal plots overlap), while

the average number of node-disjoint paths in AODVM is reduced by 22% (for distant

source-destination pairs) to 32% (for closer pairs). Note that as the length of the path

increases, the effect of the attacks in AODVM decreases. This is because even though the

multiple routes appear to be disjoint at the attacker they may converge at some other

intermediate node. These are then discarded by the source thereby ultimately foiling the

attacker’s goal.

 112

1

2

3

4

5

2 3 4 5 6 7 8 9 10
hops in shortest path

A
vg

. #
 n

od
e-

di
sj

oi
nt

pa

th
s

Ideal
AODVM
LSR
AODVM_mal
LSR_mal

Figure 5.7: Average number of node-disjoint paths in ideal case, AODVM, and LSR

5.5.2. Data Attacks

Adversary model: We simulate the selective forwarding attack launched by a group of

malicious nodes in two attack scenarios. In the first scenario, the malicious nodes collude

and establish wormholes in the network. The wormholes are established using out-of-

band direct channels between the colluding nodes. The out-of-band channel is emulated

through allowing the malicious nodes to instantaneously exchange packets among them.

In the second scenario, the malicious nodes are independent and each node performs

selective forwarding without any collusion or coordination with other malicious nodes.

Unless otherwise mentioned, we use the wormhole adversary nodes. Each node

selectively drops a fraction 0.6 of the traffic that passes through it.

Input metrics: Fraction of data monitored (fdat)–each guard node randomly monitors a

given fraction of the data packets. At other times, it can be asleep from the point of view

of a guard’s responsibility. Increment to malicious counter–This is the increment that a

guard node does to the malicious counter for a given node for a single malicious action.

Output metrics: Delivery ratio–The fraction of the number of packets delivered to the

destination by the number of packets sent out by a node averaged over all the nodes.

Watch buffer size–This is the runtime count of the maximum size of the watch buffer

being maintained at a guard, measured in number of entries. The maximum is taken over

all the guards.

 113

Simulation parameters: Here, we mention the parameter settings that are different from

the experiments on control attacks, Section 5.5.1. Unless explicitly varied as a control

parameter in an experiment, the total number of nodes in the network N = 100,

destination change rate ξ = 50, g = 3, MalC threshold beyond which a node is determined

to be erroneous is 150, and the number of malicious wormhole nodes M = 4. The

simulation time is 1500 seconds.

5.5.2.1. Algorithm for Selection of MalC Increment

An important design parameter in DICAS is the increment to the malicious counter

value upon detecting a malicious event. On the one hand, we want the increment to be

large for higher detection probability, fast detection, and small watch buffer size. On the

other hand, we want the increment to be small to reduce the percentage of false alarms.

We conduct an experiment to design the malicious counter increment of a network with

fdat = 0.4 and number of wormhole nodes = 4. For the purpose of this experiment, we look

at the increment for dropped messages.

Figure 5.8 shows that the percentage of false alarms increases as the MalC

increment increases. With higher MalC increment, the chance that natural errors, such as

collisions, cause the MalC to reach the threshold becomes higher, which results in an

overall increase in the percentage of false alarms. The figure also shows that the detection

percentage increases as the MalC increment value increases to a point (increment = 7)

after which it remains approximately constant. As the size of the increment increases, a

smaller number of events causes the MalC threshold to be reached which enhances the

opportunity of detecting malicious nodes, even those that are involved in a small number

of malicious events. The delivery ratio also increases with increasing MalC increment

value to a point (MalC increment = 7) after which it remains approximately constant.

Faster detection results in fewer numbers of dropped data packets. However, the rate

slows down beyond a point since any additional increase does not substantially accelerate

the process.

 114

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MalC Increment

%
 F

al
se

 A
la

rm
s

60

70

80

90

100

 % False Alarms
% Detection - Right Axis
%Delivery Ratio - Right Axis

Figure 5.8: Effect of MalC increment

For the rest of the experiments in the section, for each given fdat, we choose the

increment as the lower of the two points–the point where the percentage detection

reaches its maxima and the point where the knee of the false detection curve lies. This

gives a reasonable combination of low false alarm rate and high detection. The values of

MalC increment used for the rest of the experiments are summarized in Table 5.3.

Table 5.3: MalC increment per malicious activity used for the experiments

Fraction of data monitored MalC increment
0.2 11
0.4 8
0.6 5
0.8 2
1.0 1

5.5.2.2. Effect of Fraction of Data Monitored (fdat)

The amount of data traffic is typically several orders of magnitude larger than the

amount of control traffic. It is not reasonable for a guard node to monitor all the data

traffic in its monitored links. Therefore a reasonable optimization, as proposed in Section

5.1.3 is to monitor only a fraction of the data traffic. In this set of experiments, our goal is

to investigate the effect of this optimization on the output metrics.

Figure 5.9 shows the variations of delivery ratio as we vary fdat with four

wormhole malicious nodes. The MalC increment for each fdat is designed as shown in

 115

Section 5.5.2.1 with an inverse relation to the fdat. The selection of the MalC increment

value according to the algorithm keeps the delivery ratio almost stable and above 95%,

irrespective of fdat.

88

90

92

94

96

98

100

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

D
el

iv
er

y
R

at
io

(%
)

Figure 5.9: Effect of fraction of data monitored on delivery ratio

Figure 5.10 shows that the percentage of false alarms decreases as fdat increases.

More available data makes it easier to distinguish a good node from a malicious node.

The higher the value of fdat, the lower is the increment to the malicious counter and thus

the smaller the chance of reaching the malicious counter threshold by natural errors only.

These two factors help reduce the probability of false alarms with increasing fdat. Figure

5.10 also shows the variations of detection percentage as we vary fdat. By selecting the

appropriate MalC increment value, we manage to keep the detection percentage almost

stable and above 95% irrespective of fdat. As fdat increases, MalC increment decreases.

This causes the MalC threshold to be reached slower at a guard node, which results in

increasing the isolation latency of the malicious nodes, Figure 5.11. Also the higher fdat

lays it open to the possibility of some packets being missed due to natural collisions and

thereby preventing the increment to the malicious counter and therefore, reaching the

threshold. Note however, that the delivery ratio is largely unaffected (Figure 5.9) since a

malicious node may still not be completely isolated by all its neighbors. However, it does

not have the opportunity for too much damage since most of its neighbors have already

isolated it and when new routes are created, the malicious node is excluded. As the value

of fdat increases, the size of the watch buffer expectedly increases (Figure 5.11). This

 116

increases the overhead of local monitoring since a larger memory has to be maintained

and searched in.

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

%
 F

al
se

 A
la

rm
s

90

92

94

96

98

100

%
 D

et
ec

tio
n

 % False Alarms
% Detection

Figure 5.10: Percentage detection and percentage false alarms

40

55

70

85

100

115

130

0.2 0.4 0.6 0.8 1
Fraction of Data Monitored

Is
ol

at
io

n
La

te
nc

y
(s

ec
)

5

10

15

20

25

30

35

40

45

W
B

 S
iz

e

Isolation Latency
WB size

Figure 5.11: Isolation latency and Watch buffer size

Figure 5.12 shows the benefit in terms of energy overhead of monitoring only a

small fraction of data. For this experiment, we implement the algorithm for storing

packets in the watch buffer and searching in it through a linear search. The algorithm was

implemented on a testbed consisting of Crossbow Mica2 motes. The algorithm takes the

size of the watch buffer as input. For the experiment, the maximum size of the watch

buffer over all the guard nodes from the simulations is used. The algorithm is executed to

search for a random number between 0 and 0.2 million. Since the size of the watch buffer

is much smaller, most of the searches are unsuccessful mimicking a guard node

 117

overseeing a malicious node which is dropping packets. Since unsuccessful searches take

longer than successful ones, this is another cause for overestimating the execution time.

The network is considered to be synchronized and therefore wakes up and falls asleep in

a synchronized manner. Therefore, there is no overhead at the guard due to listening (it

would have been awake due to the synchronization anyway) and the only source of

overhead is storing the watch buffer entries and searching in them. For the current draw,

we use the parameters from the Mica2 motes: CPU active 8mA, idle 3.3mA, sleep 8µA,

serial flash write 15mA, serial flash read 4mA, serial flash sleep 2µA. Since a smaller

fraction of the data monitored results in smaller watch buffer sizes and fewer numbers of

searches, the overhead with all the data being monitored is about 18 times the overhead

with only a fraction 0.2 of the data being monitored.

0

25

50

75

100

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

To
ta

l E
ne

rg
y

(m
J)

Figure 5.12: Energy consumed per node for monitoring

5.5.2.3. Effect of Number of Malicious Nodes

Figure 5.13 shows the effect of increasing the number of malicious nodes when

launching two different scenarios of attacks–the perfectly colluding wormhole nodes and

the independent adversary nodes. Note that in both scenarios, the delivery ratio falls

almost linearly as we increase the number of malicious nodes from 2 to 6. This is due to

the packets dropped before the malicious nodes are detected and isolated. As the number

of malicious nodes increases, this initial drop increases and thus the delivery ratio

decreases. A second-order effect for the decrease in the delivery ratio is the decrease in

the number of available guards making it more difficult to obtain agreement from γ guard

 118

nodes. However, the delivery ratio is always above 92% for the wormhole scenario and

above 96% for the independent scenario. Note also that the delivery ratio in the

independent scenario is higher than that in the wormhole scenario. This is due to the

aggressive nature of the wormhole which attracts traffic from many nodes through the

malicious nodes and increases the initial traffic dropped before the malicious nodes get

isolated.

88

90

92

94

96

98

100

1 2 3 4 5 6
Number of Malicious Nodes

D
el

iv
er

y
R

at
io

(%
)

Wormhole
Independent

Figure 5.13: Delivery ratio as a function of malicious nodes

Figure 5.14 shows the percentage of false alarms and the percentage of detection

as a function of the number of malicious nodes. The percentages of false alarms increases

as the number of malicious nodes increases because not all guard nodes come to the

decision to isolate a malicious node at the same time. Therefore a given guard node may

suspect another guard node when the latter isolates a malicious node but the former still

has not. For example, a guard node G1 detects a malicious node M earlier than the other

guard nodes for the link to M. G1 subsequently drops all the traffic forwarded to M and is

therefore suspected by other guard nodes for M. This problem can be solved by having an

authenticated one-hop broadcast whenever a guard node performs a local detection. The

detection percentage falls almost linearly as we increase the number of colluding

malicious nodes from 2 to 6 due to the decrease in the number of available guards.

However, the detection percentage is always above 88% in all our experiments.

 119

0

0.3

0.6

0.9

1.2

1.5

2 3 4 5 6
Number of Malicious Nodes

%
 F

al
se

 A
la

rm
s

88

90

92

94

96

98

%
 D

et
ec

tio
n

% of FAs
% Detection

Figure 5.14: False alarms and detection as a function of number of malicious nodes

Figure 5.15 shows the isolation latency and the watch buffer size as a function of

the number of malicious nodes. As the number of malicious nodes increases, the isolation

latency slightly increases. This is due to the fact that an individual malicious node has

less opportunity to do harm, which delays its detection and thus increases the average

isolation latency. As we increase the number of malicious nodes, the watch buffer size

increases since a larger number of packets stays longer in the watch buffer waiting to be

matched since these packets are eventually dropped by the malicious nodes.

40

50

60

70

80

90

100

110

2 3 4 5 6
Number of Malicious Nodes

Is
ol

at
io

n
La

te
nc

y
(s

ec
)

0

2

4

6

8

10

12

W
B

 S
iz

e

Isolation Latency
WB size

Figure 5.15: Isolation latency and watch buffer size as a function of number

malicious nodes

 120

6. SLEEP-WAKE AWARE LOCAL MONITORING: SLAM

Local monitoring in wireless media (e.g., [48], [49], [59]-[62], [139], [140])

serves as a primitive building block for collecting information and evidence about

activities that are going on in the network and has been used by many researchers.

However, local monitoring could impose a high cost for energy-constrained networks

such as sensor networks, since it requires the guard nodes to be awake all the time to

oversee network behavior. To the best of our knowledge, no one has studied sleeping

protocols for optimizing the energy overhead of monitoring while maintaining the quality

of the monitoring service. The main challenge lies in providing a secure sleeping

technique that is not vulnerable to security attacks and does not add to the vulnerability of

the network.

In this chapter, we propose a set of mechanisms called SLAM (SLeep-Wake Aware

Local Monitoring) that adapt the existing local monitoring technique to significantly

reduce the time a node needs to be awake for the purpose of monitoring. The proposed

mechanism adapts itself depending on the kind of sleeping protocol used in the network,

henceforth referred to as the baseline sleeping protocol (BSP). For networks that use

synchronized sleeping algorithms (e.g., [70], [129]-[133]), i.e., nodes wakeup and go to

sleep in a synchronized manner, SLAM does not need to do anything. For networks with

an existing application-specific sleep/wake protocols (e.g., [118]-[124], [127]), SLAM

updates these protocols to serve local monitoring as well by modifying their input

parameters. Examples of application-specific sleeping algorithms include those protocols

that maintain a given sensing coverage (each point should be sensed by at least k nodes),

a given network connectivity level (each pair of nodes should have k disjoint paths), or

both. The exact modification depends on the BSP itself and we provide in this chapter an

example of adapting a coverage protocol. Finally, for those networks that have no

existing BSP or have on-demand sleep-wake, i.e., nodes are woken up at arbitrary times

 121

determined by the communication, SLAM provides a generic on-demand sleeping

algorithm, called On-Demand SLAM. This algorithm assumes that in addition to the

normal antenna, each node has a passive or a low-power wake-up antenna. A node that is

not involved in network activities, such as, data forwarding is ordinarily sleeping

according to the BSP. However, for monitoring purposes, it is woken up on demand by a

neighboring node using the wake-up antenna

On- demand SLAM has to account for the fact that wake-up antennas have a delay

in waking up nodes while receiving the wake up signal. By a suitable design, we prevent

the additional delay due to sleep-wake from becoming cumulative with the number of

hops between the communicating pair of nodes. Instead, a pipelined effect is achieved

and the additional delay becomes constant independent of the number of hops. We

provide theoretical analysis for energy saving using On-Demand SLAM compared to the

baseline monitoring protocol presented in Chapter 4, [48]. We build a simulation model

for SLAM using ns-2 and perform a comparative evaluation of local monitoring with and

without SLAM. The results show that the performance of local monitoring in terms of

false and missed alarms is very close in both cases while the overhead of SLAM in terms

of listening energy is between 30 to 129 times lower, depending on the network traffic.

The results show the effect of the number of malicious nodes, the traffic load, and the

fraction of data being monitored on the overhead of local monitoring.

We summarize the contributions in this chapter as follows:

• Provide a technique for conserving energy while performing local monitoring

without significantly degrading its security performance. This we believe is

fundamental to deploying local monitoring in any energy conscious network.

• Propose a generic on-demand sleep-wake algorithm for network monitoring in

scenarios where either no application-specific sleeping algorithm exists or the sleep-

wake is based on arbitrary communication pattern.

• Analytically prove that SLAM does not add any vulnerability to the existing local

monitoring technique.

 122

• Conduct extensive simulation experiments on an existing local monitoring technique

with and without SLAM and show a significant reduction in monitoring cost with

negligible degradation in the monitoring quality of service.

The rest of the chapter is organized as follows. Section 6.1 describes SLAM.

Section 6.2 presents mathematical analysis of the energy overhead and security of SLAM.

Section 6.3 presents the simulation experiments and results.

6.1. SLAM Protocol Description

The primary goal of SLAM is to minimize the time a node has to be awake to

perform local monitoring, Chapter 2. SLAM adds one more task to the list of events that a

guard node needs to monitor—verifying whether the node being monitored wakes up the

requisite guards or fails to do so due to malicious motivations. Depending on the BSP

used in the network, SLAM has three different mechanisms for sleeping in networks with

local monitoring—The No-Action-Required SLAM protocol, the Adapted SLAM protocol,

and the On-Demand SLAM protocol.

6.1.1. System Model and Assumptions

SLAM assumes that the network is static and the links are bi-directional. SLAM

requires a pre-distribution pair-wise key management protocol (e.g. [64], [65]) such that

any two nodes can acquire a key for encryption and authentication. In On-Demand SLAM,

each node is equipped with either a passive [137] or a low-power wakeup antenna [134].

Any two nodes that need to communicate, establish a route between them using an

underlying routing protocol. We assume that the source node is honest. No assumption is

made about the adversary nodes following the sleep-wake protocol, only the honest nodes

follow it. Each node knows its first-hop neighbors and the neighbors of each neighbor,

e.g., using a technique as in [49]. Malicious behavior is manifested through delaying,

dropping, fabricating, misrouting, or modifying packets. The malicious behavior of

fruitlessly sending a wake-up signal to a node is not addressed since this potential exists

in any on-demand wake-up protocol and SLAM neither exacerbates nor solves this

problem.

 123

6.1.2. The No-Action-Required SLAM Protocol

This scheme is used in a network that has a sleeping algorithm which is

completely compatible with local monitoring. Such sleep algorithms fall in a class of

protocols in which the network (or the communicating parts of the network) is

synchronized in its sleep-wake schedule and all the nodes wake up and go to sleep in

distributed or centralized synchrony. Examples of such protocols include Span [70], S-

MAC [130], habitat monitoring [133], and those used in some applications of sensor

networks as in [129], [131], [132]. In this kind of BSP, the guards for the communication

would also be woken up since, by definition, the guards are one-hop neighbors of the two

nodes that form the link on which the communication is taking place. Thus, for this class

of protocols, no modification is necessary to support sleeping and waking up of guards

for local monitoring purposes. Local monitoring in such scenarios does not incur any

additional overhead on the network aside from the computational overhead.

6.1.3. The Adapted SLAM Protocol

This scheme is used for the class of BSP comprising coverage and/or connectivity

preserving sleep-wake protocols. Examples of such kinds of sleeping algorithms are

[118]-[124], [127]. However, since these algorithms may be application-specific, each

one of them may need to be adapted differently to support sleeping of guards as well.

Here we consider a representative sub-class of BSP from this class.

Consider for example the class of protocols that seeks to preserve Ks-coverage or

Kc-connectivity in a network and puts nodes off to sleep without violating these

properties. The property of Ks-coverage (s for sensing) denotes that every point in the

field is sensed by at least Ks nodes. The property of Kc-connectivity (c for coverage)

denotes that for critical communication, such as, between a node and the base station, at

least Kc routes exist. The fundamental technique for adapting such sleeping algorithms to

support sleeping of guards is to modify the value of Ks or Kc and invoke the original BSP.

Consider a protocol that preserves coverage at Ks ([118]-[124]). Assume that the

sensing range is Rs, the communication range is Rc, and the detection confidence is g. In

 124

local monitoring, Chapter 2, γ is defined as the minimum number of neighbors of a node,

S, to convince another neighbor of S, say D, that S is malicious if D does not directly

detect S as malicious. Assume the requisite number of guards needed for detection with

sufficiently low missed and false alarm rates is Γ (Γ ≥ γ). We find the relationship

between Ks, Rs, Rc, and g with the help of Figure 6.1. What is the value of Ks to guarantee

the number of guards is Γ? Let the density of the nodes in the network be ρ and the

density of awake (or alive) nodes be ρl = Ks/πRs
2. Let the common communication area

between S and D be Ac. Assume uniform distribution of the awake nodes

S

W

Z

D

A guard node

The sensing range

The transmission
range

Figure 6.1: Relationship between communication and sensing ranges

The number of nodes that are awake in Ac (Nw) is given by

 2
s

w c l c
s

KN A A
R

ρ
π

= ⋅ = (6.1)

Therefore, the required value of Ks to get Γ guards is given by,

 2 2w
s s s

c c

NK R R
A A

π πΓ
= ⋅ = ⋅ (6.2)

The common communication area Ac for two nodes separated by a distance x is

given by,

 2 1 2 22 cos (/ 2) / 4c c c cA R x R x R x−= − − (6.3)

The minimum value of this is achieved when x = Rc and the value is given by

Ac,min = 1.23Rc
2. Thus, the protocol needs to be invoked with a value of

2

2 2
2

,min

2.55
1.23

s
s s s

c c c

RK R R
A R R

π π
 Γ Γ

= ⋅ = ⋅ = ⋅Γ ⋅ 
 

 (6.4)

 125

This will guarantee that the requisite number of guard nodes is awake to provide

detection through local monitoring. Thus, Adapted SLAM invokes the BSP with the

increased value of the parameter Ks.

6.1.4. The On-Demand SLAM Protocol

This protocol is used in a network that either has no BSP in operation or employs

an application-specific on-demand sleep-wake protocols. On-demand SLAM is a new

sleep-wake protocol that enables the guards to go sleep when not required for monitoring.

The high level approach we choose to enable guard sleep-wake is on-demand rather than

scheduling the sleep-wake periods. The defining characteristic of on-demand sleep-wake

protocols is that any node in the network may, at random, initiate communication with

any other node in the network. On-demand sleep-wake protocols do not impose any fixed

communication pattern in the network.

To trigger a node wake up, On-Demand SLAM uses either low-power wake-up

antennas (e.g., [68], [134]-[136]) or passive antennas with circuitry that can harvest

signal [137],. These kinds of antennas are commercially available (e.g. [136]) as well as

in research labs (e.g., [137]). For example Austriamicrosystems provides a low-power

wake-up receiver (AS3931) with data rate of 2.731 KB/s and current consumption in

standby mode of 6.6uA [136]. Data transmission and reception require good channel

quality, high speed, and thus complex and power consuming hardware, while channel

monitoring has the sole purpose of getting binary information whether a packet targeted

at this node is coming. In the rest of this chapter, for ease of exposition, we use the term

“low-power wake-up radio” to mean either the low-power wake-up hardware or the

passive wake-up hardware which consumes no power at all.

In On-Demand SLAM, the low-power wake-up radio remains awake all the time

while the normal radio is put to sleep when it is not sending or receiving data or is not

required for monitoring. If a node is to send a packet out, it simply wakes up by itself; if a

neighbor node is to send a packet to this node, the sender will send a short wake-up

beacon using the wake-up radio channel, and on receiving this beacon the wake-up radio

triggers the normal radio to be ready for the reception. The main disadvantage of the

 126

mechanism is that it still consumes extra energy. Even though the power consumed is

small compared to the normal antenna (1uW compared to 10mW in [68]), the energy is

non-negligible due to long time of operation.

Hence this mechanism has been modified to use passive wake-up antennas,

known as radio-triggered power management mechanisms [137]. In this mechanism a

special hardware component–a radio-triggered circuit–is connected to one of the interrupt

inputs of the processor. The circuit itself does not draw any current and is thus passive.

The node can enter sleep mode without periodic wake-up. The wake-up mode is the usual

working mode with all the functional units ready to work, and the average wake-up mode

current is 20mA [137]. In sleep mode, a node shuts down all its components except the

memory, interrupt handler, and the timer and the sleep mode current is 100uA [137].

