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ABSTRACT 
 
Khanna, Gunjan PhD., Purdue University August 2007. Non Intrusive Detection and 
Diagnosis in High Throughput Distributed Systems. Major Professor: Saurabh Bagchi.  
 

Distributed systems form an integral part of human life—from ATMs to the Domain 

Name Service. Typical distributed systems consist of distributed services interacting 

through messages. Failures in these systems are often the causes of huge financial loss or 

human catastrophes. Efficient fault detection and diagnosis of cascaded non fail-silent 

failures is extremely challenging because of legacy code, black-box nature of application 

entities, scalability and state space explosion. Current error detection and diagnosis 

protocols suffer from one or more of the following problems—very specific to one 

application, require intrusive changes to the application, lack of scalability, impose 

additional load on the application, are offline and cannot detect (or diagnose) the failures 

at runtime.  

In this thesis, we propose Monitor, a scalable, autonomous, fault detection and 

diagnosis framework. The Monitor only observes the external messages between the 

components of the application and is unaware of any internal transition of the application 

entities. The Monitor uses a rule base of allowable behavior and does fast matching of 

incoming messages. The Monitor deduces actual causal dependencies from the protocol 

behavior to perform diagnosis. We propose state reduction mechanisms which reduce the 

number of states to be verified by the Monitor without affecting the accuracy of detection 

or diagnosis. We propose a sampling approach which adjusts a sampling rate in 

accordance with the incoming rate of packets such that the breakdown in the Monitor 

capacity is avoided. 

We use a distributed deployment of Monitors across the Purdue WAN to demonstrate 

its effectiveness. We compare the performance of the Monitor in diagnosing faults in e-

commerce applications with Pinpoint, the state-of-the-art diagnosis approach. Monitor 

outperforms Pinpoint in both accuracy and precision of diagnosis. 
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1. INTRODUCTION 

1.1. Motivation 
 

The wide deployment of high-speed computer networks has made distributed systems 

ubiquitous in today’s connected world providing the backbone for the information 

infrastructure. The infrastructure, however, is increasingly facing the challenge of 

dependability outages resulting from both accidental & malicious failures, collectively 

referred to as failures in this thesis. The potential causes of accidental failures are 

hardware failures, software defects, and operator failures, including mis-configurations, 

while the malicious attacks may be launched by external or internal users. The financial 

consequences can be gauged from a survey by Meta Group Inc. of 21 industrial sectors in 

2000 [41], which found the mean loss of revenue due to an hour of computer system 

downtime to be $1.01M. Compare this to the average cost of $205 per hour of employee 

downtime! Also, compare the computer system downtime cost today to the average of 

$82,500 in 1993 [33] and the trend becomes clear. Little wonder that distributed systems 

are called upon to provide always-available and trustworthy services.  

We increasingly face the challenge of failures due to natural errors and malicious 

security attacks affecting these systems. Downtime of a system providing critical services 

in power systems, flight control, banking, air traffic control, and railways signaling could 

be catastrophic. For ease of exposition consider two distinct systems: the application 

system or distributed protocol which needs to be verified and the fault tolerance system 

which provides detection and diagnosis primitives. The application system is comprised 

of multiple services communicating through standard protocols. The communication is 

through externally observable messages. Example of such application services are web 

service and authentication service. The fault tolerance system sits in the network vicinity 
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and provides detection and diagnosis.  

In order to build robust infrastructures capable of tolerating the two classes of failures, 

it is foremost to provide detection of the failures. The role of the detection system is to 

raise an alarm when it detects that the application system is not operating according to 

the specified behavior. The behavior of the application system can be defined through 

misuse or anomaly semantics. In the misuse based detection systems, the incorrect 

behavior is specified while in anomaly based systems the correct behavior of the system 

is specified.  

The next important component of the fault tolerance system consists is the diagnosis 

component which gets triggered once a detection of failure takes place. Following the 

definitions in [75], a fault is an invalid state or bug underlying in the system, which when 

triggered becomes an error. A failure is an external manifestation of an error at the 

systems’ boundary. A failure in a distributed system may be caused by error propagation 

between processes, and detected by the detection system. The role of the diagnosis 

system is to identify the entity that originated the failure. The diagnosis problem is 

significant in distributed applications that have many closely interacting PEs, since this 

facilitates error propagation. Failure detection at some entity A could be because of a 

local fault at A or error propagation from some node B through message interactions. 

Cascaded failures are multiple entities failing because of the failure of a single entity. For 

example consider routing protocols in the internet (like BGP). If there is a faulty route 

entry in one of the routers, that can cause multiple faulty route entries in other routers 

because of route advertisement messages. This can cause the requests to fail for not only 

a small subnet linked to the initial faulty router, but also requests in the larger wide area 

network. Cascaded failures is exactly what happened on 10 August 1996 when a 1300-

mw electrical line in southern Oregon sagged in the summer heat, initiating a chain 

reaction that cut power to more than 4 million people in 11 Western States [113]. This is 

an example where early detection and diagnosis of an initial failure could have prevented 

the catastrophic outcome. 

There are several challenges to the problem of designing a detection system which can 

handle failures in the distributed systems of today. First, many existing systems run 
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legacy code, the protocols have hundreds of participants, and systems often have soft 

real-time requirements. Legacy code is typically an old piece of software written by 

developers who are no longer around to support the code. In essence, understanding and 

making changes to legacy codes to add detection and diagnosis functionality is extremely 

difficult    A common requirement is for the detection system to be non-intrusive to the 

distributed system being verified implying that significant changes to the application or 

to the environment in which they execute are undesirable. This requirement rules out 

executing heavyweight detectors in the same process space or even in the same host as 

the application entities. While it may be possible to devise very optimized solutions for 

individual distributed applications, such approaches are not very interesting from a 

research standpoint because of limited applicability.  Trying to make changes to a 

particular protocol also requires in depth understanding of the code which is either 

unavailable or too complex to allow for the understanding under time constraints.  

The other primitive of the fault tolerance system i.e., diagnosis, comes with its own set 

of challenges. First, similar to detection, diagnosis also faces the challenge of legacy 

code, real time guarantees and large number of protocol entities. Second, there is 

imperfect observability of the components of the application due to their relative network 

placements and losses in the environment. This is particularly likely as the application is 

distributed with components spread out among possibly distant hosts. Third, a diagnosing 

entity might have limited resources and may drop some message interactions due to 

exhaustion of its resources (e.g., buffer size) during periods of peak load. Fourth, any 

diagnostic test used by the diagnosis framework cannot be assumed to be perfect. Finally, 

several parameters of the environment are not known deterministically and have to be 

estimated at runtime. These include the ability of a component to stop the cascade of 

error propagation and the lossiness of the links between the application components as 

well as the application and the diagnosing entity.  

Detection is called stateful if the detection approach uses the knowledge of the current 

and few previous states of the entity in providing detection. Providing stateful detection 

in such a setting is imperative because of the criticality of applications but it comes with 

more challenges. The rules are then based on the state, thus on aggregated information 
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rather than instantaneous information. Stateful detection is looked upon as a powerful 

mechanism for building dependable distributed systems [114][115]. The stateful detection 

models can be specified using various formalisms, such as, State Transition Diagrams, 

PetriNets or UML. Stateful detection requires the fault tolerance infrastructure to keep 

track of the state of the protocol thus increasing the storage and the computation. 

Increased computation leads to high latency of detection and diagnosis impacting the 

real-time nature of these operations. Today’s distributed systems operate at a very high 

data rate; any delay in detecting failure can cause catastrophic effects [113]. The 

distributed systems have a large number of participating entities leading to large states 

which increase exponentially with increasing number of entities. For a stateful system, 

tracking a protocol entity’s state can be difficult in such circumstances because of 

increased computation causing the detection (or diagnosis) system to break. This is 

commonly known as State space explosion. Because of state space explosion, the 

detection system fails to scale with increasing number of entities.  

In general, the fault tolerance system does not have perfect observability of the 

application system. For one, the internal state is not observable and in the best case, only 

the part of the state that is deducible from the external messages is available to the fault 

tolerance system. Additionally, the fault tolerance system is typically placed in the 

network vicinity of the application entities rather than co-hosting the two due to the 

performance impact on the application. This further hampers observability due to the 

nature of the communication medium (loss, delay, and jitter) and the distributed nature of 

the two systems (such as, non synchronized clocks). Resource constraints can further 

limit the observability of a detection and diagnosis framework. Thus, detection and 

diagnosis have to be provided to today’s high throughput distributed systems under 

imperfect observability.   

 

1.2. Design Goals and State of the Art 
 

The solution for developing a detection system should foremost address the challenges 

mentioned previously. Because it is near impossible to obtain access to the internals of 
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the system, the detection system should be oblivious to the protocol internals. The 

protocol participants are treated as black boxes and their internal state transitions should 

be invisible to the detection system. This requirement can also be restated as being non-

intrusive to the underlying protocol. A non-intrusive methodology does not subject the 

verified protocol to additional tests for the purpose of providing detection or diagnosis. 

The fault tolerance system should be generic and applicable to a large class of distributed 

protocols. Any new proposed framework should address scalability. It should be capable 

of scaling to a large number of protocol entities.  Further it should not be a performance 

bottleneck to the underlying protocol. The two metrics of primary interest for a detection 

system are accuracy (and the related metric of precision) and latency. Accuracy of 

detection is given by 1- missed alarms. The latency of a detection system is the overall 

processing time taken to verify the correctness of the application protocol.   

In a fault tolerant system, detection is logically followed by diagnosis.  Because we 

would like to build a common framework for detection and diagnosis, several design 

goals of detection are also applicable to diagnosis. For example: black-box and non-

intrusive diagnosis. The diagnosis approach should consider a realistic model with 

imperfect observability and imperfect diagnostic tests. The diagnosis should not rely on 

any a priori dependency model as input obtained through instrumentation of application 

or expert knowledge. The diagnosis protocol should address error propagation between 

the components of the application, with no artificial assumptions on the length of the 

error propagation chain.  

Previous approaches of detection in distributed systems have varied from heartbeats, 

to watchdog [120]-[122]. There is previous work [123][124] that has approached the 

problem of detection and diagnosis in distributed applications modeled as communicating 

finite state machines. The designs have looked at a restricted set of errors (such as, 

livelocks) or depended on alerts from the PEs themselves. A detection approach using 

event graphs is proposed in [125], where the only property being verified is whether the 

number of usages of a resource, executions of a critical section, or some other event 

globally lies within an acceptable range. These approaches have focused on accuracy of 

fault detection and not scalability. 
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There has been considerable work in the area of diagnosis of embedded systems, 

particularly in automotive electronic systems. In [127], the authors target the detection 

and shut down of faulty actuators in embedded distributed systems employed in 

automotives.  This class of work ([116][127]) focuses on making best use of constrained 

resources, such as processing power and communication bandwidth, while achieving real 

time functionality. There are several other offline tools that aid diagnosis, such as tools 

for data slicing [117], backtracking[118], and deterministic replay [119], but they all 

require manual effort in actually diagnosing the faulty components. Several existing 

diagnosis approaches are based on some knowledge about the interaction between the 

application entities like Dependency Graphs [111]. However accuracy of such interaction 

models is questionable. Diagnostic tests employed by several approaches (such as 

[98][111]) are not perfect and therefore cannot deterministically indict a component. 

Finally, several parameters of the environment are not known deterministically and have 

to be estimated at runtime. These include the ability of a component to stop the cascade 

of error propagation (error masking ability) and the unreliable links within the 

application components as well as the links between the application and the diagnosis 

module.      

 

 

1.3. Solution Approach: Monitor System 
 

In this thesis, we present Monitor architecture for detection and diagnosis of failures 

in distributed systems. The proposed design segments the overall system into an observer 

or a Monitor system and an observed or a payload system. The Monitor system comprises 

multiple Monitors and the payload system comprises potentially a large number of 

protocol entities (PEs). The Monitors are said to verify the PEs. The Monitors are 

designed to observe the external messages that are exchanged between the PEs, but none 

of the internal state transitions of the PEs. The Monitors use the observed messages to 

deduce a runtime state transition diagram (STD) executed by the PEs. Next, pre-specified 

rules in a rulebase are used to verify correctness of the behavior based on the reduced 
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STD. The rules can be either derived from the protocol specification or specified by the 

system administrator as QoS requirements. The system provides a rich syntax for the rule 

specifications, categorized into combinatorial (valid for the entire length of system 

operation except for transients) and temporal rules (valid only for specific times in the 

protocol operation) and optimized matching algorithms for each class of rules. The large 

part of the Monitor is generic, i.e., not hard wired to a specific application, and it is the 

specification of the rules in the rule base that makes a Monitor deployment application 

specific.  

Monitor framework is divided into a hierarchy of Local, Intermediate and Global 

Monitors to achieve scalability. Local Monitors filter the local interactions and pass this 

filtered information to the Intermediate Monitors. In well-designed distributed protocols 

the bulk of interactions are local thus providing significant local filtering of messages. 

Intermediate Monitors verify the interactions between the local domains and the Global 

Monitor verifies the overall global correctness of the protocol. This aids in the scalability 

of the Monitor framework.   

The Monitor is designed to meet a set of design requirements. First, the Monitor 

should not become a performance bottleneck for the payload system. This is achieved by 

making the Monitor’s operation asynchronous to the payload system’s operation and 

removing any requirement for co-locating the Monitors with the PEs. The protocol 

entities are not exercised with additional tests for either detection or diagnosis since that 

would make the Monitor system more invasive to the application protocol. Second, the 

Monitor should be scalable to a system with thousands of verifiable PEs. The design of 

the Monitor components, the hierarchical Monitor structure, and the fast rule matching 

algorithms help achieving the scalability goal. A sampling algorithm which samples 

incoming messages based on the rate of packets increases the Monitor’s scalability to a 

large number of protocol entities or alternately, a higher message rate from the protocol 

entities. Third, the Monitor should be applicable to a large class of applications with 

minimal effort in moving from one application to another. To achieve this goal, the 

Monitor architecture is kept application neutral and the rulebase, specifiable in an 

intuitive formalism, is used for detection and diagnosis of failures in different 
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applications. Finally, the Monitor should have a low latency of detection and diagnosis. 

This is critical since the Monitor functions asynchronously to the application and a high 

latency will make any subsequent containment or recovery action complicated. This is 

achieved by the same design features that support scalability.  

The Monitor employs a stateful model for rule matching, i.e., it preserves state across 

messages. The Monitor also maintains a reduced state transition diagram (STD) for every 

observed PE comprising only the externally visible state transitions. Reduced state 

transition diagrams can be obtained through two methods of reduction: Reducing 

invisible states and 2) Reducing ruleless states. Invisible states consist of the states whose 

incoming transitions are not visible to the Monitor. This could be because of firewall or 

relative placement of the Monitor. Ruleless states compose of states which do not have 

any rules to match in the rulebase. Existing methods of state reduction such as partial 

order reduction [92] or symbolic state space reduction [93][94] only provide a reduction 

of the non-reachable states. Partial order methods exploit interleaving of concurrent 

events while state space exploration techniques calculate the possible reachable states. 

Authors in [95] provide a hybrid approach using the underlying benefits of both 

approaches. In contrast, we provide the system administrator the flexibility to choose the 

states which he would like to verify by providing rules only for the states needing 

verification. The ruleless states will be automatically removed by the state reduction 

process. The reduction mechanisms are proved to have no effect on the detection or 

diagnosing capability of the Monitor.  

In developing the diagnosis capabilities of the Monitor framework, we maintain the 

non-intrusive semantics. As previously mentioned in the design goals, the PEs are not 

exercised with any additional tests. Instead state that has already been deduced by the 

Monitors during normal operation through the observed external messages is used for the 

diagnostic process. Using already existing state also prevents any performance bottleneck 

on the underlying protocol possible because of additional tests. The Monitor performing 

diagnosis maintains a causal graph which maintains the causal relationship between the 

application components interaction. An edge in the causal graph is created when there is 

a message exchange between two protocol entities which indicates a possible path for 



 

 

9

error propagation.  

An initial step toward diagnosis is made via the deterministic diagnosis approach. 

Here we assume that the Monitor has perfect observability and the diagnostic tests used 

by the Monitor are accurate. In reality however, messages may be dropped and diagnostic 

tests may be inaccurate. Therefore, we extend it to come up with a probabilistic approach 

in which the Monitor makes a probabilistic determination of the entities that may have 

initiated the propagation of errors. Our probabilistic solution rests on three basic 

techniques. First, the observed interaction between the components is used to build a 

causal dependency structure between the components. Second, when a failure is detected, 

the causal structure is traversed (till a well-defined bound) and each component is tested 

using diagnostic tests. Third, runtime observations are used to estimate and continually 

refine the estimates of parameters that bear on the possibility of error propagation, such 

as lossiness of links and error masking capabilities. We also show that the diagnosis 

protocol is optimal amongst its class of diagnosis algorithms. The classes are defined on 

the basis of the amount of information an algorithm needs to perform diagnosis.   

We extend the Monitor framework to incorporate a sampling approach which adjusts 

the rate of messages to be verified by sampling the incoming stream of messages from 

the application entities. The adjustment is such that the breakdown in the Monitor 

capacity is avoided. The cost of processing each message increases and the accuracy 

decreases because the application state is no longer accurately known at the Monitor and 

instead rules pertaining to all of the possible states have to be matched. However, the 

overall detection cost is reduced due to the lower rate of messages processed. We show 

that even with sampling, the Monitor is able to provide stateful detection without 

significant degradation in accuracy. 

The Monitor system is implemented and deployed across the Purdue wide area 

network. Test bed experiments using reliable multicast protocol (TRAM [71]) are 

performed to demonstrate the detection and diagnosis of the Monitor. TRAM is a tree 

based reliable multicast protocol. It has a single sender which multicasts the data to the 

receivers and the protocol guarantees all receivers receive an uninterrupted stream. Some 

receivers volunteer for local repair of lost packets and are called Repair heads. The 
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performance of detection and diagnosis are individually evaluated by measuring the 

accuracy and the latency. Faults are injected for measuring the detection and diagnosis 

capabilities of the Monitor. The performance is evaluated under varying data rate, 

number of receivers, size of rulebase, and thread pool size. 

Diagnosis experiments are also performed on an e-commerce system. The e-commerce 

system consists of a JBoss application server hosting a PetStore J2EE application. 

Monitor is also compared with Pinpoint, an existing state of the art approach for 

performing diagnosis in distributed systems. Pinpoint uses a dependency matrix of user 

transactions on the system components. It uses clustering to aggregate the components on 

which failed requests depend on with the underlying model that components which 

contribute to failures are likely to cluster with the failures. Monitor outperforms Pinpoint 

by achieving higher accuracy for the same precision values.  

Further, to illustrate the efficacy of the sampling approach real test bed experiments 

are performed across Purdue’s Network. The scalability of the Monitor framework is 

tested in a high throughput environment. We perform controlled experiments via 

emulating the TRAM protocol locally in a single cluster. The performance of the 

Monitor’s sampling approach is tested against high rate stream of TRAM traffic. The 

sampling approach helps in achieving higher accuracy of detection at a higher incoming 

packet rate than possible with the baseline Monitor.  

 

1.4. Summary of Contributions  
 

Summarizing, the primary contributions of this thesis are. 
− We proposed a generic hierarchical framework the Monitor, to provide non-intrusive 

detection and diagnosis in distributed systems. The Monitor system assumes no 
access to the internals of the distributed protocol.  

− We developed a stateful detection mechanism that can scale to a high data rate of the 
application protocol.  

− We develop a black-box diagnosis protocol to perform diagnosis of faults in 
distributed systems. The approach can account for uncertainties of the deployment 
environment as well as imperfect knowledge of the characteristic of the protocol 
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entities. 
− We provide proof of the efficacy and correction of two state reduction methods 

proposed to address the problem of state space explosion.  
− The scalability is achieved in the Monitor framework by incorporating a sampling 

approach which reduced the overall workload at the Monitor for a given message rate 
of the application.  

 

1.5. Thesis Outline 
 

The thesis is organized as follows. Chapter 2 describes the Monitor Detection 

approach. Chapter 3 and Chapter 4 describe the deterministic and probabilistic diagnosis 

respectively. In Chapter 5 we describe state reduction mechanisms to provide flexibility 

of verifying only chosen states. We compare the Monitor’s diagnosis approach to 

Pinpoint in Chapter 6. We improve the scalability of the Monitor framework through the 

sampling approach in Chapter 7. Related research and conclusions are presented in 

Chapter 8 and Chapter 9 respectively.  
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2. MONITOR DETECTION 

A first step in providing autonomic management is to provide detection of problems. 

The Monitor provides detection of problems in the underlying protocol through 

verification of messages, which are then diagnosed.   

 

2.1. Monitor Architecture 
 

The Monitor architecture consists of several modules classified according to their 

functional roles. These modules include, in order of their invocation, the Data Capturer, 

the State Maintainer, the Rule Matching Engine, the Decision Maker, the Interaction 

Component, and the Rule Classifier. Figure 2.1 gives a pictorial representation of the 

Monitor components.  

The details of the structural and functional roles of the components have been 

described in [40] and only a basic description is given here. The Data Capturer is 

responsible for ‘capturing’ the messages exchanged between the protocol participants 

over the network, and passing it on for further processing by the Monitor. Message 

capturing can be through passive monitoring of traffic or using active forwarding support 

from the protocol entities. Monitor may be placed in the same domain (for e.g. LAN) as 

the protocol entities or in a completely different domain, with PEs providing active 

forwarding of messages. Port mirroring on switches and routers can also achieve 

forwarding of messages to the Monitor without PE cooperation.  
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Figure 2.1: Monitor architecture with process flow and information flow among multiple 

components 
 

The State Maintainer contains static information of the reduced state transition 

diagrams for each observed entity and dynamic information of the current state of each. 

The combination of current state and incoming event determines the set of rules to be 

matched. The Matching Engine is invoked by the state maintainer when an incoming 

packet triggers a rule that has to be matched. This component is highly optimized for 

speed to reduce the detection latency. It uses separate matching algorithms for temporal 

and combinatorial rules. Once the matching engine finishes its rule matching, the 

Decision Maker combines the results of rule matching for the different rules in the 

rulebase and raises an appropriate flag in case of error. The Interaction Component deals 

with communication between monitors at different levels in the hierarchical approach. 

 

2.2. Fault Model 
 

We follow the classical definition of faults being underlying defects that are triggered 

to become errors and some errors causing end-user visible failures. Errors can propagate 

from one PE to another through message exchanges and finally manifest as a detected 
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failure. We assume that protocol entities (PEs) can fail arbitrarily, exhibiting Byzantine 

failures that are observable in external messages. These failures could be caused due to 

various reasons, e.g., incorrect deployment, software bug, security vulnerability, or 

performance problems.  

In an abstract sense, the Monitor is capable of detecting any fault in a PE that 

manifests itself as a deviation from expected message exchange with other PEs in a 

distributed application. As introduced above, the Monitor uses a rulebase modeling 

expected behavior from each PE. The rulebase may include correctness properties – 

intrinsic to the PE itself (such as, a 404 error code should be returned by a web server 

when a non-existent page is requested), or to the specific deployment of the PE (such as, 

no “post” operations are allowed on the web server); and QoS properties (such as, a 

minimum and a maximum transaction rate of 20 kbps and 40 kbps respectively are 

expected from the multicast system). At a more concrete level, the error has to pertain to 

an error in a state in the reduced state transition diagram deduced by the Monitor and has 

to violate a rule in the rule base. The Monitor cannot observe any internal state transitions 

within a PE and it cannot exercise a PE with additional tests for detection. Therefore, the 

only faults that can be detected are those that are manifested at the external interface of 

the PE and in the state deduced by the Monitor. It may appear that all the checking 

performed at the Monitors can be moved into the PEs as application specific checks. 

However, the specification as well as the runtime checking have to be done in an 

application intrusive, ad hoc manner and would not be possible for black-box 

applications. 

Monitor in its current form, does not handle failures due to collusion amongst PEs. This 

can be best explained using the following example. Consider entities A-B, representing 2 PEs 

of some distributed protocol. Assume a Monitor M is verifying the operation of the 

distributed protocol and also verifying the communication between A-B. If A and B collude 

and form an outside channel to communicate, this makes the communication un-observable 

by M. Because of the in-ability to see the communication, M will not be able to perform any 

verification and thus would not be accurate in this kind of a failure. Therefore, it would be 

inaccurate to consider the Monitor suitable for detecting security attacks in general because 
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removing observability of the attack steps is often an intrinsic part of security attacks, such as 

in covert timing channels [128][129]. In essence the Monitor would be able to verify any 

externally observable behavior as long as it is captured in the rulebase.  

  

2.3. Structure of the Rule Base 

 

The rules can be obtained from two sources – formal protocol specification and 

deployment QoS conditions required by the administrator. The first class of rules in our 

case are derived from a complete state transition diagram (STD) specification of the 

protocol while the second class is specified by us based on the application requirements.  
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Figure 2.2: State Transition Diagram for a receiver in TRAM protocol. 

 

The running protocol we use as example is the TRAM protocol ([4][5]) for reliable 

multicast of data from a single sender to multiple receivers through intermediate routing 

nodes called repair head (RH). In TRAM, the receiver acks correct data packets and 

sends Nacks for missing data packets to the RH above. The receiver maintains a counter 

for the number of Nacks sent and if it crosses a threshold, receiver begins to re-join a 
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different RH assuming the old RH is not functioning any more. The STD in Figure 2.2 

shows an example STD for a receiver receiving data from the sender/RH.  Rules can be 

derived from the STD using the states, events, state variables and time of transitions. 

Each state has a set of state variables. Events may cause transitions between states. In our 

context, events are message sends and receives. It is however important to note that not 

all events cause state transitions, e.g., in a simple sender receiver protocol where a 

timeout occurs state changes from S2 to S3 but subsequent timeouts only increment a state 

variable in the state S3.  In Figure 2.2, the receiver moves from state S2 to state S3 if there 

is a timeout and no packet is received. Hence a rule can be derived if for all t ∈ (ti, ti+a), 

S2 Λ ¬P ⇒ ¬S2. Here predicate P implies packet receive. Also if S4 is true then S0 will be 

true at some time interval ∆2 in future. Similarly if the number of Nacks is greater than 

Nmax, then we must see a head bind message: Nmax ≤ Nack ⇒ HBind. Hence rules can be 

derived from the STD specifications. The system administrator may add rules specifying 

QoS conditions that the application should meet, e.g., a minimum data rate that must be 

received at each receiver. In addition, the system administrator may augment the rule 

base with additional rules apart from the derived rules to catch manifestations of any 

protocol vulnerability. 

We have a formally defined syntax for rules in the system. The syntax represents the 

expressibility of the system and by extension, its ability to detect different classes of 

failures. The syntax also determines the speed with which rule matching can be 

performed. The rules defined in the system could be derived from the specifications of 

the protocol or from the QoS requirements on the application. Further, the rules defined 

are anomaly based (i.e., specify acceptable state transitions), and not misuse based. A 

primary reason for the choice is that the space of misuse based rules could be very large. 

Combinatorial rules are expected to be valid for the entire period of execution of the 

system, except for transient periods of protocol instability. Details on combinatorial rules 

and its matching process can be found in [40].  

 

2.3.1. Temporal Rules  
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We studied the properties of the rules for two applications – TRAM and SIP (Session 

Initiation Protocol), a signaling protocol used for exchanging control messages used to 

manage interactive multimedia sessions. After the study, we came up with following 

classification for the temporal rules. 

− Type I: (ST=Sp) = true for T∈(tN, tN+k) ⇒ (ST=Sq) = true for T∈(tI, tI+b), where tI > 

tN, and k, b≥ 0. 

The above rule represents the fact that if for some time interval k starting at tN, a node 

is in state Sp i.e., the state predicate ST=Sp is true, then it will cause the system to be in 

another state Sq for some time b starting from time tI. The time tN  is when state changes to 

Sp, irrespective of which event causes the transition. This rule is defined completely in 

terms of states of the entity and no events or state variable.  

− Type II: St is the state predicate of an object at time t : St ≠ St+∆, if event Ei takes 

place at t, 

the state St will not remain constant for ∆ time units from t.  

− Type III: L ≤ |V(t)| ≤ U , t∈( ti,ti+k), ti is the time of event Ei, where Ei occurs in state 

Si 

The state variable V in a particular state Si will have its count bounded by L and U over a 

time window of k starting at time ti when event Ei occurs.  

− Type IV: L ≤ |V(t)| ≤ U, t∈(ti,ti +k), ti is the time of event Ei ⇒ L′ ≤ |B(q)| ≤ U′ , 

q∈(tn,tn+b), tn > ti. 

If a state variable V in a particular state Si has a bounded count from above and below 

over a time window k, it will cause another state variable Bq to be bounded for a time 

window b  starting from tn. This rule is in fact the master rule and the three previous rule 

types are special cases of it. But we still need the first three rule types because matching 

this class of rule entails matching more variables, which increases the latency of 

detection.  

