
REMOTE REPROGRAMMING OF WIRELESS SENSOR NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rajesh K. Panta

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2010

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents for their love, support and encouragement.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Saurabh Bagchi

for his guidance, support, advice and insightful inputs throughout my research and

academic works. His constant motivation and encouragement helped tremendously

in this research effort. His enthusiasm, dedication and patience are truly admirable.

I am also thankful to Prof. James V. Krogmeier, Prof. Samuel P. Midkiff and Prof.

Vijay Raghunathan for serving in my Doctoral committee. I would also like to thank

Prof. Samuel P. Midkiff for his inputs on the incremental reprogramming part of this

thesis. I am also thankful to Prof. Vijay Raghunathan for his advice regarding Sensor

Operating System (SOS). I am grateful to Dr. Issa Khalil, Mark D. Krasniewski and

John Mastarone for their help during the early stages of this work.

My special thanks go to Bhumika for her unconditional love and patience, Aditi

and Rewa for making life so beautiful, and Raju and Barsha for their help and support.

And most of all, my parents, Babu Krishna Panta and Bhagawati Panta, who always

emphasized education, encouraged me to aim for higher goals, and guided me to

become a better person. I would not be where I am today without their love, support

and sacrifice.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Motivation for remote reprogramming 2

1.1.1 Shortening software development and testing phase 2

1.1.2 Fixing software bugs . 3

1.1.3 Adapting to network failures 4

1.1.4 Fine-tuning the application 5

1.1.5 Complete application replacement 5

1.2 Requirements of remote reprogramming 6

1.3 Thesis outline . 8

2 RELATED RESEARCH . 11

2.1 Virtual machines . 11

2.2 Native code with no support for loadable modules 12

2.3 Incremental reprogramming systems 15

3 STREAM: LOW OVERHEAD REPROGRAMMING PROTOCOL . . . 17

3.1 Stream Design . 20

3.1.1 Design Approach . 20

3.1.2 Protocol Description . 21

3.1.3 Handling incremental network deployment 22

3.1.4 Design of Stream-AS . 23

3.1.5 Design of Stream-RS . 25

3.2 Stream Analysis . 27

v

Page

3.2.1 Reprogramming time . 27

3.2.2 Energy Cost . 31

3.3 Experiments and Results . 33

3.3.1 Evaluation Metrics . 33

3.3.2 Testbed Description and Results 34

3.3.3 Simulation Results . 39

3.4 Stream with Opportunistic Node Sleeping 43

3.4.1 Background and Rationale 43

3.4.2 Protocol Description . 45

3.4.3 Experiments and Results . 47

3.4.4 Mathematical Analysis . 50

3.5 Effect of User Application’s Sleep-Awake Scheme on Reprogramming 53

3.6 Conclusion . 55

4 SINGLE VERSUS MULIT-HOP REPROGRAMMING 56

4.1 Protocol Design . 59

4.1.1 Background and Rationale 59

4.1.2 Design Approach of DStream 60

4.2 Mathematical Analysis . 62

4.2.1 Reprogramming Time . 62

4.2.2 Energy Cost . 65

4.3 Experiments and Results . 67

4.3.1 Calculation of Reprogramming Time and Energy 67

4.3.2 Testbed Description . 69

4.3.3 Testbed Experiment Results 70

4.3.4 Simulation Results . 74

4.4 Conclusion . 75

5 ZEPHYR: INCREMENTAL REPROGRAMMING USING FUNCTION CALL
INDIRECTIONS . 78

vi

Page

5.1 High level overview of Zephyr . 80

5.2 Byte-level comparison . 81

5.2.1 Application of Rsync algorithm 81

5.2.2 Rsync optimization . 83

5.2.3 Drawback of using only byte-level comparison 84

5.3 Application-level modifications . 86

5.3.1 Function call indirections . 87

5.3.2 Pinning the interrupt service routines 90

5.3.3 Handling function pointers 90

5.4 Metacommands for common patterns of changes 93

5.4.1 CWI command . 93

5.4.2 REPEAT command . 94

5.4.3 No offset specification . 94

5.5 Delta distribution stage . 95

5.5.1 Image rebuild and load stage 98

5.5.2 Dynamic page size . 99

5.6 Experiments and results . 101

5.6.1 Block size for byte-level comparison 103

5.6.2 Size of delta script . 105

5.6.3 Testbed experiments . 109

5.6.4 Size of Indirection Table . 122

5.6.5 Simulation Results . 122

5.6.6 Best and Worst Case Scenarios 123

5.7 Analysis . 124

5.8 Conclusions . 127

6 HERMES: MITIGATING THE EFFECTS OF VARIABLE RELOCATIONS
FOR INCREMENTAL REPROGRAMMING 129

6.1 Overview of Hermes . 131

vii

Page

6.1.1 High-level idea of Hermes 131

6.1.2 Placement of global variables 133

6.2 Image rebuild and load stage . 135

6.3 Failure Handling . 137

6.4 Avoiding empty space between .data and .bss sections 138

6.5 Experiments and Results . 140

6.5.1 Size of delta script . 141

6.5.2 Testbed experiments . 142

6.5.3 Simulation Results . 146

6.6 Analysis . 147

6.7 Conclusions . 149