When a network node changes from sleep mode to wake-up mode, there is a surge

current of 30mA for a maximum of 5ms [137]. When a power management message is

sent by another node within a certain distance, the radio-triggered circuit collects enough

energy to trigger the interrupt to wake up the node. Except for activating the wake-up

interrupt, the radio-triggered circuit is independent of any other components on the node.

If supported by hardware, the wake-up packet is sent at a special radio frequency. Other

types of radio communication, at a different radio frequency, do not wake up the nodes

even if the nodes are within the radio communication range. Note that hardware cost for

adding multiple-frequency support is usually fairly low. Many recent low-end radio

transceivers support multiple frequency operations [138].

The basic idea in designing On-Demand SLAM is for a node to wake up the

requisite guard nodes to perform local monitoring on the communication it is going to

send or forward on its outgoing link. The challenge in the design comes from the fact that

any of the nodes (except the source) may be malicious and therefore may not faithfully

wake up the guards. In Figure 6.2, α1 and β1 are the guards of H1 over the link S H1.

Recall from local monitoring, Chapter 2, that information for each packet sent over the

monitored link (e.g., S H1) is saved in a watch buffer at each guard for a time Tw. The

information maintained depends on the particular attack primitive to be detected (i.e.,

drop, delay, modify, misrouting, or forge).

 127

S H1 H2 Hn-1 D

α1 α2

β1 β2

Z

W

Figure 6.2: n-hop route between S and D, neighbors of S, and guards of H1 and H2

We use the scenario depicted in Figure 6.2 to explain On-Demand SLAM. A

source node S is sending data to a destination node D through an n-hop route

S H1 H2 … Hn-1 D. In a network where all the nodes are honest, S will wake up

the next hop H1 and the guard nodes (α1 and β1) before sending the packet to H1. In turn

H1 will wake up H2 and guard nodes α2 and β2 before sending the packet on the next hop

and so on, till the packet reaches D. Formally, according to Chapter 2, the responsibility

of a guard node α of Hi+1 over a link Hi→Hi+1 is to verify that.

1. Hi+1 forwards the packet within time Tw

2. Hi+1 does not modify the packet it is forwarding

3. Hi+1 only forwards a packet if a packet is sent on the Hi Hi+1 link

SLAM introduces a fourth responsibility.

4. Hi+1 should wake up the guards for the communication on the Hi+1→Hi+2 link

before forwarding the packet on that link

If a rule 1-3 is violated then the MalC value is incremented by appropriate

amount; if rule 4 is violated, the MalC value increment is the maximum of the other

MalC values because this rule violation may be used to mask violations of any of the

rules 1-3.

In general for any multi-hop route connecting a source node S to a destination

node D, S is responsible for waking up the correct guards for H1, and Hi is responsible for

waking up the correct guards of Hi+1 (1 ≤ i ≤ n-2). The correct guards for H1 are

guaranteed to be woken up by the assumption of honest source S and whether Hi honestly

wakes up the next hop guards is monitored by the guards of Hi according to rule 4 above.

 128

In the following we present two variations of On-Demand SLAM depending on the

wake-up mechanism a node follows to wake up the guards of the next-hop.

6.1.4.1. Guards-Only On-Demand SLAM (G-SLAM)

The high level design goal in G-SLAM is to minimize the energy wasted in waking

up nodes that can not serve as guards. On average half of the nodes within a single

transmission range are not guards over a certain link (according to Equation (4.8) in

Section 4.3.1). In Figure 6.2, α1 and β1 are valid guards of H1 over the link from S to H1,

while Z and W are not. Also, note that the energy spent in warm up (transition between

sleep mode and wakeup mode) is relatively high (almost 3 times as much as the energy

spent in listening for the antennas described in [137]). Therefore, waking up the

appropriate nodes saves considerable amount of energy.

For a guard node to verify honest wake-up, G-SLAM requires each node in the

network to know, in addition to the identities of its first-hop and second-hop neighbors

that are required by local monitoring, the location of each node within twice of its

transmission range. In Figure 6.2, a guard of H1, say α1, knows the location of its

neighbor H1 and the location of all the neighbors of H1, S, β1, β2, α2, and H2. Using this

information, α1 knows the common neighbors of H1 and H2, α2 and β2, which can act as

the guards of H2 over the link H1 H2. Therefore, α1 can not be deceived by H1 waking

up its neighbors that can not be guards for H2 (S and β1). A disadvantage of G-SLAM is

that it requires sophisticated wakeup hardware for a node to wake up a subset of nodes

within the communication range using an id-attached beacon [137].

We shall explain G-SLAM algorithm with the help of Figure 6.2. Assume that node S

has some data to be sent for the destination D over the route S H1 H2 … Hn-1 D

connecting S to D. G-SLAM uses the following steps to wake up the correct guards along

the route from S to D,

1. Node S sends a signal to wake up the first-hop node (H1) and the guards for H1 (a1,

b1). This signal could be either unicast to each of H1, α1, and β1 or a multicast signal

 129

that contains the identities of H1, α1, and β1. This signal is guaranteed to wake up the

correct guards of H1 due to the assumption of honest source S.

2. Node S sends the packets it has to H1 following the timing schedules presented in

Section 6.1.4.3.

3. Nodes H1, a1, and b1 after being woken up continue to remain awake for Tw. Tw is a

parameter of local monitoring that captures the maximum time by which an entry in

the watch buffer is evicted (beyond that is evidence of malicious action), Chapter 2.

Each time a new packet is sent from S to H1, Tw is reinitialized. After Tw expires at a

node, it goes back to sleep.

4. Node H1, after being woken up, uses the timing schedule in Section 6.1.4.3 to

schedule a wake-up signal for H2 and the guards of H2 over the link H1→H2 (a2,b2).

The guards of H1 over the link S→H1 are responsible for verifying that H1 fulfills this

requirement.

5. The process continues at each step up to the destination.

6.1.4.2. All-Neighbors On-Demand SLAM (A-SLAM)

The high level design goal of A-SLAM is to relax the assumption that every node

knows the location of its first-hop and second-hop neighbors, and to simplify the wakeup

signal and the wakeup hardware. Consider a node S that has some data to send for the

destination D over the route S H1 H2 … Hn-1 D, Figure 6.2. A-SLAM uses the

following steps to wakeup the guards along the route from S to D,

1. Node S broadcasts a wake-up signal to all its first-hop neighbors (Z,W,H1,a1,b1). The

wake-up signal includes the identity of both the current sender (S) and the next-hop

(H1).

2. Each neighbor of S, after being woken up, decides whether to stay awake or go back

to sleep based on the role that it may play on the ongoing communication. If that

neighbor is the next-hop (H1), it stays a wake to forward the data and to monitor the

next-hop from it (H2). If that neighbor is a guard (α1,β1) for the next-hop (H1), it stays

awake to monitor the behavior of H1. Finally, if that neighbor is neither a guard for H1

nor a next-hop, it goes back to sleep immediately.

 130

3. Node S sends the data packet it has to H1 following the timing schedules presented in

Section 6.1.4.3.

4. Nodes H1, a1, and b1 after being woken up continue to do so for Tw. Each time a new

packet is sent from S to H1, Tw is reinitialized. After Tw expires at a node, it goes back

to sleep.

5. H1 does the same steps that S did to wake up the next-hop (H2) and its guards (α2,β2).

6. The process continues at each step to the destination.

This scheme results in an increase in the energy consumption compared to G-

SLAM due to the wake-up of the neighbors that are not guards.

6.1.4.3. Timing of the Wakeup Signal

In this section we generate the timing schedules for signaling the wake-up of

nodes using On-Demand SLAM. This is important because the wake-up antennas have a

warm-up period and this could increase the end-to-end delay of the communication. We

design SLAM to send the wake-up signal at the earliest possibility so that the additional

delay due to the sleep-wake protocol does not add up but is instead a constant

independent of the number of hops.

Let Tcontrol be the time to send the wake-up packet to the radio-triggered antenna,

Twarmup be the time for a node to be fully awake and functional from the time it receives

the wake-up packet (5 ms for Stankovic et al.’s antenna [137]), and Tdata be the time to

send a data packet which includes the forwarding time at intermediate nodes, therefore,

within Tdata, an intermediate node completely receives a data packet and it can

immediately start sending it. Moreover, let Tw be the maximum time a guard, after being

woken up, waits for the packet to be forwarded. If the packet is not forwarded in this

time, malicious action is suspected. Finally, let Twake be the time a node continues to be

awake after being woken up.

Let us consider an isolated (no other flows interfere with it) flow between S and

D, separated by h hops. The intermediate nodes are n1, n2, …, nh-1. Let gi represents the

guards of node ni over the link ni-1 ni. Let vi represents the neighbors of ni that are not

guards of ni+1 over the link ni ni+1. Consider the following two disjoint cases based on

 131

the relation between (Tcontrol + Twarmup) and Tdata. The analysis assumes a node is sleeping

when it receives the wake-up signal. If not, the node just prolongs, if necessary, its wake-

up time to meet the requirement imposed by the new wake-up signal. For example,

assume a guard node G is currently awake till Current_time + δ due to some other

activity (forward data, guard for another link, etc.). Assume that G receives at

Current_time a wakeup signal that require G to stay awake till Current_time + ∆. Then, if

δ ≥ ∆, G does not need to do anything, otherwise G prolongs its wake-up time by ∆-δ

and goes to sleep at Current_time + ∆ instead of Current_time + δ.

Case I: (Tcontrol + Twarmup) > Tdata with t = (Tcontrol + Twarmup) – Tdata

Figure 6.3 shows the timing schedule for this case. Figure 6.3 (a) shows the

timing schedule for a node in the route between the source and the destination. The node,

n1, wakes up at T3 and goes to sleep at T8, where T8-T3 = Tdata (to receive data) + t (wait

for the next-hop to be ready to receive the data) + Tdata (send the data to the next-hop) +

{t + Tdata} (as a guard for n2) = 3Tdata+2t. Figure 6.3 (b) shows the timing schedule for a

guard node. The guard, g1, wakes up at T3 and goes to sleep at T6, where T6-T3 = Tdata (to

overhear incoming data to the node being monitored, n1) + t (wait for the next-hop to be

ready to receive the data) + Tdata (to overhear outgoing data from the node being

monitored, n1) = 2Tdata +t. Figure 6.3 (c), only meaningful for A-SLAM, shows the

schedule for a node that is a neighbor to a node in the route from the source to the

destination but is not a guard node. The node, v1, wakes up at T3, determines that it can

not be a guard, and thus go back to sleep immediately.

 132

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S
sends data,
n1 sends
wakeup

n1 rcvs
data

n2 awake, n1
sends data,
n2 sends
wakeup

n2 rcvs
data

…
T1 T2 T4 T5 T6 T7

n3 awake, n2
sends data,
n3 sends
wakeup

n3 rcvs
data, n1
sleep

T8

Tdata τ Tdata Tdata τ

(a)

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S
sends data,
n1 sends
wakeup

n1 rcvs
data

n2 awake, n1
sends data,
n2 sends
wakeup

n2 rcvs
data

…
T1 T2 T4 T5 T6 T7

n3 awake, n2
sends data,
n3 sends
wakeup

n3 rcvs
data, n1
sleep

T8

Tdata τ Tdata Tdata τ

(a)

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S
sends data,
n1 sends
wakeup

g1
overhear
in data to
n1

g2 awake, n1
sends data,
n2 sends
wakeup

g1 overhear
out data from n1, g2
overhear in data to
n2, g1 sleep

…
T1 T2 T4 T5 T6

Tdata τ Tdata

(b)

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S
sends data,
n1 sends
wakeup

g1
overhear
in data to
n1

g2 awake, n1
sends data,
n2 sends
wakeup

g1 overhear
out data from n1, g2
overhear in data to
n2, g1 sleep

…
T1 T2 T4 T5 T6

Tdata τ Tdata

(b)

Twarmup

T3

Tcontrol

S sends
wakeup

v1 rcvs
wakeup

v1 awake, v1
sleep

…
T1 T2

(c)

Twarmup

T3

Tcontrol

S sends
wakeup

v1 rcvs
wakeup

v1 awake, v1
sleep

…
T1 T2

(c)

Figure 6.3: Case I wakeup-sleep timing schedule for (a) a node in the data route; (b)

a guard node; (c) a neighbor to a node in the data route that is not valid guard (for

A-SLAM only)

According to SLAM, each node sends a wake-up signal at the earliest possible

opportunity (as soon as it is awake) to minimize the delay. From Figure 6.3, it can be

seen that per hop, the delay incurred is Tcontrol + Twarmup and at the last hop, the delay due

to data (Tdata) gets exposed.

Case II: (Tcontrol + Twarmup) ≤ Tdata with t = Tdata – (Tcontrol + Twarmup)

Figure 6.4 shows the timing schedule for this case. Figure 6.4 (a) shows the

schedule for a node in the route between the source and the destination. The node, n1,

wakes up at T3 and goes to sleep at T9, where T9-T3 = Tdata (to receive data) + Tdata (send

the data to the next-hop) + Tdata (as a guard for n2) = 3Tdata. Figure 6.4 (b) shows the

schedule for a guard node. The guard, g1, wakes up at T3 and goes to sleep at T7, where

T7-T3 = Tdata (to overhear incoming data to the node being monitored, n1) + Tdata (to

 133

overhear outgoing data from the node being monitored, n1) = 2Tdata. The timing schedule

for a node that is a neighbor to a node in the route from the source to the destination but

is not a guard node is the same as its peer in Case I.

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S
sends data

n1 sends
wakeup

n2 awake, n1
rcvs data, n1
sends data

n2 sends
wakeup

…
T1 T2 T4 T5 T6 T7

n3 awake, n2
rcvs data, n2
sends data

n3 sends
wakeup

T8

τ Tcm τ τ

(a)

n4 awake, n3
rcvs data, n3
sends data,
n1 sleep

T9

Tdata

Tcm

TdataTcm= Tcontrol + Twarmup

Tcm

Tdata

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S
sends data

n1 sends
wakeup

n2 awake, n1
rcvs data, n1
sends data

n2 sends
wakeup

…
T1 T2 T4 T5 T6 T7

n3 awake, n2
rcvs data, n2
sends data

n3 sends
wakeup

T8

τ Tcm τ τ

(a)

n4 awake, n3
rcvs data, n3
sends data,
n1 sleep

T9

Tdata

Tcm

TdataTcm= Tcontrol + Twarmup

Tcm

Tdata

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S
sends data

n1 sends
wakeup

g2 awake, g1
overhear in
data to n1, n1
sends data

n2 sends
wakeup

…
T1 T2 T4 T5 T6 T7

g3 awake, g1 overhear
out data from n1, g2
overhear in data to n2,
n2 sends data, g1 sleep

τ Tcm τ

(b)

Tdata

Tcm

TdataTcm= Tcontrol + Twarmup

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S
sends data

n1 sends
wakeup

g2 awake, g1
overhear in
data to n1, n1
sends data

n2 sends
wakeup

…
T1 T2 T4 T5 T6 T7

g3 awake, g1 overhear
out data from n1, g2
overhear in data to n2,
n2 sends data, g1 sleep

τ Tcm τ

(b)

Tdata

Tcm

TdataTcm= Tcontrol + Twarmup
Figure 6.4: Case II wakeup-sleep timing schedule for (a) a node in the data route; (b)

a guard node

6.2. Mathematical Analysis of On-Demand SLAM

6.2.1. Security Analysis

Here we prove that On-Demand SLAM does not degrade the security performance

of local monitoring, Chapter 2. Specifically, we will prove the following premise.

Premise: Due to the sleep-wake mechanism for guards in SLAM, no loss in detection

coverage occurs.

For this we prove that for any node Hi in the path S→D (i =1, …, n-1),

i. Either, the guards for Hi+1 on the link Hi→Hi+1 are awake (and monitoring) at the time

communication takes place on the link, or

ii. Hi is suspected of malicious action

We prove this using the first principle of mathematical induction.

 134

Let the guards of H1 over the link S→H1 form the set G1, Hn-1→D the set Gn, and

Hi-1→Hi the set Gi.

Base case: The source S is honest and therefore it wakes up the guard nodes in G1.

Inductive hypothesis: All nodes H1, …, Hi (i ≥ 1) are honest and have woken up the

appropriate guards, or have been suspected of malicious action.

To prove: Node Hi+1 is either honest and wakes up the guard nodes in Hi+2 or will be

suspected of malicious action.

Case 1: One or more of the nodes H1, …, Hi have been suspected of malicious action.

Case 2: All the nodes H1, …, Hi have woken up the appropriate guards.

Proof Case 1: In this case, the malicious action(s) could be detected by rules 1-3 or rule 4

of Section 6.1.4. If the former, then it does not affect a guard being woken up and all

guards in sets G2, …, Gi have been woken up. If the latter, then one or more of the guard

nodes in the sets G2, …, Gi have not been woken up. If the node, say Hk, does not wake

up the requisite guards, then it will be suspected by rule 4 and its MalC counter value will

be incremented.

Proof Case 2: All the nodes in H1, …, Hi have woken up the guards in the sets G2, …,

Gi+1.

Now Gi+1 is monitoring if Hi+1 is sending a wake-up signal to the guards of Hi+2

over the link Hi+1→Hi+2 i.e., Gi+2. If Hi+1 is honest and performs this action, rule 4 is not

triggered. But if Hi+1does not perform this action, then rule 4 is triggered and Hi+1 is

suspected of malicious action.

Therefore, by the principle of mathematical induction, it is proved that either all

guards are woken up at the time of monitoring a communication or the malicious nodes

are suspected. Since the detection of the guards according to rules 1-3 is not changed

from baseline local monitoring, this proves that no loss of detection coverage happens

due to SLAM.

6.2.2. Energy and End-to-End Delay Analysis

Here we calculate the worst case end-to-end delay of communication with local

monitoring without sleep-wake (Baseline-LM) and with On-Demand SLAM. Moreover,

 135

an upper bound in the consumed energy is computed for SLAM and for the case with on-

demand sleep-wake and no monitoring (Baseline-OD). For SLAM, the energy is

calculated separately for a node which is forwarding packets (and, by definition, acting as

a guard node), a node which is acting just as a guard, and a node that is in the vicinity of

the path but is neither a forwarder nor a guard.

In addition to the notations defined in Section 6.1.4.3, let Atransmit be the current to

transmit (at the middle of the transmit range), which is 27mA for Mica2 motes [141]. Let

Awarmup be the current consumed during the transition from sleep to wakeup (warm up),

which is 30mA for Mica2 motes [141]. Finally, let Aactive be the current in the

computationally active mode = the current in the idle listening mode = the current in

receive mode, which is 8mA for Mica2 motes [141].

Let us consider a flow between S and D, separated by h hops. The intermediate

nodes are n1, n2, …, nh-1. The bounding box around S and D covers all possible nodes,

including forwarding nodes and guard nodes that may be involved in the communication

between S and D. The size of the bounding box is 2r(h+1)r = 2r2(h+1), where r is the

transmission range, Figure 6.5. For On-Demand SLAM, consider the two wakeup-sleep

scheduling cases of Section 6.1.4.3.

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

Figure 6.5: A bounding box over the path S D

Case I: (Tcontrol + Twarmup) > Tdata with t = (Tcontrol + Twarmup) – Tdata

From Figure 6.3 it can be seen that delay at the first link (S n1) is Tcontrol +

Twarmup + Tdata. Over each of the succeeding links, the delay is Tcontrol + Twarmup since the

delay due to data (Tdata) gets exposed. This is due the sleep-wake schedule process that

 136

SLAM uses where the wake-up signal is sent at the earliest opportunity. Therefore, the

end-to-end delay in SLAM, ΩSLAM(h), for the communication from S to D is,

 () (1)() ()SLAM contol warmup data control warmup control warmup datah T T T h T T h T T TΩ = + + + − + = ⋅ + + (6.5)

The end-to-end delay in Baseline-LM is

 ()Base LM datah h T−Ω = ⋅ (6.6)

In this case, the additional end-to-end delay imposed by SLAM depends on the

number of hops between S and D

 () () ()SLAM Add SLAM Base LM datah h h h Tτ− −Ω = Ω − Ω = ⋅ + (6.7)

Next, we compute the consumed energy for both Baseline-OD and On-Demand

SLAM.

Baseline-OD: here only the forwarding nodes are involved in the sleep-wake protocol.

Using Figure 6.3 (a), a forwarding node ni (i = 1, …, h-1) spends Twarmup = T3-T2 warming

up with current consumption of Awarmup, Tdata = T4-T3 receiving data with current

consumption of Aactive, t = T5-T4 idle waiting for the next-hop to be ready with current

consumption of Aactive, and Tdata = T6-T5 sending data with current consumption of

Atransmit. Therefore, the energy expended by a forwarding node ni (i = 1, …, h-1) is,

 , () f base warmup warmup control warmup active data transmitT A T T A T Aε = ⋅ + + ⋅ + ⋅ (6.8)

Node S spends Tcontrol + Twarmup = T3-T1 idle waiting for n1 to wake up with Aactive

and Tdata = T4-T3 transmitting data with Atransmit. Therefore, the energy expended by S is

 , () S base control warmup active data transmitT T A T Aε = + ⋅ + ⋅ (6.9)

Node D spends Twarmup warming up with Awarmup and Tdata receiving data with

Aactive. Therefore, the energy expended by D is,

 , D base warmup warmup data activeT A T Aε = ⋅ + ⋅ (6.10)

On-Demand SLAM: here the sleep-wake protocol involves, in addition to S and D, the

forwarding nodes, the guard nodes, the neighbors of the forwarding nodes that are not

guards. We shall compute separately for the three kinds of nodes (i) forwarding nodes;

(ii) guard nodes that do not act as forwarders; (iii) remaining nodes. The energy of S and

D is the same as that of Baseline-OD.

 137

i. Energy expended by a forwarding node ni (i = 1, …, h-1) εf,SLAM ≤ εf,base + Tw . Aactive.
The additional energy is consumed because ni has to look to see if ni+1 forwards the

packet that it was just handed by ni. The inequality comes in because Tw is the worst

case time in case ni+1 is malicious.

ii. Energy expended by a guard node that is not a forwarding node εg,SLAM ≤ Twarmup .

Awarmup + Tdata . Aactive + Tw . Aactive. Consider for example the guard g1 of n1 over the

link S n1. g1 has to listen to the communication between S to n1 and then has to stay

listening for a maximum of Tw to see that n1 forwarded the packet.

iii. Energy expended by a node in the bounding box around S and D that is neither a

forwarding node nor a guard node (the “other node”, hence the notation “o” in the

subscript). For G-SLAM where the wake-up signal is directed to the relevant guard

nodes εo,G-SLAM = 0. For A-SLAM where the wake-up signal is broadcast in a one-hop

neighborhood εo,A-SLAM = Twarmup . Awarmup.