For Temporal rule matching we use two threads namely Variable Copier and Rule 

Matching. The Variable Copier thread copies the values of the relevant state variables 

into the Rule Object that is to be examined while the Rule Matcher thread performs the 
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actual matching. Since the time between the capture of the state variable and the time 

when the rule is matched can be arbitrarily far apart in time, dependent on the 

specification in the rule, this mechanism ensures that a thread is not blocked for this 

arbitrary time. 

 

2.4. Multi-level Monitor Architecture 

 

A single Monitor approach has several drawbacks. It constitutes a single point of 

failure, a large number of protocol participants might overwhelm the Monitor increasing 

the latency of detection, it is not scalable, and an effort to make it scalable by observing 

partial views of the system by monitoring only select nodes may lead to reduced 

coverage. Therefore, in our system, we incorporate the idea of using a hierarchy of 

Monitors working in conjunction at multiple levels to detect failures. The entire structure 

is divided into Local, Intermediate, and Global Monitors. The Intermediate Monitor 

gathers information from several local Monitors, each verifying a set of PEs. In addition, 

the Intermediate Monitor may also be monitoring PEs directly. The Global Monitor has a 

global view of the protocol. Its functionality does not involve matching many rules as 

filtering is done at the local and the intermediate levels. In well designed protocols, most 

interaction among protocol participants is local, thus most messages are seen only at the 

Local Monitor. The intuition is that the large fraction of behavior in application elements 

can be verified locally, while the interactions that span multiple clusters have to be 

verified using multiple Local Monitors and Intermediate Monitor(s). Due to its 

simplicity, it can be reasonably assumed that the GM’s failure mode is restricted to crash 

failures. Thus, using a suitable degree of replication of the GM, the GM cluster can be 

looked upon as fault free, e.g., a standby sparing approach of the GM replicas.  

Each Monitor has the same architecture as described in Section 2.1 with the same 

rulebase. The rulebase is automatically partitioned into three classes – one which is not 

relevant to the Monitor, the second which is relevant to the Monitor alone and does not 

need to be observed by any other Monitor, and the third which is relevant to the Monitor 

plus some higher level Monitors. 
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The event corresponding to the second class of rule does not need to be forwarded up 

the Monitor chain and constitutes filtering by a Monitor.  For an event corresponding to 

the third class of rules, the Monitor may optionally perform some computation on the 

event before forwarding it to a higher level Monitor, such as aggregation using counting.  

 
C: Clusters; LM: Local Monitor; IM: Intermediate Monitor; GM: Global Monitor 

Figure 2.3: Example topology of local, intermediate, and Global Monitor. 
 

2.5. Rule Classification 

 
The rule classification algorithm makes administering a hierarchical Monitor system 

relatively simple by allowing the system administrator to specify a single identical 

rulebase to all the Monitors. Knowing the set of PEs to verify and the compressed state 

transition diagram for each, the Monitor reasons about which rules are relevant to it. The 

rules are specified in terms of events and states. The state name space is unique to each 

entity being monitored. A message send or receive event is called an Elementary Event. 

An event may also be generated by processing one or a set of elementary events, and 

forwarded as a new message for rule matching at a higher level Monitor. Such an event is 

called a Derived Event. We will refer to a state as local to a Monitor if it is the state of an 

entity it verifies and an event or variable as local to a Monitor if it is for a local state. 

 

2.6. Rule Categories 

 

Given the rules in the entire rulebase, they are classified into the following categories 
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with respect to a given Monitor – Local, Global, and Bypass. 

Each Monitor has a domain of PEs to verify and all messages exchanged within the 

domain are visible to the Monitor. Inter domain message exchanges cannot be verified 

locally by the local Monitor but require support from other Monitors.  A rule not being 

matched is called flagging of a rule.  

1 Local Rule. A local rule is matched at the current Monitor only as it consists of 

states/events/state varables which pertain to entities solely in the local monitoring domain 

and does not require matching at any other Monitor.  

2 Global Rule. A global rule generates event(s) to be forwarded for subsequent 

matching at other Monitors. This kind of rule is further categorized into the following 

sub-classes. 

2.1 Forward only (FO). The current(local) Monitor simply forwards the event 

corresponding to this rule without doing any processing or checking. For example, 

consider a rule “E11 ∧ E21” where E11 corresponds to an event which happens at a PE 

within the monitoring domain and E21 is an event outside the domain of the current 

monitor. The rule indicates that both events E11 and E21 must have occurred for correct 

behavior. 

2.2 Process, don’t flag, and forward (PNF). The current Monitor processes the rule 

which corresponds to states/events/state variable local to the Monitor. It generates a new 

event based on the processing and forwards the new event to the Monitor higher up in the 

hierarchy to perform the matching. This is done because the rule consists of both local 

and non local states/events/state variables and a local Monitor can only process the ones 

which are local. For example, rule R4 states: 0 < E11 < 10 for 5000 ms in state S1 ⇒ 10 

< E21 < 20 for a time window of 1000 ms. This rule states that if the event count for 

event E11 is between 0-10 in a state S1, then the event count of event E21 will be 

between 10-20. Here E11 and S1 are local and can be processed locally but E21 is non-

local and cannot be processed. So processed information is generated that the 

precondition is true and sent to a higher level Monitor which can perform matching.  

2.3  Process, flag, and forward (PFF). This category is identical to category (ii) above, 

except that in case if there is a mismatch with the rule, the Monitor flags an alarm. For 
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example, a conjunctive rule R3 with L1 < |E1| < U1, L2 < |E2| < U2, …, LG < |EG| < UG, 

where E1 is a local event for which it generates the derived event EG. All the other events 

are non-local. 

3 Bypass. These rules have states and events that are all non-local to the Monitor. Such 

a rule is not relevant for the Monitor and hence is removed from the rulebase for the 

current Monitor. 

  

2.7. Monitor Interactions 

 

The distributed protocols deployed on a large scale (such as, over the internet) often 

go through periodic changes due to several reasons, such as version change, or 

participant changes, such as joins, leaves, or changes of properties of participants. 

Deploying a static Monitor in hierarchical fashion would be inefficient or inaccurate as 

the protocols runs for longer period of time. For example, a component may be verified 

by a Monitor that is placed far apart (source of inefficiency) or an entity may be 

unchecked due to failures of some Monitors (source of missed alarms, a form of 

inaccuracy). The Monitor interactions aim to handle these dynamic behaviors in the 

system. Each of the supported Monitor interactions is described below. We have already 

discussed one interaction in the discussion of rule classification (Section 0), namely, 

message processing and filtering by a child Monitor before forwarding to the parent 

Monitor. The automatic rule classification algorithm complements the Monitor 

interactions and needs to be executed after any change of the assignment of PEs to a 

Monitor. 

1. Heartbeat:  Each parent Monitor sends a periodic heartbeat to each of its child 

Monitors. We employ a smart heartbeat where the liveness of the Monitor is verified by 

receipt of a packet from it. A parent Monitor sends a heartbeat to the child Monitor if it 

has not received a packet for the last θ seconds. The parent Monitor must receive the 

HeartBeatReply within Ф seconds of sending the request, where Ф is a constant integral 

factor times the RTT. The time θ is determined by the rule specification and the RTT. 

The rate of packets sent by the child Monitors to the parent Monitor according to the 
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global rules depends on the wait time specified in these rules (D) and the rate of 

instantiation of these rules (R). For a rule i, the minimum time taken for sending a packet 

from the child to the parent Ti = (1/Ri + Di + c), where c is a constant incorporating rule 

matching latency and network delays. The median Ti over all the rules at the child 

Monitor is denoted by Tmed. Consider θ’ as max{ Ф, Tmed }. This can lead to high 

detection latencies if  Tmed is not bounded. So, we consider a time bound θub which is 

the maximum value θ can take. Hence, θ is min{θ’, θub}. In case no reply is sent by the 

child Monitor within Ф seconds, then after θ seconds the parent Monitor sends another 

HeartBeat message. If the parent Monitor fails to receive the HeartBeatReply repeatedly 

(three times in our implementation) then that child Monitor is declared as failed.    

2. Load Balancing :  Section 2.12 shows that as the rate of packets input to a Monitor 

goes above a certain rate, say η, then the rule matching latency rises exponentially. We 

call this point where the Monitor gets over-loaded the neck. We define a Monitor to be 

over-loaded when it is operating in a region beyond η and to be under-loaded when it is 

operating below η/2. So the desirable range of operation, called the Target Load Range 

(TLR), is between η/2 and η. Since in a dynamic scenario, the data rate of the PEs may 

change, it causes varying load at the Monitor. Hence load balancing is required to ensure 

that each Monitor operates in the TLR. Due to the hierarchical Monitor structure,  the 

parent Monitor is best placed to make decisions about load balancing amongst its child 

Monitors. In order to enable load balancing, each Monitor maintains a sliding window 

based measure of the rule matching rate. In case it exceeds η or falls below η/2 the 

Monitor sends an Overload or an Underload packet to its parent Monitor.  If a Monitor is 

operating at a load λ and λ < η/2, then it is an under-loaded Monitor which can increase 

its load by f.(η/2-λ), which is called the residual capacity, where 1 ≤ f ≤ (η-λ)/(η/2-λ). 

The upper bound represents the maximum load before the latency of matching exceeds 

the neck. Similarly if λ> η, the Monitor needs to reduce its capacity by f*(λ - η), called 

the overload capacity, where 1 ≤ f ≤ (λ-η/2)/(λ-η). The number of additional PEs which a 

Monitor can accommodate or which needs to be removed is determined by the residual 

capacity or overload capacity, respectively. Each Overload() packet contains the list of 

nodes which the Monitor feels should be removed from its domain. Each Underload() 
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packet contains the additional number of rule matchings which a Monitor can 

accommodate. Each Monitor records the rate of rules and the corresponding latency in 

the Rule Latency Table (RLT), which is maintained as a sliding window in time. A parent 

Monitor on receiving an Underload or an Overload packet, initiates redistribution of load 

till the Monitors reach the TLR. The overload in a child Monitor is shared by other child 

Monitors with residual capacities in the ratio of the residual capacity for a one-to-many 

mapping between overloaded Monitors to under-loaded Monitors. A similar 

proportionate division scheme is followed for the many-to-one mapping from the 

overloaded to the under-loaded Monitors. If there is no such Monitor with residual 

capacity, the parent Monitor expresses need through the Need packet and attempts to add 

a new Monitor through the process outlined in interaction 4 described below. The 

removal of nodes from the child Monitor is based on a heuristic which removes the PEs 

in the decreasing order of load each is generating, ensuring a that only a minimum 

number of entities are chosen. The heuristic can also consider geographical proximity to 

generate a geographically optimal configuration over time. To avoid the expensive load 

rebalancing due to transients, the parent Monitor initiates it only after aggregation of 

Underload or Overload packets. We describe the procedure for shuffling nodes later in 

interaction 5. 

3. Addition of New PEs:  If a new PE to be monitored comes up, the system 

administrator is responsible for selecting the appropriate Monitor and entering the 

information ⎯ the rulebase and the STD ⎯  into the Monitor. This is thus a manual 

bootstrap process. However, if an incorrect or inefficient allocation is done, the load 

balancing mechanisms can correct the situation. 

4. Addition of a New Monitor:  The architecture allows for addition of a Monitor in 

two ways, namely, Controlled and Self-Evolving. In the Controlled case, the 

administrator specifies the parent Monitor for this new Monitor. The new Monitor (NM) 

sends a join message to the parent Monitor (PM) to which the PM replies with an accept 

message if it wishes to accept the NM and a reject message otherwise. Condition for 

acceptance is if one or more of the current child Monitors is overloaded. Condition for 

rejection is if the PM has difficulty in accessing the subnet where the NM is placed, 
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possibly due to large network distance. The administrator has to specify a new PM if 

such a situation arises. In the Self-Evolving case, NM broadcasts its call for a parent 

Monitor through a beacon packet with increasing values of TTL. When any Monitor, say 

SM (for starting Monitor), sees the beacon message, it sends a confirm message to NM to 

prevent flooding of the beacon message. The NM then suspends its search, and initiates 

an advertisement window length of wait for it to be joined to the Monitor hierarchy. The 

SM sends an advertisement message to its parent and child Monitors, thereby indicating 

there is a new Monitor which wishes to join the Monitor hierarchy. This allows other 

Monitors a fair chance to adopt NM. Any intermediate Monitor sends the advertisement 

on all the links except the incoming link. Thus, if it received the packet from its parent 

Monitor, it sends it down to the child Monitor and vice-versa. All the IMs that have the 

need for a new Monitor, due to one or more overloaded child Monitors, send a need 

packet to NM indicating the number of PEs to be transferred. NM collects the need 

packets over the advertisement window and then sends a request to the Monitor that it 

wants to join, say JM (for Joining Monitor). The decision to join a particular Monitor is 

based on a weighted mean of factors which include the proximity, how overloaded the 

requesting Monitor is, and how much load NM can handle. On receiving the request 

packet, IM sends an accept or a reject to the new Monitor.  

5. Transfer of PEs: This procedure is required to transfer PEs from one Monitor to a 

different sibling Monitor.  Say a  is the parent Monitor which is carrying out the transfer 

of nodes from Monitor A to Monitor B. IM a will send a transferRequest packet with the 

IP address of the PEs to be transferred to Monitor B. The Monitor B snoops over the 

LAN to ensure that it can actually receive the packets for the PEs which are being 

transferred. Monitor B sends an acceptTransfer packet to the IM a if it accepts the 

assigned additional load. IM a  then transfers the STD for the nodes to Monitor B. 

Monitor B sends a rejectTransfer message if it feels the load transferred is excessive or it 

is unable to see messages from the transferred PEs. IM a then chooses another Monitor 

to transfer the PEs.  Note that the global rulebase is stored in all the Monitors and B only 

needs to run the rule classification algorithm after the transfer. 
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2.8. Formal Property  

Theorem:  At all points during the operation of the protocol except for a time duration 

ranging from 6 Ф to 3(Tmax  + Ф), every PE is monitored by at least one Monitor. 

Proof:  

1. Fault Free Scenario :  Each PE p is a leaf node of a heterogeneous tree, in which all 

leaf nodes are PEs and non-leaf nodes are Monitors. Each leaf node in a tree has a non-

empty set of ancestors. A protocol participant is monitored by all the ancestor nodes and 

therefore the property holds.  

2. Load Balancing: Let transfer of node p happen from Monitor A to Monitor B. Let PAB 

be the parent of both these monitors. When the transfer is complete from A to B, the leaf 

node p obtains a second parent B for a transient period of time till PAB sends a 

endMonitoring message to Monitor A. Hence p has at least one parent throughout.  

3. Monitor Crash:  Monitor crash is detected by three successive failures to receive 

HeartBeatReply packets. Let p be a PE verified by a local monitor M that crashes. Let T 

be the time for detection of monitor crash. Recollect that a parent Monitor sends a 

heartbeat to the child Monitor if it has not received a packet for the last θ seconds and Ф 

is the time from sending the request that the parent Monitor should get a reply. θ ≤ θub. 

Therefore, T ≤ 3(θub + Ф). The minimum value that θ can take is Ф, as θ’ is max{ Ф, Tmed 

}. Under this case, the wait time for each round is Ф+θ = 2Ф and since failure is declared 

after three timeouts, the total delay is 6Ф. Hence T ≥ 6Ф. During T, the path from the PE 

(leaf in the tree) to the GM (root of the tree) is broken, and p remains unmonitored. As 

soon as the crash of M is detected by its parent Monitor, it starts verifying the local rules 

as well. Assignment of another Monitor to verify p can be considered as a load balancing 

task and the property holds during the transitional period of load balancing as proved in 

case 1.  Hence the property holds during Monitor crash. 
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2.9. TRAM 
 

The detailed description of TRAM can be found in [4]. We provide an overview here 

and present details of the features relevant to the study. TRAM is distributed as a part of 

the Java Reliable Multicast Service (JRMS) by Sun Microsystems [71]. JRMS is a set of 

libraries and services for building multicast-aware applications. TRAM is designed for 

high scalability targeted towards multicasting streaming data from a single sender to a 

large number of receivers. TRAM ensures reliability by using a selective 

acknowledgement mechanism. An ack is sent in the form of an offset and a bit vector 

once every ack window (32 packets). It provides scalability by adopting a hierarchical 

tree-based repair mechanism. The receivers and the data source of a multicast session in 

TRAM interact with each other to dynamically form repair groups. These repair groups 

are linked together in a hierarchical manner to form a tree with the sender at the root of 

the tree. Figure 2.4 shows a typical TRAM repair tree. The nodes participating in TRAM 

play three roles, some nodes playing multiple roles – sender, receiver and repair head 

(RH). Every repair group has a receiver that functions as a group head; the rest function 

as group members which are said to be affiliated with their head. All members receive 

data multicast by the sender.  The group members report lost and successfully received 

messages to the group head using a selective acknowledgement mechanism. Every ack 

message contains a start message number indicating the first missing message, and a bit 

vector, with a 1 denoting a missing packet and a 0 denoting a received packet. If no 

packets are missing, the message number indicates all messages prior to and including 

this one has been received and the bit vector is of zero length. An ack message is sent 

after every ack window worth of packets has been received, or an ack interval timer goes 

off. The RHs cache every message sent by the sender and provide repair service for 

messages that are reported as lost by the members. The RH’s maintain a high and low 

water mark for monitoring cache occupancy. If the amount of buffer occupied by the 

packets goes beyond the high water mark, an attempt is made to purge the cache. Failure 

to do so is taken as an indication of congestion in the network.  The RHs aggregate acks 

from all its members and send an aggregate ack up to the sender to avoid the problem of 
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ack implosion, i.e., the situation in which the sender is overloaded with acks from every 

single receiver (and this can be a large number under the target systems for TRAM). The 

data rate sent out by the sender is bounded by maximum and minimum rates configured 

at the sender. Receivers that cannot keep up with the minimum data rate can be pruned 

from the repair tree. The TRAM protocol is also more challenging because of both 

unicast and multicast messages being exchanged amongst the entities. This makes the 

detection process of the Monitor to be competent enough to encompass both kinds of 

messages. 
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RH RH
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Figure 2.4: An example of TRAM deployment. 

 
Figure 2.4(a) shows a TRAM deployment with a sender, two levels of RHs and multiple 

receivers connected through links over which bi-directional data and ack messages flow. 

Two examples of repair groups are shown, one involving the sender and the three RHs at 

the first level, and the second showing a RH and its receivers. 

 
2.9.1. TRAM Implementation  

 
The TRAM code is multi-threaded. These threads are responsible for carrying out the group 

management functions in addition to basic sending and receiving of data packets. 

GroupMgmtThread is the main thread which is responsible for starting up TRAM, initiation of 
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the beacon messages by the sender and affiliation of the receivers to the senders or repair heads. 

The beacon messages are used to advertise the session and invite nodes to join the multicast 

session. This thread performs the task of sending periodic hello messages among the receivers 

and its head. Each receiver also maintains a backup list of heads which it can switch to if the 

current head resigns or fails. Once the data transmission phase starts, InputDispThread and 

OutputDispThread come into picture. OutputDispThread transmits the packets. InputdispThread 

gives the packet to all the listeners and hence, each entity calls its received packet method to get 

the desired packet.  The sender and the repair head’s sending functionality use HeadAck class to 

receive ack packets.  The receivers use MemberAck class to receive data packets and to send acks. 

Repair head uses MemberAck class, as it is a receiver for the sender above, to send cumulative 

acks. Figure 2.5 shows pictorially the threads or methods which are used for upstream and 

downstream communication in TRAM. 
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Figure 2.5: TRAM message processing (a) downstream with no errors, (b) upstream with 
no errors, (c) upstream with message, node or link errors 

 
In the case of errors, the downstream path is identical to the error free case. In the 

upstream path, the receiver sends nacks to the RH which transmits the requested packets; 

the RH adjusts the data rate and sends to the sender which finally adjusts the data rate.  

 

2.9.2. TRAM LAN Optimization 
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TRAM performs various Tree based optimizations to improve the scalability of its 

multicast system. The characteristic of an optimal tree varies depending upon how the 

receivers are organized and their relative placement. Tree optimizations are necessary to 

have local repair regions and avoid incurring high latency while recovering the lost 

packet from a higher level Repair Head. TRAM tries to form a repair head in every LAN 

so that local repairs are very fast. At the beginning all the receivers in a particular LAN 

are directly connected to the sender. If every receiver has RH flag enabled then each 

receiver is likely to become a repair head, which is not desirable. One of the receivers 

(randomly chosen) is picked as the repair head to serve that LAN for repair of lost 

packets.  

 
2.9.3. TRAM Flow Control 

 
TRAM incorporates a receiver based flow control mechanism. Receiver advertises a 

window of packet which determines the amount of packets it can accept. This receiver 

window is sent by each receiver to its parent repair head and so on up to the sender. The 

sender chooses the minimum window to determine the number of packets it needs to send 

next. This mechanism is different from sender based flow control mechanisms. This 

receiver based flow control allows the receivers to control the amount of new data they 

can accept.  

This however also can be a source of problem. A bug in one of the receivers can cause 

it to advertise a small window for packets. Also if a receiver is running on a machine 

with small buffer then this will cause it to advertise a small window. Since the sender 

chooses the minimum of all advertised windows from the receivers, it causes the whole 

TRAM tree to run at a slower rate because of a small window advertised by one receiver.  

 
 

 

 

2.10. Monitor Rulebase for TRAM  
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In our implementation, the recipient of a packet does active forwarding of the packet 

to the Local Monitor. The packet consists of 1316 bytes of payload, 14 bytes of TRAM 

header, and 10-18 bytes of variable header depending upon the packet type. The Monitor 

follows a reduced STD for each verified PE, which is manually input. The reduced STD 

should cover all the states and events in the rule base and can only depend on externally 

visible message exchanges. The rule base consists of anomaly-based rules governing the 

execution of the protocol at the TRAM receiver. In a rule specification, the first letter 

(T/C) specifies whether the rule is temporal or combinatorial in nature, while 

(R1/R2/R3/R4) indicates the sub-type of the rule in the temporal category as defined in 

Section 2.3. An example of Rule 3 is given by T R3 S2 E11 30 500 5000. The number of 

data packets observed during a time period of 5000 ms can be any number between 30 

and 500. Similarly a Rule 4 can be constructed as T R4 S2 E11 30 500 5000 S2 E9 1 8 

500 7000 i.e., if there are between 30 and 500 data packets in 5000 ms in given state, 

then the number of ACK packets should be between 1 and 8 from 500ms to 7000ms in 

the same state. The numbers are characteristic of the protocol and QoS as specified by the 

system owner. An extensive list of rules (with explanation) used in our experiments is 

provided in Appendix B.  

   

2.11. Experiments & Results 

 

The Monitor is implemented in Java to allow portability across heterogeneous 

machines. The Monitor is deployed across the Purdue campus-wide WAN.  We 

demonstrate the working of the Monitor architecture on TRAM and divide the 

experiments to quantify the performance and the coverage respectively.  

 

 

 

 

2.12. Performance Results 
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2.12.1. Experimental Setup 

 
The goal of these experiments is to quantify the performance of a single level Monitor. 

This can lead to insights about the desired load level for the Monitor. For these 

experiments, the performance of the Monitor is defined by its latency of rule matching. 

The performance is evaluated under varying data rate, number of receivers, size of 

rulebase, and thread pool size. Let us denote by δ the difference in time between when 

the packet comes into the Monitor and when the matching of the corresponding event 

against a rule in the rulebase completes, either signaling an alarm (in case of mismatch) 

or not.  Let us denote by ξ the waiting time specified in the rule, i.e., the time between the 

capture of the state variables and the rule matching. The latency of matching the rule is 

defined as δ-ξ. Note that ξ is subtracted from the total time since this is a function of the 

rule, which is determined by the characteristic of the payload system being verified and is 

not a reflection on the performance of the Monitor.  

The scalability experiments would ideally be conducted in the TRAM configuration 

on the campus-wide network. However, this cannot be carried out in a controlled setting 

with exclusive access to the machines. Also, the data rate at the higher end of the range 

we are interested in stressing the Monitor with (∼1.5 MBps) is much higher than the rate 

that can be stably sustained on the campus WAN (~40 kbps) as shown in our previous 

work [40]. Hence, a simple Packet Generator module is used, which emulates the 

receiver in TRAM. It sends 32 datapackets followed by an ack.  The standard TRAM 

packet size used is 1400 Bytes. The Packet Generator can be used to emulate multiple 

receivers being verified by the Monitor. The Monitor is deployed on an unloaded 

machine in the same network as the Packet Generator. The Packet Generator actively 

forwards packets to the Monitor for matching, which uses the input rulebase for the 

TRAM receiver. 

   

2.12.2. Scalability with Data Rate 
 

We evaluate the performance of the Monitor under increasing data rate for a single 
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receiver. Varying data rate is achieved by adjusting the interpacket delay 

deterministically in multiples of millisecond.  
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(a)         (b) 

Figure 2.6: (a)Variation of rule-matching latency with inter-packet delay at a receiver. (b) 
Microscopic view of the region of inter-packet delay between 7ms-8ms 

. 
We can see from Figure 2.6 that when the interpacket delay is small the latency of 

matching is high because the packets are coming in at higher data rate. As the interpacket 

delay increases beyond 7 ms, we see a sharp decrease in the latency because the degree 

of concurrency becomes lower than the parallelism available at the Monitor through its 

thread pool. The latency does not decrease to zero even as the interpacket delay decreases 

further because each rule matching has to go through a set of steps, such as mapping the 

packet to an event, searching rulebase for rules for an event, which takes a finite non-zero 

amount of time. For interpacket delay greater than 7 ms we see a flat curve leading to the 

conclusion that this is a desirable range of operation for the Monitor. We term the point 

of sharp increase as the neck and the region to the right of that point as the Target Load 

Range (TLR) (defined earlier in Section 2.7). To better characterize the rapid change 

between 7 ms and 8 ms, we perform another experiment by varying the data rate in 

smaller steps in this range. The result with increments of multiples of μs is shown in 

Figure 2.6 (b). This indicates the maximum data rate that can be handled by the single 

Monitor is 1.49 Mbps, corresponding to the inter-packet delay of 7.5 ms.   
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2.12.3. Latency with varying Rule Base 

 
We measure the effect of size of the rulebase on the latency of matching. We vary the 

rulebase size by replicating the identical rulebase, once, 5 times, and 10 times for the 

experimental results shown here.  
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Figure 2.7: Variation of Latency with Rulebase Size 

 

We see that latency curves for each rulebase size follow a similar horizontal trend 

with increasing inter-packet delay while the mean latency is higher for a larger rulebase 

size. The latency curve for a particular rulebase size is horizontal since we are operating 

in a region lower than the cutoff point for the particular thread pool size. The larger the 

rulebase size, the larger is the number of rules being matched and hence the higher 

latency. All the latency curves exhibit some non monotonicity and have peaks at nearly 

identical values of interpacket delay. This can be explained by the fact that for a certain 

value of the interpacket delay, say D, multiple rule matchings are scheduled concurrently 

leading to a higher latency for each individual matching. The increase in latency should 

be observed for the same delay D for larger sized rulebases as well since they are 

obtained by replication of the smaller sized rulebases. This may be characterized as 

harmonics the system is observing for the experimental conditions. If the experiment 

were to consider a larger set of distinct rules, such synchronized peaks will likely 

disappear.  
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2.12.4. Scalability with varying number of receivers 

 
We vary the number of receivers verified by the Monitor and evaluate the latency of 

the rule matching. In this experiment we perform two tests.  In the first test, we keep the 

aggregate data rate into the Monitor constant as we increase the number of receivers. 

Thus, if the number of receivers is doubled, the sender halves its data rate leading to each 

receiver’s data rate being halved. We keep the aggregate data rate fixed at 280 kbps. In 

the second test, we keep the sender’s data rate constant as we add more number of 

receivers for the Monitor to verify. Thus the aggregate data rate going into the Monitor 

increases linearly with the number of receivers. The number of threads is kept at 10 and a 

single instance of the rulebase is used. 
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(a)      (b) 

Figure 2.8:  (a) Latency with number of receivers (Fixed Aggregate Data Rate = 
280kbps) (b)Latency with number of receivers (Fixed sender data rate = 70kbps) 

 

In the first test (Figure 2.8(a)), the latency of matching does not get affected by 

increasing the number of receivers. This is because the Monitor’s thread pool is able to 

handle the overall data rate of these receivers.  It might seem counter intuitive to see the 

latency not varying with the number of receivers. This can be explained as follows. All 

the temporal rules except those in category R2 are such that they allow only a single 

instance of the rule at any time for a single receiver. Let us call a rule which falls in this 

class, an “A-Rule”. However the category R2 temporal rules allow multiple instances for 
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a single receiver to be active concurrently (call this B-Rule). Higher the incoming event 

rate, higher will be the number of R2 rules that are active concurrently. In case of a few 

receivers with higher data rate for each (left hand side of the X-axis), the number of R2 

rules will dominate over the number of A-Rules. The reverse is true for a large number of 

receivers with a lower data rate for each. The latency of matching an A-Rule is not 

significantly different from the latency of matching a B-Rule. Since the sum of the 

concurrently active rules of A and B type is approximately constant, we see a flat latency 

curve.  

In the second test (Figure 2.8(b)), as the number of receivers increase beyond 16, the 

latency curve hits the neck and rises sharply till it reaches saturation for any further 

increases. This is because the thread parallelism fails to keep up beyond this point and the 

latency of matching rises to a very high value (about 25 times the value for smaller 

number of receivers). This value of 16 receivers can be taken as the cutoff point for the 

given data rate and the Monitor load should always be kept below the point. A load 

rebalancing interaction as described in Section 2.7 can be invoked if the load on a single 

Monitor increases beyond the cutoff point. We perform tests on sensitivity of Monitor 

with the ThreadPool size (plots omitted for space reasons). We observe that the sharp 

increase is still seen, though it occurs later because of parallel rule matching with 

increased thread pool size.  

 

2.13. Coverage Results 

2.13.1. Experimental Setup  

 
The coverage experiments are performed to evaluate the detection accuracy of the 

Monitor system.  A streaming video application running over TRAM is used as a 

workload with single sender and multiple receivers. A client can flag an error if it views 

degradation in its video quality because of slow data rate, which is represented by a 

threshold. The minimum and the maximum date rate specified by the client to TRAM are 

20 KBytes/sec and 40 KBytes/sec. The TRAM sender provides a best effort service on 

the basis of these configuration parameters.  We perform single level experiments where 
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a single Monitor verifies the PEs followed by hierarchical experiments where Local and 

Global Monitors are deployed. Due to paucity of space, we only present the hierarchical 

results and show comparison with single level experiments. Details about the single level 

experiments can be found in [40]. The configuration used for our experiments is depicted 

in Figure 2.9.  
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Figure 2.9: Physical Configuration of the Test bed used for Coverage Experiments 

 
2.13.2. Fault Injection 

 
Faults are injected into the protocol to cause invalid state transitions which should be 

detected by the Monitor. The faults are injected into the header of the TRAM packets 

before dispatching the packet to the receiver, which actively forwards it to the Monitor. 

This emulates the condition that the faulty packet is seen by the TRAM entities as well as 

the Monitor.  The errors are injected continuously for a particular duration, denoted the 

Burst Length. This mode of error injection helps in emulating a real communication link 

where errors occur in bursts. The default burst length for the Monitor coverage 

measurements is 15 ms. 

Three error models are used for the injections.   
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2. Stuck at Fault: In this error scenario, we simulate a stuck-at fault by changing 

a randomly selected header field into a different, valid, but incorrect value. The 

header field is always converted to the same value for all the packets in the entire 

burst length period.  

3. Directed: The error injection is carried out into a randomly selected header 

field and its value changed to incorrect but valid values. Every packet is injected 

differently, unlike in the stuck at fault model. 

4. Random: In this case, we choose a random header field and inject a random 

value into it. The injected value may not be valid with respect to the protocol. 

We carry out two sets of run for each type of error injection, one with a loose client 

and another with a tight client. A loose client checks the data rate after every 4 Ack 

windows (approximately every 4.3 seconds) while a tight client checks the data rate after 

every Ack window. In practical terms, a tight client emulates a client less tolerant of 

transient slow downs in its received data rate. 

There are four possible consequences of errors injected into the packets – exception is 

raised by the protocol (E), the client crashes (C), the client flags a low data rate error 

(DE), or no failure occurs (NF). It is possible for one, two, or all three of exception, crash 

and client data rate error to occur. The consequence of an error injection is represented as 

a tuple of up to three elements with the prefix “N” before a consequence denoting that the 

consequence did not occur. Thus (NE; NC; DE) denotes no exception, no crash, but client 

flagged a data rate error. When only a single consequence occurs, the notation can be 

abbreviated, as (DE) for the above case. Also, whenever an error is manifested in the 

protocol, the data rate ultimately drops leading to the data rate error (DE). If data rate 

error is not the only consequence, DE is dropped from the notation. The experimental 

runs, where the Monitor detects the failure before any of the protocol manifestations, are 

classified as Monitor detection. If the Monitor flags an alarm after an error has been 

manifested in the client (any of E, C, or DE), this is a case of error propagation and is 

classified as coverage miss. An error which does not lead to a failure but is flagged by the 

Monitor is categorized as a false alarm.  
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2.13.3. Hierarchical Monitor Results 

 
The set up for hierarchical Monitor is shown in Figure 2.9. It is a two level hierarchy 

with each Local Monitor overseeing two receivers and a Global Monitor overseeing the 

two Local Monitors. Each kind of injection with each client (loose and tight) is carried 

out for 100 runs. A run is defined as an execution of the application with error injection 

where either the Monitor flags an error or the application has a failure or both. The first 

four columns are the different consequences of the error injection and are listed as:  

(Number of cases detected by the Monitor)/(Total number of such cases) (% Coverage of 

the Monitor). The definitions of the coverage misses have to be carefully considered in 

the hierarchical Monitor case. Consider a chain of overseeing Monitors for each receiver. 

A receiver is either verified by LM1 (Local Monitor 1) and GM (Global Monitor), or LM2 

(Local Monitor 2) and GM. If either of the Monitors verifying an entity reports the error 

before the error manifests in the protocol, then the error is considered covered. The way 

the manifestation of the error in the protocol is defined differs for the Global and the 

Local Monitor. If the Global Monitor detects the error after the client reports the data 

error, it is still considered to be covered, while detection after an exception or crash is 

expectedly a miss. This relaxed definition accounts for the structure of the global rules, 

which imposes aggregation at the Local Monitor level and therefore, increases the delay 

between the erroneous packet being generated and rule matching at the Global Monitor. 

Also, detection by the Global Monitor can potentially convey more information about the 

error (such as, rate of spread) and a client data rate error is considered to be one which 

can be tolerated in the environment for transient periods while crashes or exceptions 

cannot. 

The results from the injection are shown in Table 1. The results show the coverage 

miss by the Local Monitors and the entire Monitor system separately to bring out the 

advantages of deploying the two-level Monitor system. For the hierarchical Monitor 

system, the false alarm rate remains the same as for the single level case since all the 

false alarms come from the Local Monitors which remain identical in the two cases. The 

hierarchical Monitor system shows a high overall accuracy of 90.97%, an improvement 
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of about 7% over the single level Monitor. The results from the injection are shown in 

Table 1. The results show the coverage miss by the Local Monitors and the entire 

Monitor system separately to bring out the advantages of deploying the two-level 

Monitor system. For the hierarchical Monitor system, the false alarm rate remains the 

same as for the single level case since all the false alarms come from the Local Monitors 

which remain identical in the two cases. The hierarchical Monitor system shows a high 

overall accuracy of 90.97%, an improvement of about 7% over the single level Monitor. 

 

Table 1: Results of error injection with hierarchical Monitor 
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 This improvement is achieved by adding just two rules at the Global Monitor. The two 

rules correspond to aggregate data rate and nack rate. The results corroborate the need for 

a hierarchical setup of Monitors. The increase in coverage is most significant for the 

loose directed case (12%). On further investigation, it is found that the rule at the Global 

Monitor that checks the aggregate data rate is successful in pre-emptively detecting some 

cases which cause exceptions and crashes and therefore improves the coverage. As in the 

single level case, the system performs worse when the protocol’s manifestation of error is 
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exception, since it flags the error often after the exception has been raised. The Monitor 

system’s performance in the directed and stuck-at injections with loose client is worse 

than for random injections. This can be attributed to the fact that in random injection, 

packets are injected with message type and sub-message type lying outside the defined 

set of protocol packet types. In such cases the packets are mostly discarded by the 

protocol. Thus the receiver does not see any data packet leading to it flagging the low 

data rate error. But in directed injection, different valid but incorrect types of packets are 

generated in every injection. This causes several invalid transitions in the protocol 

leading to an increase in the number of exceptions and crashes. However, the difference 

in performance is not sharp indicating that the global rules help to pre-emptively catch 

some of the failure cases. For the tight client in directed and stuck-at, the global rules do 

not make as much of a difference since the receiver data rate error detection dominates 

and often occurs before the global rules can flag the error. 

2.14. Discussion 
 

In this chapter we presented the basic structure of the Monitor framework. We laid the 

algorithmic framework for performing detection in distributed systems. Monitor performs 

detection while satisfying the design goals outlined in chapter 1. Fault detection is an 

important first step for developing a reliable system. The next step in making a 

distributed framework is providing accurate diagnosis of failures. Diagnosis helps in 

realizing the shortcoming in the designs and provides information about the environment 

in which the particular distributed system works successfully. This forms the next chapter 

of this thesis.   
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3. DETERMINISTIC DIAGNOSIS  

We use the hierarchical Monitor architecture to perform diagnosis of failures in the 

underlying protocol. The Monitor snoops on the communication between the PEs and 

performs diagnosis of the faulty PE once a failure is detected. We use the terminology 

“the Monitor verifies a PE” to mean the Monitor provides the detection and the diagnosis 

functionalities to the PE. Once a detection alarm is raised by a Monitor, the diagnosis 

protocol starts executing. For the diagnosis, the Monitors treat the PEs as black-box and 

only the causal relation amongst the messages deduced from the send-receive ordering 

along with a rule base containing correctness and QoS rules are used to perform the 

diagnosis.  For the diagnosis, the PEs are not exercised with additional tests since that 

would make the Monitor system more invasive to the application protocol. Instead state 

that has already been deduced by the Monitors during normal operation through the 

observed external messages is used for the diagnosis process. Loose assumption about 

the jitter on the communication channels, rather than the synchronous assumption, is 

made, while no assumption is made on the clocks at the different PEs or Monitors. A 

lower level Monitor, called the Local Monitor (LM), directly verifies a PE, while a 

higher level Monitor will match rules that span multiple LMs. The Monitor architecture 

is generic and applicable to a large class of message passing based distributed 

applications, and it is the specification of the rule base that makes the Monitor 

specialized for an application.  

The Monitors coordinate to perform distributed diagnosis if the verified PEs lie under 

different Monitors’ verification domains. We assume Byzantine failures may occur in the 

Monitor system as well and we use replication to mask them. We enforce a hybrid failure 

model on the Monitors by the use an existing distributed security kernel called Trusted 
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Timely Computing Base (TTCB) [43]. 

3.1. System Model 
 

The Monitor employs a stateful model for rule matching to perform detection and 

diagnosis, implying it maintains state that persists across messages. It contains a rule 

base consisting of combinatorial rules (valid for all points in time in the lifetime of the 

application) and/or temporal rules (valid for limited time periods). The Monitor observes 

only the external messages of the PEs.  It can be placed anywhere in the infrastructure 

but typically not co-hosted with the PEs to avoid performance impact to the payload 

system. The desire to have low latency of detection and diagnosis suggests the placement 

of the Monitor in the vicinity of the PEs. The Diagnosis Engine is triggered when a 

failure is detected and it uses state information from the State Maintainer to make 

diagnosis decisions. The previous Monitor architecture in chapter 2 ([40] )has been 

extended to add the diagnosis functionality. 

The system comprises of multiple Monitors logically organized into Local, 

Intermediate, and Global Monitors. The Local Monitors (LMs) directly verify the PEs. 

An Intermediate Monitor (IM) collects information from several Local Monitors. An LM 

filters and sends only aggregate information to the IM. There may be multiple levels of 

IMs depending on the number of PEs, their geographical dispersion, and the capacity of 

the host on which an IM is executing. There is only a single Global Monitor (GM), which 

only verifies the overall properties of the network. The Monitor’s functionality of 

detection and diagnosis is completely asynchronous to the protocol. Each Monitor 

maintains a local logical clock (LC) for each PE it is verifying, which it updates at each 

observable event (send or receive) for that PE (similar to Lamport’s clock [26][76]).  

We assume that PEs can fail arbitrarily exhibiting Byzantine failures. Errors can 

propagate from one PE to another through the messages which are exchanged between 

them. Failures in the PEs are detected by the Monitor infrastructure by comparing the 

observed message exchanges against the normal rule base as opposed to the strict rule 

base used during diagnosis (Section 3.2.4). An anomaly in the behavior of the PEs 

detected by flagging of a rule triggers the diagnosis procedure. We assume that jitter on 
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PE →Monitor link is bounded by phase(∆t). We further explain in Section 3.2.2 the need 

for such an assumption. It is important to note that this assumption is weaker than 

complete synchrony.    

3.2. Deterministic Approach 
 

Diagnosis in a distributed manner based on observing only external message 

exchanges poses significant challenges. It is essential to consider the phenomenon of 

propagated errors to avoid penalizing a correct node in which the failure first manifested 

as a deviation from the normal protocol behavior. As the Monitor has access only to 

external message exchanges and not to internal state, diagnosis must be based on these 

messages alone. In other words, the Monitor does not have perfect observability of the 

payload system’s state. The PEs may lie within the domains of different LMs. In such 

cases, the diagnosis is a distributed effort spanning multiple Monitors at different levels 

(Local, Intermediate, and Global). In order to identify the faulty PE from among a set of 

suspect PEs, each PE is subjected to a test procedure. Since the Monitor treats PEs as 

black-boxes it is thus unaware of the valid request-response for the protocol and cannot 

send any explicit test message to the PEs. Moreover, the PE may not currently be in the 

same state as the one in which the fault was triggered. A failure manifested at the PE 

could be because of a fault which originated at this PE or because of error propagation 

through a message which the PE received. If the error is propagated through a message 

then it must causally precede the message which resulted in failure detection. Causal 

order is obtained using the logical clock maintained by the Monitor for each verified PE, 

which is used to construct the causal graph.  

 

3.2.1. Causal Graph 
 

The causal graph is updated during the normal operation of the protocol. A causal 

graph at a Monitor m is denoted by CGm and is a graph (V, E) where (i) V contains all the 
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PEs verified by m1 & (ii) An edge e contained in E, between vertices v1 and v2 (which 

represent PEs) indicates interaction between v1 and v2 and contains state about all 

observed message exchanges between the corresponding PEs including the logical clock 

(LC) at each end. The edges are directed, and are stored separately as incoming and 

outgoing, with respect to a given node. The edges shall be referred to as links from now 

on. The links are also time-stamped with the local (physical) time at the Monitor, at 

which the link is created. An example of a causal graph is given in Figure 3.1 for the 

sequence of events described on the lower left corner.  
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Figure 3.1: A sample causal graph 

 
For example in the Link Table for node C, message ‘4’ is assigned a logical clock time 3. 

Message m3 is causally preceded by message m2 which is causally preceded by message 

m1.  The messages may be received in different order at the Monitor because of the 

asynchronous nature of links. 

 

3.2.2. Cycle and Phase 
 

In modern distributed protocols, with thousands of communicating protocol entities, 

testing all the causally preceding messages is not feasible. We define a time window over 

                                                 
1 We thus establish a correspondence between a PE in the payload system and a node in the causal graph. . 
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which the diagnosis protocol tests nodes. This time window is called a Protocol Cycle to 

differentiate it from a graph theoretic cycle in the causal graph. The start point of the 

Protocol Cycle denotes how far the diagnosis algorithm should go in history to detect 

faulty nodes2. Cycle boundaries can be decided either by using the STD of the 

application or error latency of the application in actual physical time or logical time. 

First, we present the definition using the STD.  

In the Monitor design, a transition from one state to the next state depends solely on 

the current state and the event that occurs in the current state. Let there be n PEs verified 

by the Monitor infrastructure. A reduced STD is maintained at the LM for every verified 

PEk, denoted STDk. Owing to the reduced and finite nature of the STD, it can be assumed 

that there are repetitions in the set of states traversed by a PE over a long enough time 

interval. 
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Figure 3.2: Sample STD for a PE P1, illustration of Protocol Cycle 

 
There could be several possible runs of different durations for a given PE each 

corresponding to a complete task (transaction) as defined in the protocol, e.g., a complete 

round of data and ack exchange. Let S1k denote the starting state of the PEk being 

verified. At an arbitrary starting time t0, the states of the n PEs would be initS = {S11, S21, 

S31,…, Sn1}. We define the protocol cycle as the completion of all the possible runs 

starting from initS . Each protocol cycle will encapsulate several graph cycles each of 

                                                 
2 Henceforth, if there is no scope for confusion, we use the term cycle as shorthand for protocol cycle. 
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which includes the start state of the particular PE. Finding a protocol cycle is NP-

complete since the known NP-complete problem of finding the Hamiltonian cycle can be 

reduced to it in polynomial time.  

When a failure is detected in protocol cycle Ci, the checking has to be done till the 

beginning of Ci-1 for a deterministic bug. The model for the deterministic bug is that if it 

manifests itself in state Sij on receipt of event Ek for PEi, then it must manifest itself every 

time PEi goes through the same state and event. For a non-deterministic Heisenbug, the 

determination may have to go back to further cycle boundaries since by definition, a non-

deterministic may not manifest itself repeatedly under the same conditions (same state 

and event). Alternate strategies may be needed if the number of states to be examined 

becomes too large through this approach. Then we can use the upper bound on the error 

detection latency in the system (e.g., as given through analysis in [22]) to come up with 

the cycle boundary. If we can provide a bound that any error in the application will 

manifest in time δ, we can limit the messages which need to be checked for errors as 

being no farther back in (physical) time than δ. If proactive recovery measures, such as 

periodic rebooting[77], are used, then the time points at which the proactive recovery is 

performed can be taken as cycle boundaries. This is motivated by the claim that latent 

errors are eliminated at the proactive recovery points. 

Let us consider two links in the causal graph L that have been time-stamped with 

logical times tL1 and tL2 by the Monitor. Given tL2 > tL1 we cannot conclude anything 

about the actual order of these events. As the system is asynchronous and not FIFO, a PE 

v sending two messages to PE w can result in the messages being received out of order at 

w, or being received in order at w, but out of order at the Monitor. Instead of the 

synchrony assumption, consider the following more relaxed assumption. Consider that a 

Monitor M is verifying two PEs – sender S and receiver R. The assumption required by 

the diagnosis protocol is that the variation in the latency on the S-M channel as well as 

the variation in the sum of the latency in the S-R and R-M channels is going to be less 

than a constant ∆t, called the phase, which is known a priori. If messages M1 and M2, 

corresponding to two send events at S, are received at Monitor M1 at (logical) times t1 

and t2, it is guaranteed that send event M1 happened before M2 if tL2 ≥ tL1+∆t. 
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3.2.3. Suspicion Set 
 

Flagging of a rule corresponding to a PE represented by node N in the causal graph 

indicates a failure F and starts the diagnosis procedure. Henceforth, we will use the 

expression “failure at node N” for a failure detected at the PE corresponding to the causal 

graph node N. Diagnosis starts at the node where the rule is initially flagged, proceeding 

to other nodes suspected for the failure at node N. All such nodes along with the link 

information (i.e. state and event type) form a Suspicion Set for failure F at node N 

denoted as SSFN.  

The suspicion set of a node N consists of all the nodes which have sent it messages in 

the past denoted by SSN. If a failure is detected at node N then initially SSFN={SSN}. Let 

SSN consist of nodes {n1, n2…, nk}. Each of the nodes in SSFN is tested using a test 

procedure which is discussed in Section 3.2.4. If a node ni ∈SSFN is found to be fault-free 

then it is removed from the suspicion set resulting in contraction of suspicion set. If none 

of the nodes is found to be faulty then in the next iteration suspicion set for the failure F 

is expanded to include the suspicion set of all the nodes which existed in SSN in the 

previous iteration. Thus, in the next iteration SSFN = {SSn1, SSn2…, SSnk}. Arriving at the 

set of nodes that have sent messages to N in this time window is done from the causal 

graph. Consider that the packet that triggered diagnosis is sent by N at time τS. Then, all 

the senders of all incoming links into node N with time-stamp t satisfying C ≤ t ≤τS+∆t 

are added to the suspicion list, where ∆t is the phase parameter and C is the cycle 

boundary. The procedure of contracting and expanding the Suspicion Set repeats 

recursively until the faulty node is identified or the cycle boundary is reached thereby 

terminating the diagnosis. 

 

3.2.4. Test Procedure 
 

We define the test procedure for a PE to be a set of rules to be matched based on the 

state of the PE as maintained in the causal graph. This set of rules constitutes the strict 
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rule base (SRB) and like the normal rule base, used for error detection, consists of 

temporal and combinatorial rules for expected patterns of message exchanges. The SRB 

is based on the intuition that a violation does not deterministically lead to a violation of 

the protocol correctness, and in many cases gets masked. However, in the case of a fault 

being manifested through the violation of a rule in the normal rule base as a failure, a 

violation of a rule in the SRB is regarded as a contributory factor. The strict rules are of 

the form 

<Type> <State1> <Event1> <Count1> <State2> <Event2> <Count2> 

where, (State1, Event1, Count1) forms the precondition to be matched, while (State2, 

Event2, Count2) forms the post-condition that should be satisfied for the node to be 

deemed not faulty. SRB of form <state S, event E, count C> refers to the fact that the 

event E should have been detected in the state S at least count C number of times. Note 

that a PE may appear multiple times in the Suspicion Set, e.g., in different states, and 

may be checked multiple times during the diagnosis procedure. Also, the tests are run on 

state maintained at the Monitor without involving the PE, thus satisfying the design goal 

of non-intrusiveness. 

When an SRB rule is used to test a given link li in the causal graph, it uses as pre- and 

post-conditions in the rule events over a logical window of ±∆t, the phase, measured 

from the logical time of li. This is attributed to the assumption of jitter bound on the 

communication link, namely, that a message at the Monitor cannot arrive out of order 

with respect to another message more than ∆t away, originated at the same PE. Each rule 

in SRB has some coverage to verify a particular PE because it only tests a specific state 

and event. Therefore, a message sent by an entity in the Suspicion Set must be tested by 

running multiple rules from the SRB on it. We develop an analytical model on these 

assumptions in Section 3.4.2.  

Like the normal rule base, the rules in the SRB are dependent on the state and the 

event of the link but the number of rules is typically much larger than that in the normal 

rule base. Hence, it is conceivable that the system administrator would not tolerate the 

overhead of checking against the SRB during normal protocol operation. A new 

diagnosis procedure is started for every rule that is flagged at the Monitor. Multiple faults 
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manifesting nearly concurrently would result in multiple rules being flagged, leading to 

separate and independent diagnosis procedures for each of them.  

 

3.2.5. Diagnosis Protocol: Flow 
 

 This section illustrates the flow of control of the diagnosis protocol and the 

interactions in the Monitor infrastructure to arrive at a correct diagnosis. We illustrate the 

set of steps for a failure at a single PE. The protocol for distributed diagnosis amongst the 

Monitors comes into play when a suspect node identified by an LM lies outside its 

domain, i.e. the PE required to be tested is not verified by this LM. The LM does not 

contain the causal graph information for the suspect node, and hence requests the 

corresponding LM verifying the suspect node to carry out the test (step 0).   

(1) A failure F at PE N is detected by the local Monitor LMi verifying it.  

(2) LMi constructs the suspicion set SSN for the failure and adds it to SSFN.  

(3) For every N'∈ SSN that belongs to the domain of LM1 , LM1  tests N' for 

correctness for the suspect link L' using rules from the SRB for that particular event and 

state. If N' is not faulty, then it is removed from SSN and SSN' is added to the SSFN 

queue.  

(4) For every N'' belonging to SSN that is not under the domain of LMi but under the 

domain of another Monitor LMj, LMi sends a test request for N′′ and faulty link L'' 

recursively to higher level Monitors till a common parent for LMi and LMj is found, 

which routes it to LMj. LMj tests N'' and sends the result of the test back to LMi through 

the same route. If N'' is not faulty, then LMj also sends the suspicion set corresponding to 

link L′′ for N''. 

(5) The diagnosis procedure repeats recursively till a node is diagnosed as faulty, or 

till the cycle boundary is reached. In the first case, the node corresponding to which the 

link is diagnosed as faulty due to violation of rules in the SRB is considered as faulty. In 

the latter case, the diagnosis procedure terminates unsuccessfully.  

 

3.3. Faults at Local Monitors 
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If an LM is faulty then it may exhibit arbitrary behavior by sending false alarms to 

higher level Monitors or may drop a valid alarm. In such scenarios an LM cannot be 

allowed to perform the diagnosis procedure. We use replication to mask failures at the 

LMs, by allowing multiple LMs to verify a PE. 
GM
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Figure 3.3: Redundancy in the Monitor hierarchy 

 
Assuming there can be failures on up to f LMs, each PE is verified by 2f+1 LMs, 

called the Collaborative LM Set (denoted CSLM). An IM can accept that there is an error 

in the PE being monitored, if it receives f+1 identical alarm from the different LMs 

verifying the same PE. 

Note that if there is a set of entities (the LMs) whose responses are “voted on” by a fault-

free “oracle” (the IM), then only 2f+1 entities are required under the Byzantine fault 

model. The communication between LMs and IMs is authenticated, to avoid multiple 

alarms being sent by the same LM. Although all the LMs in the CSLM verify the same PE, 

they are spatially disjoint leading to possibly different views of the state of the PE. 

However, for our system, we need that all correct LMs in a CSLM agree on the failure 

alarms they send to the IM. Another requirement is defining an order among the alarms 

sent out by the LMs in a CSLM.  

The solution to both issues is based on an atomic or total order multicast protocol (see 

definition in [28]).  This problem is known to be equivalent to consensus [29], which 

requires a minimum of 3f+1 process replicas to be solvable in asynchronous systems with 
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Byzantine faults [43]. We reduce this number of LM replicas to 2f+1 using an existing 

method called the architectural-hybrid fault model [44] (Section 3.4.1.1).  

The algorithm used by the LMs in a CSLM to agree in an alarm is the following. When 

the Monitor is initialized, each LM starts a counter with 0. When a rule in an LM raises 

an alarm, it atomically multicasts that alarm to all LMs in CSLM (including itself). When 

the atomic multicast delivers an LM the (f+1)th copy of the same alarm sent by different 

LMs in CSLM, it gives that alarm the number indicated by the counter, increases the 

counter, and sends the message to the IM. It guarantees that all correct LMs agree on the 

same alarms with a unique order number, ensuring an atomic order. Therefore, the 

algorithm guarantees that an IM receives identical alarms from all correct LMs verifying 

a PE. 

 

3.3.1. TTCB and architectural-hybrid fault model 

 
In this thesis, we use the architectural-hybrid fault model provided by a distributed 

security kernel called the Trusted Timely Computing Base (TTCB). The notion of 

architectural-hybrid fault model is simple: we assume different fault models for different 

parts of the system. Specifically, we assume that most of the system can fail arbitrarily, 

or in a Byzantine manner, but also that there is a distributed security kernel in the system 

(the TTCB) that can only fail by crashing [43]. The TTCB can be considered a “hard-

core” component that provides a small set of secure services, such as Byzantine resilient 

consensus, to a collection of external entities, like the LMs. These entities communicate 

in a world full of threats, some of them may even be malicious and try to cheat, but the 

TTCB is an “oracle” that correct entities can trust and use for the efficient execution of 

their protocol.  
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Figure 3.4: Architecture of n hosts with a TTCB 

 
The design and implementation of the TTCB was discussed at length in [45] and here we 

give a brief overview relevant to its application in the Monitor system.  

The local TTCB components are connected using a dedicated channel (Figure 3.4). The 

local TTCBs can be protected by being inside some kind of software secure compartment 

or hardware appliance, like a security coprocessor. The security of the control channel 

can be guaranteed using a private LAN.  

 

3.3.2. Atomic Multicast Protocol 

 
The atomic multicast primitive provides the following properties: (1) All correct 

recipients deliver the same messages; (2) If the sender is correct, then the correct 

recipients deliver the sender’s message; (3) All messages are delivered in the same order 

by all correct recipients. The Byzantine-resilient atomic multicast tolerant to f out of 2f+1 

faulty replicas is presented in detail in [44]. Here we describe briefly how it is applied to 

the Monitor system. Notice that only the nodes with LMs need to have a local TTCB, not 

the nodes with IMs or the GM. The reason is that the local TTCBs at the different entities 

need to be connected through a dedicated control channel. While it may be feasible to 

connect the LMs monitoring a specific PE cluster, which are likely to be geographically 

closely placed, through such a control channel, it is unwieldy for IMs that are unlikely to 

have geographical proximity. 

The core of the solution we use is one of the simple services provided by the TTCB, 

the Trusted Multicast Ordering (TMO) [44]. Being a TTCB service, its code lies inside 
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the local TTCBs and its communication goes in the TTCB control channel. When an LM 

wants to atomically multicast a message M, it gives the TMO a hash of M obtained using 

a cryptographic hash function, e.g., SHA-1. A cryptographic hash function can be used 

as a unique identifier for a message since it has essentially two properties: (1) its output 

has constant length (160 bits for SHA-1); (2) it is computationally infeasible to find two 

different inputs that hash to the same output. When an LM receives a message M it also 

gives the TMO a hash of the message. Notice that the messages are sent through the 

normal payload network, i.e., outside the TTCB. However, these channels guarantee the 

authenticity and integrity of the messages. These channels could be implemented using 

SSL or TLS. Finally, when the TTCB has information that f LMs received M, it gives M 

& all LMs in CSLM the next order number.  