Case II: (Tcontrol + Twarmup) ≤ Tdata with t = Tdata – (Tcontrol + Twarmup)

The end-to-end delay for SLAM in this case is exactly the same as that of Case I

(Equation (6.6)) after exchanging Tdata with (Twarmup + Tcontrol),

 () (1)() ()SLAM contol warmup data data data control warmuph T T T h T h T T TΩ = + + + − = ⋅ + + (6.11)

The end-to-end delay for Baseline-LM is exactly the same as that of Case I,

Equation (6.6). In this case, the additional end-to-end delay imposed by SLAM is fixed

and does not depend on the number of hops between S and D

 () () ()SLAM Add SLAM Base LM control warmuph h h T T− −Ω = Ω − Ω = + (6.12)

For the energy, again we consider both Baseline-OD and On-Demand SLAM.

Baseline-OD: the energy for S and D are exactly the same as that of Case I (Equations

(6.9) and (6.10)). The energy of the forwarding nodes is the same as that of Case I after

replacing (Twarmup + Tcontrol) with Tdata.

 , (+)f base warmup warmup data active transmitT A T A Aε = ⋅ + ⋅ (6.13)

On-Demand SLAM: All energy computations are the same as in Case I.

Now consider that there are η concurrent flows going on in the network. The total

energy consumed by all the nodes is maximized when there is no spatial and temporal

 138

overlap between the multiple flows. In this case the total number of nodes involved is the

sum of the number of nodes involved in each flow. (This arises from the fact that

11
i i

ii

A A
η η

==

≤∑∪ .)

The area of the bounding box, Figure 6.5, as a function of the number of hops

between S and D, h, is A(h) = 2r2(h+1). The total number of nodes in the bounding box

N(h) = A(h)ρ, where ρ is the density. The number of forwarding nodes F(h) = h-1. The

number of guard nodes G(h) = 0.51N(h)-F(h) (Equation (4.8)). The number of other

nodes O(h) = N(h)-(F(h)+G(h)). Next, we compute the total expected energy over all the

flows for both Baseline-OD and On-Demand SLAM, ignoring the energy of S and D.

Baseline-OD: The expected energy expended by the entire set of forwarding nodes for a

single flow is

 { },1. ,[] [()]f base f baseE E F hε ε= ⋅ (6.14)

On-Demand SLAM: The expected energy expended by the entire set of nodes in the

bounding box for a single flow is

 { },1, , , ,[] [()] [()] [()]N SLAM f SLAM g SLAM o SLAME E F h E G h E O hε ε ε ε≤ ⋅ + ⋅ + ⋅ (6.15)

These computations depend on the value of E[h]. To compute E[h], consider the

source S at the center of a set of concentric circles – the first one of radius r (the

transmission range), the second of radius 2r, and so on. The nodes in the second ring are

two hops away from S, those in the third ring are three hops away, and so on. Let the

number of nodes in ring i be mi. Assuming a Poisson process for distribution of the nodes

with rate ρ. mi = πr2ρ when i=1 and mi= π[((i+1)r)2-(ir)2] when i>1. In general, through

simplification, mi = πr2ρ(2i-1) and,

1 1

[] , where is such that i
j

i j

mE h i m n
n

Γ Γ

= =

= ⋅ Γ =∑ ∑ (6.16)

In Figure 6.6, we plot the extra delay of SLAM over Baseline-LM for cases I

(Equation(6.7)) and II (Equation(6.12)) above with Tdata = 7ms and t =1ms. The figure

shows that the additional delay due to SLAM increases linearly with the number of hops

for Case I while it remains constant for Case 2.

 139

The expected value of the total energy expended (for all the η concurrent flows) is

upper-bounded by η times the energy for a single flow.

5

9

13

17

21

3 4 5 6 7 8 9 10 11 12
Of Hops Between Source-Destination Pair

SL
A

M
 E

xt
ra

 D
el

ay
 (m

s) Case I
Case II

Figure 6.6: Extra delay due to SLAM over Baseline-LM

6.3. Simulation Results

We use the ns-2 simulator [89] to simulate a data exchange protocol over a

network with local monitoring enabled according to the protocol in Chapter 4. We

simulate two scenarios individually without A-SLAM (the baseline) and with A-SLAM.

The baseline is an implementation of the local monitoring protocol presented in Chapter

4. A-SLAM scenario is built on top of the baseline scenario to provide sleep-wake service

for the guards. Nodes are distributed randomly over a square area with a fixed average

node density, 100 nodes over 204m×204m. Each node acts as a source and generates data

according to a Poisson process with rate m. The destination is chosen at random and is

changed using an exponential random distribution with rate λ. A route is evicted if

unused for TOutRoute time. The experimental parameters are given in Table 6.1. The

results are averages over 30 runs. The malicious nodes are chosen at random so that they

are more than 2 hops away from each other.

Table 6.1: Default simulation parameters

Parameter Value Parameter Value
Tx Range (r) 30 m Destination change rate (λ) 0.02/ sec
Number of neighbors (NB) 8 Number of malicious nodes (M) 4
TOutRoute 50 sec Packet generation rate (m) 0.1 / sec
Channel BW 40 kbps Warm up time (Twarmup) 5ms

 140

Simulation time 1500 sec Fraction of data monitored (fdat) 0.6
Watch time (Tw) 30ms Number of nodes (N) 100

Adversary model: We are simulating a selective forwarding attack launched by a group

of malicious nodes that collude and establish wormholes in the network, Chapters 4 and

5. During the wormhole attack, a malicious node captures packets from one location in

the network, and “tunnels” them to another malicious node at a distant point, which

replays them locally. This makes the tunneled packet arrive either sooner or with a lesser

number of hops compared to the packets transmitted over normal multihop routes. This

creates the illusion that the two end points of the tunnel are very close to each other. The

two malicious end points of the tunnel may use it to pass routing traffic to attract routes

through them and then launch a variety of attacks against the data traffic flowing on the

wormhole, such as selectively dropping the data packets. Unless otherwise mentioned,

each node selectively drops a packet passing through it with uniform probability of 0.6.

Variable input metrics: (i) Fraction of data monitored (fdat)–each guard node randomly

monitors a given fraction of the data packets. At other times, it can be asleep from the

point of view of a guard’s responsibility. (ii) Data traffic load (µ). (iii) Number of

malicious nodes (M)–the number of malicious nodes that collude to establish wormholes

and afterwards selectively drop the data.

Output metrics: Delivery ratio–the ratio of the number of packets delivered to the

destination to the number of packets sent out by a node averaged over all the nodes in the

network. Watch buffer size–the runtime count of the maximum size of the watch buffer

being maintained at a guard, measured in number of entries. The maximum is taken over

all the guards. % Average monitor wakeup time–the time a node has to wakeup

specifically to do monitoring averaged over all the nodes as a percentage of the

simulation time. Average end-to-end delay–the time it takes a data packet to reach the

final destination averaged over all successfully received data packets. % True isolation–

the percentage of the total number of malicious nodes that is isolated. % False isolation–

the percentage of the total number of nodes that is isolated due to natural collisions on the

wireless channel. Isolation latency–the time between when the node performs its first

 141

malicious action to the time by which all the neighbors of the node have isolated it

averaged over all isolated malicious nodes.

Note that the goal is not to show the variation of the output metrics with the input

parameters for local monitoring, since that has been amply covered in Chapters 4 and 5.

The goal here is to study the relative effect on local monitoring with ASLAM and without.

6.3.1. Effect of Fraction of Data Monitored

The amount of data traffic is typically several orders of magnitude larger than the

amount of control traffic. It may not be reasonable for a guard node to monitor all the

data traffic in its monitored links. Therefore a reasonable optimization is to monitor only

a fraction of the data traffic. In this set of experiments, the goal is to investigate the effect

of this optimization quantified by the fraction fdat on the output metrics.

Figure 6.7 shows the variations of delivery ratio as the fraction of data monitored

(fdat) varies. The figure shows that the % delivery ratio is almost stable above 90%

irrespective of the value of fdat. This desirable effect is achieved by proper selection of the

MalC increment for each value of fdat. The MalC increment is designed with an inverse

relation to the fdat.. Importantly, the delivery ratio in A-SLAM is close to the baseline for

all values of fdat. However, the results in A-SLAM are slightly worse than those of the

baseline. This is because some of the data packets are additionally dropped in A-SLAM by

forwarding, destination, or guard nodes that happen to be asleep when the data packet

arrives. This unwanted sleep may occur due to collision in the sleep-wake control channel

which prevents the respective nodes from waking up. Although the control channel is a

separate channel, contention still occurs, where a guard of two consecutive links are sent

separate wake-up signals concurrently.

 142

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1

Fraction Data Monitored

%
 D

el
iv

er
y

R
at

io

With A-SLAM
Without A-SLAM

Figure 6.7: Effect of fraction of data monitored on delivery ratio

Figure 6.8 shows the variations of the % of true isolation as the value of fdat

varies. The trend in the figure is the same as that of Figure 6.7 above and the results

follow the same reasoning.

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1

Fraction Data Monitored

%
 T

ru
e

Is
ol

at
io

n

With A-SLAM
Without A-SLAM

Figure 6.8: Effect of fraction of data monitored on % true isolation

Figure 6.9 shows the variations of end-to-end delay as the fraction of data

monitored (fdat) varies. The figure shows that the end-to-end delay is slightly higher for

A-SLAM due to the additional warm up time required when the source sends a packet to

the first hop.

 143

0

0.015

0.03

0.045

0.06

0.2 0.4 0.6 0.8 1

Fraction Data Monitored

En
d-

to
En

d
D

el
ay

 (s
)

With A-SLAM
Without A-SLAM

Figure 6.9: Effect of fraction of data monitored on end-to-end delay

Figure 6.10 shows the variations of watch buffer size as the value of fdat varies. As

the fraction of data monitored increases , the watch buffer size increases due the increase

in the number of packets monitored. This shows the benefit in terms of overhead by

monitoring only a small fraction of packets while maintaining almost the same detection

coverage (Figure 6.7). However, note that even though the watch buffer sizes in A-SLAM

and the baseline are close, that in A-SLAM is slightly higher. This is due to the extra delay

in packet forwarding in A-SLAM due to warm up of the nodes before sending the data.

This delay causes the monitored packets to stay longer in the watch buffer thereby

increasing its size.

0

6

12

18

24

30

0.2 0.4 0.6 0.8 1

Fraction Data Monitored

W
at

ch
 B

uf
fe

r S
iz

e With A-SLAM
Without A-SLAM

Figure 6.10: Effect of fdat on watch buffer size for local monitoring with and without

SLAM

 144

6.3.2. Effect of Number of Malicious Nodes

In this section, we study the relative effect of varying the number of malicious

nodes on the output metrics.

Figure 6.11 shows the variations of % delivery ratio, as the number of malicious

nodes (M) varies. The figure shows that the % delivery ratio slightly decreases as M

increases. This is due to the packets dropped before the malicious nodes are detected and

isolated. As the number of malicious nodes increases, this initial drop increases and thus

the delivery ratio decreases. The % delivery ratio in A-SLAM is slightly lower than that of

the baseline due to the unwanted sleep described in the explanation of Figure 6.7.

0

20

40

60

80

100

2 3 4 5 6

Number of Malicious Nodes

%
 D

el
iv

er
y

R
at

io

With A-SLAM
Without A-SLAM

Figure 6.11: Effect of number of malicious node on delivery ratio

Figure 6.12 shows the variations of % delivery ratio, as the number of malicious

nodes (M) varies. The figure shows that the % true isolation slightly decreases as we

increase M. This is because the number of available guards in the network decreases as

more and more nodes get compromised. The % of true isolation in A-SLAM is slightly

lower than that of the baseline due to the unwanted sleep described in the explanation of

Figure 6.7.

 145

0

20

40

60

80

100

2 3 4 5 6

Number of Malicious Nodes

%
 T

ru
e

Is
ol

at
io

n

With A-SLAM
Without A-SLAM

Figure 6.12: Effect of the number of malicious nodes on % of true isolation

Figure 6.13 shows the variations of % false isolation, as the number of malicious

nodes (M) varies. The figure shows that the % false isolation increases as we increase M.

This is because not all guard nodes come to the decision to isolate a malicious node at the

same time. Therefore, a given guard node may suspect another guard node when the latter

isolates a malicious node but the former still has not. The occurrence of this situation

increases with M and hence the % of false isolation increases with M. For example, a

guard node G1 detects a malicious node M earlier than the other guard nodes for the link

to M. G1 subsequently drops all the traffic forwarded to M and is therefore suspected by

other guard nodes of M. This problem can be solved by having an authenticated one-hop

broadcast whenever a guard node performs a local detection. The % false isolation in A-

SLAM is lower than that of the baseline. Again, this is because some of the packets that

may falsely identify a node as malicious may get lost in A-SLAM due to unwanted sleep.

0

1.5

3

4.5

6

2 3 4 5 6

Number of Malicious Nodes

%
 F

al
se

 Is
ol

at
io

n

With A-SLAM
Without A-SLAM

Figure 6.13: Effect of the number of malicious nodes on % of false isolation

 146

6.3.3. Effect of Data Traffic Load (µ)

In this section, we study the effect of varying the data traffic load on the output

metrics.

Figure 6.14 shows the variations of % false isolation as the data traffic load (1/µ)

varies. The figure shows that the % false isolation increases as the traffic load increases

(1/µ increases). As the traffic load increases, the probability of collision increases. This in

turn increases the possibility of false accusation since a guard, say G, may falsely accuse

a node, say A, of not forwarding a packet if either G has a collision when A forwards or A

has a collision while receiving the packet. The explanation of the relative performance

with and without A-SLAM is the same as for Figure 6.13.

0

3

6

9

0.05 0.067 0.01 0.2 1

Data Traffic Load (1/mu)

%
 F

al
se

 Is
ol

at
io

n

With A-SLAM
Without A-SLAM

Figure 6.14: Effect of data traffic load on % false isolation

Figure 6.15 shows the variations of isolation latency as the data traffic load (1/µ)

varies. The figure shows that the isolation latency increases as the traffic load increases.

As the traffic load increases, the MalC increment decreases. This causes the MalC

threshold to be reached slower at a guard node, which results in increasing the isolation

latency of the malicious nodes. Also the higher traffic load lays it open to the possibility

of some packets being missed due to natural collisions and thereby preventing the

increment to the malicious counter and therefore, reaching the threshold faster. Note that

the isolation latency in A-SLAM is higher than that of the baseline because of the

additional packets missed due to the unwanted sleep.

 147

0

30

60

90

120

150

0.05 0.067 0.01 0.2 1

Data Traffic Load (1/mu)

Is
ol

at
io

n
La

te
nc

y
(s

) With A-SLAM
Without A-SLAM

Figure 6.15: Effect of data traffic load on isolation latency

Figure 6.16 shows the variations of isolation latency as the data traffic load (1/µ)

varies. The figure shows that end-to-end delay increase as the traffic load increases due

the higher contention for the channel. The relative explanation of end-to-end delay with

and without A-SLAM is the same as that of Figure 6.10.

0

0.02

0.04

0.06

0.08

0.05 0.067 0.01 0.2 1

Data Traffic Load (1/mu)

En
d-

to
En

d
D

el
ay

 (s
) With A-SLAM

Without A-SLAM

Figure 6.16: Effect of data traffic load on end-to-end delay

6.3.4. Wakeup Time Variations

In this section, we study the effect of varying the fraction of data monitored (fdat),

the number of malicious nodes (M), and the data traffic load (µ) on the percentage of time

that a node needs to stay awake using A-SLAM to fulfill the quality of service measures

imposed by the underlying local monitoring scheme.

 148

Figure 6.17 shows that the percentage of wakeup time required for monitoring

increases as the fraction of monitored data increases due to the increase in the number of

data packets that a node needs to overhear in its neighborhood

0

1

2

3

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

%
 W

ak
eu

p
Ti

m
e

Figure 6.17: Variations on the percentage of monitoring wakeup time the fraction of

data monitored (fdat) varies

. Figure 6.18 shows that the percentage of wakeup time decreases as we increase

the number of malicious nodes. As the number of malicious nodes increases, the number

of data packets in the system decreases since the malicious nodes are isolated and

disallowed from generating data packets. Therefore, the number of packets that need to

be monitored decreases, which results in a decrease in the average percentage of wakeup

monitor time.

0

0.5

1

1.5

2

2 3 4 5 6

Number of Malicious Nodes

%
 W

ak
eu

p
 T

im
e

Figure 6.18: Variations on the percentage of monitoring wakeup time the number of

malicious nodes varies

 149

 Figure 6.19 shows that the average percentage of monitoring wakeup time

increases as the data traffic load increases due the increase of data packets that need to be

monitored.

0

1

2

3

4

0.05 0.067 0.01 0.2 1

Data Traffic Load (1/mu)

%
 W

ak
eu

p
Ti

m
e

Figure 6.19: Variations on the percentage of monitoring wakeup time as the data

traffic load varies

Overall, compared to the no sleeping case, A-SLAM saves 30%-129% listening

energy for different amounts of data traffic load (1/µ).

6.3.5. Effect of Distance on Delay

We evaluate here the variations of the end-to-end delay with the number of hops

between the source and destination pairs. Figure 6.20 shows that the end-to-end delay in

A-SLAM is always higher than that of the baseline due to the warm-up time needed to

wake up the nodes before sending the data. However, due the scheduling strategy in A-

SLAM in which each node sends a wake-up signal at the earliest possible opportunity

(Section 6.1.4.3), the warm-up time is only in the critical path at the first hop and

therefore, the delay is not cumulative with the number of hops.

 150

0

25

50

75

100

3 4 5 6 7 8 9 10 11 12
Of Hops Between Source-Destination Pair

En
d-

to
En

d
D

el
ay

 (m
s)

With A-SLAM
Without A-SLAM

Figure 6.20: Variation of the end-to-end delay with the hop count for local

monitoring with and without A-SLAM

Figure 6.21 shows that the difference in the end-to-end delay has a horizontal

trend–it fluctuates between 6.5 and 10 ms due to the randomness in the traffic pattern and

the location of the source-destination pair. The standard deviation in the difference is

only 9.1%, expressed as a percentage of the baseline delay. This horizontal trend of the

additional delay due to SLAM follows the trend obtained analytically in Section 6.2.2 for

the case when (Tcontrol + Twarmup) < Tdata which is true in these simulation settings.

6

7

8

9

10

3 4 5 6 7 8 9 10 11 12
Of Hops Between Source-Destination Pair

En
d-

to
En

d
D

el
ay

 (m
s)

Figure 6.21: The difference in the end-to-end delay with and without A-SLAM

 151

7. MITIGATION OF THE WORMHOLE ATTACK IN MOBILE
WAHAS NETWORKS: MOBIWORP

This chapter uses local monitoring to provide a set of primitives for mitigating the

wormhole attack in mobile WAHAS networks. Mitigation involves detection of the

attack, diagnosis of the adversary nodes, and nullifying their capability for further

damage. Chapter 4 above presented a protocol called LITEWORP for mitigating the

wormhole attack in static WAHAS networks. However, LITEWORP breaks down in

mobile scenarios. The limitation arises from the inability to securely determine neighbors

at arbitrary points in the lifetime of the network. Existing work on secure neighbor

discovery cannot be applied to the problem because it hinges on one or more of the

following features: (i) the requirement of extremely accurate clocks, (ii) the assumption

of no delay in the network apart from the propagation delay [52], and (iii) the

requirement of directional antennas and measurement of exact angle of reception [51].

The large volume of work on location determination relies on inaccurate measures, such

as received signal strength, and is distinct from the problem of location verification of a

possibly malicious node, which is what we need. A second challenge arises from the

possibility of a mobile adversary that may perform malicious actions at one location and

move. LITEWORP only performs local isolation of the adversary and leaves the network

open to unbounded amount of damage through the mobile adversary.

The contributions of this chapter include,

• Providing a primitive that prevents a node from claiming to exist at more than one

position in the network. This primitive can be used in detecting several different

attacks such as the Sybil attack ([57], [108]).

• Developing a protocol called MOBIWORP that detects and diagnoses wormhole attacks

in mobile networks.

 152

• Providing a technique in MOBIWORP to isolate malicious nodes from the network,

thereby removing their ability to cause future damage.

• Analyzing the detection latency and overhead of MOBIWORP and providing extensive

simulations to study the efficacy of our approach.

MOBIWORP uses local monitoring of neighborhood communication by each node

as a primitive. It does not require specialized hardware at the network nodes, but instead

relies on a secure central authority (CA) for position tracking of the mobile nodes and

keeping track of adversarial behavior by a mobile node. The use of CA appears to fly in

the face of the holy design grail of completely distributed protocols. However, the CA is

contacted only in the event of motion and the protocol can continue to operate through

periods when the CA is unreachable. To improve scalability and availability, the

architecture can accommodate a hierarchical CA structure with each CA responsible for

part of the network.

The detection in MOBIWORP is of two types–local detection and global detection.

In the former, the adversarial node is detected by the guards in its current neighborhood

in a distributed fashion similar to LITEWORP. In the latter, the adversary is detected on a

global network scale by the CA aggregating reports from guards at multiple locations.

The first protocol proposed under MOBIWORP is called the Selfish Move protocol (SMP).

In SMP, the mobile node can generate, send, and receive its own traffic but cannot

forward any traffic. This design arises from the insight that a node can only launch a

wormhole attack if it can forward packets. However, SMP may cause the network to be

disconnected if a large fraction of the nodes are mobile at the same time. This scenario is

expected to occur in only the most mobile networks.

To address this case, we develop a second protocol called Connectivity Aided

Protocol with Constant Velocity (CAP-CV). This protocol eliminates the aforementioned

lack of connectivity problem by allowing the mobile node to also forward packets.

However, this protocol comes with some requirement: the node has to file an

“approximate flight plan” with the CA giving the average velocity between the current

and the new position. Note that in the SMP, the node does not need to determine a priori

its trajectory from the source to the destination while in the CAP_CV, it does.

 153

MOBIWORP provides a technique that isolates the malicious nodes from the

network thereby removing their ability to cause future damage. The isolation is achieved

in two phases–locally, whereby the malicious node is removed from the current

neighborhood and globally using global information at the CA so that a peripatetic mobile

node cannot cause unbounded damage in the network. The detection and the isolation

process are done judiciously to minimize the possibility of victimizing innocent nodes

due to false alarms caused by natural collisions in the wireless medium or deliberate

framing by malicious nodes. The simulation results show that, for the network densities

we simulate, MOBIWORP can achieve more than 90% local and global isolation of

malicious nodes. Moreover, the data packet drop ratio goes to zero with time due to the

capability of MOBIWORP to isolate malicious nodes that are involved in packet dropping.

For an appropriate choice of design parameters, MOBIWORP can completely eliminate

local framing at the cost of slight increase in the data packet drop ratio.

The rest of the paper is organized as follows. Section 7.1 lays out the design

foundations while 7.2 describes the protocols for secure location estimation. Section 7.3

gives the simulation experiments and the results. Section 7.4 presents the analysis for

resource overhead, detection latency, and possibility of framing of good node.

7.1. Design Foundations

7.1.1. Attack Model and Assumptions

Assumptions: MOBIWORP assumes that the network consists of a mix of static and

mobile nodes with a single level of transmission power and bi-directional links. Each

mobile node is capable of determining its destination location before moving and knows

its current location. Such location information may be obtained using the Global

Positioning System (GPS) [148] or through location discovery algorithms that depend on

beacon nodes such as [146], [147], [150], and [151]. Furthermore, MOBIWORP assumes

that the network is very loosely time-synchronized, in the range of tens of milliseconds.