 

3.4. Faults at the Intermediate Monitors 
 

Next we augment the model to allow IM failures by having a redundant number of 

IMs. To tolerate f’ faults at the IM level at least 2f’+1 IM replicas must be used. 

Therefore all LMs in a Collaborative LM Set (CSLM) send alarms to all IMs in a 

Collaborative IM Set, denoted by CSIM. Output of replicas is voted on by a simple voter 

(GM in our case). The simplicity of the GM and the fact that it is not distributed makes it 

reasonable to assume that efforts can reasonably be made to make it fault free. Secure 

coding methodologies, based on formal verification and static code analysis, can be used 

to build a fault-free GM. Possibility of faults in Monitors, forces an LM in CSLM to 

accept a test request only if it receives f+1 identical test requests from Monitors in CSIM. 

An alternative design choice would be to control the entire diagnosis protocol from the 

lower level (failure prone) Monitors through the use of consensus. This was considered to 

have unacceptable overhead in number of messages and rounds for consensus, which 

would be required for every member of the suspicion set. Also, if the suspicion set spans 

boundaries of the LM, higher level Monitors would anyway be needed for distributed 

diagnosis.  
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3.4.1. Flow of Control of Diagnosis with Failing Monitors 
 

Assume that CSIM initiates the diagnosis. 

• Failure F at PE N is detected by the CSLM verifying it, which constructs the 

suspicion set SSN  and adds it to SSFN.  

• The LMs assign an order to the alarm using the atomic broadcast protocol and 

send an alarm along with SSFN up to all the IMs in CSIM. 

• The IMs wait for f+1 identical alarms and then start the diagnosis procedure.  

•  For every N' ∈ SSFN the (correct) IMs in a CSIM send a test request to the CSLM 

for verifying N’.  

• Each LM ∈ CSLM that receives f+1 identical test requests from different IMs in 

CSIM tests N' for correctness of the suspect link L' using multiple rules from the SRB for 

the particular event and state of the link.  

• The test results are sent above to the IMs in CSIM who vote on the f+1 identical 

responses to decide if N’ is faulty. If N' is not faulty, then it is removed from SSN and 

SSN' is added to the SSFN.  

• If a PE N'' lies outside the verification domain of the IMs in CSIM then a test 

request for N′′ and faulty link L'' is sent recursively to higher level Monitors, which send 

the request down the tree to the relevant set of Local Monitors verifying N''. The result of 

the test is sent back to the IMs through the same route. If N'' is not faulty, then the 

corresponding suspicion set is also sent along. 

• The diagnosis procedure repeats recursively until a node is diagnosed as faulty, or 

until the cycle boundary is reached. 

 

3.4.2. Analysis of Diagnosis Accuracy 
 

For easier understanding and comparison, we follow a similar notation to that in [48]. 

Consider a k-regular directed graph with a node representing a PE and an edge 

representing message exchange between the PEs. A node is faulty with probability λ. An 

error can propagate through a message sent by the node with probability ρ, given that the 
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node is faulty. The probability of error propagation through the message is ρλ. An error in 

the node can be caused by a fault in the node or due to an error propagated through one 

of the incoming links. A test executed on the node has a fault detection coverage ci if the 

node ni is faulty (i.e., probability of detecting a faulty node is ci) and a coverage di if the 

node has an error which has propagated from some incoming links. For an ideal test, ci=1 

and di=1. Let c and d be the average values for the detection coverage for fault and 

propagated error over all nodes. Let the number of tests from SRB performed on the node 

be T and the total number of nodes be N. Each test yields an output O ∈ {0, 1}, where an 

output 0 means the node passes the test and 1 that it fails the test. Assume that a node is 

determined to be faulty if there are z or more ones in the total number of tests, z ∈ (0,T). 

Let π be the event that a node is faulty and π′ be the complement event. Based on the 

model: 

A = Prob(test=1|π) = c ; [1(a)] 

B = Prob(test=1| π′) = d(1-(1- ρλ)k) ; [1(b)] 

Prob(z-ones| π) = C(T,z) Az (1-A)T-z  (where C is the binomial coefficient) ; [1(c)] 

Prob(z-ones| π′) = C(T,z) Bz (1-B)T-z  ; [1(d)] 

One figure of merit for the diagnosis process is the probability of detecting the original 

faulty node causing the failure. The posterior probability is given by: 

Prob(π| z-ones) =  Prob(z-ones| π).Prob(π) / Prob(z-ones) ; where Prob(z-ones) is given 

by 1(c).λ + 1(d).(1-λ) using the total probability formula.  
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; [1(e)] 

This equation matches with the one derived by Fussel and Rangarajan (FR) [48] with the 

following mapping: R (number of rounds) there maps to T here, since in each round of 

the FR algorithm, the same test is performed.  

Now consider B from equation 1(b) 

B = d(1-(1-ρλ)k), taking the number of messages to be very large we can assume that as 

k→∞ reduces to d(1-ekρλ) because ρλ →0 . We can rewrite the equation 1(e) as:  

Prob(π| z-ones) = 1 / 1 + F(z) ; where F(z) = ((1-λ)/ λ).(B/A)z .((1-B)/(1-A))T-z 
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We claim that 1(e) is a monotonically increasing function of z. Note that A and B ∈ (0, 

1). Also, for realistic situations, the probability of a node being faulty is much greater 

than the probability of a propagated error affecting a node (this is a common assumption 

in the fault tolerance literature [15][78]). Any reasonable diagnosis test should be able to 

distinguish between a node being the originator of a fault (high probability of π=1) and 

one which is the victim of a propagated error (low probability of π=1). Therefore, A>B. 

Let us represent F(z) as kbzμT-z. For A>B, b<1 and μ>1 and therefore Prob(π| z-ones) 

increases with z. This can also be proved through showing d(Prob(π| z-ones))/dz > 0 . 

This implies that the higher the value of z for a fixed T the greater is the confidence in the 

diagnosis process. In other words, the diagnosis process is well behaved as per the 

definition in [48]. 

Theorem: The diagnosis algorithm provides asymptotically correct diagnosis for N→∞ 

for k≥2 and T≥ α(N)log(N), where α(N)→∞ arbitrarily slowly as N→∞. It is also optimal 

in diagnosis accuracy among diagnosis algorithms in its class. 

Proof: For this, we use the result proved in [48] and simply map our algorithm’s testing 

behavior to theirs.  

In [48], the number of tests grows with N as α(N)log(N) and thus asymptotically (w.r.t. 

N) also tends to ∞, though the growth is not as fast as N. Our algorithm falls in the 3AM 

(m-threshold local diagnosis) category as defined in [48] since (i) all testing is done with 

local knowledge, and (ii) a threshold number of tests needs to fail for an entity to be 

diagnosed as faulty. The posterior probability given by equation 1(e) matches the 

posterior probability of the FR algorithm [48]. Hence the algorithm tends to perfect 

behavior asymptotically when k≥2 and T grows as α(N)log(N). Note that our diagnosis 

algorithm is also asymptotically correct for asymptotic behavior of T, independent of N 

since equation 1(e), lim lim ( | )
T z T

Prob z onesπ
→∞ →

−  approaches 1. Eqn. [1(e)] is an increasing 

function of z. Hence, we find the value z = zth which provides Prob(π| z-ones) = 0.5 and 

set the algorithm to conclude the node is faulty if z > zth and non-faulty otherwise. 

Equating eqn. 1(e) to 0.5 and simplifying we get: 
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Therefore, using the property of Prob(π| z-ones) being an increasing function of z and 

Theorem 1 in [48], we conclude that our diagnosis algorithm is optimal in its class 3AM.  

 

 

3.5. Experiments and Results 
 

The diagnosis protocol implementation is demonstrated by running a streaming video 

application on top of TRAM. The Monitor is given the SRB along with the STD and the 

normal rule base as input. An example of a temporal rule in the normal rule base is that 

the number of data packets observed during a time period of 5000 ms should be between 

30 and 500. The thresholds are calculated using the maximum and minimum data rates 

required by TRAM as specified by the user. Another example is that there should not be 

two head bind messages sent by a receiver within 500ms during the data receiving state 

as the receiver could be malicious and be frequently switching RHs. An example of a 

strict rule used in our experiments for the sender is SR1: HI S2 E11 1 S2 E9 1. If in state 

S2, the receiver has received a data packet (E11) say with linkID as d then there must be 

an ack packet within the phase interval around d. This rule ensures the receiver sends an 

ack packet on receiving data packet(s). Another SRB rule bounds the hello to be only 

sent when an entity is in the data transmission-reception state to prevent a malicious 

receiver from hello flooding. In our experiments the number of SRB rules to test a link 

varied from 4 to 8 depending on the state of the link. An extensive list of NRB and SRB 

used in our experiments are given in Appendix B.   

 

3.5.1. Optimistic and Pessimistic Link Building 
 

During the normal operation of the protocol, the Monitor adopts a lazy approach 

(euphemistically, optimistic approach) to build the causal graph.  Each incoming 
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(outgoing) message to (from) a node is stored in a vector of incoming (outgoing) links for 

that node.  A linkID (logical time stamp) is assigned to the link along with the physical 

time, state, and event type. Link contains two IDs, one for the node which sent it and 

another for the receiving node. For this link to be completed in the causal graph, a 

matching is required between the sending and the receiving PEs’ messages. The link 

A→B will be matched once the message sent by A and the corresponding one received 

by B are seen at the Monitor. Matching all the incoming packets during runtime, referred 

to as the pessimistic approach, entails an enormous overhead. This approach results in 

low diagnosis latency but also results in some links not being matched at runtime due to 

overload thereby causing a drop in the accuracy of the diagnosis protocol. Note that the 

matched links are not used if a failure is not detected in the same cycle. Hence, in the 

optimistic approach, at runtime, the Monitor simply stores the link in the causal graph 

and marks it as being unmatched. Link matching is performed when diagnosis is 

triggered on failure. We perform experiments give a comparative evaluation of the 

optimistic and the pessimistic approaches. 

 

3.5.2. Fault Model & Fault Injection 
 

For exercising the diagnosis protocol, we perform fault injection in the header of the 

TRAM packets transmitted by the sender. It must be noted that the faults are considered 

to be accidental faults, which may be of arbitrary nature. Malicious nodes launching 

deliberate attacks on the system are beyond the scope of this thesis. The Monitor inspects 

only the header and is not aware of the payload. Hence the faults are only injected into 

the packet header. The fault is injected by changing bits in the header after the PE has 

sent the message. Note that the emulated faults are not simply message errors, but may be 

symptomatic of faults in the protocol itself. For example, a faulty receiver may send a 

Nack instead of an Ack on successfully receiving a data packet. Errors in message 

transmission can indeed be detected by checksum computed on the header. However, the 

Monitor is responsible for detecting & diagnosing errors in the protocol itself, which are 

clearly outside the purview of checksum. As explained previously, the faults at the 
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Monitor level are masked through replication. The strict rules are used to diagnose the 

faults with each rule having some coverage. We use similar fault injection as for 

detection experiments. :(a)Stuck-At injection: For all packets in the burst length a 

randomly selected header field value is changed to a random but valid value. (b) Directed 

Injection: For each packet a specific header field is chosen for one experiment and 

changed to a random but valid value, with different values in different runs. (c) Specific 

Injection: Specific injections consist of slow data rate, dropping acks, and hello message 

flooding. Burst error is chosen as the fault model over single error since the protocol is 

robust enough that single errors are almost always tolerated by inbuilt mechanisms in the 

protocol.  

 

3.5.3. Test Set Up and Topology 
 

Figure 3.5(b) illustrates the topology used for the accuracy and the latency 

experiments on TRAM with components distributed over the campus network 

(henceforth called TRAM-D), while Figure 3.5(a) shows the topology for the local 

deployment of TRAM (TRAM-L). TRAM-D is important since a real deployment will 

likely have receivers distant from the sender. TRAM-L lets us control the environment 

and therefore run a more extensive set of tests (e.g., with a large range of data rates). The 

PEs and the LMs are capable of failing, while we assume for these experiments that the 

IMs and the GM are fault free. The sender, the receivers, and the RHs do active 

forwarding of the packet to the respective LMs. The min. data rate in TRAM needed to 

support the quality of the video application is set at 25 Kbps. The Monitors are on the 

same LAN which is different from the LAN on which the PEs are located. The routers 

are interconnected through 1Gbps links and each cluster machine is connected to a router 

through a 100Mbps link.  



 

 

60

LM1

IM

R1

S

LM2
mseepc1

mseepc3

mseepc2

RH

PE
Protocol Entity 

emulated by the 
PacketGenerator

Rk

R2

PE TRAM Protocol Entity

Verification Domain 
for MonitorsGMmseepc3

LM1

IM

R1

S

LM2
mseepc1

mseepc3

mseepc2

RH

PE
Protocol Entity 

emulated by the 
PacketGenerator

Rk

R2

PE TRAM Protocol Entity

Verification Domain 
for MonitorsGMmseepc3

 

LM2 LM3LM1

IM

R S

LM3

in-cluster

msee-cluster

LM2 LM3LM1

IM

R S

LM3LM2 LM3LM1

IM

R SR S

LM3

in-cluster

msee-cluster

        
Figure 3.5: Topology used for accuracy and latency experiments in (a) TRAM-L (b) TRAM-

D  

 

 

3.5.4. Accuracy and Latency Results for TRAM-L 
 

We measure the accuracy and latency for the diagnosis algorithm on the TRAM 

protocol through fault injection in the header of sender packets. We consider a single 

receiver receiving packets from an RH which is connected to the sender. Accuracy is 

defined as the ratio of the number of correct diagnosis to the total number of diagnosis 

protocols that were triggered. This definition eliminates any detection inaccuracy from 

the diagnosis performance. Diagnosis accuracy decreases if the algorithm terminates 

without diagnosing any node as faulty (incomplete) or if it flags a correct node to be 

faulty (incorrect). Latency is defined as the time elapsed between the initiation of 

diagnosis and diagnosing a node as being faulty, either correctly or incorrectly, or 

incomplete termination of the algorithm. We perform experiments with both the 

optimistic and the pessimistic approach of link building. There are thus two dimensions 

to the experiments – the link building approach (abbreviated as Opt and Pes) and the 

fault injection strategy (abbreviated as, SA for Stuck-at, Dir for Directed, and Spec for 

Specific). In the interest of space a representative sample of results is shown. The results 

are plotted for Opt-SA, Opt-Dir, and Pes-Dir with a fixed burst length of 300ms for each 

injected fault. Inter packet delay is varied to achieve the desired increase in the data rate. 
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Delay of d is inserted using Gaussian random variable with mean d and standard 

deviation 0.01d. Each point is averaged over 4 injections and between 20 and 58 

diagnosis instances, depending on the number of detections, which in turn depends on the 

rate of incoming faulty packets.  
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Figure 3.6: Variation of Accuracy with Data Rate 

 
Figure 3.6 shows that for Pes-Dir accuracy is a monotonically decreasing function 

with data rate. Diagnosis accuracy drops to a low of 33% for data rate at 355 KByte/sec. 

Rate mismatch between the matching of links for causal graph creation (slower 

process) and the arrival of packets at high data rates (faster process) causes this decrease. 

Lack of adequate buffer causes packet drops leading to missing links in the causal graph 

leading to a drop in accuracy. Another factor is lack of synchronization between the 

causal graph formation process and the suspicion set creation and testing process. Thus, 

the latter may be triggered before the former completes, leading to inaccuracies.  

For Opt-Dir, the accuracy is high for small data rate but decreases with the increase in 

data rate. Unlike Pes-Dir, here the accuracy does not drop below 80%. The link matching 

and the causal graph completion are triggered when the diagnosis starts, and the 

diagnosis algorithm tests the links only after the causal graph is complete resulting in 

higher accuracy compared to Pes-Dir. This advantage becomes significant at high data 

rates. Also, beyond a threshold, further increasing the data rate does not affect the latency 

because the number of incorrect packets increases, which helps diagnosis because the 

current algorithm stops as soon as a single faulty link is identified. The accuracy of Opt-

SA is slightly lower than that of Opt-Dir since in the former, the same message type is 
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injected for the entire burst. If a rule for the message type does not exist in the SRB, the 

diagnosis is incomplete. 

Figure 3.7 (a) graphs the latency of diagnosis with increasing data rate. Notice the 

significantly higher latency for the optimistic case compared to the pessimistic one. We 

can see that for the Pes-Dir case, the latency increases with data rate which is expected 

because there are more packets to be tested by each rule in the SRB. Latency tends to 

saturate at high data rates because of incomplete causal graph leading to an inaccurate 

early termination. On the other hand in the Opt-Dir scenario, the latency keeps increasing 

with data rate. This is attributed to the lazy link matching which happens during 

diagnosis, high data rate causes more packets to be matched leading to high latency.  

Effect of burst length: We study the impact of burst length on diagnosis accuracy for the 

pessimistic and the optimistic case. We keep the data rate low at 15 KBytes/sec to isolate 

the effects due to high data rate. Diagnosis as shown in Figure 3.7(b) is accurate for low 

and high values of burst length. For small burst length, a small number of incorrect 

packets gets injected leading to a low entropy in the payload system which is easy to 

detect. As the burst length increases, more incorrect packets are received by the Monitor 

which increases the entropy and hence decreases the accuracy. Beyond a certain burst 

length, more incorrect packets come in, helping in diagnosis. A more “systems level” 

explanation for the increasing part of the curve on the right side is that as the burst length 

increases, the proportion of SRB rules that match across the boundary of the burst length 

decreases. These are the SRB rules that are likely to lead to incorrect diagnosis since they 

are dealing with a mix of correct and incorrect packets.  
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(a)        (b) 
Figure 3.7:(a) Variation of Latency with Data Rate and (b) Diagnosis Accuracy with 

Burst Length for Optimistic and Pessimistic Approaches. 
 
3.5.5. Accuracy and Latency Results for TRAM-D 

 
In this set of experiments we measure the accuracy and latency of the pessimistic 

approach of the diagnosis protocol on TRAM, while performing specific fault injection, 

namely, reducing the data rate from the sender. The latency and accuracy values are 

averaged over 200 diagnosis instances for each data rate. Figure 3.8 (a) shows that the 

accuracy of diagnosis drops from a high of 98% at 15 KB/s to 91% for 50 KB/s. As the 

data rate increases, the creation of links in the causal graph gets delayed as incoming 

packets are pushed off to a buffer for subsequent matching. 
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(a)        (b) 

Figure 3.8:(a) Diagnosis Accuracy and (b) Latency variation with increasing data rate in 
TRAM 

 

If a diagnosis is triggered which needs to follow one of the missing links, it results in 

an incomplete diagnosis, leading to a drop in accuracy. Figure 3.8 (b) shows the latency 

of diagnosis with increasing data rate. Intuitively when the data rate increases, increasing 

load on the Monitor should cause the latency to increase. However, the data rate used is 

low enough that it has no significant effect.  
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4. PROBABILISTIC DIAGNOSIS 

The existing view of Monitor diagnosis is a deterministic process whereby the PE 

responsible for initiating the chain of errors can be deterministically identified. This is 

however, an over-simplification of reality. In practical deployments, it is often the case 

that the Monitor does not have perfect observability of the PE because the network 

between the Monitor and the PE is congested or intermittently connected. This is 

particularly feasible because the application is distributed with components spread out 

among possibly distant hosts, and the Monitor and the payload systems may be owned by 

different providers and run on different networks. Next, the Monitor itself has finite 

resources and may drop some message interactions from consideration due to exhaustion 

of its resources (e.g., buffers) during periods of peak load. It is desirable that the Monitor 

be non-intrusive to the payload system and therefore the testing process comprises testing 

invariants on properties of the payload system behavior deduced through the observation 

process. Thus, no additional test request is generated for the PE. However these tests are 

not perfect and may generate both missed and false alarms. Hence, a probabilistic model 

is needed to assess the reliabilities of the PEs. Finally, the nodes have different error 

masking abilities and thus different abilities to stop the cascade of error propagation. This 

masking ability is not known deterministically. All these factors necessitate the design of 

a probabilistic diagnosis protocol.  

The goal of the probabilistic diagnosis process is to produce a vector of values called 

Path Probability of Error Propagation (PPEP). For the diagnosis executed due to a 

failure at node n, PPEP of a node i is the conditional probability that node i is the faulty 

PE that originated the cascaded chain of errors given the failure at node n. The PEs with 

the k-highest PPEP values or with PPEP values above a threshold may be chosen as the 
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faulty entities.  

Our approach to probabilistic diagnosis builds on the structures of Causal Graph and 

Suspicion Tree from the deterministic diagnosis protocol. A probabilistic model is now 

built for each of node reliability, error masking ability, link reliability, and Monitor 

overload. The probability values for some of the components are partially derived from 

history maintained at the Monitor in a structure called the Aggregate Graph (AG). A 

consequence of moving the fine-grained information from the CG to the summarized AG 

is that it reduces the amount of state to be maintained at the Monitor. The probability 

values from each component are combined for the nodes and the links in the path from a 

node i to the root of the Suspicion Tree to come up with PPEP(i). The combination has to 

be done with care since the probabilities are not all independent. For example, overload 

condition at the Monitor is likely to persist across two consecutive messages in the 

payload system. 

4.1. Probabilistic Diagnosis Model 
 

The model of the payload system assumed in the deterministic diagnosis process is 

overly simplistic in several deployments. The relative placement of the Monitor and the 

verified PEs may cause imperfect observability of the external messages. The Monitor 

may be resource constrained and may not be able to accommodate periodic surges in the 

rate of exchanged messages among the PEs. The tests used to diagnose the PEs may be 

imperfect and the inherent characteristics of the PEs, e.g., their error masking 

capabilities, may not be accurately known to the Monitor system. The probabilistic 

diagnosis protocol handles these limitations, which were assumed away in the 

deterministic protocol. For a given failure the goal of the probabilistic diagnosis process 

is to assign a probability measure for every node to be the cause of that failure.  

It may be infeasible storage wise to keep the entire state of all PE interactions till the 

cycle boundary. Perhaps more importantly, performing diagnosis on all the nodes till the 

cycle boundary will make the latency of the diagnosis process unacceptably long. 

However, it is not desirable to completely flush the old state in the CG as the prior 

information could be utilized to provide historical information about a PE’s behavior 

which may aid in the diagnostic process. Our solution is to aggregate the state 
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information in the CG at specified time points and storing it in an Aggregate Graph 

(AG). 

As in the deterministic diagnostic approach, incoming information in the Monitor is 

initially stored in a Temporary Links (TL) table where it is organized based on the source 

node, destination node and event type as the primary keys. For this link to be completed 

in the CG, a matching is required between the sending and the receiving PEs’ messages. 

The link A→B will be matched once the message sent by A and the corresponding one 

received by B is seen at the Monitor. This information has to be matched and organized 

into the CG for diagnostic purposes. When the high water mark for the TL (HWTL) is 

reached, then as many links as can be matched are transferred to the CG while those that 

cannot be matched but are within the phase from the latest message are kept in the TL. 

Remaining links in the TL are moved to the CG as unmatched links.  

 

4.1.1. Aggregate Graph 
 

The Aggregate Graph contains aggregate information about the protocol behavior 

averaged over the past. The AG is similar to CG in the structure i.e. a node represents a 

PE and a link represents a communication channel. The link is formed only if at least one 

message in the past has been exchanged between the entities. The links are directed and 

unlike the CG there is a single directed link between A and B for all the messages which 

are sent from A to B. Each node and link has some aggregated information stored and 

continuously updated which aids in the final diagnosis. The AG contains some node level 

information (such as, the node reliability) and some link level information (such as, the 

reliability of the link in the payload system). These information fields are formally 

defined in Section 4.1.2. 

The time duration between consecutive CG to AG conversions is referred to as a 

round. State information is transferred from the CG to the AG if the high water mark 

(HWCG) is reached after a TL to CG conversion. The amount of information kept in the 

CG is equivalent to that for a phase around the latest event. It is important for diagnosis 

accuracy that information stays for some time in the CG and is not immediately 

transferred to the AG. Therefore the size of the CG should be significantly higher than 
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that of the TL.  

 

4.1.2. Probabilistic Diagnosis Algorithm 
 

The operation of the diagnosis protocol has two logical phases: (1) The actual 

diagnostic process that results in a set of nodes being diagnosed as cause of failure; (2) 

Information from the diagnostic process being used to update the information present in 

the AG. Let us first look at the diagnostic process. 

 

4.1.3. Diagnosis Tree 
 

As in the deterministic diagnosis case, the CG is used to calculate the set of suspicion 

nodes, tracing back from the node where the failure was detected. A Diagnosis Tree (DT) 

is formed for failure F at node D, denoted as DTFD. The tree is rooted at node D and the 

nodes which have directly sent messages to node D denoted by SSD1 are at depth 1 and so 

on. Since the CG is finite size, the tree is terminated when no causally preceding message 

is available in the CG after some depth k. 

The sample DT created from the sample CG in Figure 3.1 is shown in Figure 4.1. The 

numbers at the links correspond to the link IDs. The path P from any node N to the root 

D constitutes a possible path for error propagation and the probability of path P being the 

chain of error propagation is given by the Path Probability of Error Propagation (PPEP).  

D

C B

B C A

(2)

(5)

(3) (1)

(7)

D

C B
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(3) (1)
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Figure 4.1: Sample DT for the CG in Figure 3.1. 

 



Definition: PPEP(N, D) is defined as the probability of node N being faulty and 

causing this error to propagate on the path from N to D, leading to a failure at D. This 

metric depends on the following parameters: 

(1) Node reliability – The node reliability is a quantitative measure of the PE 

corresponding to the node being faulty. The PPEP for a given node is proportional to its 

node reliability. The node reliability is obtained by running the tests from the SRB 

relevant to the current state and the event at the node in the CG. The result from the CG 

is aggregated with the previously computed node reliability (nr) present in the AG. Let c 

be the combined coverage of the tests in the SRB. Then node reliability is updated as nr = 

(1 – ρ)c + ρ nr, where ρ is the weight used for current coverage. . The node reliability is 

maintained for each node in the AG. 

(2) Link reliability – The link reliability quantifies the Monitor’s estimate of the 

reliability of a link in the payload system. Since the Monitor does not have a separate 

probe for the quality of the link, it estimates link reliability (lr) by the fraction of matches 

of a message reported from the head of the edge (sender) with that reported from the tail 

of the edge (receiver). The PPEP for a given node is proportional to the link reliability, 

because high link reliability increases the probability of the path being used for 

propagating the error. The link reliability is maintained for each edge and each event in 

the AG.  

(3) Error Masking Capability (EMC) – The error masking capability (em) quantifies 

the ability of a node to mask an error and not propagate it through the subsequent  links 

on the DT towards the root node D. The PPEP for a given node is inversely proportional 

to the EMC values of nodes in the path since the intermediate nodes are less likely to 

have propagated the error to D. With the DT in Figure 4.1, 

PPEP(C, D) = nr(C) · lr(C,D) ; PPEP(B, D) = nr(B) · lr(B,C) · (1- em(C)) · lr(C,D) 

Note that collusion among PEs reduces the coverage of the diagnosis when active 

forwarding is used. Thus, a sequence of PEs in a chain may omit to forward the messages 

to the Monitor though they are sent in the payload system. This will cause the Monitor to 

reduce the PPEP of the path through the colluding PEs. For an autonomous system, the 

parameters used in the diagnosis process should be automatically updated during the 
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lifetime of the system as more failures and message interactions are observed and this 

forms the topic of our discussion next. 

 

4.1.4. Calculating Node reliability 
 

The objective is to assign node reliabilities to nodes corresponding to PEs, based on 

the results of the rules from the SRB. Let the set of tests that can be applied to the node i 

based on the event and the state be Ti. This set is partitioned into two sets A and A′, 

depending respectively on if the test returned a value of 1 or 0. The weight of test Ti,j is 

wi,j. Then, the reliability of node i is given by 
, ,

, ,
' ,

( ) /
i j i j

i j i j
T A T j

n i w w
∈ ∀

= ∑ ∑ .  

The weight of a test is proportional to the following factors: the frequency of 

invocations (w(f)) where the test gave the correct result, i.e., agreed with the ultimate 

diagnosis by the Monitor; and whether the test examines state for a period of time greater 

than the transients in the system (w(r)). The overall weight is calculated as ( ) ( )
, , ,.f r

i j i j i jw w w= , 

where the two terms correspond to the two factors.  

 

4.1.5. Calculating Link Reliability 
 
At the time of formation of the AG , link reliability of the edge from A to B is calculated 

as follows:  

lr(A,B) = nm/ nt + nm      where nm = Number of matched edges for A to B communication 

and nt = Number of unmatched edges from A to B.   

Subsequently, when CG to AG conversion takes place, link reliability in AG (lr(A,B)) is 

updated with the link reliability for the current round (lr c) as lr(A,B) = (1- ρ)lr c + ρlr(A,B). 

Note that there may be multiple links between A and B for different states in which they 

have communicated. This design is influenced by the intuition that faults are state 

dependent. Notice that in the PPEP calculation, the edge reliabilities of adjoining edges 

are multiplied though the events are actually not independent. The explanation is given 

considering a linear chain of communication from C to B and B to A. The probability of 

a successful communication from C to A is P(C→B is successful)·P(B→A is 
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successful|C→B is successful). In the link reliability formulation, the dependence is 

implicitly taken into account since the matched and unmatched link count on the B→A 

link is affected by the events on the C→B link. 

 

4.1.6. Calculating Error Masking Capability 
 

Assume that in the DT of Figure 4.1, nodes C and A at the same depth 2 are both 

faulty but PPEP(C) is the highest and PPEP(A) is low whereby node C is diagnosed as 

faulty and node A is not. In the Monitor system, node B is taken to have masked the error 

and not propagated it if the following three conditions are satisfied: (i) Running SRB 

rules on B yields a low value (c(B)); (ii) Running SRB rules on A yields a high value 

(c(A)); and (iii) Link reliabilities lr(A,B) and lr(B,D) are high (to ensure that the error must 

have propagated). The increment Δ(EMC) is thus 

Δ(EMC)  = EMCprev
)(

)( ,,

Bc
llAc D)r(BB)r(A ••

 and EMCnew = EMCold+Δ(EMC) 

We decrease the EMC for every intermediate node residing on a path which is finally 

diagnosed to have caused the error propagation.  

 

4.1.7. Distributed PPEP 
 

The PEs may be spanning several networks and even organizational boundaries and be 

verified by different Monitors each of which constructs a part of the AG and the CG 

obtained from its local information. During diagnosis it is quite likely that the DT 

contains PEs which are verified by some other Local Monitors. This entails the 

requirement of distributed diagnosis. Complete transfer of the local AGs and CGs to 

construct global information at higher level Monitors is not scalable. Instead, we leverage 

the fact that due to the multiplicative form of the PPEP computation, the PPEP value can 

be computed incrementally by each Monitor for the part of the DT under its verification 

domain. Assume in Figure 4.1, that nodes B and C are monitored by LM1 and C and D by 

LM2 and the diagnosis is performed by LM2. In order to calculate PPEP(B, D) for the 

path (B-C-D) LM2 needs nr(B) , lr(B,C) , em(C), and lr(C,D) of which the first two are not 



 

 

71

available locally. Therefore, LM1 sends PPEP(B,C) for a failure at C to LM2. In general, 

for a path A, X1 X2 ….Xn, ,B, PPEP(B, A) can be recursively written as:  PPEP(B, A) = 

lr(A,X1) · em (X1) · PPEP(B, X1).  

 

4.2. Choice of Applications for Experiments 
 

In this thesis we have applied the detection and diagnosis framework i.e., the Monitor 

to a few distributed applications. Before choosing a distributed application for 

verification by the Monitor, we scrutinized a multitude of applications looking for 

following features:  

− The application should have multiple entities, especially distributed deployment.  

− The entities should interact amongst each other using some kind of messages which 

are externally observable. This is necessary because Monitor looks at the externally 

observable messages only. 

− The application protocol should have a defined behavior which represents the 

correct/normal behavior. This could be specified in terms of a state transition 

diagram, UML or Petri Net. A precisely defined protocol is a necessary condition.  

− The application entities individually should have a notion of states and transitions 

amongst these states. This state diagram should be relatively complex. The 

complexity here refers to not only the number of states but also to the transitions 

amongst the states.  

− The overall state transition diagram for the entire application protocol should be 

complex. The overall state transition diagram for the protocol comprises of a 

combination of the individual state transition diagrams of the entities.  

− The applications should be of practical importance and used in providing important 

services.  

 

In trying to meet the above requirements we choose to perform extensive experiments 

on TRAM [9] and a 3-tier e-commerce system. Beside we also studied Session Initiation 

Protocol (SIP) and applied our rule-base to form detection rules for verification of SIP. 
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All three protocols are used extensively in today’s internet.  

Section 2.9 provides details of TRAM describing the variety of messages which are 

exchanged between the entities of TRAM (sender, RHs, and receivers). The TRAM 

protocol is also more challenging because of both unicast and multicast messages being 

exchanged amongst the entities. This makes the detection process of the Monitor to be 

competent enough to encompass both kinds of messages.   We studied the TRAM 

protocol especially for its availability of code to be deployable and provide extensive 

measurements for our study. As the source code and write-up on TRAM were readily 

available and it met the criteria of our selection process, we chose TRAM as one of the 

protocols for our experimental study. Because of the rich set of features which TRAM 

has it can be closely compared to other protocols thus making our Monitor scheme 

generalizable. For example: TRAM has congestion control mechanisms which are similar 

to congestion control mechanisms in other internet protocols such as TCP. Due to close 

interactions between the entities of TRAM, there are a lot of situations where errors can 

propagate from sender down to the receivers and vice versa.   An example of error 

propagation is sender sending down data at a slow rate. This will cause the RH to send 

slow data down to the receiver. Thus causing error propagation from sender to the 

receiver. This makes the diagnosis challenging and interesting to study how Monitor’s 

performance is affected in scenarios of error propagation.  

In using TRAM for our experiments, we did study the literature in-depth to build the 

state transition diagrams and rule base. The only changes made to the source code of 

TRAM are for the purposes of measurements and no simplification is made for the 

Monitor.  

The second application which we have used extensively in our experiments is a 3-tier 

e-commerce application. E-commerce applications form the backbone of the plethora of 

services which one finds on the internet. From e-banking to buying books on Amazon, e-

commerce applications are ubiquitous today. It is commercially one of the most 

important distributed systems which we find in use in everyday practical life. A typical e-

commerce system in its simplest form consists of 3 tiers: web-tier, middle or application 

tier and back-end data base or the so called data base tier. The tiers are usually deployed 
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in a distributed setting. The e-commerce systems supporting the services on the internet 

are much more complex in architecture. Each of the tiers is further sub-divided into 

components which might be replicated for higher availability. There is a sprayer which 

re-routes the incoming transactions to one of the replicas thus providing load balancing. 

Each of the tiers interacts with each other through exchange of messages.  

 

A primary reason for choosing the e-commerce test-bed is because of there is a large 

industrial research community interested in providing reliable e-commerce system. There 

are multiple groups from both IBM research and HP labs working on trying to find 

solutions for improving the reliability of e-commerce systems for over a decade. Some of 

the research work found in [65][111] addresses development of reliability primitives in e-

commerce systems.  The reason why understanding e-commerce systems is challenging is 

the complex interactions which occur between the multiple tiers. Besides the inter 

communications between the tiers, there is a lot of intra communications which goes on 

inside a tier. For example in an application server like JBoss, there are messages which 

are exchanged between enterprise java beans (EJBs) and servlets. Each EJB and servlet 

can have its own state transitions and state variables (for example see section 6.3.1). 

Interaction between multiple EJBs causes the entire state transition diagram to be a 

composite of each individual state transition diagram.  

In choosing a state of the art diagnosis approach for comparing Monitor’s diagnosis 

process we chose Pinpoint (see section 6.2).  Pinpoint also demonstrates the efficacy of 

its generic diagnosis approach on an e-commerce testbed. In order to provide a fair 

comparison between Pinpoint and Monitor’s diagnosis approach we chose the same e-

commerce test-bed as used by Pinpoint for its experiments. Thus 3-tier e-commerce test-

bed was chosen for our experiments because of its complex interactions, ease of 

availability and wide research interest.  We have used a distributed setting of the 3-tier 

framework. The front user interface comprises of PetStore application which is similar to 

an online store like Amazon. The middle tier consists of JBoss application server running 

on the back-end Cloudscape database[108]. The PetStore application consists of over 50 

different components (like EJBs and servlets) each having a different state transition 
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diagram. There is a rich set of interactions between the EJBs and servlets which can 

cause error propagation. For example: A servlet function calls a function in EJB which 

returns null. This null return can cause servlet to crash and hence causing error 

propagation. This makes the 3-tier system interesting and challenging to study under 

Monitor’s approach to detection and diagnosis. The only modification which is made to 

the source code is inserting message traps for making the communication observable to 

the Monitor. There is no special change which is made to the application in order to 

achieve better diagnosis.  

 

4.3. Experiments and Results 
4.3.1. Application  
 

Similar to previous experiments, we deploy the Monitor system across the Purdue 

campus-wide network to monitor the reliable multicast protocol (TRAM).  

rh-clusterin-cluster

r1 r2

RH1

S

r3 r4

RH2

ru-cluster

router

LM

LM LM

LM

LM LM

router

router

msee-cluster dcsl-lab
IMmin.ecn.purdue.edu

PE
TRAM

Protocol Entity

Machine Clusters

Local Monitor

Intermediate Monitor

LM

IM

Verifying in-cluster Verifying rh-cluster

rh-clusterin-cluster

r1 r2

RH1

S

r3 r4

RH2

ru-cluster

router

in-cluster

r1 r2

RH1

r1 r2

RH1

S

r3 r4

RH2

r3 r4

RH2

ru-cluster

router

LM

LM LM

LM

LM LM

router

router

msee-cluster dcsl-lab
IMmin.ecn.purdue.edu

PE
TRAM

Protocol Entity

Machine Clusters

Local Monitor

Intermediate Monitor

LM

IM

Verifying in-cluster Verifying rh-cluster

 

r2

r3

RH

S

r1

RH

………

LM

LM LM

IMmin.ecn.purdue.edu

dcsl-lab

Packet 
Forwarding

r2

r3

RH

S

r1

RH

………

LM

LM LM

IMmin.ecn.purdue.edu

dcsl-lab

Packet 
Forwarding

 
Figure 4.2: (a) Physical topology of test-bed (TRAM-D) (b) The emulated TRAM 

configuration (TRAM-L) 
 

Figure 4.2(a) illustrates the topology used for the diagnosis experiments on TRAM 

with components distributed over the campus network (as previously called TRAM-D), 

while Figure 4.2(b) shows the topology for an emulated local deployment of TRAM 

(TRAM-L) used in these set of experiments. TRAM-L lets us control the environment 

and therefore run a more extensive set of tests (e.g., with a large range of data rates). 
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Running a larger configuration of receivers on TRAM-D was not possible because of a 

synchronization problem in the vanilla TRAM code obtained from [70] which causes 

receivers to disconnect unpredictably. The TRAM entities are verified by replicated 

Local Monitors with one Intermediate Monitor above. The TRAM entities do active 

forwarding of the messages to the respective LMs. The routers are interconnected 

through 1Gbps links and each cluster to a router through a 100Mbps link. Each cluster 

machine is Pentium III 930.33 MHz with 256 MB of RAM.  

 
4.3.2. Rule Base  
 

The Normal Rule Base (NRB) and the Strict Rule Base (SRB) for TRAM are input to 

the Monitor. The exhaustive enumeration of rules in the rulebases for the experiments are 

in Appendix B. Recollect that the SRB verifies the messages sent by the PEs over the 

phase interval which is a much smaller window compared to that of NRB. A few 

examples of the SRB rules used for our experiments are: “O S1 E11 1 S3 E11 30 1” This 

rule states that if there is one data message (E11) in state S1, then at least 30 more E11 

links should be present in the CG. The last value “1” is the weight assigned to this rule. 

For these experiments all SRB rules are assigned equal weights. “HO S6 E1 1 S6 E9 1 1” 

This hybrid outgoing rule (HO) verifies that on receiving a hello message(E1) in state S6, 

the receiving entity must send a hello-reply (E9) within the same phase for liveness.  

 

4.3.3. Fault Injection 
 

We perform fault injection in the header of the TRAM packet to induce failures. We 

choose the header since the Monitor’s current implementation only examines the header. 

A PE to inject is chosen (TRAM sender or receiver) and a burst length worth of faults is 

injected. The fault is injected by changing bits in the header for both incoming and 

outgoing messages. A burst length is chosen since TRAM is robust to isolated faults. The 

burst may cause multiple detections and consequently multiple concurrent diagnoses. 

Note that the emulated errors are not simply message errors, but may be symptomatic of 

protocol faults in the PEs. Errors in message transmission can indeed be detected by 
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checksum computed on the header but protocol errors cannot. Three types of fault 

injection as used previously(explained again below) are employed:  

(a) Random Injection: A header field is chosen randomly and is changed to a 

random value, valid or invalid w.r.t. the protocol. If the injected value is not valid, then a 

robust application check may drop the packet without processing it.   

(b) Directed Injection: A randomly chosen header field is changed to another 

randomly chosen value, which is valid for the protocol.  

(c) Specific injection: This injection is carefully crafted and emulates rogue or 

selfish behavior at some PE.    

 

4.4. Experiments and Results 
 

Accuracy of diagnosis is defined as the ratio of number of correct diagnosis to the 

total number of diagnosis performed. Correct diagnosis is when the PE flagged as faulty, 

i.e. the PE with highest PPEP, is the PE that was injected with faults. The latency is the 

time measured from the point to detection to the end of diagnosis.  

 

4.4.1. Latency and Accuracy for TRAM-D 
4.4.1.1. Random Injection at Sender 
 

Effect of Buffer Size: The fault injection causes error propagation to the RH and the 

receivers causing independent diagnoses at each entity. Figure 4.3 shows the latency and 

accuracy of diagnosis with increasing maximum buffer size for the CG. TRAM sender’s 

data rate is kept at a low value of 15 Kbits/sec to avoid any congestion effect. Each data 

point is averaged over 300 diagnosis instances. Latency of diagnosis increases with 

buffer size since on an average the CG will be storing more links, leading to more nodes 

in the DT and hence higher processing for calculating the PPEP. The fundamental factor 

that determines the latency is the size of the DT, which depends on how full the CG was 

when the diagnosis was triggered, which is bounded by the CG buffer size. Diagnosis has 

a low accuracy for low CG buffer sizes as it is likely that the link connecting the faulty 

PE is purged from the CG during the CG-AG conversion. Higher CG size increases the 
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accuracy because there are more links in the CG which increases the probability of SRB 

rules detecting errors leading to a high value of PPEP. Accuracy decreases with very high 

CG because several diagnoses do not complete as the size of the DT is large leading to an 

unacceptably high load on the Monitor. 
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Figure 4.3: Latency and Accuracy for TRAM-D with random injection at sender 

 

The increase in load with increasing CG buffer size is a direct consequence of the 

probabilistic diagnosis and was not present in the deterministic diagnosis. In probabilistic 

diagnosis, the entire CG is explored for faulty entities while with deterministic diagnosis, 

as soon as an entity is (deterministically) flagged as faulty, the process is halted. It is to 

be noted that during the diagnosis process, the TRAM entities are still sending packets to 

the Monitors leading to an additional detection overhead at the Monitor.  

Effect of data rate: In this experiment, the buffer size at CG is fixed at 100 links, the 

data rate from the sender is varied and random injection is performed at the sender. 

Figure 4.4(a) shows the latency with increasing data rate. As the sender’s data rate 

increases, the incoming packet rate at the Monitors increases by a multiplicative factor 

since each LM is verifying multiple PEs. Theoretically, till the Monitor’s capacity is 

overrun, the sender data rate is expected to have no effect on latency since the CG buffer 

size is fixed and therefore the size of the DT being explored is fixed. It is not possible to 

see the breaking point (i.e. the “knee”) in TRAM-D with the sender data rate since 

TRAM is robust and throttles the sending rate when the network starts to get congested.  
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(a)       (b) 

Figure 4.4: Latency and Accuracy with increasing data rate for random and directed injection 
 
4.4.1.2. Directed Injection at Sender 
 

We repeat the above experiments with directed injection at the sender. From Figure 

4.4(a), we discern that the latency is higher compared to random injection for the same 

data rate. This is because directed injection causes more valid but faulty packets. This 

leads to a higher number of state transitions in the Monitor’s STD causing more 

diagnosis procedures to run resulting in an increased load on the Monitor. With random 

injection on the contrary, a larger fraction of packets is discarded by the Monitor and 

therefore resulting in a lighter load. The diagnosis accuracy follows a similar trend as the 

random injection scenario.  

 

4.4.2. Latency and Accuracy for TRAM-L 
4.4.3. Fault Injection at Sender 
 

We emulate the topology depicted in Figure 3.5(b) on a local network to investigate 

the performance of Monitor in high data rate scenarios and use more receivers under an 

RH. First we fix the CG size at 100 links and vary the incoming data rate from 200 

Kbits/sec to 1.9 Mbits/sec. Figure 4.4 depicts the latency and the accuracy variations with 

increasing data rate. For low data rates the latency is about 300 ms and remains almost 

constant till a data rate of 1 Mbits/sec. Further increase in data rate causes the latency to 

rise exponentially because the Monitor’s servicing rate is not able to keep up with the 

large CG size and incoming packet rate. We can see that this “knee” occurs at a lower 
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CG size compared to TRAM-D (Figure 4.3) because of higher data rate. Accuracy is near 

constant for data rates up to 1 Mbits/sec and breaks beyond that because of incomplete 

diagnoses attributed to higher load on the system. 

 

4.4.4. Specific Injection   
 

We perform specific injection in TRAM-D to observe the effect of a rogue receiver 

and to precipitate error propagation to varying degrees. Receiver R4 is modified to send 

ack at a slower rate (similar to [38]).Since in TRAM a cumulative ack is sent up the tree, 

R4’s misbehavior prevents RH2 from sending the ack This forces the sender to reduce 

the data rate because the previous buffer cannot be purged, causing a slow data rate 

across the entire system. Thus error propagation occurs across the entire protocol system. 

The detection engine reports detection at several PEs as shown in Figure 4.5. The 

diagnosis algorithm is able to diagnose the correct node (R4) as faulty in all the cases 

since its PPEP value was highest in each DT.  
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Figure 4.5: Parts of DTs formed during specific injection scenario in TRAM-D 

4.5. Discussion 
 

This chapter on diagnosis concludes the probabilistic diagnosis framework employed 

by the Monitor to perform diagnosis. Now, the Monitor provides detection and diagnosis 

in tandem re-using the efficiencies achieved in one domain to benefit the other. This is 

the first reliability framework which models the underlying protocol as black-box and 



 

 

80

provides both detection and diagnosis in unity. Currently the Monitor is still susceptible 

to commonly known state space explosion. Because of thousands of state in distributed 

systems, the Monitor’s performance (accuracy & latency) can suffer in such scenarios. 

The next chapter explains how the Monitor stands against large number of states.  
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5. STD REDUCTION 

At an abstract level, the fault tolerance infrastructure reasons about the distributed 

application and one way of doing this is through tracking the state transitions of the 

protocol entities in the application. Complex distributed applications in use today have a 

large state space due to the complexity of the protocol entities and the large scale of the 

application. This leads to the well known problem of state space explosion commonly 

occurring during the process of formal verification of hardware design or distributed 

protocols. This is true for any representation of the protocol whether State transition 

Diagrams, PetriNets or UML.  This hampers the role of the fault tolerance system that 

reasons about the state of the application, especially if the system provides its services at 

runtime. A popular example is stateful firewall technology that reasons about application 

state by observing network packets. Other examples are intrusion detection systems 

(IDS) and information management systems, such as IBM’s Tivoli suite of products.  

 

5.1. Motivation for STD Reduction 
 

The fundamental premise that can be exploited to reduce the problem of state space 

explosion is that not all states are equally valuable from the point of view of fault 

tolerance services. The less valuable states can be ignored and the more valuable ones 

tracked reducing the total number of states that needs to be tracked. This classification 

into valuable and not valuable states may change frequently over the execution of the 

system, e.g., a new rule being installed in a firewall that requires a different state to be 

verified. The reduction in the number of states that needs to be verified reduces the 

latency of the service and increases the coverage of the Monitor’s detection and accuracy 

process.   
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5.2. System Model  
 

A state transition diagram (STD) is a 6-tuple G = [S, s0, T, I, O, Γ] where the element 

is described in Figure 5.1(a). 

 

 
(a) 

S1 i1 / o1 S2

i2 / o2
S3

S1 i1 / o1 S2

i2 / o2
S3

 
(b) 

Figure 5.1: (a) STD tuple; (b) An example STD 

 
Figure 5.1(b) depicts an example STD for a protocol entity. The STD consists of 3 

states {S1, S2, S3}. Each label of the edge (also called as transition edge) represents an 

input (output) pair.  For example in state S1, an input message i1 causes an output 

message o1 to be generated. Simultaneously the protocol entity (PE) transitions from state 

S1 to S2.  From the purview of a monitoring system, set I and O consist of the messages 

exchanged between the  PEs. Further we divide the set I and O into two classes based on 

the visibility of these transitions to the monitoring system. Sets Iint (Oint) consists of 

inputs (outputs) which are internal to the PEs and sets Iext (Oext) consist of transitions 

which are visible to the monitoring system. Besides the state transition diagram, a set of 

rules R is specified which needs to be verified at runtime. Each rule in the set is formed 

from a sub-set of elements from each S, I, and O. The verification rules could have some 

timing constraints on the transitions within the graph. We denote SR, IR, OR as the set of 

elements of G which have rules associated with them. The goal of the state reduction is to 

possibly remove the states in the set S with internal incoming transitions. And also 

remove the set Iint  completely. We define predecessor(si) as the set of states which have 

• S is the set of states 
• s0 is the set of the initial state(s).  
• T is the state transition function S x I  S 
• I is the set of input variables/alphabet 
• O is the output set/alphabet 
• Γ is the output mapping function S x I O
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an outgoing transition edge to si. And similarly successor(si) is the set of states which 

have an incoming transition edge from state si. Figure 5.2 depicts the abstraction 

considered in this thesis where there are some monitoring elements (M1 and M2) which 

are monitoring a protocol consisting of some communicating PEs. Each PE has some 

state transition diagram which is shared by the corresponding monitoring system(s) 

verifying that particular PE. For example in Figure 5.2, monitoring system M1 is 

verifying PE1 and PE3 and hence contains the STDs for both of them.  

 

5.3. Solution Approach 
 

We propose a two step process to reduce the STD of each PE. Consequently, the state 

space of the entire protocol is also reduced. In the first step, the STD is reduced to STD′ 

based on the external transitions i.e. we remove all the internal transition edges (possibly 

including some states) of the STD. Formally the goal of the first step is to come up with a 

STD Gext = [Sext, s0, Text, Iext, Oext, Γext] where the set of input symbols is reduced from I to 

Iext and O to Oext, correspondingly changing other elements of the tuple. During the 

process of reduction, some states (which have all input transitions as internal) can also be 

removed, such that |Sext| ≤ |S|. Removals of internal states help a monitoring system to 

track the STD of the PEs. The reduction also reduces the memory footprint of the 

monitoring system.  

The second step reduction from STD′ to STD′′ is done based on the rules defined for 

the different states in STD′. The approach is to reduce the states which do not have rules 

associated with them. Formally, we come up with a STD Ge = [Sr, sr, Tr, Ir, Or, Γr] . The 

property that should be satisfied is |Sr| ≤ |Sext|. Removal of states from the set Sext \ Sr can 

help improve the efficiency of the detection and diagnostic process by reducing the state 

search space for the monitoring system. The 2-step reduction can be summarized as: 

STD→External Messages STD′→rule base STD′′.  
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STD for a PEi , shared by 
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STD for a PEi , shared by 
the monitoring module as 
well.  

Figure 5.2: An example illustration of monitoring system(s) M1 and M2 monitoring a 
protocol consisting of 3 entities {PE1, PE2, PE3}. 

 

5.4. Removing internal transitions (STD→STD′) 
 

The sets Iint (Oint) denote the internal transition edges in the STD. These transitions are 

not visible to the monitoring system because of the following reasons: 

1. The transition is internal to the PE and does not depend on any externally visible 

message. 

2. The monitoring system is placed in a network location where the observation of 

the PE is not perfect. 

3. There are firewall rules that block the monitoring system from observing this kind 

of transition. 

In this step, we try and remove all such transition edges that do not have any external 

inputs or outputs. During this process some states are also likely to be removed. A state 

which is removed has the property that all incoming transition edges to the state are 

internal. Since all the transitions leading to the state are internal, a monitoring system 

cannot determine if the PE has moved to that state. We mark a transition to be internal 

(external) if both symbols in the input (output) pair are internal (external). We represent 

kth input (output) pair as ik
ext/ok

ext, if it is external and as ik
int/ok

int, if it is internal. Example: 

Consider an example STD depicted in Figure 5.3. For each state, all incoming transition 
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edges (input (output) pairs) are checked to see if they are internal. The first rule of 

reduction is that  

R1:“If a state does not have any external transition edge, then remove that state and 

re-assign all the external outgoing transition edges of the reduced state”.  

If state si is reduced, then transition edges from si to set of states in successor(si) are 

re-assigned to predecessor(si). If α is the set of external transition edges from si to 

successor(si) i.e.  si →α  successor(si), then re-assignment causes predecessor(si) →α  

successor(si). In Figure 5.3, state S2 has a single incoming transition edge with label 

i1
int/o1

int which is internal. Following R1, state S2 is removed and outgoing transition edge 

of state S1 = predecessor(S2) is re-assigned as i2
ext/o2

ext leading to S3 = successor(S2). The 

reduced STD (Figure 5.3(b)) has no state S2 and only external transition edge(s).  

 
S1 i1int / o1

int S2

i2ext / o2
ext S3

S1 i1int / o1
int S2

i2ext / o2
ext S3

 
(a) 

S1

i2ext / o2
ext

S3
 

(b) 
Figure 5.3: Example Reduction Process; (a) Original STD;(b) Reduced STD. 

 
 
The second rule of reduction states that  

R2:“If a state exists which has both internal and external transition edges, we need to 

remove the internal messages and re-assign the external incoming and outgoing 

transition edges of that state”.  

Re-assignment is performed in the same manner as for the rule 1 of reduction. In 

Figure 5.4 state S2 has both internal input transition edge from S1 and external input 

transition edge from S4. S2 cannot be reduced, but the STD is changed so that S1 points to 

S3 as i2
ext/ o2

ext is the only transition to signal a state transition from state S1. Finally, the 

reduced STD will consist of only external transition edges. 
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i1int / o1
int i2ext / o2

ext

i4ext / o4
int

S1 S2 S3

S4
 

(a) 

i2ext / o2
ext

i4ext / o4
int

S1 S2 S3

S4

i2ext / o2
ext

 
(b) 

Figure 5.4: Example of STD→STD′ reduction where a state has mixed transitions 
(internal and external), (a) Original STD, (b) Reduced STD. 

 

Let V be the number of states and E be the number of transitions. The operation of step 

1 reduction considers all the incoming edges of all the states (total number of operations 

is O(E)) and for each incoming edge it performs a constant order operation. Therefore the 

entire running time is O(E) = O(V2), where the upper bound is reached for a fully 

connected graph.  

During the reduction process, while re-assigning the transitions it can happen that a 

reduced state might have two different transitions for the same input (output) pair leading 

to a conflict. Consider the example STD depicted in Figure 5.5(a) whose reduced STD is 

given by Figure 5.5(b). State S1 is non-deterministic on receipt of input i2
ext as two 

transitions are possible, either to state S4 or state S3. A monitoring system at this point 

cannot decide which of the two possible states the PE is in. Such a reduced STD can 

cause the monitoring system to lose track of the current state of PE leading to missed 

alarms. The monitoring system is forced to follow both the possible paths until some 

input transition is received which resolves the ambiguity. For the example in Figure 5.5, 

i2
ext and i4

ext will cause the monitoring system to keep two active paths but on receipt of 

i6
ext the ambiguity of PEs current state is resolved, revealing that the PE traversed through 

states S1-S3-S6-S7.  
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i1int / o1
int i2ext / o2

ext

i4ext / o4
ext

S1 S2 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7

 

(a) 

i2ext / o2
ext

i4ext / o4
ext

S1 S3

S4

i6ext / o6
ext

S6

i2ext / o2
ext

S5

i4ext / o4
ext

S7

 
(b) 

Figure 5.5: (a) An example STD whose reduced STD, (b) will have non-deterministic 
transitions.  

 

5.5. STD reduction due to ruleless states (STD′→STD′′): Motivation 
 

In this section we examine the motivation of reducing the STD based on the specified 

rules. The treatment is in the context of an existing detection and diagnosis framework 

called the Monitor because we use its rule syntax which is described in Section 5.6. 

Further onwards we will refer to the specific monitoring system i.e., the Monitor. The 

Monitor(s) takes as input the STD of the protocol to be verified. It performs state 

transitions based on the observed messages exchanged by the distributed protocol 

processes. For each state it verifies a set of rules specific to the state and some 

transition(s) in that state. Optionally a rule has precondition and time components.  