The nodes may or may not be resource constrained, however, MOBIWORP attempts to be

parsimonious in its own resource consumption. The network has a trusted central

authority (CA) and each node has a shared key with the CA. The CA does not have any

 154

resource constraint. Each node in the network can have a symmetric shared key with each

other node and is capable of verifying public key certificates issued by the CA.

Attack model: The adversary node may be external or internal (i.e. possessing the

cryptographic keys) and it may be more resource-rich than a regular node, such as having

unlimited energy source, high speed motion, and high powered transmission capability.

Multiple adversary nodes may collude. A node cannot assume multiple identities, a

problem that has been solved in [57]. MOBIWORP assumes that there is a maximum limit

(Mmax) on the number of internal nodes that an attacker can capture. Such assumptions are

commonly made in WAHAS networks as in [9] and [149]. The wormhole attack can be

launched in one of four modes according to the classification in Section 4.1 such as high

powered transmission and packet encapsulation. Without loss of generality, the mode that

is simulated here is the out-of-band high bandwidth channel between the malicious

nodes.

7.1.2. Node Locations

The physical location of the node is the location where the node physically exists.

The logical location of the node is the location that the node announces to the CA. A

node α is considered integrated at a position (X, Y) if there exists at least one node within

one transmission range of (X, Y) which considers α to be its first-hop neighbor. If no

node at all exists in the vicinity of (X, Y), then the condition of integration is trivially

satisfied. The property guaranteed by MOBIWORP is that a node α can only be integrated

in its logical location. The physical location and the logical location of a good node are

the same but may not be for a malicious node. If a node is integrated at a location, it can

send, receive, and forward packets from its neighbors in that location. If a node is not

integrated at a location it cannot do that irrespective of its physical location. In this

chapter, we use location to mean the logical location, unless explicitly stated otherwise.

The determination of first- and second-hop neighbors plays a crucial role in the

detection of the wormhole attack using local monitoring. A node does not accept or send

packets to a node that is not recognized as a first-hop neighbor. Also, a node acts as a

guard depending on its knowledge of first-hop neighbors. The second-hop neighbor

 155

information is required to detect when a node falsifies information about the immediate

sender. In a static scenario, the neighbor list is built once at the time of deployment when

the network is assumed adversary-free as in Chapter 4. However, in a mobile scenario,

the neighborhood may change during the lifetime of the network and therefore dynamic

secure neighbor discovery is required. The problem of neighbor determination is a subset

of the problem of verifying the location of each node that lies within two transmission

ranges. Hence, verifying the location of a node is the core of MOBIWORP and forms the

topic of the discussion in the next section.

7.2. Secure Node Integration Protocols

In this section we describe node integration within the network. Node integration

includes secure neighbor verification and the determination of the role that a node is

allowed to play after being integrated.

7.2.1. Fundamental Structures for Neighbor Determination Protocols

The integration of a node in the network is preceded by an exchange of control

messages between the mobile node and the CA, called the node-to-CA handshake.

MOBIWORP introduces the concept of the Authentication Neighbor Update Message

(ANUM), which is akin to a certificate given by the CA to a node. The node uses this

ANUM to convince other nodes of its logical location. The ANUM is signed with the

private key of the CA and thus can be verified by each node. It carries an expiry time with

it, which is the maximum time for which the node can remain integrated in the given

location with the current ANUM.

Every node in the network has a structure called neighbor list, which is a list of

nodes that are within two transmission range distances and the location of each node. The

neighbor list is updated as the node moves through the network or new nodes move to its

neighborhood. A monitoring round of guard node a for the monitored node i is defined as

the period which starts when they become first-hop neighbors and ends when they no

longer remain first-hop neighbors, may be due to the mobility of either α or i. The

MalC(α,i) counter value at node α for node i is not remembered across monitoring

 156

rounds. A node can be revoked from the network either locally (Section 2.2.1) or

globally, when its suspicion goes beyond application defined thresholds. Local

revocation of a node a means that all the first-hop neighbors of a stop interacting with it.

Global revocation of a means that a is revoked at the CA and therefore it can not perform

any network function in any part of the network.

The CA maintains a global suspicion table (STglob) which is an (N+1)×N matrix,

where N is the number of nodes in the network. The entry (i, j) has MalC(i,j) and a status

field (Sf) indicating if node i has locally revoked node j. The (N+1)th row has the global

opinion of the CA about a given node. Thus entry STglob[N+1,i] has a counter field (Cntr)

for how many nodes have flagged node i to be malicious and a status field (Sf) set to one

if Cntr > Mmax. This serves as the trigger for the CA to globally revoke node i. The CA

aggregates the MalC values of node a about i over multiple monitoring rounds.

Therefore, even if MalC(a,i) does not cross the threshold MalCth during any single

monitoring round, MalC(a,i) may cross the threshold if aggregated at the CA over more

than one round.

7.2.2. Selfish Move Protocol (SMP)

This section presents SMP in the following stages–how does a node handshake

with the CA, how it behaves when in motion, and how the node gets integrated with the

network in the new position. The fundamental insight that is leveraged here is that a node

cannot launch a wormhole if it is not allowed to forward any traffic and therefore, if a

node’s credentials are unsure, it is safe to allow it only to send and receive its own

packets. The overall process flow for SMP is shown in Figure 7.4.

7.2.2.1. Node-to-CA Handshake

A node b at position (X0, Y0) tries to obtain an ANUM for position (X1, Y1), which

may be the same as (X0, Y0) using the following Node-to-CA handshake algorithm

presented in Figure 7.1.

 157

1. When the current ANUM of b expires, it sends a message to the CA with
the time till which b expects to stay at the new location Tpause(X1, Y1).
This message is called ANUM Request and it is sent by β to the CA
encrypted using the shared symmetric key.

2. The CA checks its database for b to verify that b has no previous valid
ANUM and that b has not been previously revoked. If β has a previous
valid ANUM, the CA drops the ANUM Request and the handshaking
stops at this point. If β has been revoked, the CA sends an ANUM
Reject signed by the private key of the CA back to β.

3. If the checks in the previous step are negative, the CA prepares an
ANUM Reply that contains the identity of b, the expiration time of the
ANUM, which is equal to the time when the CA replies to the ANUM
Request plus Tpause(X1, Y1), and the new location of b (X1, Y1). This
message is signed by the CA and sent back to b.

4. When b receives the ANUM Reply, b verifies its integrity through the
public key of the CA.

5. If the CA sends an ANUM Reject to b, then every node that overhears or
forwards the ANUM Reject along its path from the CA to β adds β to its
local blacklist after verifying the ANUM Reject.

6. If b does not receive any reply within a timeout period, it retries the
handshaking for three times. If none of these attempts succeeds, b
selects a backoff time after which it repeats the process until it succeeds.

Figure 7.1: SMP handshake between b and the CA

Two questions arise: What if b cannot renew the ANUM due to unavailability or

disconnectedness from the CA? How does b communicate while moving from one

location to another?

The fundamental requirement in both cases is to prevent the node from launching

a wormhole. SMP allows a moving node to send and receive its own traffic but not

forward any other traffic. However, SMP wants to limit the time from the expiry of a

node’s ANUM for which it can even do this. This requirement gives rise to the concept of

a grace period (tgrace) from the expiry time of the ANUM. The rationale behind the grace

period is to give the CA the ability to prevent a malicious node from performing any

function in the network permanently. This is guaranteed by requiring the node to go back

to the CA after the expiration of the grace period to renew its ANUM at which point the

CA can reject the request.

Based on ANUM status, a node can be in one of the four states presented in

Figure 7.2. Recollect that an ANUM has an associated position and expiry time. Figure

7.3 shows the state transition diagram between these states. It is important for the

 158

neighbors of a node a (NBa) to determine its state, so that each member of NBα can make

decisions about the packets to forward to or from α. A member of NBα can determine the

valid and incorrect states of α unambiguously but cannot generally differentiate between

invalid and revoked states. However, if a member of NBα hears the ANUM Reject for α,

it concludes that α is revoked.

Valid: The current position is the same as the one mentioned in the
ANUM and the ANUM is not expired. In this state, the node can
send, receive, and forward packets, i.e. full network functionality.

Incorrect: The current position is different from the one mentioned in the
ANUM (Incorrect Remote), the ANUM is expired but within the
grace period (Incorrect Expired), or both. In this state, the node
can only send and receive its own packets.

Invalid: The ANUM is expired beyond the grace period. In this
state, the node cannot send, receive, or forward any
packet except the handshaking packets with the CA.

Revoked: The node has been globally revoked from the network. In this
state, the node is completely cut off from the network.

Figure 7.2: Node states based on the ANUM status

Incorrect

Valid Revoked

Invalid

Get a new ANUM
CA sends ANUM
Reject

ANUM expired
beyond tgrace

ANUM expired
within tgrace

or
Node moves

Get new
ANUM

CA sends ANUM
Reject

Incorrect

Valid Revoked

Invalid

Get a new ANUM
CA sends ANUM
Reject

ANUM expired
beyond tgrace

ANUM expired
within tgrace

or
Node moves

Get new
ANUM

CA sends ANUM
Reject

Figure 7.3: State transition diagram of node’s states

 159

Pold(X0,Y0)

b

ANUM(X0,Y0)
1

Get ANUM(X1,Y1)CA
2

2-hop Neighborhood

b

1-hop Neighborhood

Pnew(X1,Y1)

Motion Pold to Pnew3

ANUM(X1,Y1)

2-hop broadcast
ANUM(X1,Y1)

4

Figure 7.4: Schematic of SMP for movement of node β

7.2.2.2. Secure Neighbor Discovery and Node Integration Algorithm

After getting, and verifying the ANUM, b comes to the valid state and uses the

ANUM to get integrated at the location associated with ANUM through the algorithm

presented in Figure 7.5. A node b in the incorrect state carrying an ANUM with position

(X0, Y0), that is currently at (X1, Y1) likely due to the fact that β is moving to (X0, Y0),

integrates with the network using the same algorithm presented in Figure 7.5 with two

changes. In the first step of the algorithm, b attaches its current location (X1, Y1) with the

ANUM broadcast and in the third step, a neighbor a marks in its neighbor list entry that b

can only send and receive its own traffic. A node in the invalid state can not integrate in

the network until it gets an ANUM through the node-to-CA handshake algorithm, Section

7.2.2.1. Finally, a node in the revoked state cannot get an ANUM nor can it integrate in

any part of the network.

 160

1. Node b sends a two-hop broadcast of its ANUM, ANUM Discover,
seeking to discover neighboring nodes.

2. A neighbor a that receives the ANUM Discover, verifies the signature of
the CA and if its expiry time is in the future. Recollect that the clocks of
the different nodes are loosely synchronized.

3. Node a computes the distance to b, adds b to its first-hop or second-hop
neighbor list based on the computed distance between the position in the
ANUM and its own position. Then it stores β’s location and the
expiration time of its ANUM.

4. Node a then sends its own ANUM to b. Along with this, node α sends its
local blacklist to β authenticated using the shared key.

5. Node b verifies the ANUM of node a using the signature of the CA and
its expiry time, updates its neighbor list to include node α based on the
computed distance between the position in the ANUM of a and its own
position, and stores the blacklist of a.

6. After b discovers its first-hop neighbors, it sends an authenticated one-
hop broadcast of its blacklist to them. This broadcast is authenticated
individually using the shared key between b and each first-hop neighbor.

7. Each malicious node in the blacklist of b (similarly, α) that is directly
detected by b (similarly, α) serves as an alert of malicious detection to
the first-hop neighbors of b (similarly, to b).

8. When the ANUM of b expires, node a removes b from its neighbor list,
and vice-versa.

Figure 7.5: Node integration by β in valid state

7.2.3. Connectivity Aided Protocol with Constant Velocity (CAP-CV)

SMP suffers from two shortcomings. In network scenarios with a high number of

concurrently moving nodes, a large fraction of the nodes is disallowed from forwarding

packets, thereby disconnecting the network. A second problem is that SMP prevents a

node which needs communication while moving, from doing so after the grace period.

Therefore, we provide in this section a protocol called CAP-CV that preserves the same

connectivity conditions of the mobile network and allows the moving nodes to travel any

distance. However, CAP-CV requires the mobile nodes to declare to the CA the average

velocity with which it will move to (X1, Y1).

CAP-CV allows any moving node to vary its promised velocity (v), as long as the

difference between the actual position and the expected position is less than a threshold

value Dth. The value Dth should be high enough to account for the inaccuracy of location

determination systems such as GPS. However, the tradeoff is that a high value of Dth

 161

reduces the possibility of detecting a malicious node that intentionally lies about its

physical location (for detection procedure see Section 7.2.4). Alternately, the node may

declare to the CA its entire trajectory from the source to the destination. The node to CA

handshake that happens in CAP-CV is presented in Figure 7.6

1. Node b sends an ANUM Request to the CA with (X0, Y0), (X1, Y1), the
start time of motion Tmove, and an anticipated velocity v.

2. Identical to step 2 of the SMP node-to-CA handshake protocol.
3. If the checks in the previous step are negative, the CA sends a signed

ANUM Reply to β that contains the identity of b, (X0, Y0), (X1, Y1), the
moving start time Tmove, v, and the expiration time of the ANUM which
is equal to the anticipated arrival time of b at (X1, Y1). This message
is signed using the private key of the CA.

4. When b receives the ANUM Reply, it verifies its integrity. Then b
can use the ANUM to discover the neighbors and prove its existence
while moving to (X1, Y1).

5. & 6. Identical to steps 5 & 6 of the SMP node-to-CA handshake
algorithm of SMP, where the CA generates an ANUM Reject.

 Figure 7.6: CAP-CV handshake between b and the CA

The protocol to integrate node β at location (Xi, Yi) on the moving path is the same

as the one described in Figure 7.1 of the SMP with two important changes. In step one,

before b can broadcast its ANUM to discover the neighborhood, it checks whether the

anticipated position (computed using velocity v) and its actual position are different by

more than Dth. If it is, b refrains from communication and does not proceed in the

integration because it may be accused as malicious by some other nodes. Otherwise, b

proceeds in the integration process. Also, in step three, when a node α determines β to be

its neighbor, it assigns an expiry timer to β’s entry which depends on when the distance

between them gets larger than twice the transmission range. This in turn depends the

velocities of α and β, as given in their ANUMs.

7.2.4. Two Specific Attacks

False location information: MOBIWORP enables a new malicious behavior called

location deviation in which a malicious node lies about its location by presenting a

logical location that differs from its physical location. This kind of malicious behavior

cannot help the malicious nodes to establish wormholes since our protocols for node

 162

integration guarantee that any node can be integrated in the network with forwarding

capability while in the valid state only. This can only happen at exactly one location at

any time. However, this malicious activity can be detected without incurring any

additional overhead. Recall that in node integration, Section 7.2.2.2, a node M broadcasts

its ANUM two hops away and the ANUM carries the location of M. A node a that

receives the ANUM of M, computes the distance between itself and M. If the distance is

greater than the transmission range by more than Dth, a concludes that M is malicious–

either transmitting at a higher transmission power or has a physical location different

from its logical location.

DoS against MOBIWORP: MOBIWORP is a self-healing protocol in that if an intermediate

node tries to launch a denial of service attack by dropping ANUM packets, it can be

detected by local monitoring since the traffic is part of control traffic. A node cannot

exhaust resources of a neighbor by sending false ANUM broadcasts or ANUM Requests

since they can be detected respectively by a neighbor and the CA. This reasoning relies

on the assumption that the node cannot assume multiple identities, which is provided by

any protocol that mitigates the Sybil attack [57].

7.2.5. Isolating a Malicious Node

When a node is determined to be malicious, it is important to take some action to

neutralize the ability of the node to cause further damage. This aspect is not addressed by

any of the previous work on wormhole detection except LITEWORP for static networks.

The process of local revocation described in Section 2.2.1 is quick and lightweight, and

has the desired effect of removing the potential for mischief of static malicious nodes.

However, a mobile malicious node can move to a new location and perform some

malicious activities before it is detected. Hence, MOBIWORP uses the CA’s capability to

limit the potential for damage by a mobile adversary node. When a guard directly detects

a malicious node, it sends an alert packet to inform the CA of the identity of the malicious

node. The CA collects alerts for a node from all the guards that can detect the malicious

behavior of the monitored node. When the number of alerts for a certain node exceeds a

threshold, Mmax, the CA globally revokes the node by preventing it from getting any

 163

ANUM in the future. This eventually results in isolating the malicious node from the

whole network. The global isolation protocol is shown in Figure 7.7.

1. When node a detects node M to be malicious through local
monitoring, it sends an alert message to the CA with the identity
of node M signed using the shared symmetric key.

2. When the CA receives the alert message from a, it updates the
data structure described in Section 4.1 to reflect that node a has
revoked node M, i.e., it sets the entry STglob [a,M].Sf to one. Node
α can inform the CA of its MalC value for node M when the
monitoring round of α for M ends. Node α piggybacks the counter
values it has for its neighbors with its ANUM Request. The CA
performs aggregation of MalC(α, M) across monitoring rounds
and if it determines M to be malicious, it sets the entry STglob
[α,M).Sf to one.

3. If any counter value, say for node M, crosses the threshold
MalCth, the CA increments STglob[N+1,M].Cntr by one. If
STglob[N+1,M].Cntr exceeds Mmax, the CA globally revokes M by
setting STglob[N+1,M].Sf to one. This means that node M can
never receive a valid ANUM from the CA in the future.

Figure 7.7: Global isolation algorithm

7.3. Simulation Results

In this section ns-2 simulation environment [89] is used to simulate a random any-

to-any data exchange protocol, in the baseline case without any protection and with

MOBIWORP. We initially distribute a given number of nodes randomly over a square field

of constant dimensions, 1500 m µ 1500 m. Thus the density increases with the number of

nodes. The mobile nodes move according to the random waypoint model with velocity

chosen from the uniform distribution (vmin, vmax).The CA is placed randomly at a certain

location in the deployment field and it may be disconnected from some nodes at certain

times during the network operation due to mobility.

The simulation model uses a generic on-demand shortest path routing protocol

that floods route requests and unicasts route replies in the reverse direction. A route, once

established, is not used forever but is evicted from the cache after a timeout period

expires (TOutRoute). A wormhole is established through an out-of-band channel simulated

by allowing the malicious nodes to exchange control packets among themselves

instantaneously. After a wormhole is established, the malicious nodes at each end of the

wormhole drop all the packets forwarded to them. Each node acts as a data source and

 164

generates data using an exponential random distribution with inter-arrival rate of m. The

destination is chosen at random and is changed using an exponential random distribution

with rate x. The input parameters with the experimental values are given in Table 7.1. As

in the protocol description, m is the number of malicious nodes, Mmax the maximum

number of malicious nodes in the network, γ the detection confidence, and N the total

number of nodes. The simulation accounts for losses due to natural collisions,

unreachable destinations, and route breaks due to mobility. The output parameters that we

present here are obtained by averaging over 30 runs. For each run, the malicious nodes

are chosen randomly, introduced at a random time from the start of the simulation picked

from a uniform random distribution (0s, 100s). The total simulation time is 1500s and

unless otherwise specified, each output parameter is measured at the end of the

simulation time.

Table 7.1: Simulation’s input parameter values

Parameter Value Parameter Value
Tx Range (r) 250 m TOutRoute 50 s
Avg. # of neighbors 4-9 # of nodes (N) 50-100
Channel BW 2Mbps m 0.2 s
(vmin,vmax) (10,30) x 0.02 s

7.3.1. Temporal Behavior of Drop Ratio

In this experiment, we calculate the percentage of data packets dropped with

simulation time for both the baseline and the MOBIWORP case. The drop ratio is

calculated as (# data packets received at the destination−# data packets sent from the

source)/# data packets sent from the source. From Figure 7.8, it is seen that the drop ratio

is lower with MOBIWORP and that the values tend to zero with increasing time, while

with the baseline a steady state is reached and the percentage stabilizes. With MOBIWORP

the malicious nodes are identified and isolated, however, some cached routes through

these malicious nodes continue to be used and hence the percentage of dropped packets

does not immediately go to zero on isolation of all wormhole nodes. The higher the

number of nodes, the smaller is the fraction of malicious nodes and therefore the lower

the percentage of dropped packets.

 165

0

10

20

30

40

50

60

100 300 500 700 900 1100 1300
Simulation Time

%
 D

ro
p

R
tio

Base-80

Base-90

Base-100

MobiWorp-80

MobiWorp-90

MobiWorp-100

Figure 7.8: % data drop ratio (g=Mmax=3, m=4)

Figure 7.9 compares the percentage of drop ratio as a function of time for two

different values of g. The results show the same trend as in Figure 7.8, with drop ratio

increasing slightly for γ=∞. This indicates that for the particular network density, all the

guards see nearly the same view of the monitored node and therefore, the difference in

time between a guard detecting the event itself and being told by other guards is small.

Importantly, the benefit of eliminating all framing (γ=∞) comes at a relatively low cost of

increase in drop ratio.

0

5

10

15

20

0 200 400 600 800 1000 1200 1400
Simulation Time (seconds)

%
 D

ro
p

R
at

io

GAMMA=Infinity
GAMMA=2

Figure 7.9: : % data drop ratio (Mmax=3, m=4)

7.3.2. Effect of Detection Confidence Index (g) on Local Properties

In this experiment the detection confidence (g) is varied. The percentage of local

isolation is defined as the number of malicious nodes locally isolated to the total number

 166

of malicious nodes, while percentage of local false isolation is defined as the number of

nodes falsely isolated locally by the total number of good nodes. False detection happens

when a good node is mistakenly flagged as malicious due to natural collisions, Section

4.3.1.

Figure 7.10 shows that with increasing γ, the percentage of local isolation

becomes lower since it becomes more difficult to get agreement on malicious behavior

from at least γ guards. However, the percentage of local false isolation also decreases

since it becomes less likely that γ nodes will incorrectly assume malicious behavior due

to collisions.

44

52

60

68

76

84

92

100

2 3 4 5 6 Infinity
GAMMA

%
 L

oc
al

 Is
ol

at
io

n

0

2

4

6

8

10

12

%
 L

oc
al

 F
al

se
 Is

ol
at

io
n

% Isolation

% False Isolation

Figure 7.10: Local & false isolation (m=4, N=60)

Figure 7.11 shows the local isolation time, which is the time interval between

when a malicious node starts attack at a neighborhood to when it is locally revoked by all

its first-hop neighbors. Expectedly, with increasing γ, the isolation time increases because

it takes longer to get an agreement of g the guard nodes.