The states that are not useful to the Monitor are those without any rule associated with 

them. A rule is defined as a condition check set up by the system administrator to check 

the correctness of the system by verifying whether the state transition is correct. The goal 
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of STD reduction is to lower the latency of the diagnostic process for the Monitor. For 

details of the diagnostic process in the Monitor, the interested reader is referred to[9]. 

Briefly, when a failure is detected, a Suspicion Tree (ST) is created with the PE at which 

the failure was detected being the root of the tree (say R). A node in the ST represents 

jointly the PE and the state in which it sent the message. A node at depth 1 in the tree is 

the sender of a message to R (depth 0). Generally, depth i consists of all nodes which 

have sent messages to nodes in depth i-1. Note that a PE may appear multiple times in the 

ST because it was in different states at these times. This reflects the fact that a PE may 

appear multiple times in a chain of error propagation. Tests are executed on the state 

represented by the nodes in the ST to determine the faulty entity (or entities). Note that 

these are not active tests with which the PE is exercised. Instead these tests are executed 

on the state of the PE that has been built up by the Monitor by its observation. The 

reduction in the number of states reduces the execution time of the diagnosis process due 

to the following factors: 

1. The Monitor system is hierarchical and any two nodes may be under the purview 

of two physically separated Monitors. Therefore testing an additional node incurs the cost 

of running the tests on that state plus possible network communication. Reducing the 

number of states reduces the number of nodes that need to be traversed during the 

diagnosis process.  

2. The Monitor system tracks the possible causal chain of error propagation by 

tracking the message exchanges between the PEs. When an edge is removed from the 

STD, it means a message need not be tracked, which reduces the amount of storage and 

computation needed at the Monitor. 

 

5.6. Rule Format used by Monitor 
 

Monitor contains a rule base which is used for verification of the protocol behavior. 

For the completeness of this chapter we will explain the rule format used by the Monitor 

again. The rules in the Monitor can consist of some combination of state(SI), 

transition(TI) and time(t). The transition as defined before consists of a pair II(OI) 
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denoting the input(output ) message which characterize the transition. A rule could also 

simply verify single message of the transition by making the other message don’t care 

i.e., with a transition as II(d), the Monitor will only observer the input II.  Monitor rules 

consist of the following 5 types: 

 

Type I: true for ( , ) true for ( , )p N N q I IS T t t k S T t t b= ∈ + ⇒ = ∈ +  

The above rule represents the fact that if for some time k starting at tN, a state Sp is true, 

then it will cause the state Sq to be true for some time b starting from tI. The time tN  

represents a time when some defined transition TI takes place.  

 

Type II: St is the state of an object at time t: St ≠ St+∆, if TI = true at t. The state St will not 

remain constant for more than ∆ time units if a transition TI  occurs.  

 

Type III: L ≤ |Vt| ≤ U t ∈ (ti,ti+k) 

The number of transitions Vt in a particular state SI will be bounded by L and U in some 

time k starting at time ti. 

 

Type IV: t∀ ∈(ti,ti +k) L ≤ |Vt| ≤ U ⇒  L’ ≤ |Bq| ≤ U’ q∀ ∈(tn,tn+b). The number of 

transitions Vt being bounded by upper and lower bounds in time k will cause another 

transitions Bq to be within some bounds and will hold true for some time interval b. This 

rule is in fact the master rule and the three previous rule types are special cases. But we 

still need the first three rule types because matching this class of rule entails matching 

more variables, which incurs higher latency than the first three classes. 

 

Type V: αββαα >++∈∀≠⇒+∈∀= ..);0,0()0,0( tstttiSstttiSs This rule prevents 

a state transition from Si back to the same state within time β of first arriving at Si. 

 

5.7. STD reduction due to ruleless states (STD′→STD′′): How?  
 

In this reduction step, we need to ensure that a reduction should not change the result 
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of the verification of any rule by the Monitor. This is especially the case with Rule V 

which can be violated if the Monitor makes a transition to a state prematurely. Therefore, 

in order to prevent erroneous flagging of this rule, not all ruleless states can be removed. 

Also, if there is a rule corresponding to a transition, then the transition cannot be 

removed. 

Broadly we classify the procedure into two steps which should be performed for the 

reduction to happen.  

1. Identifying the nodes for reduction:  

 

Case 1: Rule of Type V is not present in the predecessor state of a ruleless state: 

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule  
(a) 

S1
Rule

i2ext / o2
ext S3

Rule  
(b) 

Figure 5.6: (a) Example input STD; (b) Reduced STD. Each state with a “Rule” has some 
rule associated with it which is verified by the monitoring system. 

 

R3: A state Si has no rule ∧ (∀Sj  ∈ predecessor(Si)) Sj has no rule of type V ∧ Sj has 

no rule on transition edge i1
ext/o1

ext⇒ Remove Si and incoming transitions of Si. 

In the example shown in Figure 5.6, since S2 has no rule and S1 does not have rule V, 

S2 can be reduced. 

 

Case 2: Rule of Type V is present in a predecessor state of the ruleless state: 

R3-1: A state Si has no rule and (∃Sj  ∈ predecessor(Si)) s.t. Sj has a rule of type V ⇒ Do 

not remove Si. 

S1
Rule V

i1ext / o1
ext S2

i2ext / o2
ext S3

Rule  
Figure 5.7: An example STD where predecessor(S2)=S1 has a rule of type V. 
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In Figure 5.7, S1 contains rule V, so if we reduce S2, thereby creating a direct 

transition from S1 to S3, then the timing properties of rule V associated with S1 can get 

violated. This can happen because transition from state S1 is delayed because of removal 

of edge i1
ext/o1

ext thereby causing the time spent in state S1 beyond Δ time bound and 

violating the rule. S2 can only be reduced if there is another state with no rules adjacent 

to it. Consider the example in Figure 5.8, when S2 and S3 have no rules but S4 has rule V. 

In this case, either S2 or S3 can be reduced and combined into a single state without rules. 

 

Case 3: Rule of Type II is present which runs on a self-loop in a predecessor state of the 

ruleless state: 

S1
Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule

i2ext / o2
ext

S3
 

              
S1

Rule V

i1ext / o1
ext S2

i3ext / o3
ext S4

Rule  
Figure 5.8: (a) Original STD (b) Possible Reduced STDs 

 

 

R3-2: A state Si has no rule and (∃Sj  ∈ predecessor(Si)) s.t. Sj has a rule of type II ∧ Tj is 

self-loop ⇒ Do not remove Si.  

 

S1
Rule II

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i0ext / o0
ext

 
Figure 5.9: An example STD where a rule of Type II exists in the predecessor state of a 

ruleless state.  
 

Consider a type II rule (see Figure 5.9) exists which is verifying the time spent in state 

S1 once a transition i0
ext/o0

ext happens. If we remove the transition edge i1
ext/o1

ext because 

S2 is ruleless, this will be incorrect since this can cause an increase in the time spent in 
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state S1 thus violating the type II rule.   

 

2. Reduction Step: 

If two or more states are identified for reduction, they are merged to form a single 

state. The transitions between the merged states are discarded. Consider a state that needs 

to be removed, namely S2 in Figure 5.10. The state S2 is removed and its outgoing 

transitions are re-assigned to the predecessor(S2) states. In this example, the transition 

edge i2
ext/o2

ext is re-assigned to S1.  

 

S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i3ext/ o3
ext

S3
Rule

     
S1
Rule

i2ext / o2
ext S4

Rule 

i3ext / o3
ext

S3
Rule

 
(a)       (b) 

Figure 5.10: (a) Original STD;(b) Reduced STD 

3. Building Complex Edges: 

If the state being reduced has the same transition edge i.e. the same input (output) pair 

as one of its predecessor states, then the reduced state can now have multiple transitions 

for a single input making the STD non-deterministic. To ensure that the reduced STD is 

deterministic, we propose maintaining multiple pairs of input-output labels for a 

transition edge, called a complex edge. We define a complex edge to be of the form t1 *t2 

*t3….. *tk where tj is pair ij
ext (oj

ext). If a complex edge represents a transition i.e., sj →t1*t2  

si then both t1 and t2 must be observed before the transition to state si is performed.   For 

example in Figure 5.11, the edge between states S1 and S4 in the reduced STD has two 

pairs of transitions. When the conflicting transition occurs, we check if the prefix pairs 

had occurred to disambiguate, e.g., if the Monitor observed i2
ext(o2

ext)it will check if i1
ext( 

o1
ext) had been seen prior, to disambiguate. 
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S1
Rule

i1ext / o1
ext S2

i2ext / o2
ext S4

Rule 

i2ext/ o2
ext

S3
Rule

     
Original State   

   

S1
Rule

(i1ext /o1
ext) * (i2ext / o2

ext) S4
Rule 

i2ext / o2
ext

S3
Rule

 
Reduced State 

Figure 5.11: Example for introduction of complex label for a transition edge 

 

With V as the number of states and E as the number of transitions, the running time 

for reassigning an edge is O(1), for checking if the previous state has rule of type V is 

O(V), and the total number of steps over which this has to be done is O(E), thereby 

giving a total complexity of stage 2 reduction of O(VE). 

 

 

5.8. Correctness property 

 

For the purpose of discussion, we consider the property from the point of view of an 

arbitrary state si. Let α1 and α2 be the set of transition edges from predecessor(si) and 

successor(si) to the state si. Assume ( ) ( ) . .j i k is predecessor s and s successor s s t∃ ∈ ∃ ∈  sj 

→tji si →tik sk where tji ∈ α1 and tik ∈ α2 in the original STD. Further we assume that PE 

goes through predecessor(si) →α1  si →α2  successor(si) trace unless otherwise stated. 

Since si is arbitrary, the proof holds in general for any state. 
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Theorem: The reduction of the STD does not reduce the coverage of the Monitor. 

For this, we first prove three lemmas. 

 

Lemma 1: The reduction steps do not alter the time of entering a particular state but may 

delay the time of leaving a particular state as perceived by the Monitor. (“Alter” implies 

changing from the actual transition of the PE to when the Monitor performs the 

transition.)     

Consider the trace sj →tji si →tik sk .  Here there could be two scenarios; 1) State si has 

all incoming transition edges to be internal; 2) Some incoming transitions which are 

external are also present. If tji.type = internal then reduction step 1 will remove this 

transition edge and reduce the STD trace to sj →tik sk.(using R1 or R2  depending upon 

the two scenarios).  The Monitor will correspondingly perform transition from sj to sk 

only after receiving tik. But the PE may have left the state sj some time before and moved 

to state si. This implies the reduction can postpone the time at which Monitor leaves a 

particular state (by amount time(si) in this example). However, since the reduced STD at 

the Monitor contains transition edge tik, the Monitor will make a transition to sk at the 

correct time, thus causing no error in the time of entering a particular state. Thus, the 

Monitor’s estimate of duration spent in a state can be longer than what the actual duration 

a PE spent.  

 

 Lemma 2: Monitor correctly determines the PEs current state. 

The proof follows the premise that if all messages in the STD are visible to the 

Monitor then on observing each and every message, the Monitor will make correct 

transitions.  

 

Lemma 3: Outcome of verification of a PE against a rule base using a reduced STD 

remains unchanged from the complete STD.  

The verification by the Monitor should yield the same performance on the reduced 

STD as on the original STD, i.e., there should not be an increase in missed alarms or false 

alarms during verification of the rule set. Since we have eliminated all internal transitions 
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by the first step of reduction, e1.type = external and e2.type = external ∀e1 ∈ α1 and ∀e2 

∈ α2.  Some of the states on this path may or may not have rules. We will consider each 

scenario for every rule type and show how reduction step 2 affects the rule verification. 

In all cases state si has no rule associated with it and we consider if the reduction of si 

according to the rules defined in section 5.5, satisfies the lemma.  

 

Type I: Assume both sj and sk have rule of type I associated with them present in the rule 

base for verification. Using R3 si will be removed and re-assignment will yield a 

mapping between predecessor and successor sets given by: predecessor(si) → α2  

successor(si). If PE traverses the path sj→tji  si →tik sk, then correspondingly the Monitor 

will perform sj →tjk sk. According to the format of type I rule, both the pre-condition and 

post-condition verify for a state being true for atleast some time period (k or b from 

definition of type I rule). It is important to note that both pre-condition and post-

condition require the time of entrance to a particular state to be accurate and the time 

spent in that state by the Monitor should be at least the time the PE spends in that state. 

Using Lemma 1 both conditions are satisfied. Hence, the reduction process does not 

affect the verification of type I rule. This argument is independent of whether a single 

type I rule encompasses both sj and sk and whether one or both of sj or sk has a rule of 

type I.  

 

Type II: Assume either or both sj and sk have rule of type II associated with them. It is 

important to note that unlike type I rule, type II rule require accurate knowledge of time 

of leaving a state. Hence the line of reasoning from type I cannot be simply carried over. 

Below we analyze the specific cases which arise during handling of type II rule.  

 

Case 1: Let’s consider state sj has a type II rule associated with the transition edge tji. In 

this scenario even if the state si does not have any rule, using R3 the reduction step will 

not remove state si (and transition edge tji) because a valid rule over that transition edge 

exists in the rule base. Same reasoning holds if sk has a type II rule associated with the 

transition edge tik.  
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Case 2: Let’s consider state sj has a type II rule associated with a transition edge tr ≠ tji ∧ 

(tr is not a self-loop).  In this scenario, using R3 the reduction step will remove the state si 

and perform the following re-assignment sj → α2 successor(si).  Although sj has a type II 

rule present, since it is associated with some other transition edge (≠ tji), even if the PE 

traverses this particular trace (i.e. sj→tji  si →tik sk) rule verification would not be triggered 

because the rule is not based on the transition edge tji. On the other hand if transition edge 

tr transpires, Monitor will correctly estimate the time of departure from state (sj) because 

tr would not be removed during the reduction step (from Case I).  

 

Case 3: If state sj has a type II rule associated with transition edge tr ≠ tji ∧ (tr is a self-

loop for sj).  Using R3-2 the state si will not be removed. This is because if si (and 

correspondingly tji) is removed, this will delay the amount of time spent in state sj using 

Lemma 1. This can cause invalid response during verification of the type II rule 

verification. Since R3-2 prevents a state removal in such scenario(s), reduction process 

does not interfere with the verification process.  

Hence in all cases, the reduction step does not violate a type II rule if present.   

 

Type III: Assume state sj has rules of type III. A type III rule measures a state variable 

and since a rule is specific to a state, this state variable is a function of the number of 

transitions following a self-loop to the same state (since a transition out of the state will 

no longer cause the rule to hold and a state variable changes only when there is a 

transition). The rule is dependent on accurately determining the time of entering a state 

and the duration spent in that state. Using Lemma 1 we know that first condition is true. 

According to the rules, an edge re-assignment only happens if it is not present in any rule. 

If state sj has a rule of type III  associated with the self loop transition edge tr, then tr will 

not be removed. During the reduction step, state si is removed and transition edges re-

assigned as predecessor(si) →α2  successor(si) using R1. If tr ∈ α2, then a complex edge 

must be created which will help Monitor determine the correct time of leaving the state sj. 

This satisfies the second condition of accurately determining the time spent in sj. If state 

sk has rules of type III instead of sj, the exact same reasoning applies. 
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Type IV: A rule of this type comprises a precondition and a postcondition, each of which 

looks like the condition in a rule of type III. As proved before, the condition for type III 

rule is not violated by the reduction. Therefore neither the precondition nor the 

postcondition is violated and therefore the rule of type IV is satisfied. 

 

Type V: Assume type V rule is associated with sj, and some rule is associated with sk. 

One can see that a rule of type V prevents a state transition from sj back to itself within a 

time bound. If si does not have any rule associated with it then it is a candidate for 

reduction (using R3-1).  Since we have already proved that re-assignment can never 

cause inconsistencies in determining the time of arrival into a state but can delay the time 

of departure from a state. Hence if the reduction step reduces state si and the transition 

out of sj is delayed, this can cause a violation of the type V rule associated with sj but R3-

1 avoids this scenario.  

Hence we prove that the protocol semantics are unchanged with respect to the Monitor 

during STD reduction. Putting lemmas 1, 2, and 3 together, we assert that the STD 

reduction steps 1 and 2 combined do not change the semantics of the application protocol 

w.r.t. the Monitor which completes the proof for Theorem 1.  
 

5.9. Discussion 

By the end of this chapter we have developed a Monitor framework which provides 

detection diagnosis and tackles large number of states. At this point it is necessary to 

compare the strengths of the Monitor with other similar frameworks. This forms the basis 

of the next chapter of this thesis. 
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6. PINPOINT AND APPLICATION TO e-COMMERCE 

6.1. Motivation  
 

E-commerce today is an important backbone used by multiple everyday applications 

like customer survey’s, online shopping, e-banking etc. Providing reliability in such an 

environment is very important and almost inevitable because of the high financial cost 

associated with the downtime. We apply the diagnosis protocol (from chapter 3)to a three 

tier e-commerce system consisting of the Pet Store application deployed on the JBoss 

application server with the Tomcat web server as the front end and the MySQL database 

server at the backend. The application supports multiple kinds of browse and buys 

transactions with each involving interactions between many components, where 

components are defined as servlets and EJBs. Through a modification to the JBoss 

containers, messages between the components are trapped and forwarded to the Monitor. 

We compare our approach to Pinpoint[106] in terms of accuracy and precision of 

diagnosis. We inject errors in the application where the errors may be due to a single 

component or interactions between multiple components. The accuracy and precision, 

correspondingly roughly to the complement of false negative and false positive, are 

measured for different kinds of faults. Our approach outperforms Pinpoint in 1, 2 and 3 

component faults. The accuracy of the diagnosis gains between 20% to 100% over 

Pinpoint’s approach for comparable precision values.  

 

6.2. Pinpoint’s Approach to Diagnosis 
 

Pinpoint serves as a valid point of comparison with the Monitor since both systems 

have the same focused goal (diagnosis, as opposed to say performance debugging as in 
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[65] with diagnosis being a side issue) and have the same target application model 

(black-box or gray-box application and passive observation of the application for 

diagnosis). Importantly, Pinpoint represents a recent state-of-the-art development ([106]) 

and has been well explained and demonstrated on an open source application (compare to 

say Magpie [67] where the application is not available to us), and its algorithms are not 

dependent on a huge set of parameters whose settings are left mysterious in the 

publication (compare to the machine learning approach in [98] where several statistical 

distributions would have to be assumed). 

 

We implement the Pinpoint algorithm (as explained in [106]) for comparison with our 

Monitor’s diagnosis approach. Pinpoint requires as input a dependency table —a 

mapping of which components each transaction depends on. This is in contrast to the 

Monitor approach, where such dependency information does not have to be determined a 

priori and fed into the system before execution. Instead the Monitor deduces the 

dependencies through runtime observations as described in Section II.B. For Pinpoint, 

when transactions are executed, their failure status is determined by the failure detectors. 

A table (called the input matrix) is then created with the rows being the transactions, the 

first column being the failure status, and the other columns being the different 

components. If a cell T(i, 1) is 1, it indicates transaction i has failed. If a cell T(i, j) is 1, it 

indicates transaction i uses the component j. Pinpoint correlates the failures of 

transactions to the components that are most likely to be the cause of the failure. The 

input matrix is fed as input to the data clustering engine. The transpose of this binary 

input matrix is used by the data analysis engine. The data analyzer computes the 

dissimilarity between the rows of transposed matrix, which is represented by Jaccard`s 

distance. This matrix containing the distances between the components is fed to a 

clustering algorithm called the Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA) [106]. The algorithm forms clusters. What is significant is which components 

fall in the cluster having the failure row. These components are diagnosed by Pinpoint to 

be faulty. 
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A crucial point for the accurate operation of Pinpoint is that the transactions should be 

diverse enough, i.e., use distinct non-overlapping components. Two transactions T1 and 

T2 are called distinct with respect to a set of components {C1, C2, …, Ck} if there is no 

overlap between these columns for T1 and T2, i.e., when T1’s row has a 1 in any of these 

columns, T2’s row has a zero, and vice-versa. Pinpoint as described by the authors in 

[106] is an offline approach. For comparison with the Monitor, we convert it into an 

online protocol. We incrementally feed the transactions and their corresponding failure 

status as they occur in the application, rather than waiting for all the transactions in a 

round to be completed before executing Pinpoint. The performance improves as the 

number of transactions increases (and consequently, the number of distinct transactions 

increases) and this is quantified through the experiment described in Section 6.3. 

 

To provide a comparable platform between the Monitor and Pinpoint, we keep the 

testbed identical to that in [106]—same client, web server, application server (with 

identical components), and database server. Since the performance of the Monitor and 

Pinpoint are sensitive to the transactions used, we would have liked to use the same set of 

transactions as used by Pinpoint in [106]. However, the paper is silent on the issue—it 

does not even provide the total number of transactions used. We contacted the authors of 

Pinpoint but they were unable to provide us with the transactions either.  

 

6.3. Implementation and Experimental Test-Bed 

 
6.3.1. Experiment Test-bed 

6.3.1.1. Application 

 

We use PetStore (version 1.4), a sample J2EE application developed under the Java 

BluePrints program at Sun Microsystems[107]. It runs on top of the JBoss application 

server [108] with MySQL database [109] as the back-end for the example 3-tier 

environment. Figure 6.1 depicts the application topology for the experiments. The 
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PetStore application is driven by a web client emulator which generates client 

transactions based on sample traces. The web client emulator is written in Perl using lynx 

as the web browser. For the mix of client transactions, we mimic the TPC-WIPSo [110] 

distribution with equal percentage of browse and buy interactions. The servlets and the 

EJBs are considered as components in our experiments and these serve as the granularity 

level at which diagnosis is done. This design choice is based partly on the fact that in 

JBoss a faulty servlet or an EJB can be switched out at runtime for a correct one. We 

identified a total of 56 components in the application. 

 

We consider a web interaction to be a complete cycle of communication between the 

client emulator and the application, as it is defined by the TPC Benchmark W 

specification [110]. This cycle starts when the client emulator initiates web request and it 

is completed when the last byte of data from the response page has been received by the 

client emulator. Examples of web interactions could be entering the Welcome page or 

executing a Search. A transaction is a sequence of web interactions. An example of a 

transaction by a user who is searching and viewing information about a particular product 

is: Welcome page  Search  View Item details. For our experiments we created a total 

of 55 different transactions. A round is a permutation of these 55 transactions modeling 

different user activities that occur on the web store. Within a round, transactions are 

executed one at a time. Two transactions are considered to be non-unique if they use 

exactly the same components, neglecting the order in which the components are used. 

Thus, a transaction that comprises: Welcome, Search, Search is not unique with respect to 

another that comprises: Welcome, Search. There are 41 unique transactions in the set of 

55 transactions that we use. Although 55 is not an exhaustive set of possible transactions 

in the application, the chosen set exercised a wide variety of web-interactions and 

between them, touched all the components of PetStore. We note that the results presented 

here depend on the exact set of transactions used to exercise the system.  

 

We instrumented the JBoss application server to snoop over the message 

communication between PetStore components. JBoss has a layered architecture and each 
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communication traverses multiple interceptors. We modify the SecurityInterceptor to 

forward messages to the Monitor for updating the causal graph. Thus, the PetStore 

application is left unchanged.  

 

6.3.1.2. Monitor configuration 

The diagnosis algorithm in the Monitor is implemented in Java. The Monitor is 

provided an input of state transition diagrams (STDs) for the components verified and 

causal tests used during calculation of PPEP values. The size of the causal graph is 

bounded at 100 links. 

 

Figure 33 shows an example STD for CreditCardEJB used by the Monitor in our 

experiments. A start state S0 signifies a no request state. If a request for processing is 

received from another component, the state of the EJB moves from S0 accordingly. Right 

below the STD we have some simple causal tests which can be derived from the STD 

itself. As explained in section 6.2, causal tests are dependent on the state and event of the 

component. For example, if the EJB is requested for getData() then in state S1 there must 

be a return from getData() to ensure correct operation of the EJB. This is verified using 

the first rule in Figure 33.   
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Figure 6.1: Logical Topology of the Client and Server for the Experiments  
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Return getData()

getData()
getExpiryData()
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getExpiryData()
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getCardType()

Return

getCardType()

S0 S2

S1

S3

S4

Return getData()

getData()
getExpiryData()

Return 
getExpiryData()

getExpiryMonth()
Return 

getExpiryMonth()

getCardType()

Return

getCardType()

 S0 getData 1 S2 return getData1 1 
S0 getExpiryMonth 1 S1 return getExpiryMonth1 1 
S0 getExpiryData 1 S3 return getExpiryData 1 1 
S0 cardType 1 S4 return cardType1 1 

 
Figure 6.2: An example STD for CreditCardEJB along with some illustration of Causal 

Tests. 
 
6.3.1.3. Detectors 

 
We create the same detectors as in [106].  An internal and an external failure detector 

are built which provide failure status of transactions to Pinpoint and the Monitor. The 

external detector detects failures that will be visible to the user, such as application-

specific failures, machine crashes or complete service failures [106]. We implemented 

this external detector as part of the client emulator. It examines the output error log of 

lynx and flags a failure if an HTTP error is observed. Alternately, if a transaction does 

not complete within 20 seconds, timeout occurs and the detector flags a failure.  An 

internal detector is used to detect a failure that may not immediately manifest itself to 

users. The internal detector is built to catch Java exception in the application and is 

embedded in each component.  
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6.3.2. Fault Injection 

 
We perform fault injection into the components of the PetStore application (i.e., 

Servlets and EJBs). PetStore has  about 56 components including the EJBs, and servlets. 

We choose a set of 9 components called target components consisting of 6 EJBs and 3 

servlets for fault injection. The names of the components are AddressEJB, 

AsyncSenderEJB, CatalogEJB, CreditCardEJB, ContactInfoEJB, 

SupplierClientLocalFacadeEJB, enter_order_information.screen, order.do, and 

item.screen. We use four different kinds of fault injections similar to Pinpoint.  

 

− Declared Exception: We inject IOException as the representative declared exception.  

− Undeclared Exception: This is a Runtime Exception not caught in the application.  

− Endless call: The target component has an infinite while loop.  

− Null call: Instead of returning the appropriate value, a method returns a null object.  

 

The internal detector is more likely to detect the declared and the undeclared 

exceptions, and the null calls while the external detector is more likely to detect the 

endless call. For a given round only one target component is injected. We use 1-

component, 2-component and 3-component triggers. In a 1-component trigger, every time 

the target component is touched by a transaction, the fault in injected in that component. 

In a 2-component trigger, a sequence of 2-components is determined and whenever the 

sequence is touched during a transaction, the last component in the transaction is 

injected. This mimics an interaction fault between two components and in the correct 

operation of a diagnosis protocol, both components should be flagged as faulty. The 3-

component fault is defined similarly.   
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6.4. Results 

6.4.1. Performance Metrics 

 
We use precision and accuracy as output metrics as in the Pinpoint work to enable a 

comparison. A result is accurate when all components causing a fault are correctly 

identified. For example, if two components, A and B, are interacting to cause a failure, 

identifying both would be accurate. Identifying only one or neither would not be 

accurate. However, if the predicted fault set (by the diagnosis algorithm) is {A, B, C, D, 

E} and the fault was in components {A, B} then the accuracy is still 100%. Precision 

captures the non-idealness in this case. Precision is the ratio of the number of faulty 

components to the total number of entities in the predicted fault set. In the above 

example, the precision is 40%. Components {C, D, E} are false positives. Lower 

precision implies high false positives. There is a tension between accuracy and precision 

in most diagnosis algorithms. When the algorithm is sensitive, it generates highly 

accurate results, but also causes a large number of false alerts reducing precision. 

Pinpoint uses the UPGMA clustering algorithm and varying the size of the faulty cluster 

varies the precision and accuracy. In the Monitor, after the diagnosis algorithm 

terminates, an ordered list of components is produced in decreasing order of PPEP. We 

define the predicted fault set as the top k components in the ordered output list. We vary 

k to obtain different accuracy and precision values.  
 

6.4.2. Single Component Faults 

 
In single component faults, the fault injection trigger consists of a single component. 

If a transaction touches the target component then one of the four kinds of faults chosen 

randomly, is injected and the injection remains permanent for the remainder of the round. 

First, let us consider the effect of varying cluster size on the performance of Pinpoint. 

The total number of injections for these results is 36—9 target components for injection 

and all 4 types of injection done on each component. The averaged results for accuracy 

and precision are plotted in Figure 6.3 (the bars show 90% confidence interval). As the 

size of the cluster increases, we see an increase in the accuracy which is intuitive because 
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at some point the failure cluster includes all the components that are actually faulty. 

Beyond that, increase in cluster size does not impact the accuracy. As the cluster size 

increases, the precision increases to a maximum value and then decreases thereafter. The 

increase occurs till all the faulty components are included in the failure cluster. 