 167

900

1050

1200

1350

1500

1 2 3 4 5 6 Infinity
GAMMA

G
lo

ba
l I

so
la

tio
n

Ti
m

e

20

35

50

65

80

Lo
ca

l I
so

la
tio

n
Ti

m
e

Figure 7.11: Isolation time (m=4, N=60,Mmax=15)

7.3.3. Effect of g and Mmax on Global Properties

In this experiment we evaluate the effect of changing g and Mmax on the global

isolation coverage and global isolation time. For a fixed high value of Mmax (25% of N),

the global isolation (Figure 7.12) is very low for low values of g. This is because only the

guards that directly detect the malicious node report to the CA. With a low γ, most nodes

take the opinion of the few who have detected the malicious node through their own

observation. Thus, the contribution of each neighborhood in the global isolation is small

and the malicious node has to move and be detected at many neighborhoods before being

globally isolated. As g increases the global isolation percentage increases since fewer

neighborhoods are enough to reach Mmax. The global false isolation is always zero since

it is highly unlikely that greater than Mmax nodes mistakenly accuse a good node due to

natural collisions.

 168

0

20

40

60

80

100

1 2 3 4 5 6 Infinity
GAMMA

%
 G

lo
ba

l I
so

la
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

%
 G

lo
ba

l F
al

se
 Is

ol
at

io
n

% Global Isolation
% Global False Isolation

Figure 7.12: Global isolation and false isolation (m=4, N=60,Mmax=15)

Figure 7.11 above shows that the global isolation latency decreases with

increasing γ. Even though the local isolation latency increases as g increases, the global

latency decreases due to more number of alerts from each neighborhood and the latter

effect dominates.

Figure 7.13 shows the trend of global isolation coverage as Mmax increases with

infinite g. As Mmax increases, it becomes harder to get an agreement from Mmax guards

about any node which decreases the global isolation and the global false isolation. The

figure also shows that the global parameters are insensitive to network density as the

results for the 60-node and the 100-node network are close.

44

52

60

68

76

84

92

100

5 10 15 20 25
 %Mmax out of the Total Number of Nodes

%
 G

lo
ba

l I
so

la
tio

n

0

5

10

15

20

25

30

%
 G

lo
ba

l F
al

se
 Is

ol
at

io
n

% Isolation-100
% Isolation-60
% False Isolation-100
% False Isolation-60

Figure 7.13: Global isolation & false isolation against Mmax (m=4,g=∞)

 169

7.3.4. Scalability of MOBIWORP

In this set of experiments we bring out the scalability of MOBIWORP with

increasing number of nodes. As the number of nodes increases, the density in the network

increases leading to increased collisions and thus increasing false isolation (for the same

value of g and Mmax, the global and local parameters are almost the same), Figure 7.14.

The percentage of isolation, however, increases due to an increase in the number of guard

nodes. The increase in isolation percentage is not high since the minimum neighbor

density is greater than g, therefore, there is always sufficient number of guards (in

average) in all scenarios. However, if we continue increasing N, we expect the isolation

probability to eventually decrease due to collisions.

0

20

40

60

80

100

70 80 90 100
Number of Nodes

%
 Is

ol
at

io
n

0

4

8

12

16

20

%
 F

al
se

 Is
ol

at
io

n

% Isolation
% False Isolation

Figure 7.14: Scalability of MOBIWORP (g=Mmax=3, m=4)

7.3.5. Effect of Variation of the Number of Malicious Nodes

In this set of experiments we bring out the effect of changing the number of

malicious nodes on the baseline and the MOBIWORP cases. Figure 7.15 shows that the

percentage of isolation increases with increasing the number of nodes reaffirming the

conclusions from Figure 7.14. The isolation percentage is high even with 6 malicious

nodes in the network with perfect capability for collusion, 90% for 80 nodes. The figure

also shows relatively constant trend with the number of malicious nodes due to the

uniform distribution of the malicious nodes in the simulation.

 170

0

25

50

75

100

2 3 4 5 6
Number of Malicious Nodes

%
 Is

ol
at

io
n

MobiWorp-80
MobiWorp-90
MobiWorp-100

Figure 7.15: % Isolation of MOBIWORP (g=Mmax=3)

The trend in false isolation is found to be almost constant with m (figure not

shown), which is a desirable trend. The trend of isolation time with the number of

malicious nodes (figure not shown) is relatively constant since the malicious nodes are

likely far apart in the network and the isolation process for the multiple nodes is

independent.

7.3.6. Effect of Motion

The duty cycle of motion is defined as the ratio between the time a node spends

moving to the total simulation time and is varied by varying the pause time. From Figure

7.16, it is seen that the percentage of isolation decreases with the increase in the

frequency of motion. When a node moves frequently, it often moves before Twin, i.e. the

MalC value at a guard is not checked. The CA does not aggregate across different guards,

i.e. guards at the old location and those at the new location if there is no overlap between

them. This causes the isolation coverage to decrease as well as the drop ratio to increase.

The percentage of false isolation also decreases because MalCth is not crossed by the time

the node moves. In Figure 7.17, the decrease in the drop ratio in the baseline case is due

to the fact that frequent motion causes the wormhole routes to get broken.

 171

0

20

40

60

80

100

0.15 0.25 0.35 0.45 0.55
Duty Cycle

%
 Is

ol
at

io
n

0

4

8

12

16

20

%
 F

al
se

 Is
ol

at
io

n

% Isolation
% False Isolation

Figure 7.16: % Isolation (γ=Mmax=3, m=4, N=60)

0

15

30

45

60

0.15 0.25 0.35 0.45 0.55
Duty Cycle

%
 D

ro
p

R
at

io

MobiWorp

Baseline

Figure 7.17: Performance of baseline & MOBIWORP (γ=Mmax=3,m=4,N=60)

7.4. MOBIWORP Analysis

In this section we analysis the ANUM communication overhead, the resource

consumption overhead, the detection latency, and the possibility of framing in

MOBIWORP. The analysis shows that MOBIWORP can operate in resource constrained

settings. Also, the analysis of the probability of a good node being framed locally can be

set to zero by setting γ to infinity, and the possibility of a good node being framed

globally can be set close to zero by increasing the value of Mmax.

 172

7.4.1. Overhead of ANUM Broadcast

Here we derive an upper bound on the number of ANUM broadcasts if a node (a)

needs continuous communication while it is moving from its current location P0 to a new

location P1 using SMP protocol. Assume that the traveled distance is X and one node is

enough for a to be connected to the network. Assuming the nodes that are static while a

is moving, are uniformly distributed with density d.

Consider Figure 7.18, the shaded area, Area(X), represents the area of common

neighbors of a at P0 and P1. If the number of neighbors in Area(X) is greater than zero,

then a does not need to rebroadcast the ANUM at P1. We need to calculate the value of

the maximum traveled distance X (call it x), such that the probability that there is at least

one node in Area(X) is greater than some threshold Rth. Due to our assumption of uniform

distribution of nodes in the sensor field, the number of nodes in the shaded area follows a

Poisson distribution with rate Area(X).d, where

2

2 1 2() 2 cos
2 4
X X

Area X r X r
r

−= − − 
 
 

 (7.1)

P0 X=x

r

P1

Figure 7.18: A node travels from P0 to P1

The number of neighbors of a node is 2
BN r dπ= ⋅ . Therefore, a needs to

rebroadcast its ANUM every R/x distance, where x is the maximum value of X that

satisfies the following inequality,

 () 11 () ln(1)Area X d
th the R Area X R

d
− ⋅− ≥ ⇒ ≤ − − (7.2)

The upper bound on the traveled distance (x0) as a function of the number of

neighbors (NB) is shown in Figure 7.19. The figure shows that the maximum distance

 173

before a required ANUM broadcast, to maintain connectivity using SMP while moving,

increases with the network density but the increase slows down. It shows that with

densities of 20 neighbors and above, the traveled distance is more than the transmission

range.

Figure 7.19: Traveled distance upper bound before ANUM broadcast in SMP

7.4.2. Latency Analysis of MOBIWORP

The latency analysis of MOBIWORP is the same as that of LITEWORP. Please refer

to Section 4.3.3.

7.4.3. Possibility of Framing

The analysis of a node being framed in MOBIWORP is the same as that of

LITEWORP. Please refer to Section 4.3.2.

7.4.4. Overhead Analysis of MOBIWORP

In this subsection, we analyze the memory, the computation, and the bandwidth

overhead of MOBIWORP in order to estimate the resource needs it puts on the mobile

network. This can lead to the determination of the suitability of the protocol to resource

constrained networks, such as sensor networks. An important metric to analyze is the

 174

coverage–probability of isolation and probability of false isolation. Since the basic

detection mechanism in MOBIWORP is identical to that in LITEWORP, the overhead for

static node follows the one in Section 4.3.4 and is not repeated here.

Memory overhead: Every node in the network needs to store the first and the second

hop neighbor list, the watch buffer, the alert buffer, and the black list. If the identity of a

node in the network is 2 Bytes, the size of neighbor list is NBL = p (2r)2 d entries, where r

is the communication range and d is the average node density. Each entry in the NBL

requires 9 Bytes; 2 for identity of the neighbor, 1 for the MalC associated with that

neighbor, 4 for the x-y coordinate of the neighbor, and 2 for the expiration time of the

entry. So the total NBL storage, NBLS = 9p (2r)2 d. For example, for an average of 10

neighbors per node, NBL is 40 and NBLS is less than half a kilobyte. The alert buffer has at

most g number of 2 byte entries.

Recall that the number of nodes involved in monitoring a route reply

is 22 (1)REPN r h d= + (Section 4.3.4). Thus, given N as the total number of nodes in the

network, each node is involved in watching (/)REPN N f route replies per unit time. If the

time delay for packet forwarding is TFWRD, using Little’s law the length of the watch

buffer LW = TFWRD(NREP/N)f . TFWRD depends on the processing time at the intermediate

node and the MAC-layer contention delay. The processing time is negligible for route

reply forwarding since replies are not hop-by-hop authenticated and negligible processing

is required at an intermediate node. The MAC-layer delay for the binary exponential

backoff for light to moderate loads has the mean TMAC = Gn2 ([152]-[154]), where G is

the proportionality constant that depends on the network load, and n is the number of

nodes contending for transmission which is equal to the number of first hop neighbors (p

r2 d) here. According to [152][153], G=0.01. Therefore, LW = G n2(NREP/N)f. Each entry

in the watch buffer consists of 10 bytes combined for the identity of the source, the

destination, the intermediate source, the intermediate destination, and the packet

sequence number. For example, if N = 100 nodes, h = 4 hops, and f = 100 routes every

one time unit, then NREP = 17, and each node watches only 17 route replies every one

time unit. Therefore, LW = 0.01 × 100 ×17 = 17 entries, and the total size is 170 bytes.

 175

Each entry in the black list consists of 2 Bytes and the size of the list depends on

the number of malicious nodes that has been detected. The maximum size of the buffer

equals Mmax + the number of nodes that could be falsely isolated.

Computation overhead: The main computational overhead is in computing the signature

over the ANUM by the CA and verifying the signature by the rest of the nodes. If RSA is

used for ANUM signing, then the cost of generating a b-bit signature is O(b3) and the

cost of verifying the signature is O(b2). The signature generation is only done by the CA

when the node moves. The signature verification is done during the neighbor discovery

by the moving node and its first-hop and second-hop neighbors. Also during the neighbor

discovery a node has to compute the distance to the neighbor using the position

information, which is a simple constant time operation. The other part of computation

overhead is in maintaining the neighbor list and the watch buffers by inserting, deleting

and searching the buffers. These buffers, as we saw in the storage overhead computation,

are relatively small data structures, so if we use single link list implementation, then

insertion can be done in constant time at the head of the list, and deleting an old entry

involves searching and manipulation of two pointers. The searching overhead is linear in

the size of the buffer.

Bandwidth overhead: The bandwidth overhead is incurred by three sources. The first is

the ANUM handshake with the CA, which consists of an ANUM-Request by the node

and an ANUM-Reply or Reject by the CA. This is incurred only once every time a node

moves. Second, the neighbor discovery in which the moving node sends a two-hop

broadcast of its ANUM and receive a one-hop unicast from its first-hop neighbors and a

two-hop unicast from its second-hop neighbors. Thus the total number of one-hop

ANUM transmissions is (1+p r2 d) for broadcasting (one by the original source and the

remaining by the first hop neighbors) and (p (2r)2 d) for unicasting by each node within

the two-hop transmission radius. The last ingredient in the communication overhead

comes from the alert propagation by a guard node upon detection of a malicious node.

The guard sends an alert message to the CA through multihop routes, broadcasts one-hop

alert to inform the common neighbors of the guard and the malicious node, and several

two-hop unicasts to inform the nodes that are first-hop neighbors to the malicious node

 176

and second-hop neighbors of the guard. This overhead is incurred only upon malicious

node detection and can thus be considered negligible when amortized over extended

periods of failure free operation.

 177

8. RELATED WORK

8.1. Key Management

It is a well accepted fact that asymmetric key cryptography is not well suited to

sensor networks because of high computational expense. Hence, asymmetric key

algorithms for key management in sensor networks ([2],[3],[27] for survey) look

infeasible except under energy rich environments. Symmetric key techniques appear

better suited for sensor networks. Different flavors of symmetric key techniques have

been used. Some of these flavors either rely on a common shared secret key between all

the nodes leading to a relatively insecure deployment, or have a separate shared key

between each pair leading to a large amount of key storage for the large-scale sensor

networks we are targeting. Examples of these protocols are the pre-deployed keying with

variations of group-wise pre-deployed keying, secret sharing pre-deployed keying, and k-

Secure t-limited group-wise pre-deployed keying [4],[5],[9],[11]. The requirement of

keeping radio communication minimal makes many of the proposed purely symmetric

algorithms impractical since they add a fixed size overhead number of bytes to a small

payload packet [6],[8].

Many key management protocols for sensor networks fall in the category of key

pre-distribution [1],[9],[13],[15],[16],[63][18],[19],[20],[24],[25],[64], [65]. Eschenauer

and Gligor [9] present a key management scheme for sensor networks based on

probabilistic key pre-deployment. They use a large pool of keys from which they select m

keys at random, which are loaded into each sensor node before deployment. In order to

communicate, any two nodes either use a common key they share. If such a common key

does not exist, a series of intermediate nodes, which pair-wise have a common key, are

used to exchange a key securely. However, compromising any node reveals all the keys

in the node. This may compromise communication between other nodes that may use a

 178

shared key, which happened to be within the keys of the compromised node.

Furthermore, the key establishment process is open to compromise since the identifiers

are broadcast to a receiver set that has not yet been authenticated. Chan et al. [1] extend

this scheme by requiring more than one key to be shared between any two nodes to

establish a secure communication. They also use partial key exchanges on multiple paths

to ensure security from some nodes on the path being compromised. Its major drawback

is that it adds substantial overhead in finding multiple disjoint paths and a larger fraction

of nodes than [1] may not be able to establish secure sessions with each other. Zhu et al.

[24] present an approach for establishing a pair-wise key that is exclusively known to a

pair of nodes with overwhelming probability, based on the combination of probabilistic

key sharing and threshold secret sharing.

In [13], Blom proposes a key pre-distribution scheme that allows any pair of

nodes to find a secret pair-wise key between them. Compared to the (N-1) pair-wise key

pre-distribution scheme, Blom’s scheme only uses d+1 memory spaces with d much

smaller than N. The tradeoff is that, unlike the (N-1) pair-wise key scheme, Blom’s

scheme is not perfectly resilient against node capture. On one hand if (d+1) nodes are

compromised all pair-wise keys of the entire network are compromised. On the other

hand, as d increases, the computational and storage overhead increase, which make the

scheme unscalable. Du et al. [64] extend the work done by Blom in a manner motivated

by the proposed q-composite extension [1] of the random key pre-distribution scheme

[9]. In [64] the scheme uses multiple key spaces (numbering τ) and generates with a high

probability a common pair-wise key between any two nodes. This enables them to

increase the network’s resilience to node capture without increasing the memory

requirements compared to [13]. While the scheme enhances the resilience of the network

against compromised nodes, the resource requirements are still nontrivial. Each node

needs to store τ(d+1) entries each equal to the key length. For each communication, a

node needs to generate two vectors each of size d+1, one for the source and the other for

the destination and perform a dot product of the two vectors. Furthermore, the key

agreement between two nodes that don’t share a common space is done through other

 179

nodes, which expose it to disclosure if any one of the nodes involved in the key exchange

is compromised.

In [15], for each sensor i, the setup server computes a polynomial share of a

bivariate t-degree symmetric polynomial f(x, y) computed for node i and hands it to the

node. Thus node i is loaded with f(i, y). For any two sensor nodes i and j, node i can

compute the polynomial f(i, j) by evaluating f(i, y) at point j. Likewise, node j can

compute f(j,i), which is identical to f(i,j) by choice of the polynomial. This serves as the

common key between i and j. Again [65]extends this work in a manner motivated by the

proposed q-composite extension [1] of the random key pre-distribution scheme [9]. In a

following paper [18], the authors integrate location-based knowledge to provide higher

probability to establish pair-wise keys between neighbor sensors, better resistance against

node captures, and better scalability.

Pietro et al. [19] present an incremental update to random key pre-deployment by

considering pseudo-random key deployment based on previous work [16]. This method

enhances the channel establishment procedure but adds to the storage requirement at each

sensor. These kinds of protocols are infeasible in situations where a node may

communicate with any other node in the network. This is because each time a new

destination is considered; the entire key establishment procedure has to be initialized

unless there is a large memory to store, in addition to the initial keys and their indices, the

transformed keys with all possible destinations.

Du et al. [25] present a scheme to use pre-deployment knowledge to improve network

connectivity in terms of secure links and resilience against node capture. It was presented to

improve the memory requirement compared to [9], but this improvement can benefit any of

the key pre-distribution schemes.

We note that all the key pre-distribution schemes provide either no security or

probabilistic security against compromised nodes. Probabilistic security assumes

thresholds for the number of compromised nodes, beyond which the entire network

becomes exposed. The threshold may be exceeded in the event of a localized security

breach that affects all the nodes in a geographical region. Our approach, in contrast,

 180

provides deterministic security. Compromising any number of nodes is incapable of

exposing the communication channel between two uncompromised nodes.

The second flavor of key management protocols is the Kerberos-like protocols

[63],[11],[21]. Node clustering technique has been used in different areas in sensor

networks. Secure data aggregation [21], self-assembling deployment and configuration of

large number of nodes [36], energy saving for data aggregation [37], power optimal

routing [38], control and management of routing protocols [39], and energy and

communication cost optimization [40] present examples of these areas. However, the idea

of using clusters of nodes for key management is first suggested by the work on secure

Pebble-nets [11]. The authors propose using a single key called the group key for group

membership and authentication, and another globally shared key called the Traffic

Encryption Key (TEK) to secure channel communication. A subset of nodes called the

backbone nodes has the responsibility of generating and distributing the TEK. The main

disadvantage of this work is that it is totally insecure; the compromise of even a single

node renders the entire scheme vulnerable. Perrig et al. [63] present SPINS, which is

based on a master secret key shared between each node and the base station and hash

functions to calculate session and MAC keys. To establish a secure channel between any

two nodes in the network, a shared session key is obtained from the base station. SPINS

guarantees data confidentiality, two-party data authentication, and data freshness as long

as the base station is not compromised. SPINS uses multiple specialized higher cost base

stations with large energy, memory and communication resources to create a tree in the

network. Since these base stations are fixed, they are potential targets for security attacks.

Compromising, destroying, or jamming a base station used in SPINS renders it

impossible to create new secure sessions in the whole section controlled by that base

station. Also, if the base station is compromised, the confidentiality of the

communication of any node in its group can be destroyed. Since a potentially far-away

base station acts as the intermediary for key management, key management in SPINS can

be energy inefficient and can lead to high end-to-end delay. Also SPINS does not take

into account the possibility of disclosure of the master key by compromising the sensor

node. This will result in disclosing all the old communications with this node, if an

 181

adversary buffers these communications. It is assumed that session and MAC keys are

valid throughout the life time of the sensor node, which results in weak security for

networks that have a long life time. Since all the node-to-node key agreement is

established through the base station, it may result in flooding the base station and

exhausting the energy of sensor nodes in the routing path.

Deng et al. [21] proposes a protocol for secure data aggregation with base station,

sensing node, and aggregators, which act as collectors of data. It establishes mutual trust

between a sensor and its assigned aggregator using shared keys. The trust model is used

by the sensors to verify the commands of the aggregators and by the aggregators to verify

the integrity of the data sent by the sensors. The protocol enables secure communication

to and from aggregators but does not solve the general case of secure any-to-any

communication between any two nodes.

In general, the proposed Kerberos-like protocols suffer from one or more of the

following problems: lack of scalability, high energy over head, high end-to-end delay,

and vulnerability to denial of service or compromise targeted at the specialized key

management nodes.

There is a large volume of work on secure broadcast or multicast in wireless, and

specifically, sensor networks [7],[10],[17],[22]. The problem addressed there is distinct

from our problem definition since they target the secure one-to-many and one-to-all

problems, while our focus is one-to-one communication. [26], [27], [28], [29], [30], and

[31] present examples of foundational key management protocols that are indirectly

related to the key management protocols in sensor networks, presented here for further

reading.

8.2. Wormhole Attack

The wormhole attack in wireless networks was independently introduced by Hu et

al. [53], Dahill et al. [74], and Papadimitratos et al. [79]. Initial proposals to thwart

wormhole attacks suggest using secure modulation of bits over the wireless channel that

can be demodulated only by authorized nodes. This only defends against outside

attackers who do not possess cryptographic keys. A similar approach called RF

watermarking [90] modulates the radio waveform in a specific pattern and any change to

 182

the pattern is used as the trigger for detection. This mechanism will fail to prevent a

wormhole if the waveform is accurately captured at the receiving end of the wormhole

and exactly replicated at the transmitting end.

Hu et al. [53] introduce the concept of geographical and temporal packet leashes

for detecting wormholes. They define a leash to be any added information to the packet

for the purpose of defending against the wormhole. The geographical leashes ensure that

the recipient of the packet is within a certain distance from the sender. They require each

node to know its own location, and require all the nodes to have loosely synchronized

clocks. When sending a packet, the sending node includes in the packet an authenticated

version of its own location and the time at which it sent the packet. The receiving node

uses these values, in addition to its own location and the time at which it receives the

packet, to compute an upper bound on the distance to the sender. The temporal leashes

ensure that the packet has an upper bound on its lifetime, which restricts the maximum

travel distance. They require that all nodes have tightly synchronized clocks. The sender

includes in each packet an authenticated version of the time of sending. The receiver

compares this value to the time at which it received the packet. Based on the time delay

and the speed of light, the receiver can determine if the packet has traveled too far. An

implicit assumption is that packet processing, sending, and receiving delays are

negligible. Both geographical and temporal leashes need to add authentication data to

each packet to protect the leash, which add processing and communication overhead. In

addition, a large amount of storage is needed at each node since a hash tree based

authentication scheme (Merkle hash trees) is used [91]. If only loose time

synchronization is possible, the smallest packet size that can be authenticated becomes

large (e.g., 4900 bytes with 1 s synchronization). Perhaps, more importantly, packet

leashes do not nullify the capacity of the compromised nodes from launching attacks in

the future since they do not isolate detected malicious nodes.