Thereafter, increasing the cluster size includes other non-faulty components and thus 

brings down the precision. The maximum value of precision occurs when all the faulty 

components are included in the failure cluster. However the precision is still poor (less 

than 10%). This is explained by the observation that for the transactions in the 

application, there is tight coupling between multiple components. Whenever the entire set 

of tightly coupled components does not appear together as a fault trigger, which is the 

overwhelming majority of the injections, the precision suffers. The amount of tight 

coupling between the components is quantified through the experiment in Section 6.4.6. 

We emphasize that if we were to hand pick transactions such that they are distinguishable 

with respect to the target components, then the performance of Pinpoint would improve. 

Two transactions Ti and Tj are indistinguishable with respect to a set of components {C1, 

C2, …, Ck} if the columns of Ti in the input matrix corresponding these components are 

identical to that of Tj.  

Figure 6.3(a) shows the variation of Accuracy with False Positives for Pinpoint and 

the Monitor. For the Monitor, a given value of k (the top k elements from the ordered 

PPEP list are diagnosed) gives one value of accuracy and precision. This is averaged 

across the 36 injections for the presented results. For 1-component faults, Pinpoint has 

high false positives rates but the accuracy eventually reaches 1. In contrast the Monitor 

has a much higher accuracy keeping a low false positive rate. Monitor’s accuracy also 

reaches 1 but at a much lower value of false positives (0.6) as compared to Pinpoint (> 

0.9). The latency of detection in our system is very low. Thus, the faulty component is 

often at the root of the Diagnosis Tree in the Monitor. Since error propagation is thus 

minimized, the PPEP value for the faulty entity is high causing it to be diagnosed by the 

Monitor. This explains the high accuracy for the Monitor. However, Pinpoint’s algorithm 

does not take advantage of the temporal information—the temporal proximity between 

the component where detection occurs and the component that is faulty. As a 
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consequence its accuracy suffers relative to that of the Monitor. 

Notice that in Pinpoint, for a given value of false positives, two different accuracy 

values are achieved since a given precision value is achieved for two different cluster 

sizes (Figure 6.3(b)). Since accuracy is a monotonically increasing plot with cluster size 

(Figure 6.3(a)), the different cluster sizes give two different accuracy values. 
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Figure 6.3: 1-component fault injection: Variation of Accuracy and precision with cluster 

size in Pinpoint.  
6.4.3. Two Component Faults 

 
The 2-component fault injection results are shown in Figure 6.5. Pinpoint results improve 
in terms of the false positives implying higher precision. This is attributed to the fact that 
Pinpoint’s clustering method works better if the failing transactions are better 
distinguishable from the successful transactions. Recollect distinguishable is discussed in 
the context of components. A 2-component fault includes two components as the trigger 
and going from one component to two components increases the distinguish-ability of 
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transactions. 
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Figure 6.4: Single component fault injection: Performance of Pinpoint and Monitor. Both 

can achieve high accuracy but Pinpoint suffers from high false positive rates. 
 

Consider transaction T1 and T2 both of which use component C1 (the trigger in a single 

component fault injection). However, for a two component fault injection with trigger as 

{C1, C2}, the transactions T1 and T2 will be distinguishable as long as both T1 and T2 do 

not use C2. Thus, say T1 uses {C1, C2} and T2 does not use C2. Then only T1 will fail and 

T2 will not, leading to the diagnosis (considering simplistically that these are the only 

transactions and components) of C1-C2 as the faulty entities.  

 

In contrast, the Monitor results although still significantly better than Pinpoint suffer 

in the 2-component fault injection. One can see that accuracy reaches a maximum of only 

0.83 compared to 1.00 in 1-component injection. The number of times in a round the 

trigger for the 2-component fault is hit is lower than for the single component fault. Each 
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detection causes an execution of the diagnosis process and each execution of the 

diagnosis process updates the parameters of the causal graph away from an arbitrary 

initial setting toward an accurate set of values. Thus, for the 2-component faults, the 

Monitor gets less opportunity for refining the parameter values and consequently the 

PPEP calculation is not as accurate as for the single component faults. This explains the 

decline in performance of the Monitor for the 2-component faults.  
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Figure 6.5: 2-component fault injection: Performance of Pinpoint and Monitor. 

Performance of Monitor declines and Pinpoint improves from the single component fault, 
but Monitor still outperforms Pinpoint. 

 

6.4.4. Three Component Faults 

 
Three 3-component fault injections show even better results for Pinpoint with the 

maximum average precision value touching 27%. This is again attributed to the fact that 

more number of components causes selected transactions to fail leading to a better 

performance by the clustering algorithm. The Monitor again outperforms Pinpoint by 

achieving higher accuracy at much lower false positives. The Monitor’s performance 
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again declines compared to the 2-component faults due to the same reason pointed in the 

previous section (the number of diagnoses for the 3-component trigger is less than that 

for the 2-component trigger). 
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Figure 6.6: 3-component fault injection: Performance of Pinpoint and Monitor. 

Performance of Monitor declines and Pinpoint improves from the single and two 
component fault, but Monitor still outperforms Pinpoint.  

6.4.5. Latency 
 

In its online incarnation, Pinpoint takes as input the transactions and corresponding 

failure status every 30 seconds during a round. It runs the diagnosis for each of these 

snapshots taken at 30 second intervals, terminating when the round is complete and 

Pinpoint executes on the entire input matrix corresponding to all the 55 transactions. 

Pinpoint’s performance only becomes reasonable at 3.5 minutes and above and hence we 

report only this part of the plot. Arguably this is a subjective decision, but we find the 

meaningful insights are only possible when Pinpoint has data worth 3.5 minutes or more. 

The latency plots show that after 3.5 minutes the accuracy and precision increase 

monotonically with latency. 
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 Figure 6.7: Single component fault injection: Variation of accuracy and precision with 
latency for Pinpoint. Higher latency means higher number of transaction data points and 

Pinpoint’s performance improves monotonically. 
 

 

We define the latency of diagnosis for the Monitor as the time delay from the receipt 

of the detector alert which marks the beginning of the diagnosis till the PPEP ordered list 

is generated. The Monitor has an average latency of 58.32 ms with a variance of 

14.35ms, aggregated across all three fault injection campaigns.  
 

 

6.4.6. Behavior of Components 
 

The PetStore application has some components which are tightly coupled, i.e., they 

tend to be invoked together for the different transactions supported by the application. 

We have noted earlier that tight coupling negatively impacts Pinpoint’s clustering 

algorithm. For our experiments, we inject 9 components and here we consider how 
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tightly coupled these components are with the other components in PetStore. AddressEJB 

is tightly coupled with 4 components implying that AddressEJB always occurs with these 

4 components in all the 55 transactions in our experimental setup. Pinpoint cannot 

distinguish between sets of components that are tightly coupled and thus reports the super 

set of the actual faulty components. This is the fundamental reason why its precision is 

found to be low in all our experiments. To counter this problem, one can synthetically 

create transactions that independently use different components (as noted by the authors 

themselves in [65]). However, for an application like PetStore, components are naturally 

tightly coupled and thus generating such synthetic transactions is a difficult task. Also 

even if we could devise such “unnatural” transactions that would make components 

distinguishable, it cannot be assumed that such transactions will be created with regular 

users in the system. Therefore, the premise of being able to diagnose failures by 

observing the transaction traffic generated by the normal users would be violated.  
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Figure 6.8: Tightly connected components  

6.5. Discussion 

 
In this chapter we compared the Monitor to the state-of –the-art diagnosis framework 

called Pinpoint. We tested the two systems on a 3-tier Java-based e-commerce system 
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called PetStore. Extensive fault injection experiments were performed to evaluate the 

accuracy and precision of the two schemes. The Monitor outperformed Pinpoint 

particularly in precision, though its advantage narrowed for interaction faults. Because 

the Monitor might be operating in high throughput streams, it is necessary to maintain 

reasonable accuracy. This forms the basis of the next chapter of this Thesis where we 

develop a novel approach for detection in high throughput scenarios by modifying the 

existing detection algorithm of the Monitor. 
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7. STATEFUL DETECTION 

7.1. Introduction 

 
The proliferation of high bandwidth applications and the increase in the number of 

consumers of distributed applications have caused them to operate at increasingly high 

data rates. Many of these distributed systems form parts of critical infrastructures, with 

real-time requirements. Hence it is imperative to provide error detection functionality to 

the applications. Error detection can broadly be classified as stateless detection and 

stateful detection. In the former, detection is done on individual messages by matching 

certain characteristics of the message, such as the length of the payload of the message. A 

more powerful approach for error detection is the stateful approach, in which the error 

detection system builds up state related to the application by aggregating multiple 

messages. The rules are then based on the state, thus on aggregated information rather 

than instantaneous information. Stateful detection is looked upon as a powerful 

mechanism for building dependable distributed systems [103][104]. The stateful 

detection models can be specified using various formalisms, such as, State Transition 

Diagrams, PetriNets or UML.  Though the merits of stateful detection seem to be well 

accepted, scaling a stateful detection system with increasing application entities or data 

rate is a challenge. This is due to the increased processing load of tracking application 

state and rule matching based on the state. This problem has been documented for stateful 

firewalls that are matching rules on state spread across multiple, possibly distant, 

messages [104]. The stateful error detection system has to be designed without increasing 

the footprint of the system. Thus throwing hardware or memory at the problem is not 

enough because the application system also scales up and demands more from the 

detection system.  
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In chapter 2, we developed the Monitor detection system (also see [39]) which 

provides detection by only observing the messages exchanged between the protocol 

entities (PEs). The Monitor is said to verify a set of PEs when it is monitoring them. The 

Monitor is provided a representation of the protocol behavior (using a state transition 

diagram i.e., STD) of the PEs being verified along with a set of stateful anomaly based 

rules. The Monitor uses an observer model whereby it does not have any information 

about the internal state of the PEs. The Monitor performs two primary tasks on observing 

a message. First, it performs the state transition corresponding to the PE based on the 

observed message. Note that the state of the PE estimated by the Monitor may differ from 

the real state of the entity since not all messages related to state changes are necessarily 

observable at the Monitor. Second, it performs rule matching for the rules associated with 

the particular state and message combination. We observe that the Monitor has a 

breaking point in terms of the incoming message rate or the number of entities that it can 

verify beyond which the accuracy and latency of its detection suffer([105], Figure 7.1). 

The drop in accuracy or rise in latency is very sharp beyond the breaking point. We 

observe through a test-bed experiment that as the incoming packet rate into a single 

Monitor is increased beyond 100 pkt/s, the Monitor system breaks down on a standard 

Linux box. In other words, its latency becomes exceedingly high and accuracy of 

detection tends to zero. This effect is shown in Figure 7.1. This breakdown is caused by 

the processing capacity at the Monitor being exhausted. Hence, messages see long 

waiting times and on the buffer becoming full, the messages also get dropped.  Thus, for 

reasonable operation, the Monitor can only support data rates below the breaking point.  

 

In the current work, we devise a stateful detection approach which scales with the 

increasing data rate of applications, or equivalently, the number of PEs being verified. 

We observe that in order to make stateful detection feasible; firstly the processing of each 

message must be made extremely efficient and secondly the system must reduce the total 

processing workload (e.g., by selectively dropping incoming messages). The amount of 

work at the Monitor per unit time can be conceived as the rate of messages being 
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processed for detection × the amount of work performed for each message. Our approach 

optimizes both these terms. The goal is to provide an error detection system for high 

throughput distributed streams and correspondingly push the knee to the right (Figure 

7.1). Existing detection systems like [101][100] which aim at handling high data rate 

provide detection of changes in high rate streams using mean and higher order moments. 

This approach cannot capture the richness in the error detection rules that is needed for 

specifying verifiable behavior. 
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Figure 7.1: Latency variation with increasing inter-packet delay. The graph depicts the 

breaking of the Monitor system at an incoming rate of 100 pkt/s. 
 

As a first aspect, we minimize the processing cost of an individual incoming message 

into the Monitor. We do this by using multistage hash tables for look ups when a state 

transition needs to be performed at the Monitor. We observe that for realistic systems, 

multiple rules will be active concurrently. The rules take the form of verifying values of 

some state variables or counts of messages (events) lying within a range.  There exists 

significant overlap in the state variables or counts being referred to in the rules. Since 

processing for an incoming message most often involves updating these counts, we 

optimize this operation by compact representation of the state variables. 

 

In the second aspect, we optimize the incoming message rate the Monitor has to 

process. We set a threshold for the incoming rate guided by the breaking point of the 
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Monitor. Sampling the incoming stream to reduce the rate of messages is a logical start. 

However, since the Monitor provides stateful detection, dropping messages can cause the 

Monitor to lose track of the PE’s current state with resultant decrease in accuracy of rule 

matching. This phenomenon is called state non-determinism, whereby to the Monitor it is 

non-deterministic which state the PE is in. In our approach the Monitor tracks the set of 

possible states the application could have reached given that a sequence of messages is 

dropped. The Monitor aggressively pre-computes information about the states for 

possible sequences of messages to reduce the cost of computing the non-deterministic 

state set. While the cost of processing each (sampled) message now increases over the 

baseline case, through careful design the Monitor’s total amount of work is reduced by 

reducing the rate of messages that it needs to process. The sampling is made adaptive to 

tolerate fluctuations in the message rate generated by the PEs. Also, the sampling scheme 

necessitates changes in the rules to prevent false detections due to the sampling.  

 

We implement the two aspects of efficient stateful detection in the Monitor and use it 

to detect errors in a reliable multicast protocol (TRAM). TRAM provides a motivating 

application since it is at the core of many e-learning applications which feed high 

bandwidth streams to a large set of receivers. We inject errors into the TRAM PEs and 

compare the accuracy and latency to the baseline system. The sharp decrease in 

performance beyond the breaking point is no longer observed; in fact, a sharp breaking 

point is completely eliminated and a gradual decrease in performance with increasing 

message rates is observed instead.  

 

7.2. Scalable Stateful Detection 

 
In developing a suitable approach for stateful detection we carefully study the tasks 

performed by Monitor-Baseline for error detection. Thus, the main steps on the receipt of 

a message are: 1) perform the state transition; 2) instantiate any rule corresponding to the 

state and event combination. Upon expiry of the time specified in a rule, the Monitor 

checks the value of the variable(s) mentioned in the rule to verify that they lie in the 
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permissible range. It is observed for Monitor-Baseline that as the number of incoming 

messages increases, the latency of detection breaks down beyond a threshold. We 

attribute this problem quite intuitively to two root causes – 1) High cost of processing per 

message, and 2) High rate of incoming messages. We target both these causes and 

solutions to them are described respectively in Sections 7.2.1 and 7.3.  

 

7.2.1. Making Rule Matching Efficient 
 

In the modified approach, henceforth called Monitor-HT (for Hash Table, due to its 

widespread use in the redesign), we perform several modifications to Monitor-Baseline 

data structure to achieve efficient per message processing. Figure 7.2(b) depicts the 

logical organization of multi-level hashtables used in Monitor-HT. These hashtables are 

organized by carefully observing the processing path a message takes after being 

received by Monitor-Baseline. We designed the data structure consisting of multi-level 

hashtables to provide constant order look-up. The STDs of the PEs are organized as 

multi-level hashtables to provide constant order lookup. PE address is used in PESTD 

table to obtain the STD for that PE. The STD table is indexed using a state si which 

provides a list of events possible in that state (again organized as a hashtable). In the 

Event table each event ID maps to an event object, which contains information like event 

ID, event Name and rules pertinent to that event.  

Event HTPE addr Event HTPE addr

key Object

Event CountEvent ID Event CountEvent ID

PEEvent Table EventCount Table    
(a) 

STDPE addr STDPE addr

key Object

EventsState EventsState

PESTD Table STD Table

Event 
Objects

Event ID Event 
Objects

Event ID

Event Table  
(b) 

Figure 7.2: Data Structure used in Monitor-HT for (a) Storing Incoming Event Counts; 
(b) Storing the STDs. The first column represents the key of the hash table.  
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Next, in Monitor-Baseline, for every rule instantiation, its own copy of state variables 

is created. When a message arrives, active rules that depend on the message (through a 

state variable) are searched and every rule’s local copy of the state variable is updated. 

This process is expensive because for every message, a long list is traversed. We observe 

that there exists significant sharing of state variables between the different rules and this 

makes the design of separate copy for each active rule inefficient. As an example, 

consider that multiple rules are tracking the data rate around different events, say within 

5 seconds of a Nack being sent. All the rules would be counting the number of data 

messages (the state variable) received over different time intervals.  

 

Monitor-HT removes the above-mentioned source of inefficiency by having a central 

store of the state variables. Monitor-HT keeps a hashtable to store the updates for a given 

message (see EventCount table in Figure 7.2(a)). We use a multi-level hashtable where 

PEEvent indexes all the PEs in the system and the EventCount table contains all the 

events corresponding to the given PE. The incoming messages can be thought of as a 

tuple as (ai, ei), where ai is the PE address (IP address or some logical address) and ei is 

the event ID. The value ai is used to look up PEEvent table for the events. The ei is used 

to index in EventCount table and increment the event count for ei (currently all 

increments are by a value of 1). Because of this organization every unique PE × Event ID 

symbol is only incremented once.  

 

Regarding the rule matching procedure, instead of having every active rule use local 

variables, every rule instance reads the value of the associated state variable from the 

hashtable. When a new rule is created it reads the value of the current event count from 

the EventCount table to see the current value of the state variable referenced in the rule, 

call it vinit. Later, at the time of rule matching, the Monitor-HT again reads the value of 

the state variable, call it vfinal. Thus, the EventCount table is read from the rule instances 

only twice, and written by a separate thread which handles the incoming messages from 

the PEs. The advantage of Monitor-HT over Monitor-Baseline, quantified in the 
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experiments, is dominated by the effect of this design choice. 

 

7.3. Handling high rate streams: Sampling  

 
Even with the modifications made in Monitor-HT, a constant amount of work is 

performed for every incoming message. In the next optimization, not all messages are 

processed; instead messages are sampled and only the sample set is processed.  This 

version is called Monitor-Sampling, or Monitor-S.  Sampling raises a few obvious 

questions: 

• How and what sampling approach should be taken? 

• How are the rules modified due to sampling? 

• How does Monitor-S track the PE’s STD in the presence of sampling? 

The first two questions are answered in Section 7.3.1 and the third one in Section 7.3.2.  

 

7.3.1. Design of Sampling 
 

We propose uniform sampling approach which is agnostic to the kind of messages 

coming in. This prevents Monitor-S from having to deduce the type of the incoming 

message before deciding to drop it or keep it. This would have imposed the per message 

processing overhead on Monitor-S and defeated the purpose of the design. With 

sampling, the corresponding parameters in the detection rules have to be re-adjusted for 

matching. Assume that the Monitor gives a desired latency and accuracy of matching for 

an incoming rate of upto Rth. Any rate R > Rth the Monitor chooses to drop the messages 

uniformly with a rate of 1 in every R /(R - Rth) messages. Figure 7.3 illustrates the 

behavior of Monitor which switches from Monitor-HT to Monitor-S because sampling 

kicks in after Rth. Since the messages being processed by Monitor-S are a sample of the 

entire set of messages, the rules originally specified by the system administrator are not 

valid on the sampled stream.  

 

Once a new sampling rate is chosen based on the incoming traffic rate, the rules are 

also modified. We keep the rule type the same but the constants get scaled according to 
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the sampling rate. This is necessary because rules are defined according the normal 

operation of the PEs but because of sampling, Monitor-S is viewing an alternate sampled 

view of the operation of PEs. If the incoming rate is R and the threshold rate is Rth then 

the constants in the rules must be scaled by a factor of Rth/R. For example:  if a rule states 

“receive 10 Acks in 100 sec” then because of sampling the rule is modified to “receive 

10.(Rth / R) Acks in 100 sec”.  This rate will be changed as and when the incoming rate is 

changed. We measure the incoming rate over non-overlapping time windows of length Δ 

by counting the number of incoming messages in the window. At each rate computation, 

the new rate is compared with Rth and if it exceeds Rth then a new sampling rate is 

determined based on this new incoming message rate. To reduce the overhead of rate 

computation Δ is kept higher than the time period over which a rule is matched.  

 

Rth

Incoming Rate at the Monitor 

No Sampling Sampling

Rth

Incoming Rate at the Monitor 

No Sampling Sampling

 
Figure 7.3: Change in Monitor’s algorithm beyond a threshold rate of packet (Rth).  

 
7.3.2. STD Transition with Sampling 
 

If all incoming messages are not processed, this will cause the Monitor-S to lose track 

of the current state of the PE. We modify the approach of STD transitioning at Monitor-S 

such that instead of tracking the current state, Monitor-S keeps a state vector S  which 

contains all the possible states the given PE can be in S  = {S1, S2….SK}. The reason for 

having multiple possible states is that Monitor-S does not know which of several possible 

paths the PE has taken given a start state Sstart. 
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S1

S3

S4S2
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e5
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State Transition Diagram (STD)

S1

S3

S4S2

Directed Graph

S1

S3

S4S2

Directed Graph  
(a)       (b) 

Figure 7.4: A sample STD which is converted to a directed graph by removing the event 
labels.  

 

As a result of sampling, instead of knowing exactly which state the PE is in, Monitor-

S will know a possible set of states the PE is in (based on the transition edges outgoing 

from the current state). For example: In Figure 7.4(a) if the current state is S1 and a 

packet is dropped then the next possible state is one of {S2, S3, S4}. To determine this set, 

Monitor-S pre-computes the possible states which can be reached in steps of size 1, 2, 3 

and so on. Each set of these states form the state vector S  if 1, 2, 3 and so on messages 

are dropped. In other words if a single message is dropped starting from the start state 

Sstart, then S 1 will consist of all the states Si such that Si has an incoming edge from Sstart 

in the graph. S i vector starting from state Sstart gives the state vector if i packets are 

dropped.  Now given the rate of sampling one can transform one state vector S 1 to 

another state vector S 2.  Let us say S 0 = {Si | i ∈ (1, g); g is the number of nodes in the 

initial state vector} be the initial state vector. If Monitor-S dropped one message then the 

new state vector S 1 = {Sj | Si  Sj is reachable using a single edge AND Si ∈ S 0}. 

Similarly if 2 messages are dropped then S 2=   {Sm | Sj  Sm  is reachable using a single 

edge AND Sj ∈ S 1}.  

 

The state vectors ( S 1 and S 2) are created offline because the STD is already known to 

Monitor-S. Figure 7.4 (a) illustrates for the STD in Figure 7.4, a tree structure for 

maintaining the state vectors after different numbers of messages are dropped. Nodes at 

the depth h form the state vector S h and represents the states after h messages are 
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dropped starting from S1. At runtime, Monitor-S tracks how many messages are dropped 

and looks up the appropriate state vector.  

 

7.3.3. Error Detection with Sampling 
 

Figure 7.4 (b) represents the flow of detection in Monitor-S when sampling is taking 

place. If the incoming rate is below Rth then no sampling occurs and Monitor-S simply 

runs as Monitor-HT. During sampling, the state transition is performed between various 

state vectors S  which have been computed offline. When a message is sampled, all 

detection rules corresponding to that event ID and states in the current S  are instantiated 

for matching. When messages are being dropped, the size of the state vector (| S |) 

increases. Once a message is sampled, the state vector is pruned since the message may 

not be valid for all the states in the state vector. Consider that the state vector is S a- just 

before sampling and S a+ just after sampling message M. Then S a+ = {Si| Si∈ S a- and M is 

a valid message in state Si according to the PE’s STD}. Qualitatively, the sampling 

scheme will be beneficial only if the pruning in the size of the state vector is significant 

compared to the growth due to message drops. For example: let S  initially consists of 

{S1, S2, S3} and the sampled message be e2. Then from Figure 7.4 we can see that only S2 

and S3 can have a valid event e2 and therefore the state vector becomes {S2, S3}.   

 

This ambiguity about which state the PE is in and the design of using the entire state 

vector may give rise to false alarms since Monitor-S may match some rules that are not 

applicable to the actual state the PE is in. Computing the state vectors offline imposes a 

memory requirement on the system. If we assume that at most τ messages will be 

dropped by Monitor-S then the offline computation should have state vectors upto S τ. 

The total number of states in this state vector tree is given by k(kτ-1)/(k-1) assuming a k-

regular structure of connectivity between the states. Thus the space required to store 

these state vectors is proportional to k(kτ-1)/(k-1). However the total number of states in 

the STD also imposes a cap on the size of the state vectors and prevents further increase 

in | S |. If there exists a ω s. t. kω> N (total states in STD), then space required to store the 
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state vectors is proportional to k(kω-1-1)/(k-1)+(τ-ω+1)N. The exact memory required is 

dependent on the data structure used to store these state vectors. Bit vector representation 

for storing them is an efficient option to reduce the overall memory used.  

 

 

S1

S4S3
S2

S1 S2 S3 Sj

f = depth / 
sampling rate

Example State Vectors at a depth

S1

S4S3
S2

S1 S2 S3 Sj

f = depth / 
sampling rate

Example State Vectors at a depth    
(a) 

1. Input Rules and STD for the PEs for detection by Monitor-S 
2. Construct the State Vectors offline 
3. Run the Monitor and start verifying the PEs
4. If Rincoming < Rth operate in Monitor-HT mode else operate 

as Monitor-S
5. If sampling, then perform state transition using the state 

vectors 
6. For every sampled message instantiate rules for all states 

in the state vector

 
(b) 

Figure 7.4. Union of nodes present at depth h represents the nodes in set S h if h messages 
are dropped starting with S1. (b) Flow of detection in Monitor-S.  

 

 

7.4. Experimental Setup 
7.4.1. Application: TRAM 
 

We demonstrate the use of the Monitor on the running example protocol ― a reliable 

multicast protocol called TRAM [5]. For the sake of completeness, we will recapitulate 

the basic features of TRAM. TRAM is a tree based reliable multicast protocol consisting 

of a single sender, multiple repair heads (RH), and receivers. Data is multicast by the 
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sender to the receivers with an RH being responsible for local repairs of lost messages. 

The reliability guarantee implies that a continuous media stream is to be received by each 

receiver in spite of failures of some intermediate nodes and links. An Ack message is sent 

by a receiver after every Ack window worth of messages has been received, or an Ack 

interval timer goes off. The RHs aggregate Acks from all its members and send an 

aggregate Ack up to the higher level to avoid the problem of Ack implosion. 

  

The multicast tree is formed via sender sending Head Advertisement messages and 

new nodes joining using the Head Bind message (see Figure 7.5(a)). Nodes ensure 

liveness of other neighbor nodes by periodically sending Hello messages as depicted in 

the STD shown in Figure 7.5(b). 

s*0

s1

Head 
Adv

s2

TimeOut

Resends 
Head 
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s3

Head 
Bind

Accept / 
Reject

TimeOut

s*0

s1

Head 
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s2

TimeOut

Resends 
Head 
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s3

Head 
Bind
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TimeOut

 ` 
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TimeOut
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s*0

s8

Hello
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TimeOut
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Resend 
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Drop the 
PE

 
(b) 

Figure 7.5: Example State Transition Diagrams (STDs); (a) TRAM sender adding new 
receivers in TRAM; (b) TRAM entities (sender, receiver, RH) sending liveness messages 

(Hello).  
 

The detection approach is provided with a rule base for detection which is derived 

from the STDs (shown in Figure 7.5). Some example of rules are as follows: R4 S4 E11 
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30 500 5000 S4 E2 1 8 4000 7000 If a Data message is seen then the Monitor must see an 

Ack message following it; T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000: If the entity is in 

state S1  then it the Monitor should observe one or more Head Bind messages followed 

by Accept message; T R3 S0 E14 10 30 5000: The number of Hello message within a 

time window should be bounded to prevent Hello flooding.. It is evident from the set of 

rules that several of them verify the message count for the same message type (such as, 

Data, Hello, Ack). Therefore the redesign of Monitor-HT of keeping only a shared 

writable copy of the state variables is likely to be beneficial. More rules used in our 

experiments are listed in Appendix B.  

 

7.4.2. Emulator 
 

In order to be able to study the performance of the Monitor under high data rate 

conditions, we emulate the TRAM protocol [3][5]. This is necessary because operating 

multicast protocol across Purdue’s shared wide area network at a high data rate causes 

multiple switches to crash.  The extra beacon messages sent out for advertising the 

multicast channel causes an overload of the LAN switches leading them to crash. In order 

to avoid this problem and to have the ability to perform experiments in a controlled 

environment, we emulate the topology of TRAM depicted in Figure 7.6. The emulated 

messages following the STDs in Figure 7.5 are forwarded to the Monitor.  