Capkun et al. [75] present SECTOR, a set of mechanisms for the secure

verification of the time of encounters between nodes in multi-hop wireless networks.

They show how to detect wormhole attacks without requiring any clock synchronization

through the use of MAD (Mutual Authentication with Distance-Bounding). Each node u

 183

estimates the distance to another node v by sending it a one bit challenge, which node v

responds to instantaneously. Using the time of flight, node u detects if node v is a

neighbor or not. The approach uses special hardware for the challenge request-response

and accurate time measurements. Again, this approach does not nullify the capacity of the

compromised nodes from launching attacks in the future.

Hu and Evans [50] use directional antennas [92],[93] to prevent the wormhole

attack. To thwart the wormhole, each node shares a secret key with every other node and

maintains an updated list of its neighbors. Neighbor lists are built in a secure manner by

using the direction in which a signal is heard from a neighbor with the assumption that

the antennas on all the nodes are aligned. To discover its neighbors, a node, called the

announcer, uses its directional antenna to broadcast a HELLO message in every direction.

Each node that hears the HELLO message sends its identity and an encrypted message,

containing the identity of the announcer and a random challenge nonce, back to the

announcer. Before the announcer adds the responder to its neighbor list, it verifies the

authenticity of the message using the shared key, and that it heard the message in the

opposite directional antenna to that reported by the neighbor. This approach is suitable

for secure dynamic neighbor detection. However, it only partially mitigates the wormhole

problem. Specifically, it only prevents the kind of wormhole attacks in which malicious

nodes try to deceive two nodes into believing that they are neighbors. This is only one of

the five wormhole attack modes that we describe in Section 4.1. The requirement of

directional antennas on all nodes may be infeasible for some deployments. Finally, the

protocol may degrade the connectivity of the network by rejecting legitimate neighbors in

their conservative approach to prevent wormholes from materializing.

Wang et al. [98] present a method for graphically visualizing the occurrence of

wormholes in static sensor networks by reconstructing the lay-out of the sensors using

multi-dimensional scaling. However, their approach is centralized and only detects the

existence of wormholes but does not isolate malicious nodes involved in the attack. Lazos

et al. [95] propose a technique for neighbor discovery that prevents external nodes from

forming wormholes by using the references to trusted specialized guards (the guards are

 184

trusted, higher range, know their locations) and it prevents local nodes from forming the

wormhole attack using a global preloaded key in the sensors.

Awerbuch et al. [94] present a protocol called ODSBR that does not prevent the

wormhole from happening but tries to mitigate its consequences through discovery and

avoidance. The technique suffers from the drawback that every single packet needs to be

acknowledged by the destination and many packets could be lost before the wormhole is

discovered.

8.3. Secure Neighbor Discovery

A fundamental building block for detecting control and data traffic attacks in

WAHAS networks using local monitoring is a protocol for secure neighbor discovery.

Neighbor discovery can be looked upon as a subset of the problem of location

determination under the condition that the location of a node can be determined by other

nodes. Several physical properties of the received signal are used for one hop location

estimation–signal strength, time of flight, and angle of arrival [142]. The time of flight

approach is similar to the temporal leash [53] and suffers from the same drawbacks.

Typically the location determination protocols have an explicit localization phase when

beacon messages are exchanged after which each node determines its relative location

with respect to its neighbors. However, this is not secure since a powerful adversary can

increase its transmission power for just this phase. The plethora of existing protocols for

a node to determine its own location (e.g. [143]-[145]), sometimes in the presence of

malicious beacon nodes [110], are asymmetric to the secure neighbor discovery problem

where the determination has to be done securely by the neighbors of a node which is

better called neighbor verification.

There are few solutions proposed in the literature for secure neighbor verification.

The approach by Evans [51] uses directional antennas on each node with precise

alignment of the nodes. The approach by Perrig [52] is presented in the context of

designing a route discovery component that is secure to the rushing attack. The approach

relies on the time of flight and thus assumes very accurate time measurement and

disregards all sources of delay other than the propagation delay. The MAC delay in

networks of even moderate density can make this assumption dubious. Many schemes

 185

use beacons sent by powerful nodes to enable location determination by other nodes.

Sastry et al. [151] tackle the problem of a node securely verifying the location of possibly

malicious beacon nodes that send spurious information about their own location. This

problem definition is similar to my definition of secure neighbor discovery for local

monitoring, except that we need to verify the location of any arbitrary node in a fast,

cheap, and energy-efficient way. Their approach uses a very fast (e.g., radio frequency)

and a relatively slow (e.g., ultrasound) signal to derive distance from the time delay.

While this kind of capability can be mounted on a limited set of beacon nodes, it is

infeasible to do this on all the nodes in the network.

8.4. Multi-hop Wireless Data and Control Traffic Security Mechanisms

In the last few years, researchers have been actively exploring many mechanisms

to ensure the security of control and data traffic in wireless networks. The set of

mechanisms presented in the previous section (Section 8.2) is applicable only to one

control attack, namely, the wormhole attack. In general, the security mechanisms of

control and data traffic attacks in multi-hop wireless networks can be broadly categorized

into the following classes–(i) cryptographic building blocks used as support for key

management, authentication and integrity services, (ii) protocols that rely on path

diversity, (iii) protocols that overhear neighbor communication, (iv) protocols that use

specialized hardware, (v) and protocols that require explicit acknowledgements. The

cryptographic primitives are also used as building blocks for protocols of the other

classes.

In the context of ad-hoc networks, HMAC and digital signatures [12] have been

used to provide end-to-end authentication of the routing traffic [79],[79]. Intermediate

node authentication of the source traffic has been achieved via broadcast authentication

techniques using digital signatures [74], hash trees [77], or m-TESLA [78]. One-way key

chains and Merkle hash trees were also used as a defense against Sybil attacks [108].

These protocols are restrictive and only capable of providing basic security guarantees,

namely confidentiality and authenticity of the control and data traffic, or address only a

specific attack such as Sybil. In addition, these protocols are not appropriate for

especially resource-constrained multi-hop wireless networks such as sensor networks.

 186

The public key cryptography is beyond the capabilities of sensor nodes and the

symmetric key based protocols used in [74], [77], [78], and [108] are too expensive in

terms of node state and communication overhead. A specific solution for the wormhole

attack proposed in [95] uses keys known in a local region to prevent a message replayed

by a malicious node from being decrypted at a distance. The solution uses specialized

trusted nodes which cannot be affected by any wormhole.

The path diversity techniques increase route robustness by first discovering multi-

path routes [56], [74], [94], [105] and then using these paths to provide redundancy in the

data transmission between a source and a destination [104] The data is encoded and

divided into multiple shares sent to the destination via different routes. The method is

effective in well-connected networks, but does not provide enough path diversity in

sparse networks. Moreover, many of these schemes are expensive for sensor networks

due to the data redundancy and are vulnerable to route discovery attacks, such as the

Sybil attack, that prevent the discovery of non-adversarial paths.

Mechanisms to overhear neighbor communication in a wireless channel have been

used to minimize the effect of misbehaving nodes [56],[60],[59]-[62]. One example is the

watchdog scheme [60], where the sender of a packet watches the behavior of the next-

hop node for that packet. If the next-hop node drops or tampers with the packet, the

sender announces it as malicious to the rest of the network. The scheme is vulnerable to

framing, does not work correctly when malicious nodes collude, and can have a high

error-rate due to collisions in the wireless channel. Neighbor watch has also been used to

build trust relationships among nodes in the network [59],[61], to build cooperative

intrusion detection systems [62] or to discover multiple node-disjoint routes [56].

However, all these protocols use communication overhearing as an existing service

without studying its feasibility, requirements, limitations, or performance in the resource-

constrained networks such as sensor networks.

Examples of protection mechanisms that require specialized hardware are [51],

[53], [109], [110]. The first scheme uses directional antennas while the second, called

packet leashes, uses either tight time-synchronization or location awareness through GPS

hardware to detect wormhole attacks. The work in [109] relies on hardware threshold

 187

signature implementations to prevent one node from propagating errors or attacks in the

whole network. In [110], the protocol uses locators with high powered directional

antennas that broadcast beacons which are used by sensors to localize themselves.

Another technique proposed to detect malicious behavior that results in

degradation of delivery ratio due to selective dropping of data, relies on explicit

acknowledgement for received data using the same channel [94] , or out-of-band channel

[111]. This method incurs high communication overhead which may be unsuitable for

highly resource-constrained networks such as sensor networks and it has to be augmented

by other techniques for diagnosis and isolation of the malicious nodes. A natural

extension would be to reduce the control message overhead by reducing the frequency of

ack-ing to one in every N data messages (in the above papers N=1). However, this is the

subject of ongoing work and the challenge is to make the adversary detection be fast and

occur before significant damage results.

Few of the protocols mentioned discuss the method for removing the malicious

nodes from causing further damage in the network and even fewer provide a quantitative

analysis of the detection coverage, which may be affected due to a faulty detector or

environmental conditions.

8.5. Sleep/Wake Mechanisms

Node sleeping is an important mechanism to prolong the life time of sensor

networks. This topic has been discussed extensively in the literature and many protocols

have been proposed for various types of applications such as object tracking [115], [116].

It has been realized that under current hardware designs, the maximum energy savings

can be achieved through putting nodes to sleep—three orders of magnitude less current

draw than in an idle node for the popular Mica mote platform for sensor nodes.

Primarily three different mechanisms are used to put nodes to sleep. The first is

called synchronized wakeup-sleep scheduling in which the nodes in the network are put

to sleep and woken up at the same time in a centralized (e.g., [132], [133]) or a

distributed manner (e.g.[70], [129]-[131]). A disadvantage of such protocols is that the

duty cycle is application dependent and not known a priori. Most importantly, they

require the network to have an accurate time synchronization service. Furthermore, in

 188

scenarios with rare event detection, no event happens and the nodes enter sleep mode

again in most of the wakeup periods. This means that nodes wake up too often resulting

in wastage of energy. The second mechanism is based on selecting a subset of nodes to

be woken up to maintain some properties in the network, such as sensing coverage (e.g.,

[118]-[124]), network connectivity (e.g., [58], [70], [102], [125], [126]), or both coverage

and connectivity (e.g. [127]). The third mechanism is based on on-demand sleep-wake

protocols. These protocols use either special purpose low-power wake-up antennas (e.g.,

[68], [134]-[136]) or passive wake-up antennas [137]. These antennas are responsible for

receiving an appropriate beacon from a neighbor node and waking up the node for its full

operation. Thus, for environments where events of interest are relatively rare, the time for

the low power operation with the wake-up antennas being on, dominates. Further details

about the operation of the antennas are mentioned in Section 6.1.4 where SLAM uses

these antennas for waking up guard nodes.

Many sensor applications require security and reliability; therefore, researchers

consider designing dependable sensor networks that behave reliably and securely.

Neighbor monitoring (Chapter 2) is a well-known technique that is used for securing

sensor network protocols. However, to the best of my knowledge none of the local

monitoring protocols consider operating in a network where nodes may need to be put to

sleep for energy conservation. Therefore, we are the first to address this issue.

 189

9. CONCLUSION

In this thesis, we have addressed the detection, diagnosis, and mitigation of

control and data traffic attacks in wireless multi-hop ad-hoc and sensor networks, which

we call WAHAS networks throughout the thesis. Sensor networks are a particular class of

wireless ad-hoc networks that usually comprised of a large number of small, low-cost,

resource-limited (battery, bandwidth, CPU, memory) nodes.

WAHAS networks are emerging as a promising platform that enable a wide range

of applications in both military and civilian domains such as battlefield surveillance,

medical monitoring, biological detection, home security, smart spaces, inventory

tracking, etc. WAHAS networks are especially attractive in scenarios where it is difficult

or expensive to deploy any significant networking infrastructure. However, the open

nature of the wireless communication channels, the lack of infrastructure, the quick

deployment practices, and the hostile environments where they may be deployed, make

them vulnerable to a wide range of failures–both natural and malicious.

The second chapter of this thesis presented local monitoring as a primitive for

mitigating data and control attacks in WAHAS networks. Local monitoring is a

collaborative monitoring strategy in which a node monitors traffic in and out of its

neighboring nodes. Two conditions are required for local monitoring to be successfully

used for mitigating data and control traffic attacks. The first condition is the availability

of secure first-hops neighbors and the neighbors of each neighbor. The second condition

is that each packet forwarder has to explicitly announce the previous hop node in the

forwarded packet. We used local monitoring as a tool that helps in mitigating security

attacks against WAHAS networks. Therefore, we have analyzed its capabilities and

limitations particularly in the context of WAHAS networks, which is a less robust,

collision prone, coverage-limited environment. Assumptions taken for granted in wired

 190

networks are no longer valid in wireless communication. Moreover, we have identified

the parameters on which the effectiveness of local monitoring depends and used it to

mitigate many control and data traffic attacks against WAHAS networks.

Local monitoring is used to protect WAHAS networks against certain kinds of

attacks, namely the control and data traffic attacks. However, cryptography is also needed

to provide data integrity, freshness, and authentication for WAHAS networks. An

essential requirement for that is the availability of a key management service, which

provides different nodes in the network with the required cryptographic keys. Therefore,

we have presented in the third chapter the design of a key management protocol called

SECOS for resource constrained static WAHAS networks. SECOS divides the sensor field

into control groups with a control node in each group. Key exchange between nodes

within a control group happens through the mediation of the control node while inter-

group communication involves establishing a secure channel between two control nodes

with the mediation of the base station. In SECOS, the keys are refreshed and the control

nodes are changed periodically to ensure higher security. Simulation runs are conducted

to bring out the difference in overhead energy expended and data delay between SECOS

and SPINS. SECOS is seen to perform better under a wide variety of communication

patterns and cache sizes. A security analysis of SECOS is presented and a comparison is

performed with previous protocols. The analysis shows that SECOS can outperform these

protocols in terms of the number of compromised nodes that it can tolerate. A

mathematical analysis is performed to determine the optimal control group-size in terms

of energy overhead. An upper and a lower bound are derived based on the memory,

computational, and bandwidth constraints, the level of security tolerance afforded, and

the energy expended in key management.

In the fourth chapter, we have introduced the wormhole attack and presented a

taxonomy of the attack modes that may be used to launch the wormhole attack in

WAHAS networks. We have presented a protocol called LITEWORP that incorporates a

detection protocol and an isolation protocol. The detection protocol uses local monitoring

and can be applied for detecting each mode of the wormhole attack except the protocol

deviation. LITEWORP isolates the malicious node and removes its ability to cause future

 191

damage. The coverage analysis of LITEWORP brings out the variation of probability of

missed detection and false detection with increasing network density. The cost analysis

shows that LITEWORP has low storage, processing, and bandwidth requirements. These,

together with the fact that no specialized hardware is required, make the protocol ideally

suited to resource-constrained WAHAS networks, such as sensor networks. We built a

simulation model for LITEWORP using the network simulator ns-2 and perform a

comparative evaluation of a network with and without the technique. The results show

that with a large number of guards, LITEWORP can achieve 98.9% non-malicious routes,

with 12% of the network nodes compromised. For this configuration, the possibility of

false detection (due to natural collisions) or framing (due to malicious reporting) is

negligible. Further, the detection and isolation of the nodes involved in the wormhole can

be achieved in a negligible time after the attack starts, and the cumulative number of lost

packets and malicious routes established saturates with time because wormholes are

identified and isolated.

The fifth chapter of the thesis presented an extension of the LITEWORP in two

directions. In the first direction, we expand the set of control and data traffic attacks that

can be mitigated using local monitoring. The set includes the Sybil attack, identity

spoofing, selective forwarding, and misrouting attacks. More generally, the set may

include any data or control traffic attack that results from delaying, dropping, misrouting,

modifying, or fabricating of control or data traffic. In the second direction, we expand the

monitoring to include not only the control traffic but also the data traffic. The key

distinction of data traffic monitoring from control traffic monitoring is the volume of

traffic. Therefore, each guard node selects a fraction of the data traffic to monitor. The

fraction of traffic monitored is calculated over a given time window.

We have presented a distributed protocol, called DICAS, for detection, diagnosis,

and isolation of malicious nodes involved in launching these control or data traffic

attacks. DICAS uses local monitoring to detect control and data traffic misbehavior, and

local response to diagnose and isolate the suspect nodes. On top of DICAS, we built a

secure lightweight routing protocol, called LSR, which supports node-disjoint path

discovery. We analyze the security guarantees of DICAS and show its ability to handle

 192

attacks through a representative set of these attacks. We also analyze the probability of

framing, the detection coverage, and the probability of false detection of DICAS.

Moreover, we have evaluated the memory, communication, and computation overhead of

DICAS. We build a simulation model for DICAS using ns-2 and show its effect on the

network security and performance. The results show that DICAS can achieve 100%

detection of attacks for a wide range of network densities. They also show that the

detection and isolation of the nodes involved in the attack under consideration can be

achieved in a fairly short time after the attack starts. In addition, we simulate a combined

Sybil and rushing attack to bring out the adverse impact on node-disjoint multipath

routing and show the improvement using DICAS. The results show that LSR using DICAS

is resilient to the combined attack and that the average number of node-disjoint routes

discovered is not reduced. The experiments with data monitoring show the feasibility of

detecting the selective forwarding attack while monitoring only a fraction of the data

traffic.

In addition to the applications we have presented in the previous chapters, local

monitoring is also used for intrusion detection, building trust and reputation among

nodes, and in building secure routing protocols. However, local monitoring could come at

a high cost for energy-constrained WAHAS networks, since it requires the guard nodes to

be awake all the time to oversee network behavior. Therefore, chapter six adapts local

mentoring presented in chapter two to optimize the energy overhead of monitoring

through sleeping of guards while maintaining the quality of the monitoring service. The

main challenge lies in providing a secure sleeping technique that is not vulnerable to

security attacks and does not add to the vulnerability of the network. We have presented a

protocol called SLAM to make local monitoring in sensor networks energy-aware while

maintaining the detection coverage. We classify the domain of sleep-wake protocols into

three classes and SLAM correspondingly has three manifestations depending on which

baseline sleeping protocol (BSP) is used in the network. For the first class (synchronized

sleep-wake), local monitoring needs no modification. For the second class (connectivity-

coverage preserving sleep-wake), local monitoring can call the BSP with changed

parameter values. For the third class (on-demand sleep-wake), adapting local monitoring

 193

is the most challenging and requires hardware support as low-power or passive wake-up

antennas. We propose a scheme whereby before communicating on a link, a node

awakens the guard nodes responsible for local monitoring on its next hop. We design the

scheme to work with adversarial node behavior. Moreover, we prove analytically that

On-Demand SLAM does not weaken the security property of local monitoring. The ns-2

simulation experiments show that over a wide range of conditions, the performance of

local monitoring with SLAM is comparable to that without SLAM, while listening energy

savings of 30-129 times is realized, depending on the network load.

Chapter seven of the thesis addresses the problem of mitigating control and data

traffic attacks in mobile WAHAS network scenarios. Recall that a basis for local

monitoring is the ability of a node to securely determine its first-hop and second-hop

neighbors. For static scenarios the neighbor list is discovered once for the lifetime during

the initial period of network deployment. By being static and with the assumption of

malicious-free environment during network deployment, the node itself and the neighbors

are correct at the time the protocol executes. However, if the node moves from its current

location then the neighbor list membership may change at many nodes (the moving node,

the old neighbors of the moving node, and the new neighbors of the moving node). In

this chapter, we proposed a protocol called MOBIWORP for mitigating the wormhole

attack in mobile WAHAS networks. MOBIWORP uses a secure central authority (CA) for

global tracking of node positions. MOBIWORP incorporates two protocols SMP and CAP-

CV for differing degrees of functionality afforded to a mobile node. Local monitoring is

used to detect and isolate malicious nodes locally. Additionally, when sufficient

suspicion builds up at the CA, it enforces a global isolation of the malicious node from

the whole network. The effect of MOBIWORP on the data traffic and the fidelity of

detection is brought out through extensive simulation using ns-2. The results show that as

time progresses, the data packet drop ratio goes to zero with MOBIWORP due the

capability of MOBIWORP to detect, diagnose and isolate malicious nodes. With an

appropriate choice of design parameters, MOBIWORP is shown to completely eliminate

framing of a legitimate node by malicious nodes, at the cost of a slight increase in the

 194

drop ratio. The results also show that increasing mobility of the nodes degrades the

performance of MOBIWORP.

 195

10. FUTURE WORK

The research work presented in this thesis provides a foundation to explore

several research avenues in the area of WAHAS network security. Below, we summarize

several directions, in which our work can be pursued,

1. Scheduling the monitoring activity to increase the detection coverage.

2. Scalable MOBIWORP through hierarchical structure of certificate authorities (CAs).

3. Incorporating mobile stealthy trusted monitors in local monitoring.

4. Test-bed implementation of local monitoring to study its real life capabilities and

limitations.

10.1. Scheduling the Monitoring Activity

It has been shown in Chapter 6 that putting guards to sleep and waking them up

on-demand saves a considerable amount of power. Additional power may be saved if we

wake up only a sufficient subset of the guards while leaving the rest sleeping. Moreover,

it is has been shown in Section 4.3.1 that collisions may reduce the probably of attack

detection and increase the probability of false alarms. The collisions at different guards

are not independent. Therefore, we would like to explore a strategy to schedule the

monitors to decrease the possibility of correlated failures among them and thus enhancing

the detection coverage.

Two research questions may be asked in this direction. The first question is, how

many guards are sufficient to obtain a good balance between detection coverage and

framing? This question has been answered in Section 2.3 through the selection of the

detection confidence index value. The second question that still needs to be answered is,

what is the scheduling criterion to wake up the monitors (a subset of the available

guards)?

 196

Three different approaches may be used. In the first approach, we randomly select

the monitors from the set of possible guards and send the rest of the guards to sleep. This

approach is simple but does not take into account correlated failures or load balancing

across the guards.

In the second approach, rather than selecting the monitors randomly, a scheduler

(for now, assume an omniscient centralized scheduler for each link to be monitored)

chooses the highest qualified guards as monitors. The highest qualified guard is the guard

with the highest remaining energy. To do so, the scheduler has to be aware of the

remaining energy in the guard nodes. This knowledge can be obtained by directly polling

the guard about its remaining energy level. However, the overhead is high and the

information given may be incorrect. This may be due to a greedy guard, which wants to

save energy and avoid participating in local monitoring and, therefore, underreports the

level of remaining energy. Alternately, the incorrect reporting may be due to a malicious

guard, which wants to be elected as a monitor so that it can turn a blind eye and suppress

reports of erroneous events. Therefore, the guard over reports the level of remaining

energy. An alternate approach is to estimate the remaining energy level at a guard

without the help of that guard. This can be done by keeping the energy level of the guard

as a state at the scheduler. This energy level state is decremented every time the guard is

selected as a monitor by a value which is estimated based on the length of the monitoring

period. This energy level state is not accurate since it does not take into account other

monitoring activities of the guard node (e.g., by selection for other links) or regular

sensing and forwarding activities of the guard.