 

7.4.3. Fault Injection 
 

We perform fault injection in the header of the emulated TRAM messages to induce 

failures. We choose the header since the current detection mechanism only examines the 

header. In general a PE to inject is chosen (sender, RH or receiver) and faults are injected 

for a burst length. We use a burst length of 500ms and inject the burst length of faults 

after every 5 minutes during each experimental run. For these experiments we inject only 

the sender with faults because of high probability of error propagation down the multicast 

tree. A burst length is chosen since TRAM is robust to isolated faults and to mimic faults 

close to reality. The rules in the rule base typically run over a window of messages and 
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are likely to not get violate because of an isolated faulty message. 
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Figure 7.6: Physical Topology of the TRAM emulator and the Monitor in the 

experiments 
 

The burst can cause multiple rules to be instantiated simultaneously for each of 

sender, RH and receiver. Note that the emulated faults are not simply message errors, but 

may be symptomatic of protocol faults in the PEs. Errors in message transmission can 

indeed be detected by checksum computed on the header but these protocol errors cannot. 

We perform random injection where a header field is chosen randomly and changed to a 

random value, valid or invalid w.r.t. the protocol. If the injected value is not valid, then 

the message is dropped without processing.  An alternate mode of error injection used in 

our earlier work [39] is directed injection whereby messages are transformed to a valid 

protocol value. Experimentally, we find that the performance of Monitor-HT and 

Monitor-S relative to Monitor-Baseline is not affected by this choice.  
 

 

 

7.5. Experiments and Results 
 

Experiments are performed on the topology shown in Figure 7.6. The Monitor system 
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and the TRAM emulator are executed on separate desktop PCs with a 2.4GHz processor 

and 1GB RAM. We use TRAM sender and receiver (Figure 7.6) as the PEs being verified 

by the Monitor in all the experiments. We measure the accuracy and latency of detection 

procedure for the Monitor. Accuracy is defined as (1-missed detections). We characterize 

the fault injections which affect the PEs but are undetected by the Monitor as missed 

detections. A PE is said to be affected if it crashes or raises an exception. False detections 

are defined as the errors which are flagged by the Monitor but do not affect the TRAM 

entities. Latency is measured as the time from the instantiation of a rule to the time when 

the rule matching is completed, subtracting the time for which the rule is dormant. For 

example, if a rule states “Observe 32 data messages in 5 sec” then 5 sec is the time 

during which the there is no Monitor-related processing. This time needs to be subtracted 

since it is not an index of the Monitor’s performance; rather it is a feature of the rule 

itself.  The value of Δ in our experiments is set to 30 seconds.  

 

7.5.1. Accuracy and Latency Results 
 

We vary the incoming data rate for the Monitor by varying the inter-packet delay from 

the sender. The emulator sends packets at a low rate of 20 pkt/s for the first 30 seconds 

and then increases it to the required rate. Each experiment run lasts for 20 minutes. Every 

latency and accuracy value is averaged over at least 60 data points. The experiment is 

repeated for three different systems i.e., Monitor-Baseline, Monitor-HT, and Monitor-S. 

Every packet is forwarded to the Monitor from the TRAM PEs. The rate of packets is 

varied between 10 pkt/s and 500 pkt/s. Figure 7.7(a) shows the variation of accuracy with 

packet rate. The 95% confidence interval is plotted for Monitor-S and is seen to be very 

small indicating that the variance in the results is small. We can see that with an 

improved data structure Monitor-HT’s knee, i.e., the breaking point, occurs around 125 

pkt/s compared to 100 pkt/s for Monitor-Baseline. Let us denote the breaking point for 

the incoming message rate as Rbp. The improvement of 25% is due to the sharing of the 

state variables and the efficient hash table lookup. The false alarms vary between 0-6% 

for both Monitor-HT and Monitor-Baseline. For extremely high packet rates, Monitor-

HT and Monitor-Baseline have a drop in false alarms because the number of rule matches 
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itself is reduced.  

0

20

40

60

80

100

0 100 200 300 400 500

Rate of Incoming Packets (pkt/s)

A
cc

ur
ac

y 
(%

)

Monitor(Baseline)
Monitor-HT
Monitor-S

  
(a) 

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500

Rate of Packets (pkt/s)

La
te

nc
y 

(m
s)

Monitor (Baseline)
Monitor-HT
Monitor-S

Rth = 65 pkt/s 
for Monitor-S

  
(b) 

Figure 7.7: Variation of (a) Accuracy and (b) Latency with increasing rate of packets.  

 
 We can see that beyond 125 pkt/s even with efficient per packet processing, the 

accuracy drops below 40% because of the increased rate of incoming messages which 

causes the processing capacity of Monitor-HT to be exhausted. In comparison, with 

sampling, the accuracy drops gradually as the Monitor-S drops increasingly more packets 

with increasing data rate to maintain the rate below Rbp. We can observe from Figure 

7.7(a) that with increasing packet rate Monitor-S has a small decrease in accuracy but it 

still maintains accuracy at approximately 70% compared to Monitor-HT’s 16% accuracy. 

Monitor-S has a marginal increase in the rate of false alarms due to the knowing of the 

state vector rather than the precise state. The false alarms vary between 0-9%. At high 

data rates we observe lower false alarm rates for Monitor-S compared to low data rates.  
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An example of a rule which does not get violated due to sampling resulting in loss of 

accuracy is R1 S0 E1 1000 S8 1500 2500. This rule verifies that for a TRAM PE (sender, 

receiver) the state has successfully changed to S8 from S1 after receiving E1 (Hello 

message). At high data rates if a large number of packets is getting dropped, it happens 

that S  still contains state S8 causing this rule not be violated and hence decreasing the 

accuracy.  

The latency plot in Figure 7.7(b) provides a similar picture. The breaking points for 

Monitor-Baseline and Monitor-HT are the same as in the accuracy plot – 100 pkt/s and 

125 pkt/s respectively. For Monitor-S, we can see a small jump in latency around 65 

pkt/s (Rth in this experiment) because the algorithm switches to sampling and the 

probability of dropping a packet increases (being zero previously). This results in a 

higher overhead for processing each packet and the attendant marginal increase in 

latency. The processing done by Monitor-S is proportional to | S | times the number of 

detection invocations. Increasing data rate causes higher | S | leading to higher latency of 

rule matching. However, the growth of | S | slows down with increasing packet rate 

causing the latency to saturate. We observe that even at high packet rates Monitor-S 

maintains a low latency of rule matching (~200ms) because of effective adjustment to the 

sampling rate reducing the rate of packets that are processed. This provides an 83.3% 

decrease in latency compared to the latency of 1200ms for Monitor-Baseline.  

For a fixed Rth, as the data rate is increased, the size of the state vector (| S |) increases 

but it saturates at higher packet rates. The processing for the rule matching is directly 

proportional to | S |. Also, as the data rate is increased beyond Rth, the number of rule 

invocations of Monitor-S stays constant. The latency is proportional to the total work 

done by Monitor-S, which is given by: processing for the rule matching × number of rule 

invocations of Monitor-S. Therefore, initially when the data rate is increased beyond Rth, 

the latency increases, but beyond a point, it saturates.  
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7.5.2. Effects of Varying Rth 
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Figure 7.8: Effect of Rth on the (a) Accuracy and (b) Latency.  

Figure 7.8(a) depicts the behavior of accuracy and latency for different values of Rth in 

Monitor-S. Recollect that when the incoming message rate goes above Rth, the Monitor 

switches to the sampling mode. For all cases the accuracy is almost the same at high data 

rates and low data rates. Let us consider a single curve (say Rth = 50 pkt/s). For data rates 

below 50 pkt/s there is no sampling and since this threshold is much below the breaking 

point (125 pkt/s from Section 7.5.1) the latency remains quite low (~65ms). As the data 

rate increases beyond 50 pkt/s, sampling starts and with increasing data rate an increasing 

number of packets is dropped. Difference in characteristics of the curve around Rth 



 

 

132

provides the system administrator a useful tuning parameter to choose a suitable latency 

value for the requirements of the distributed application. Clearly picking Rth > Rbp is 

unsuitable due to the spike in latency (see the 140 pkt/s curve). It is tempting to choose 

Rth as close to Rbp as possible (notice the delayed increase in latency for Rth = 100 pkt/s 

compared to Rth = 50 pkt/s). However, in practice the breaking point cannot be exactly 

determined since it depends on the kinds of messages (and hence, the kinds of rules) that 

are coming into the Monitor. Thus the system administrator has to choose a Rth suitably 

below Rbp. For our experimental setup, if a latency of less than 100 ms is desired for data 

rates up to 100 pkt/s, then Rth of 100 pkt/s is an appropriate choice.   

 

When Rth is 140 pkt/s, i.e., greater than the breaking point (125 pkt/s), it causes a 

heavy load and higher latency of matching for the region (125 pkt/s, 140 pkt/s). But as 

the run of experiment continues, sampling starts and this brings down the average latency 

to just over 300ms. The jump in the latency is because the incoming rate is close to the 

Rth because of which the Monitor switches between sampling and non-sampling modes. 

However in the non-sampling mode, since incoming rate is greater than Rbp Monitor-S 

incurs a high latency. This oscillation between the modes happens when the rate is close 

to Rth which explains the high latency (275-330 ms) around the incoming message rate of 

Rth.  

 

7.5.3. Variation of State Vector Size (| S |) 
 

As described before, the amount of processing done by Monitor-S is dependent on 

size of state vector i.e., | S |. We investigate the variation of | S | with time in an 

experimental run. In this experiment we keep the Rth fixed at 65 pkt/s and run the 

emulator to provide an incoming rate of 250 pkt/s. This experiment is targeted at bringing 

out the dynamics of Monitor-S when the incoming message rate is higher than the 

breaking point, forcing sampling to kick in. For this configuration, approximately one in 

four packets is sampled. Figure 7.9 shows the variation of | S | with time. We measure the 

size of state vector once every 2 packets. Instead of displaying the entire run of 20 

minutes, we pick a representative 100 contiguous samples of | S |. We can see the large 
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fluctuations of | S | due to the sampling. We can see that | S | grows to as large as 10, 

multiple times during the experimental run. The number of rules which get instantiated 

for each packet is proportional to | S |. However the rules get instantiated after a message 

is sampled. When a message is sampled, it will likely cause | S | to decrease because all 

the states in S  do not have the message as a valid message in that state. Thus the rule 

instantiations take place at the troughs and not at the peaks of the plot in Figure 7.9. We 

can see that in Region 1, | S | drops in steps from 9 to 6 and finally to 1. The drop in | S | is 

because of the unique possibility of the sampled event in only some of the states. 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Time (seconds)

St
at

e 
Ve

ct
or

 S
iz

e

Rate = 250pkt/s
Rth = 65pkt/sRegion 1

Region 2

 
Figure 7.9: Variation of State size S  in a sample run. 

 
| S | can also remain the same if the dropped event corresponds to some self-loops. This 

explains the small plateaus in Region 2. In Region 2, | S | increases from 1 to 3 because of 

a message drop. It stays at 3 even with further message drops and then reduces to 1 with a 

newly sampled message.  

7.6. Discussion 
 

This chapter addressed one of the important pieces of the Monitor framework, 

scalability. We observe that through incorporating sampling, one can prevent the drastic 

fall in the Monitor’s accuracy. In other words we avoid the breaking of the Monitor. One 

can see that through this approach Monitor achieves a much higher accuracy of detection. 

With addition of sampling, the framework truly stands to the claim of scalability with 

increasing data rate or number of entities to be verified.   Although sampling helps us in 
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maintaining a reasonable accuracy and latency, there are some drawbacks of the approach 

in certain scenarios.  

 

7.6.1.  Losing track of PE’s state 
 

 

S1

S3

S4S2

e1

e2

e3

e4

e1
e1 e2

e5

e5

e1

State Transition Diagram (STD)  
Figure 7.10: An example STD  

 
The sampling approach tries to reduce the workload by dropping packets. 

Simultaneously in an effort to provide stateful matching and track the state of the PE the 

Monitor tries to use a state vector of possible states. However there can be scenarios in 

which Monitor can actually lose track of PE’s state.  Consider the sample STD shown in 

Figure 7.10. Assume that initially the state vector equals {S1}. Now the next incoming 

message is dropped which causes the new state vector to be {S2, S3, S4}. Assume that the 

next incoming message received at the Monitor is e3. However e3 was received because 

of an error in the communication channel and actually the message which was sent out 

was e5. Now because of this error of receiving e3, the new state vector becomes {S2} 

however the actual state vector should be {S4}. In this scenario now the Monitor has 

actually lost track of the state of the PE. This actually is possible because now the state 

vector has more than one state and correspondingly a lot more events are plausible events 

(as in e3 in this case).  Further on if the Monitor tries to perform state transitions or 

expand state vectors, either it will start jumping through erroneous states or it will cause 

false alarms. This is an important drawback which occurs because of the way sampling 

approach handles the state tracking.  
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The important thing here is that Monitor should try to latch back to the correct state so 

as to be able to provide correct detection. One way to do that is to sample the next α 

messages. If the STD is deterministic and holds the α-distinguishable property then 

Monitor should be able to deduce the correct state. The α-distinguishable property 

ensures that for a deterministic STD if α consecutive messages are observed then one can 

make a conclusion about the starting state before the α messages were observed. And 

hence one also knows the final state of the STD after α messages. A comprehensive guide 

on this approach and software testing can be found at [126]. This approach can be used 

by the Monitor to latch back to the correct state if it loses track of the state. However, 

answering the question “How to determine that Monitor has lost track of state” is 

challenging. Some starting heuristics can be used for example: if Monitor sees a high rate 

of false alarms within a certain time window then it should try to check if the PE state is 

valid. 
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8. RELATED WORK 

8.1. Detection  
 

Formal Specification: Preliminary to building self-checking protocols, the application 

behavior has to be specified formally. Different formalisms exist for distributed systems, 

the most common ones being Extended State Machines [79], Temporal Logic Actions 

(TLA) [80], [81], UML [96] and Petri net based models [82]. Our approach is derived 

from the TLA model where the valid actions are represented as logical formulas. The 

formulas can be augmented with the notion of lower and upper time bounds to capture 

the temporal properties of protocols. We employ State Transition Diagrams for protocol 

representation because it provides all the needed functionalities to express most of the 

protocols and it is faster to do operations on it compared to other approaches for e.g., 

PetriNets.    

There is a volume of work on detecting crash failures through heartbeats, failure 

detectors, etc. (e.g., see [83]), building resilient distributed applications through fault 

tolerant algorithms built into the application (e.g., see [84][85]).  Their goals are 

considerably different from the work presented here and hence, not surveyed further. 

There is previous work [86][87] that has approached the problem of detection and 

diagnosis in distributed applications modeled as communicating finite state 

machines(CFSMs). The designs have looked at a restricted set of errors (such as, 

livelocks) or depended on alerts from the protocol entities themselves. A detection 

approach using event graphs is proposed in [87], where the only property being verified 

is whether the number of usages of a resource, executions of a critical section, or some 

other event globally lies within an acceptable range. The problem of diagnosis in 

distributed systems has been studied in [46][88] which have relied on participation by the 
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protocol entities and the classes of faults have also been restricted. Near identical goals, 

as in this thesis, have motivated the work in [12]and [89]. In the first work, the approach 

is to structure the system as two distinct sub systems ⎯ worker and observer. The worker 

is the traditional system implementation, while the observer is the redundant system 

implementation whose outputs are comparable to the worker outputs.  The observer can 

only spy on interactions, without any worker support. The observer is made highly 

reliable through formally specifying and verifying it. Some unanswered questions are that 

the observer is a monolithic entity and is not shown to be able to operate outside a 

broadcast medium, how the subset of worker functionalities for observing is determined, 

and the independent verification of layers of the worker are apt to miss out misbehaviors 

that span multiple layers. An extension to use multiple observers is proposed in [42], but 

it requires a global state graph of the system which may be infeasible to build or verify at 

runtime for complex systems. In [89], the authors propose a compositional approach to 

automatic monitoring of distributed systems specified using CFSMs. The fundamental 

contribution is to show how to monitor a complex system by monitoring individual 

components, thereby eliminating the state space explosion problem. This work assumes 

some internal states are visible to the monitor through program instrumentation, etc. It 

assumes that if local interactions are correct, the system execution is globally correct. 

This is in contrast to our system, where we allow for the possibility of a global rule 

flagging an error where the local rules missed it. Finally, the effectiveness of the 

approach has not been demonstrated through any error injection based experiments.  

 

8.2. Diagnosis 

 

White box systems: The problem of diagnosis in distributed systems can be classified 

according to the nature of the payload system being monitored – white box where the 

system is observable and, optionally, controllable; and black box where the system is 

neither. White box diagnostic systems often use event correlation where every managed 

device is instrumented to emit an alarm when its state changes [45][53]-[55]. By 

correlating the received alarms, a centralized manager is able to diagnose the problem. 
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Obviously, this depends on access to the internals of the application components. Also it 

raises the concern whether a failing component’s embedded detector can generate the 

alert. This model does not fit our problem description since the target system for the 

Monitor comprises of COTS components, which have to be treated as black-box. A 

number of white box diagnostic systems that correlate alarms have been proposed in the 

intrusion detection area [49][50]. An alternative diagnostic approach is to use end-to-end 

probing [56]-[58]. A probe is a test transaction whose outcome depends on some of the 

system’s components; diagnosis is performed by appropriately selecting the probes and 

analyzing the results. Probe selection is typically an offline, inexact, and computationally 

heavy process. Probing is an intrusive mechanism because it stresses the system with new 

requests. Also it is not guaranteed that the state of the system with respect to the failure 

being diagnosed has stayed constant till the time of the probe. Monitoring approaches 

have also been proposed in [38], [42]for distributed systems.  

Multiprocessor system diagnosis: The traditional field of diagnosis has developed 

around multiprocessor systems, first addressed in a seminal paper by Preparata et al. [46] 

known as the PMC method. The PMC approach, along with several other deterministic 

models [59], assumed tests to be perfect and mandated that each entity be tested a fixed 

number of times. Probabilistic diagnosis, on the other hand, diagnoses faulty nodes with a 

high probability but can relax assumptions about the nature of the fault (intermittent 

faulty nodes can be diagnosed) and the structure of the testing graph[48]. Follow up work 

focused on multiple syndrome testing [47] where multiple syndromes were generated for 

the same node proceeding in multiple lock steps. Both use the comparison based testing 

approach whereby a test workload is executed by multiple nodes and a difference 

indicates suspicion of failure. The authors in [60] propose a fully distributed algorithm 

that allows every fault-free node to achieve diagnosis in at most, (logN)2 testing rounds. 

More recently, in [61] the authors extend traditional multiprocessor diagnosis to handle 

change of failure state during the diagnostic process. All of these approaches are 

fundamentally different from ours since there is no separation between the payload and 

the monitor system. This implies the payload system has to be observable and 

controllable (to generate the tests and analyze them).   
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Embedded system diagnosis: There has also been considerable work in the area of 

diagnosis of embedded systems, particularly in automotive electronic systems. In [62], 

the authors target the detection and shut down of faulty actuators in embedded distributed 

systems employed in automotives. The work does not consider the fallout of any 

imperfection in the analytical model of the actuator that gives desired behavior. The 

authors in [63] use assertions to correlate anomalies from the components to determine if 

a component is malfunctioning. The technique has some shared goals with the Monitor 

system – ability to trace correlated failures of nodes in a distributed system and handle 

non binary results from tests. The approach uses assertions that can examine internal state 

of the components. The papers in this domain do not consider imperfect observability of 

the sensor input or the actuator output, possibly because of tight coupling between the 

components. They are focused on scheduling monitor processes under processing 

resource constraints while we do not have such constraints.   

Debugging in distributed applications: There has been a spurt of work in providing 

tools for debugging problems in distributed applications – performance problems [64]-

[66], misconfigurations [67], etc. In [64] authors propose two offline algorithms to draw 

causal relationships between communicating processes. The method relies on RPC 

communications and stops at deriving causal relations. MagPie[67] is a system which 

performs extensive instrumentation in the application to obtain extremely accurate 

tracing of message calls. The general flavor of these approaches is that the tool collects 

trace information at different levels of granularity (line of code to process) and the 

collected traces are automatically analyzed, often offline, to determine the possible root 

causes of the problem [51]. For example, in [64], the debugging system performs analysis 

of message traces to determine the causes of long latencies. The goal of these efforts is to 

deduce dependencies in distributed applications and flag possible root causes to aid the 

programmer in a manual debug process, and not to produce automated diagnosis.  Irina 

et. al. in [98] address the problem of optimal test selection so as to minimize the number 

diagnostic tests which need to be used. Their approach is complementary to ours and can 

be used in tandem.  

Automated diagnosis in COTS systems: Automated diagnosis for blackbox distributed 
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COTS components is addressed in [68][69]. The system model has replicated COTS 

application components, whose outputs are voted on and the minority replicas are 

considered suspect. This work takes the restricted view that all application components 

are replicated and failures manifest as divergences from the majority. In [52], the authors 

present a combined model for automated detection, diagnosis, and recovery with the goal 

of automating the recovery process. However, the failures are all fail-silent and no error 

propagation happens in the system, the results of any test can be instantaneously 

observed, and the monitor accuracy is predictable.  

In none of the existing work that we are aware of, there exists a rigorous treatment of the 

impact of the monitoring system’s constraints and limited observability of the payload 

system on the accuracy of the diagnosis process.  
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9. CONCLUSIONS AND FUTURE WORK 

In this Thesis we have described a scalable approach for non-intrusive monitoring of 

distributed systems. We have addressed detection, diagnosis, state space explosion, and 

scalability issues faced by a detection and diagnosis framework in high throughput 

distributed systems. The developed hierarchical Monitor architecture is deployed and 

tested across Purdue for detection and diagnosis.  

 

9.1. Future Work 
 

Future research directions include a multitude of extensions on theoretical and 

practical front.  

Virtual Machine Management:  Virtual Machine are emerging as a new paradigm 

for distributed computing. Adding a hypervisor (VMware[112], Xen, UML) layer and 

stacking multiple Operating Systems together on the same physical box has multiple 

advantages. Given the cost effectiveness of this solution, it is getting wide acceptance 

and replacing the way distributed applications currently run. Virtualization, in its 

microcosm, brings a whole new challenge to system management. The increased layer 

causes increased complexity and makes it harder for a system administrator to find and 

resolve problems. Management of distributed systems is a huge practical problem which 

is plagued with human errors and is in dire needs of autonomic solutions. I worked with 

IBM T. J. Watson Research Lab to help their system management group tackle this 

problem. I proposed several novel measures including the Monitor architecture to be 

applied to virtualized server scenarios for problem detection and diagnosis. The work 

presented in this PhD thesis can be used to provide efficient and scalable virtual machine 

management.  
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Autonomic Recovery: An important of the puzzle in improving reliability is in 

providing recovery and response in the event of failures. Also recovery is important after 

one has performed diagnosis to prevent recurrence of failures. Fault Tolerance 

community currently lacks models for providing recovery. Existing literature and tools 

about providing recovery mere rely on reboot or are theoretical with little to no 

feasibility. After having spent my time in graduate research and talking with people in 

industry, I am motivated to research on how to provide automatic recovery? Is recovery 

going to be specific to every applications or can we abstract some properties and make 

some generalizations?  These questions are important and require in-depth study before 

one can develop a completely autonomous system.     

 

Modeling the Monitor System: The presented PhD thesis has focused mainly on the 

experimental evaluation of the Monitor framework. Research efforts in developing good 

mathematical models can provide useful insights into the behavior of the Monitor 

Framework. The thesis provides modeling of some aspects of the framework which can 

be used as a starting point. Theoretical bounds can provide important boundaries for 

system administrator while using the Monitor framework.  
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APPENDIX 

 
A. Abbreviations  

CG Causal Graph PPEP Path Probability of Error 

Propagation 

AG Aggregate Graph PE Protocol Entity 

IM Intermediate Monitor LM Local Monitor 

GM Global Monitor TL Temporary Links 

DT Diagnosis Tree SRB Strict Rule Base (Diagnosis) 

LC Logical Clock NRB Normal Rule Base (Detection) 

SS Suspicion Set TTCB Trusted Timely Computing 

Base 

EMC Error Masking 

Capability 

TRAM-D, 

TRAM-L 

Tram Distributed and TRAM 

Local.  

 

B. Rule Base 
Here we provide some sample rules used in our experiments with TRAM.  

 

a) Normal Rule Base (NRB) 

1. T R4 S3 E11 30 500 5000 S3 E2 1 8 4000 7000: This rule of type 4 has a precondition 

to check data packets (E11) arrival within 5000msec. It verifies in the pre-condition that 

between 30-300 data packets are received within 5000ms.  Pre-condition on being 

satisfied checks the post condition that at least one ack(E2) (between 1 and 8) must be 

sent. The timing constraints, e.g., 5000, 4000, and 7000 are derived from the ack and data 

rate as specified by the user.    

2. T R1 S0 E11 10 1000 S8 3000 3500: This rule of type 1 is ensuring if the state 
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transitions are taking place properly. It says that if the entity is currently in state S0 and 

receives data packet (E11) then it should move to state S8 in the next 3000-3500 ms. The 

state S8 corresponds to the ack sending state.   

3. T R3 S6 E1 10 30 5000: This rule of type 3 checks for the hello packet(E1) rate. The 

hello (E1) message count should be between 10 and 30 for the next 5000 msec which is 

stated by the rule through the constants “10”, “30”, and “5000”.   

4. T R3 S7 E13 0 2 5000: This rule ensures that the number of re-affiliation packets (E13) 

are no more than 2 within 5000ms in state S7. This prevents a receiver from causing 

frequent joins and leaves.  

5. T R2 S0 E10 50: This rule verifies that state of the receiver changes should change 

from S0 to some other state once the message E10 is received. The time limit on this 

change should be within 50 ms. The message E10 corresponds to a Head Advertisement 

Message.  

6. T R4 S0 E10 1 4 1000 S1 E9 1 2 2000 3000: This is a rule of type 4 as indicated by 

“R4”.  This has a pre-condition which states that in state S0, if the number of messages 

E10 received is between 1-4 in 1000 ms, then the post condition verifies the number of 

head bind (E9) sent out between 2000-3000ms. This rule basically tries to ensure that 

Head Advertisement messages should be followed by Head Bind 

7. T R4 S1 E9 1 2 1000 S1 E8 1 2 2000 3000: This is again another rule of type 4. The 

precondition verifies the number of head bind messages (between 1-2) within next 

1000ms in state S1. The post condition verifies if the number of Accept (E8) messages 

are atleast 1 within the next 2000-3000ms. This rule is making sure that the causal 

relationship between head bind and accept messages is followed by the protocol.  

8. T R3 S1 E9 1 10 5000: This rule is simply verifiying that in state S1 the number of E9 

messages i.e. head bind messages should be between 1-10 in 5000ms. This ensures a cap 

on the frequency of messages.  

9. T R3 S2 E8 1 2 10000: This rule is trying to verify the rate of messages E8 in the state 

S2. It ensures that the number of E8 messages i.e. accept message should be between 1-2 

in 10,000ms. This ensures that the repair head is not accepting a lot of new re-affiliation 

requests.  
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b) Strict Rule Base (SRB) 

There are 4 different types of strict rules names ‘O’, ‘I’, ‘HI’, and ‘HO’. ‘O’ & ‘I’ 

represents rules which checks the outgoing and incoming links from a node respectively. 

‘HI’ & ‘HO’ check combination of links in both outgoing and incoming links. The 

weight assigned to each rule is given by the number in the last column of the rule 

specification. 

O S1 E11 1 S3 E11 30 1: If in state S1, receiver has received a data packet (E11), then in 

the state S3, a data packet (E11) must have been detected at least 30 times.   

O S3 E3 1 S3 E11 0 1: If in state S3, receiver has received beacon packet (E3) at least 

once, then in the state S3, a data packet (E11) must not have been detected.  This is 

because the data transmission has not started yet.  

O S1 E3 1 S1 E1 1 1: In state S1, receiver has received a beacon packet (E3) at least once, 

then in the state S1, a Hello packet (E1) must be been detected.   

O S6 E2 1 S33 E2 10 1: If the receiver has sent an ack packet (E2) then there should be at 

least 10 more acks (E2) sent out within the phase. This maintains a minimum ack-rate 

from the receivers.  

I S1 E2 1 S3 E11 30 1: If in state S1, receiver has received an ack packet (E2) at least 

once, then in the state S3, a data packet (E11) must have been detected at least 30 times.  

This maintains a minimum data rate.  

HI S6 E1 20 S6 E9 1 1 : The rule refers to the fact that if in state S6, receiver has received 

a Hello packet (E1) at least once then in the state S6, a Hello-Reply packet (E9) must 

have been detected at least once.   

HO S1 E11 1 S2 E11 1 1: This rule verifies that if Repair Head (RH) gets a data packet 

(E11), then it should send a data packet to the receivers.  

HI S0 E15 1 S1 E14 1 1: If a receiver sends a Head-Bind (E15) then it must receive 

multiple Head-Ack (E14) in state S1.   

 

c) Messages in TRAM  
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E13Join a new Repair 
Head; sent by the 
receiver

Sender(RH), 
Receivers(RH)

Re-affiliation

E1, 
E14

Indication of 
Liveliness of the 
members.

RH(Receiver), 
Receiver(RH)

Hello 
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