The third approach in selecting the monitors is motivated by minimizing the

possibility of correlated failures among monitors. Correlated failures are caused by

collisions and result in missed detection and false detection. A simple way to achieve this

is by maximizing the distance between the selected monitors. This is based on a simple

correlation model in which the farther the distance between two nodes, the less is the

correlation of the collisions occurring at these nodes. However, a better correlation model

needs to be considered to take the global effect of network topology and the traffic

pattern into account. We are interested in not just the choice of monitors that will

 197

minimize the possibility of correlated failures, but also a quantitative estimate of this

minimum probability. This model assumes that the scheduler needs to know the positions

of the guard nodes. Knowledge of directionality is important in this regard. There are

approaches using directional antennas that combine information on which antenna

received the signal and which antenna of another node sent it [50]. The challenge is to

perform this determination at the scheduler without information queried from the node

whose location is to be determined.

10.2. MOBIWORP Hierarchical Structure

MOBIWORP (Chapter 7) uses a centralized trusted entity named the central

authority (CA) to keep track of node locations and providing authenticated certificates of

these locations. This introduces the problem of scalability in large network scenarios.

This problem can be solved through the use of a hierarchical structure of central

authorities. The network is divided into geographic zones, each of which is controlled by

a different central authority. Each distributed central authority only needs to know the

topology of its own zone. For a three level hierarchy, the root of the hierarchical tree is

the main central authority which manages the other central authorities. The second level

is a set of small central authorities each of which is responsible for one zone of the

network. The last level of the hierarchy is the mobile nodes. The protocol when nodes

move within the same zone is the same as MOBIWORP. However, when a node moves

from one zone to another zone an inter-zone coordination occurs between the two zones’

CAs. This coordination is transparent to the moving nodes. This moves the responsibility

from the possibly resource constrained mobile nodes to the distributed central authorities.

If the movement is across zones, the central authorities coordinate amongst themselves.

Thus a mobile node is unaware of whether it is moving within the same zone or to a

different zone. The reader may be struck by a parallel with handoffs of mobile stations

(MS) between multiple base stations (BS) in cellular systems. The handoff in these

systems can be mobile controlled handoff (MCHO), network controlled handoff

(NCHO), or mobile assisted handoff (MAHO) [71]. Clearly only the last two are possible

candidates. However, these also do not absolve the MS of all responsibility. It is still

responsible for monitoring the channel quality with different BSs, contacting a BS, and

 198

selecting from among multiple BSs. We will work out the coordination protocol among

the multiple distributed central authorities to take the responsibility out of the individual

nodes.

10.3. Trusted Monitors

In applications of WAHAS networks which have high security requirements, we

may be open to paying the cost of some specialized highly capable nodes deployed in the

field. Such nodes are called special purpose intrusion detection units (IDU) and they are

capable of managing, storing, and correlating large amounts of event logs from other

nodes in the network. Every regular (non-IDU) node maintains a short-term buffer of the

local events, e.g., information on the packets of each type sent, received, and forwarded.

The determination of what information needs to go into the short term buffer is made by

the IDUs based on the kind of attacks that need to be tolerated. For example, for detecting

the wormhole attack, the route request received and forwarded and route reply received

and forwarded along with information about the source and the immediate previous hop

are maintained. The IDUs collect the buffer information from the regular nodes through

multi-hop routes either by polling the regular nodes, based on regular schedules, or when

triggered by an event, such as the short term buffer becoming full or the detection of an

important event. For example, let M be an IDU and let S be a node that transmits to a

node D. Let P1 (P2) be a multi-hop path between S (D) and M. Let S send n packets to D

before the buffer of either becomes full. In a secure and failure free environment, S and D

each inform M of the n packets it has sent or received. However, natural failures of links

between S and D or in the path P1 or the path P2 may cause a difference in the views of S

and D, and therefore M must calculate thresholds for divergence between the information

received from S and D to account for these natural failures. Also, malicious actions by

one or more of S, D, or nodes on P1 and P2 may affect the monitoring. So we suggest

adding redundancy and authentication to mitigate these malicious causes of the view

differences. Redundancy could be achieved by having multiple node-disjoint routes

between M and both S and D [56]. Authentication of the packets between S and D, S and

M, and D and M can prevent compromised nodes in the routes to M from tampering with

the messages sent on these links.

 199

The research issues that we need to address are how many IDUs are needed in a

given WAHAS network? A balance will have to be made between detection coverage

and the economic cost of deploying specialized IDUs. Next, are the IDUs fixed or

roaming units? If the IDUs are mobile, then instead of sending the logs through multiple

hops, it can move close to the regular node and pull the data directly. Of course mobility

reduces the overhead of collecting the logs and prevents attacks directed to the IDUs but

increases the cost of the IDUs. The idea of using mobile nodes to collect data from

sensing nodes by moving close to the cluster heads has been explored in ([155] [156]).

They presented three schedules for mobile data collectors to visit the cluster heads for

purposes of collecting the data to be sent to the central command control stations. The

schedules were Round Robin (each cluster head is visited in a round robin manner), Rate

based (the frequency of visit is determined by the rate), and Min Movement (the

movement of the collector is minimized). A challenging and wide open problem is the

diagnosis of the malicious node(s) from the available data streams. Exiting work on

redundant routing paths enables masking of errors but not diagnosis. We consider

diagnosis to be important since it can trigger the response algorithm described in Section

2.2 for isolating the malicious nodes.

10.4. Test-bed Implementations

Many protocols addressing different problems of WAHAS networks have been

proposed. However, they were demonstrated in a simulation environment. Therefore, one

of my important research agenda items is to implement WAHAS security protocols on

real world scenarios using the available WAHAS technologies. Through these, we plan to

come up with better programming environments for WAHAS networks, which have

support for secure collective operations (such as, collecting the data from nodes in a

geographical region) and secure individual operations. The programming environment

will have support for health monitoring of the nodes in a scalable manner and some work

in this regard has already been started [XXX].

XXX: Our SUTC paper. Do a search for Bagchi, Herbert. Also “Correctness

Monitoring for Wireless Sensor Networks Using Distributed and Multi-level Run-Time

Invariant Checking” Herbert, D. and Sundaram, V. and Lu, Y.H. and Bagchi, S. and Li,

 200

Z., Under review for ACM Transactions on Sensor Networks, submission date: October

2006.

 201

LIST OF REFERENCES

[1] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor
Networks,” the IEEE Symposium on Security and Privacy, pp. 197-213, May 2003.

[2] C. Boyd and A. Mathuria, “Key establishment protocols for secure mobile
communications: A selective survey,” Australasian Conference on Information
Security and Privacy, pages 344–355, 1998.

[3] C. Park, K. Kurosawa, T. Okamoto, and S. Tsujii, “On key distribution and
authentication in mobile radio networks,” Advances in Cryptology – EuroCrypt ’93,
pages 461–465, 1993. Lecture Notes in Computer Science Volume 765.

[4] Y. W. Law, S. Etalle, and P. Hartel, “Key Management with Group-Wise Pre-
Deployed Keying and Secret Sharing Pre-Deployed Keying,” Technical Report TR-
CTIT-02-20, Department of Computer Science, University of Twente, July 2002.

[5] Y.W. Law, R. Corin, S. Etalle, and P.H. Hartel, “A Formally Verified Decentralized
Key Management Architecture for Wireless Sensor Networks,” Personal Wireless
Communications (PWC 2003), Sep 2003. Lecture Notes of Computer Science,
Volume 2775, Springer-Verlag.

[6] R. Gennaro and P. Rohatgi, “How to sign digital streams,” Cryptology – Crypto’97,
Lecture Notes in Computer Science, Vol. 1294, pp. 180-197.

[7] A. Perrig, R. Canetti, J. Tygar, and D. Song, “Efficient authentication and Signing of
multicast streams over lossy channels,” IEEE Symposium on Security and Privacy,
2000.

[8] P. Rohatgi, “A compact and fast hybrid signature scheme for multicast packet
authentication, in ACM Conference on Computer and Communications Security,
1999.

[9] L. Eschenauer and V.D. Gligor, “A key management scheme for distributed sensor
networks,” Proceedings of the 9th ACM Conference on Computer and
Communication Security, pages 41–47, November 2002.

[10] D. Liu and P. Ning, “Efficient Distribution of Key Chain Commitments for
Broadcast Authentication in Distributed Sensor Networks,” Proceedings of the 10th
Annual Network and Distributed System Security Symposium, pages 263--276,
February 2003.

[11] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, Secure pebblenets, in
Proceedings of the 2001 ACM Intl. Symp. on Mobile Ad Hoc Networking and
Computing (MOBIHOC), pages 156-163. ACM Press, October 2001.

[12] B. Schneier, “Applied Cryptography,” 2nd edition, Prentice Hall, 1996.
[13] R. Blom, “An optimal class of symmetric key generation systems,” Advances in

Cryptology: Proceedings of EUROCRYPT 84 (Thomas Beth, Norbert Cot, and

 202

Ingemar Ingemarsson, eds.), Lecture Notes in Computer Science, Springer-Verlag, pp.
209-335 and 338, 1985.

[14] W. Stallings, “Cryptography and Network Security: Principles and Practices,”
third edition, Prentice Hall, 2003.

[15] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
“Perfectly-secure key distribution for dynamic conferences,” Advances in Cryptology
CRYPTO 92, LNCS 740, pages 471-486, 1993.

[16] S. Zhu, S. Setia, and S. Jajodia, “A distributed group key management protocol
for ad hoc networks,” Unpublished manuscript, December 2002, George Mason
University, VA-USA.

[17] L. Lazos and R. Poovendran, “Energy-aware secure multicast communication in
ad-hoc networks using geographical location information,” ICASSP 2003, Hong
Kong, China, April 2003.

[18] D. Liu and P Ning, “Location Based Key Establishment for Static Sensor
Networks,” ACM Workshop of Ad hoc and Sensor networks (SASN’03).

[19] R. Pietro, L. Mancini, and A. Mei, “Random Key Assignment for Secure Wireless
Sensor Networks,” ACM Workshop of Ad hoc and Sensor networks (SASN’03).

[20] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks,” Proceedings of the 10th ACM conference on
Computer and communication security (CCS’03), Washington D.C., USA. October
27-30, 2003.

[21] J. Deng, R. Han, and S. Mishra, “Security Support for In-Network Processing in
Wireless Sensor Networks,” in ACM Workshop of Ad hoc and Sensor networks
(SASN’03).

[22] D. Bruschi and E. Rosti, “Secure multicast in wireless networks of mobile hosts:
protocols and issues,” ACM/Baltzer Mobile networks and applications, special issue
on multipoint communication in Wireless Mobile Networks, Vol. 6, No. 7, December
2002.

[23] J. Deng, R Han, and S. Mishra, “The Performance Evaluation of Intrusion-
Tolerant Routing,” Wireless Sensor Networks, Proc. of IEEE 2nd International
Workshop on Information Processing in Sensor Networks (IPSN’03), LNCS 2634.

[24] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing Pair-wise Keys For Secure
Communication in Ad Hoc Networks: A Probabilistic Approach,” in the 11th IEEE
International Conference on Network protocols (ICNP), 2003, pp. 326- 335.

[25] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, “A Key Management
Scheme for Wireless Sensor Networks Using Deployment Knowledge,” in IEEE
INFOCOM, 2004, pp. 42-51.

[26] B. C. Neuman and T. Tso, “Kerberos: An authentication service for computer
networks,” IEEE Communications, vol. 32, no. 9, pp. 33–38, September 1994.

[27] M. Tatebayashi, N. Matsuzaki, and D.B.J. Newman, “Key distribution protocol
for digital mobile communication systems,” Advances in Cryptology-CRYPTO’89,
Lecture Notes in Computer Science Volume 435, pp. 324–334, 1989, Springer-Verlag.

[28] C. Park, K. Kurosawa, T. Okamoto, and S. Tsujii, “On key distribution and
authentication in mobile radio networks,” Advances in Cryptology-EuroCrypt’93,
LNCS Volume 765, pp. 461–465, 1993, Springer-Verlag.

 203

[29] M. Beller and Y. Yacobi, “Fully-fledged two-way public key authentication and
key agreement for low-cost terminals,” Electronics Letters, vol. 29, no. 11, pp. 999–
1001, 1993.

[30] D. Wong and A. Chan, “Efficient and mutually authenticated key exchange for
low power computing devices,” in Proc. ASIACRYPT, December 2001.

[31] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” IEEE
Computer, 35(10):54–62, October 2002.

[32] National Bureau of Standards (NBS), “Specification for the data encryption
standard,” Federal Information processing Standards (FIPS) Publication 46, 1977.

[33] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.
[34] D. Wheeler and R. Needham, “TEA, a Tiny Encryption Algorithm,” 1994.

http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html.
[35] R. L. Rivest, “The RC5 encryption algorithm,” Workshop on Fast Software

Encryption, pp. 86-96, 1995.
[36] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical Control in

Multi-hop Wireless Networks,” in Proceedings of IEEE INFOCOM, April 2001.
[37] S. Bandyopadhyay and E. Coyle, “An Energy-Efficient Hierarchical Clustering

Algorithm for Wireless Sensor Networks,” in Proceedings of IEEE INFOCOM, April
2003.

[38] V. Kawadia and P. R. Kumar, “Power Control and Clustering in Ad Hoc
Networks,” Proceedings of IEEE INFOCOM, April 2003.

[39] B. McDonald and T. Znati, “Design and Performance of a Distributed Dynamic
Clustering Algorithm for Ad-Hoc Networks,” Annual Simulation Symposium, 2001.

[40] O. Younis and S. Fahmy, “Distributed Clustering for Scalable, Long-Lived
Sensor Networks,” Purdue University, Technical Report CSD TR-03-026, June 2003.

[41] D. Estrin, Mani Srivastava, and Akbar Sayeed, “Wireless Sensors Networks,”
MobiCOM 2002 Tutorial no. 5. Available at:
http://nesl.ee.ucla.edu/tutorials/mobicom02.

[42] M. Krasniewski, P. Varadharajan, B. Rabeler, S. Bagchi, and Y. C. Hu, “TIBFIT:
Trust Index Based Fault Tolerance for Arbitrary Data Faults in Sensor Networks,” in
the International Conference on Dependable Systems and Networks (DSN), 2005, pp.
672-681.

[43] H. Chan and A. Perrig, “PIKE: Peer Intermediaries for Key Establishment in
Sensor Networks,” IEEE INFOCOM, 2005.

[44] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route Detection and Filtering
of Injected False Data in Sensor Networks,” IEEE INFOCOM 2004.

[45] TinyOS. http://www.tinyos.net and http://www.xbow.com.
[46] A. Woo and D. Culler, “A Transmission Control Scheme for Media Access in

Sensor Networks,” MOBICOM 2001.
[47] http://www.cerias.purdue.edu/homes/crisn/courses/cs555/cs555_lect5.pdf.
[48] I. Khalil, S. Bagchi, and N. Shroff, “LITEWORP: A Lightweight Countermeasure

for the Wormhole Attack in Multihop Wireless Networks,” in the International
Conference on Dependable Systems and Networks (DSN), 2005, pp. 612-621.

 204

[49] I. Khalil, S. Bagchi, and C. Nina-Rotaru, “DICAS: Detection, Diagnosis and
Isolation of Control Attacks in Sensor Networks,” in IEEE/CreateNet SecureComm,
2005, pp. 89-100.

[50] G. Jolly, M. C. Kusçu, P. Kokate, and M. F. Younis, “A Low-Energy Key
Management Protocol for Wireless Sensor Networks,” ISCC 2003: 335-340.

[51] L. Hu and D. Evans, “Using Directional Antennas to Prevent Wormhole attacks,”
in Network and Distributed System Security Symposium (NDSS), 2004, pp. 131-141.

[52] Y. C. Hu, A. Perrig, and D. Johnson, “Rushing Attacks and Defense in Wireless
Ad Hoc Network Routing Protocols,” ACM Workshop on Wireless Security (WiSe),
2003, pp. 30-40.

[53] Y. C. Hu, A. Perrig, and D.B. Johnson, “Packet leashes: a defense against
wormhole attacks in wireless networks,” in IEEE INFOCOM, 2003, pp. 1976-986.

[54] D. Johnson, D. Maltz, and J. Broch, “The Dynamic Source Routing Protocol for
Multihop Wireless Ad Hoc Networks,” in Ad Hoc Networking, C. Perkins, Ed.
Addison-Wesley, 2001.

[55] C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand Distance Vector Routing,”
in Proceedings of the Second IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), 1999, pp. 90-100.

[56] A. Nasipuri, R. Castaneda, and S.R. Das, “Performance of Multipath Routing for
On-demand protocols in Mobile Ad Hoc Networks,” in ACM Mobile Networks and
Applications (MONET), 2001, 6(4), pp. 339-349.

[57] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil attack in Sensor
Networks: Analysis & Defenses,” in Information Processing In Sensor Networks
(IPSN’04) 2004, pp. 259-268.

[58] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient
Communication Protocol for Wireless Microsensor Networks,” in the Proceedings of
the 33rd Annual Hawaii International Conference on System Sciences (HICSS), 2000,
pp. 3005-3014.

[59] A. A. Pirzada and C. McDonald, “Establishing Trust In Pure Ad-hoc Networks,”
in Proceedings of the 27th Australasian Computer Science Conference (ACSC), 2004,
26(1), pp. 47-54.

[60] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in
mobile ad hoc networks,” in Proceedings of the 6th Annual International Conference
on Mobile Computing and Networks (MOBICOM), 2000, pp. 255-265,.

[61] S. Buchegger, J.-Y. Le Boudec, “Performance Analysis of the CONFIDANT
Protocol: Cooperation Of Nodes - Fairness In Distributed Ad-hoc NeTworks,” in
MOBIHOC, 2002, pp. 80-91.

[62] Y. Huang and W. Lee, “A Cooperative Intrusion Detection System for Ad Hoc
Networks,” in Proceedings of the ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN), 2003, pp. 135-147.

[63] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler, “SPINS: Security
Protocols for Sensor Networks,” Wireless Networks, vol. 8, 2002, pp. 521-534.

[64] W. Du, J. Deng, Y. Han, and P. Varshney, “ A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks,” in Proceedings of the 10th ACM conference
on Computer and communication security (CCS), 2003, pp. 42-51.

 205

[65] D. Liu and P Ning, “Establishing Pair-wise Keys in Distributed Sensor
Networks,” in Proceedings of the 10th ACM conference on Computer and
communication security (CCS), 2003, pp. 52-61.

[66] I. Khalil, S. Bagchi, and N. B. Shroff, “Analysis and Evaluation of SECOS, a
protocol for Energy Efficient and Secure Communication in Sensor Networks”,
accepted for publication in Ad Hoc Networks Journal (ADHOC), number of pages:
32, notification date: Dec. 2005.

[67] G. Bianchi, “Performance analysis of the IEEE 802.11 Distributed Coordination
Function,” in IEEE Journal on Selected Areas in Communications, 2000, 18(3),
pp.535-547.

[68] C. Guo, L. C. Zhong and J. M. Rabaey, "Low Power Distributed MAC for Ad
Hoc Sensor Radio Networks," in Proceedings of IEEE GLOBECOM, 2001, pp.
2944–2948.

[69] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Coverage: Integrated
coverage and connectivity configuration in wireless sensor networks,” Proceedings of
the 1st international conference on Embedded networked sensor systems, November
2003.

[70] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, “Span: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks,” In
Wireless Networks journal, Volume 8 Issue 5, September 2002, pp. 481-494.

[71] Y.-B. Lin and I. Chlamtac, “Wireless and Mobile Network Architectures,” Wiley
Computer Publishing, 2001.

[72] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, "The TESLA broadcast
authentication protocol," In CryptoBytes, 5:2, Summer/Fall 2002, pp. 2-13.

[73] Adrian Perrig, Ran Canetti, Dawn Song, and Doug Tygar, “Efficient and Secure
Source Authentication for Multicast,” in Proceedings of Network and Distributed
System Security Symposium (NDSS), February 2001.

[74] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. Belding-Royer, “A Secure
Routing Protocol for Ad hoc Networks,” Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), 2002, pp. 78-87.

[75] S. Capkun, L. Buttyán, and J.-P. Hubaux, ”SECTOR: Secure Tracking of Node
Encounters in Multi-hop Wireless Networks,” in Proceedings of the 1st ACM
workshop on Security of ad hoc and sensor networks (SASN 03), pp.21-32, 2003.

[76] C. Karlof and D. Wagner, “Secure Routing in Sensor Networks: Attacks and
Countermeasures,” at the 1st IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA), 2003, pp. 113-127.

[77] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure efficient distance vector
routing for mobile wireless ad hoc networks,” in Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA 2002), June
2002, pp. 3-13.

[78] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” in Proceedings of the 8th Annual International
Conference on Mobile Computing and Networks (MOBICOM 2002), 2002, pp. 12-23.

 206

[79] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc networks,” in
SCS Communication Networks and Distributed Systems Modeling and Simulation
Conference (CNDS 2002), January 2002.

[80] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” in Proceedings of the 6th
Annual International Conference on Mobile Computing and Networks (MobiCOM
00), 2000, pp. 56-67.

[81] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient, energy-
efficient multipath routing in wireless sensor networks,” in Mobile Computing and
Communications Review, vol. 4, no. 5, October 2001, pp. 11-25.

[82] F. Ye, A. Chen, S. Lu, and L. Zhang, “A scalable solution to minimum cost
forwarding in large sensor networks,” at the 10th International Conference on
Computer Communications and Networks (ICCCN), 2001, pp. 304-309.

[83] D. Braginsky and D. Estrin, “Rumor routing algorithm for sensor networks,” in
the 1st ACM International Workshop on Wireless Sensor Networks and Applications
(WSNA), 2002, pp. 22-31.

[84] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers,” in ACM SIGCOMM Conference on
Communications Architectures, Protocols and Applications, 1994, pp. 234-244.

[85] C. Karlof and Y. Li, J. Polastre, “ARRIVE: Algorithm for Robust Routing in
Volatile Environments,” Technical Report UCB//CSD-03-1233, March 2003.

[86] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint Relaying: An Efficent
Technique for Flooding in Mobile Wireless Networks,” Technical Report Research
Report RR-3898, project HIPEERCOM, INRIA, February 2000.

[87] B. Bellur and R. G. Ogier, “ A Reliable, Efficient Topology Broadcast for
Dynamic Networks,” in Proceedings of the 18th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 1999, pp. 178-186.

[88] Kyasanur and N. H. Vaidya, “Detection and handling of MAC layer misbehavior
in wireless networks,” in Proceedings of the International Conference on Dependable
Systems and Networks (DSN ’03), pp. 173- 182, 2003.

[89] “The Network Simulator - ns-2,” At: http://www.isi.edu/nsnam/ns/
[90] Defense Advanced Research Projects Agency. Frequently Asked Questions v4 for

BAA 01-01, FCS Communications Technology. Washington, DC. Available at
http://www.darpa.mil/ato/solicit/baa01_01faqv4.doc, October 2000.

[91] Ralph C. Merkle, “Protocols for Public Key Cryptosystems,” in Proceedings of
the IEEE Symposium on Security and Privacy, 1980.

[92] Y. Ko, V. Shankarkumar, and N. Vaidya, “Medium access control protocols using
directional antennas in ad hoc networks,” in Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM),
pages 13–21, 2000.

[93] R. Choudhury, X. Yang, R. Ramanathan, and N. Vaidya, “Using directional
antennas for medium access control in ad hoc networks,” at the 8th ACM
International Conference on Mobile Computing and Networking (MobiCOM), 2002.

 207

[94] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru and H. Rubens, “On the
Survivability of Routing Protocols in Ad Hoc Wireless Networks,” SecureComm
2005.

[95] L. Lazos, R. Poovendran, C. Meadows, P. Syverson, and L. W. Chang,
“Preventing wormhole attacks on wireless ad hoc networks: a graph theoretic
approach,” in IEEE Wireless Communications and Networking Conference (WCNC),
Vol. 2, 2005, pp. 1193 - 1199.

[96] R. Poovendran and L. Lazos, “A Graph Theoretic Framework for Preventing the
Wormhole Attack in Wireless Ad Hoc Networks,” to appear in ACM Journal on
Wireless Networks (WINET).

[97] R. Durrett, “Essentials of Probability,” Duxbury Press, 1994.
[98] W. Wang and B. Bhargava, “Visualization of Wormholes in Sensor Networks,”

Proceedings of the ACM workshop on Wireless security (Wise), 2004, pp. 51-60.
[99] M. G. Zapata, “Secure ad-hoc on-demand distance vector (SAODV) routing,”

IETF MANET Mailing List, October 8, 2001.
[100] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless

networks,” in Proceedings of the 6th Annual International Conference on Mobile
Computing and Networks (MobiCOM 2000), 2000, pp. 243-254.

[101] K. Ishida, Y. Kakuda, and T. Kikuno, “A routing protocol for finding two node-
disjoint paths in computer networks,” ICNP 1992, pp. 340 347.

[102] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation
for ad hoc routing,” in Proceedings of the 7th Annual International Conference on
Mobile Computing and Networks (MobiCOM), 2001, pp. 70-84.

[103] S. Lindsey and C. Raghavendra, “PEGASIS: power-efficient gathering in sensor
information systems,” IEEE Aerospace Conference 2002, vol. 3, 1125 - 1130.

[104] P. Papadimitratos and Z.J. Haas, “Secure Message Transmission in Mobile Ad
Hoc Networks,” WiSe 2003, pp.41-50.

[105] S.J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint Paths in
Ad Hoc Networks,” ICC 2001, pp. 3201-3205.

[106] Z. Ye, S. V. Krishnamurthy, S. K. Tripathi, “A Framework for Reliable Routing
in Mobile Ad Hoc Networks,” in IEEE INFOCOM 2003, vol.1, pp. 270-280.

[107] Secure Hash Standard, Federal Information Processing Standards Publication
180-1, April 1995.

[108] Q. Zhang, P. Wang, D. S. Reeves, and P. Ning, “Defending against Sybil Attacks
in Sensor Networks,” SDCS 2005, pp. 185-191.

[109] C. Basile, Z. Kalbarczyk, and R. K. Iyer, “Neutralization of Errors and Attacks in
Wireless Ad Hoc Networks,” DSN 2005, pp. 518-527.

[110] L. Lazos and R. Poovendran, “SeRLoc: Robust localization for wireless sensor
networks,” in the ACM Transactions on Sensor Networks (TOSN), 2005, Volume 1 ,
Issue 1, pp. 73-100.

[111] B. Carbunar, I. Ioannidis and C. Nita-Rotaru, “JANUS: Towards Robust and
Malicious Resilient Routing in Hybrid Wireless Networks,” WiSe 2004, pp. 11-20.

[112] L. Lamport, “Password authentication with insecure communication,” in
Communications of the ACM, 24(11), pp. 770-772, November 1981.

 208

[113] R. Hauser, T. Przygienda, and G. Tsudik, “Reducing the Cost of Security in Link-
State Routing,” in Internet Society Symposium on Network and Distributed Systems
Security, 1997.

[114] Y. Hu, A. Perrig, and D. Johnson, “Efficient Security Mechanisms for Routing
Protocols,” in Proceedings of Network and Distributed Systems Security, 2003.

[115] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-Based Collaboration for
Target Tracking in Sensor Networks,” in IEEE Transactions on Wireless
Communication, vol. 3 (5), 2004, pp. 1689-1701.

[116] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality tradeoffs for target
tracking in wireless sensor networks,” in second workshop on Information Processing
for Sensor Networks (IPSN), 2003.

[117] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in
target tracking sensor networks,” in Proceedings of the 10th annual international
conference on Mobile computing and networking (MOBICOM), 2004, pp. 129-143.

[118] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for surveillance
and target location in distributed sensor networks,” in IEEE Transactions on
Computers, 51(12), 2002, pp.1448-1453.

[119] D. Tian and N. D. Georganas, “A coverage-preserved node scheduling scheme for
large wireless sensor networks,” in Proceedings of First International Workshop on
Wireless Sensor Networks and Applications (WSNA), 2002, pp. 32-41.

[120] T. Yan, T. He, and J. A. Stankovic, “Differentiated surveillance for sensor
networks,” in The First ACM Conference on Embedded Networked Sensor
Systems(Sensys), 2003, pp. 51-62.

[121] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Peas: A robust energy conserving
protocol for long-lived sensor networks,” in the 23rd International Conference on
Distributed Computing Systems (ICDCS), 2003, pp. 169-177.

[122] S. Bhattacharya, G. Xing, C. Lu, G.-C. Roman, O. Chipara, and B. Harris,
“Dynamic wake-up and topology maintenance protocols with spatiotemporal
guarantees,” in Information Processing in Sensor Networks (IPSN), 2005, pp. 28-34.

[123] G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan, “Co-Grid: an efficient coverage
maintenance protocol for distributed sensor networks,” in Proceedings of the third
international symposium on Information processing in sensor networks (IPSN), 2004,
pp. 414 – 423.

[124] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly sleeping sensor
network” in International Conference on Mobile Computing and Networking
(MOBICOM), 2004, pp. 144-158.

[125] J. V. Greunen, D. Petrovic, A. Bonivento, J. Rabaey, K. Ramchandran, and A.S.
Vincentelli, “Adaptive sleep discipline for energy conservation and robustness in
dense sensor networks,” in IEEE International Conference on Communications, Vol.
6, 2004, pp. 3657 – 3662.

[126] F. Koushanfar, A. Davare, D. Nguyen, M. Potkonjak, A. Sangiovanni-Vincentelli.
“Low power coordination in wireless ad-hoc networks” in International Symposium
on Low Power Electronics and Design (ISLPED), 2003, pp. 475 – 480.

 209

[127] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage
and connectivity configuration for energy conservation in sensor networks,” in ACM
Transactions on Sensor Networks (TOSN), 2005, Vol. 1 , Issue 1, pp. 36-72.

[128] E. Riedy and R. Szewczyk. “Power and control in networked sensors,”
http://webs.cs.berkeley.edu/tos/papers/cs294-8.pdf, May 2000.

[129] J. W. Hui, Z. Ren, , and B. Krogh, “Sentry-based power management in wireless
sensor Networks,” in the 2nd International Workshop on Information Processing in
Sensor Networks (IPSN), 2003, pp. 458-472.

[130] W. Ye, J. Heidemann, and D. Estrin, "An energy efficient MAC protocol for
wireless sensor Networks," in INFOCOM, pp. 1567- 1576, 2002.

[131] R. Naik, S. Biswas, and S. Datta, “Distributed Sleep-Scheduling Protocols for
Energy Conservation in Wireless Networks,” in Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS), pp. 285b - 285b, 2005.

[132] S. Liu, K. Fan, and P. Sinha, “Dynamic Sleep Scheduling using Online
Experimentation for Wireless Sensor Networks,” in the Proceedings of the Third
International. Workshop on Measurement, Modeling and Performance Analysis of
Wireless Sensor Networks (SenMetrics), 2005.

[133] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless
sensor networks for habitat monitoring,” in ACM International Workshop on
Wireless Sensor Networks and Applications, 2002, pp. 88-97.

[134] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan,
“Picoradios for wireless sensor networks: The next challenge in ultra-low-power
design,” in the Proceedings of the International Solid-State Circuits Conference, 2002,
pp. 200-201.

[135] J. Silva., J. Shamberger, M. J. Ammer, C. Guo, S. Li, R. Shah, T. Tuan, M. Sheets,
J. M. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, and P. Wright, “Design
methodology for picoradio networks,” in the Proceedings of the Design Automation
and Test in Europe, 2001, pp. 314-323.

[136] http://www.austriamicrosystems.com/03products/data/AS3931Product_brief_020
4.pdf.

[137] L. Gu and J.A Stankovic, “Radio-Triggered Wake-Up Capability for Sensor
Networks,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2004, pp. 27-36.

[138] Chipcon CC1000 Datasheet, Chipcon Inc.
http://www.chipcon.com/files/CC1000DataSheet21.pdf.

[139] A. Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H. Wong,
“Decentralized intrusion detection in wireless sensor networks,” in Proceedings of the
1st ACM international workshop on Quality of service & security in wireless and
mobile networks, 2005, pp. 16-23.

[140] S.J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint Paths in
Ad Hoc Networks,” in IEEE International Conference on Communications (ICC),
2001, pp. 3201-3205.

[141] http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datashe
et.pdf.

 210

[142] J. Hightower and G. Borriello, “Location sensing techniques,” Technical Report
of the University of Washington CS Department, UW-CSE-01-07-01, July 2001.

[143] C. Savarese, J. Rabaey, and K. Langendoen, “Robust Positioning Algorithms for
Distributed Ad hoc Wireless Sensor Networks,” in USENIX Technical Annual
Conference, 2002.

[144] J. Li, J. Jannotti, D.S.J. De Couto, D.R. Karger, and R. Morris, “A scalable
location service for geographic ad hoc routing,” in ACM MOBICOM, 2000, pp. 120-
130.

[145] J.-H. Song, V. Wong, V. Leung, “Network protocols: A framework of secure
location service for position-based ad hoc routing,” in Proceedings of the 1st ACM
international workshop on Performance evaluation of wireless ad hoc, sensor, and
ubiquitous networks, 2004, pp. 99-106.

[146] L. Hu and D. Evans, “Localization for Mobile Sensor Networks,” in ACM
MOBICOM, 2004, pp. 45-57.

[147] D. Liu, P. Ning, and W. Du, “Detecting Malicious Beacon Nodes for Secure
Location Discovery in Wireless Sensor Networks,” in the 25th International
Conference on Distributed Computer Systems (ICDCS), 2005, pp. 609-619.

[148] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, “Global Positioning
System: Theory and Practice,” in the Fourth Edition, Springer-Verlag, 1997.

[149] K. Sun, P. Ning, and C. Wang, “Fault-tolerant cluster-wise clock synchronization
for wireless sensor networks,” in the IEEE Transactions on Dependable and Secure
Computing (TDSC), Volume 2, Issue 3, 2005, pp.177–189.

[150] W. Du, L. Fang, P. Ning, “LAD: Localization Anomaly Detection for Wireless
Sensor Networks,” in the Journal of Parallel and Distributed Computing (JPDC),
Volume 66, Issue 7, 2006, pp. 874-886.

[151] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of location claims,” in
ACM Workshop on Wireless Security (WiSe), 2003, pp. 1-10.

[152] G. Khanna, S. Bagchi, and Y.-S. Wu, “Fault Tolerant Energy Aware Data
Dissemination Protocol in Sensor Network,” in IEEE DSN, 2004, pp. 739-748.

[153] J. H. Kim and J. K. Lee, “Performance analysis of Mac protocols for wireless
LAN in Rayleigh and shadow fast fading,” in IEEE Global Telecommunications
Conference (GLOBECOM), Vol. 1, 1997, pp. 404-408.

[154] T. Khattab, M. El-Hadidi, and H. Mourad, “Analysis of wireless CSMA/CA
network using single station superposition (SSS),” in the International Journal of
Electronics and Communications (AE), vol. 56, 2002, pp. 71-81.

[155] Y. Tirta, B. Lau, N. Malhotra, S. Bagchi, Z. Li, and Y-H. Lu, “Controlled
Mobility for Efficient Data Gathering in Sensor Networks with Passively Mobile
Nodes,” in Sensor Network Operations by Wiley-IEEE Press, 2006.

[156] Y. Tirta, Z. Li, Y.-H. Lu, and S. Bagchi, “Efficient Collection of Sensor Data in
Remote Fields Using Mobile Collectors,” in Proceedings of the 13th IEEE
International Conference on Computer Communications and Networks (ICCCN),
2004, pp. 515-519.

 211

APPENDIX .

Timers, Threshold Values, and Notations used for SECOS

The following table presents a summary of the timers and the threshold values

used in SECOS.

Table A.1: Timers and Threshold Values in SECOS

Name Description Tradeoffs
1 Session &

authentication
key
refreshment
timer

When the timer expires, the session
and authentication keys are refreshed
applying a MAC function on the
SC(M,S) XOR-ed with the volatile
secret key and concatenated with 1
for the session key and 2 for the
authentication key.

A higher value makes it
less secure by facilitating
cryptanalysis and allowing
past communication of a
compromised node to be
divulged.
A lower value makes it
energy inefficient.

2 Control node
refreshment
timer (Tctrl)

When the timer expires the control
node is changed. A new control node
is selected and delivered the list of
control group members.
The old control node returns to the
normal sensing mode.

A higher value makes it
less secure in case the
control node gets
compromised.
A lower value makes it
energy inefficient.

3 Opinion
counter
threshold value
(Tcounter_threshold)

When the opinion counter at a node,
X, crosses the threshold for a certain
monitored node, Y, then X sends the
opinion counter value and the ID of Y
to the base station

A higher value makes it
less secure since many
malicious events may not
be detected because they
do not increment the
opinion counter to the
threshold value.
A lower value makes it
energy inefficient.

4 Alert
collection
timer
(Tsuspect_collection)

When the timer fires, the base station
either starts correlating the received
alerts if they are sufficient, or polls
certain nodes to send their opinion

A higher value allows
sufficient alerts from most
involved observer nodes to
arrive to the base station.

 212

counters to collect sufficient alerts. But it makes the network
less secure by delaying the
malicious event detection
and response.

5 Trust level

threshold
(Ttrust_level)

When the trust level of a node, X, in
the network goes below the threshold,
the base station declares X as a
malicious node.

A higher value makes it
more secure since only
highly trusted nodes are
allowed in the network.
But it may result in high
node revocation due to
false alarms by natural
faults and communication
errors.

 The following table provides a summary of the notations used throughout SECOS

(Chapter 3).

Table A.2: SECOS Notations

Acronym Description Acronym Description
S A generic sensor node C A generic control node
M The base station N The total number of nodes

in the network
D The density of the nodes in the

network
R The communication range

MAC Message Authentication Code E(K,X) Encryption of message X
using key K

MAC(K,
Z⊕X||Y)

The application of the MAC
algorithm, keyed by key K, to
the result of the concatenation
of Y with the result of Z XOR-
ed with X

H(X) The hash value of the
message X

MKAB The master key shared between
A and B

VKAB he volatile secret
key shared by A and B

SKAB The session
(encryption/decryption) key
shared between A and B

AKAB The Authentication (MAC)
key shared between A and
B

RKAB The random number generator
key shared between A and B

KAB
(=KBA)

Any secret key
(MKAB,VKAB, SKAB, AKAB,
RKAB) shared between A
and B

SGctrl The size of the control group
(i.e., the number of nodes in the

S(Pkt) The size of the Pkt packet.
Pkt is one of the packets

 213

control group) defined in Table 3.1
SGcom The communication group size SR Size of the key reply (i.e.,

SR=S(K_rep))
SKey The amount of storage required

to store a cryptographic key
such as the session key

Hctrl The average number of
hops between a pair of
nodes in a control group

Hcom The average number of hops
between a pair of nodes in the
communication group

Hall The average number of
hops between a pair of
nodes in the whole network

NBC The number of control groups
within one communication
group

NG The number good
(uncompromised) nodes in
the network

NC The number of compromised
nodes in the network

NB The number of control
groups in the network

MalC(i,j) The malicious counter at node i
about node j

MalCmax Maximum value of the
malicious counter

Nm(i) The number of monitors of
node i that report their opinions
to the base station

Tcounter_thres

hold
The threshold value of the
malicious counter above
which a node becomes
suspicious

Lassurance The level of detection
assurance at a monitoring node
a bout a suspected event

Ltrust(i) The trust level of node i
that is maintained by the
base station

Ttrust_level The trust level threshold
beyond which the base station
identify a node as malicious

Sync_diff The maximum acceptable
difference between the
counters shared by a pair of
nodes in the network

Tsuspect_coll

ection
The time the base station waits
to collect more opinions a bout
a suspected event starting from
time of the first arrived opinion

SC(i,j) The sending counter value
of node i that is shared with
node j (SC(i,j) = RC(j,i))

RC(i,j) The receiving counter of node i
that is shared with node j
(RC(i,j) = SC(j,i))

Counetrij Refers to both SC(i,j) and
RC(i,j)

TComp The time that is minimally
required to compromise a node

E1 The event that the control
node of a certain control
group is compromised

E2 Thee event that there is at least
one compromised node in the
bounding path between a pair
of nodes in the control group

E3 The event that the control
node lies in the bounding
path between a pair of
nodes in the same control
group

PC(A-B) The probability of
compromising the link between
A and B

Nbp The number of nodes
within the bounding path
between a pair of nodes in

 214

the same control group
PLerr The probability of natural error

in a packet over a link between
a pair of neighbor nodes

PCD The probability that a node
is compromised and
dropping packets

SC The regular cache size at each
node

SCC The control cache size at
each node

aC The hit rate in the regular
cache (i.e., the probability of
finding an element in the
cache)

bC The miss rate in the regular
cache (i.e., the probability
of not finding an element in
the cache, bC =1-aC)

aCC The hit rate in the control
cache (i.e., the probability of
finding an element in the
cache)

bCC The miss rate in the control
cache (i.e., the probability
of not finding an element in
the cache, bCC =1-aCC)

Tctrl The average time a node stays
in the control role for a single
round

Energy The energy for the
transmission and the
reception of a single bit

GComp The maximum control group
size under the computational
limitation only

GBW The maximum control
group size under the
bandwidth limitation only

GSEC The maximum control group
size under an acceptable
number of compromised
sessions.

GStore The maximum control
group size under the
storage limitation only

m The reciprocal of the rate of the
Poisson process used for
changing the destination of a
packet (i.e., a new destination
is selected on average every m
time units)

l The reciprocal of the rate
of the Poisson process used
for data packet generation
(i.e., one packet is
generated on average every
l time units)

BW The channel bandwidth Nnbr The average number of one
hope neighbors of a node

TE The total overhead energy

 215

VITA

Issa Khalil received the B.Sc. degree in computer engineering from Jordan University of

Science and Technology (JUST), Jordan, in 1994, and the MS degree in computer

engineering from JUST in 1996. He joined Purdue University in the spring of 2003 as a

PhD student in Electrical and Computer Engineering. He worked as research assistance in

the Dependable Computing Systems Lab (DCSL) of Prof. Saurabh Bagchi and the Center

for Wireless Systems and Applications (CWSA) of Prof. Ness B. Shroff. His research

interests include key management, secure routing protocols, position verification,

intrusion detection and response in wireless Ad-Hoc and Sensor networks, information

systems security, and networking. He has worked as the director of computer and

communication center of Alquds Open University, West Bank, for more than 6 years.

 216

PUBLICATIONS

1. I. Khalil, S. Bagchi, and N. B. Shroff, “MOBIWORP: Mitigation of the Wormhole Attack

in Mobile Multi-hop Wireless Networks”, IEEE/CreateNet conference on Security and

Privacy in Communication networks (SecureComm 2006), Baltimore, MD, August

28th – September 1st 2006. (Acceptance rate: 32/126 = 25.4%)

2. I. Khalil, S. Bagchi, and N. B. Shroff, “Analysis and Evaluation of SECOS, a

protocol for Energy Efficient and Secure Communication in Sensor Networks”,

accepted for publication in Ad Hoc Networks Journal (ADHOC), number of pages:

32, notification date: Dec. 2005.

3. I. Khalil, S. Bagchi, and C. Nina-Rotaru, “DICAS: Detection, Diagnosis and Isolation

of Control Attacks in Sensor Networks,” in IEEE/CreateNet SecureComm, pp. 89-

100, Athens, Greece, 5th-9th September, 2005. (Acceptance rate: 32/163 = 19.6%)

4. I. Khalil, S. Bagchi, and N. Shroff, “LITEWORP: A Lightweight Countermeasure for

the Wormhole Attack in Multihop Wireless Networks,” International Conference on

Dependable Systems and Networks (DSN ’05), p.p. 612-621, Yokohama, Japan, June

28 - July 1, 2005. (Acceptance rate: 24/115 = 20.9%)

5. S. Bataineh and I. Khalil, “Performance analysis of asynchronous multi-buffered

banyan network with variable packet length,” International Journal of Parallel and

Distributed Systems and Networks 3(4) (2000), pp. 217–226, 2000.

6. I. Khalil, S. Bagchi, N. B. Shroff, and C. Nina-Rotaru, “DICAS: Detection, Diagnosis

and Isolation of Control Attacks in Sensor Networks,” in submission to IEEE

Transactions on Dependable and Secure Computing (TDSC), original submission: Oct

2005; first revision: Sep 2006.

 217

7. I. Khalil, S. Bagchi, and N. B. Shroff, “MOBIWORP: Mitigation of the Wormhole

Attack in Mobile Multihop Wireless Networks,” in submission to Elsevier Ad Hoc

Networks journal, submission date: August 2006.
8. R. K. Panta, I. Khalil, S. Bagchi, “Stream: Low Overhead Wireless Reprogramming,”

in submission to the 26th Annual IEEE Conference on Computer Communications

IEEE INFOCOM 2007, submission date: Aug 1, 2006; notification date Nov 20,

2006.

9. I. Khalil, S. Bagchi, and N. B. Shroff, “LITEWORP: Design and Analysis of a Protocol

for Detection and Isolation of the Wormhole Attack in Multihop Wireless Networks,”

in submission to Elsevier Computer Networks journal, submission date: October

2006.

10. I. Khalil, S. Bagchi, and N. B. Shroff, “SLAM: Sleep-Wake Aware Local Monitoring

in Sensor Networks,” to be submitted to the IEEE Dependable Systems and Networks

Conference (DSN’07), submission date: Dec 11, 2006.

11. I. Khalil, S. Bagchi, and N. B. Shroff, “DICAS: Detection, Diagnosis and Isolation of

Control Attacks in Sensor Networks,” ECE TR-0608, Purdue University, May 2006.

12. I. Khalil and S. Bagchi, “SECOS: Key Management for Scalable and Energy Efficient

Crypto On Sensors,” CERIAS Tech Report TR-2003-33, Aug 2003.