7 VARUNA: FIXED COST MAINTENANCE IN STEADY STATE 151

7.1 Trickle Overview and Problems . 155

7.2 Design Background . 157

7.2.1 Piggybacking metadata in UA packets 158

7.2.2 Checking neighborhood periodically 158

7.2.3 Informing neighbors of code downloads 160

7.3 Varuna Design . 161

7.3.1 Design Overview . 163

7.3.2 Formal Protocol Description 165

7.3.3 Eventual consistency . 167

7.3.4 Fixed steady state cost . 169

7.3.5 State maintenance cost . 170

7.3.6 Detection latency . 171

7.4 Implementation and Evaluation . 172

7.4.1 Testbed Results . 172

7.4.2 Simulation Results . 177

7.5 Related Work . 180

viii

Page

7.6 Conclusions . 181

8 CONCLUSIONS . 183

LIST OF REFERENCES . 186

VITA . 198

ix

LIST OF TABLES

Table Page

5.1 Comparison of delta script size of various approaches. Deluge, Stream and
Rsync represent prior work. 106

5.2 Ratio of reprogramming times of other approaches to Zephyr 110

5.3 Ratio of number of packets transmitted during reprogramming by other
approaches to Zephyr . 114

5.4 Parameter values used for analysis, based on CC2420 datasheet 120

6.1 Comparison of number of bytes to be transmitted by various approaches 142

6.2 Ratio of reprogramming times of other approaches to Hermes 143

6.3 Ratio of number of packets transmitted during reprogramming by other
approaches to Hermes . 144

6.4 Simulation results: Ratio of reprogramming time and number of packets
transmitted by other approaches to Hermes 147

7.1 Parameters for the experiment. 174

x

LIST OF FIGURES

Figure Page

3.1 Three-way handshake for data dissemination 25

3.2 Reprogramming time for 10x10 grid topology with standalone applications 30

3.3 Reprogramming time for 10x10 grid topology with applications having
communication capability . 30

3.4 Total energy consumed in the 10x10 grid topology with standalone appli-
cations . 32

3.5 Total energy consumed in the 10x10 grid topology with applications having
communication capability . 33

3.6 Comparison of reprogramming time of Stream with that of Deluge for grid
networks . 36

3.7 Comparison of number of bytes transmitted in the network by Stream with
that of Deluge for grid networks . 37

3.8 Comparison of reprogramming time of Stream with that of Deluge for
linear networks . 37

3.9 Comparison of number of bytes transmitted in the network by Stream with
that of Deluge for linear networks . 38

3.10 Simulation comparison of reprogramming time of Stream with that of
Deluge for nxn grid networks . 40

3.11 Simulation comparison of number of bytes transmitted by Stream with
that by Deluge for nxn grid networks 40

3.12 Comparison of reprogramming time of Stream with that of Deluge for
different node densities . 42

3.13 Comparison of number of bytes transmitted by Stream with that by Deluge
for different node densities . 42

3.14 Code dissemination profile according to the convergence time of a node 43

3.15 Illustration of which nodes reboot for reprogramming. Cx and Cy are the
communication ranges of nodes x and y respectively. 47

xi

Figure Page

3.16 Linear topology with nodes being reprogrammed using alternate mode of
Stream with node 0 as the base node (N=1,2,...,11) 48

3.17 Testbed result: Delay before a node reboots from Stream-RS for repro-
gramming as a function of its hop count from the base node 49

3.18 Simulation result: Delay before a node reboots from Stream-RS for repro-
gramming as a function of its hop count from the base node 49

3.19 Energy saving achieved by Stream over Deluge due to nodes sleeping till
the code image arrives at its vicinity 50

3.20 Analytical result: Delay before a node reboots from Stream-RS for repro-
gramming as a function of its hop count from the base node 53

4.1 Relative reprogramming time (single hop : multi-hop) as a function of link
reliability for linear topologies . 64

4.2 Relative reprogramming time (single hop : multi-hop) as a function of link
reliability for grid topologies . 64

4.3 Relative energy overhead (single hop : multi-hop) as a function of link
reliability for linear topologies . 66

4.4 Relative energy overhead (single hop : multi-hop) as a function of link
reliability for grid topologies . 66

4.5 Two CSOnet networks: EmNet1 and EmNet2 70

4.6 Testbed results: Reprogramming time for (a) grid, (b) linear , and (e)
CSOnet networks. Number of packets transmitted in the network during
reprogramming for (c) grid, (d) linear, and (f) CSONet networks. For
grid and linear topologies, the leftmost bar is reprogramming time for
single hop and the remaining bars are multi-hop reprogramming times
with increasing link reliabilities. The order of the legends is the order of
the bars from left to right. 71

4.7 Simulation results: Reprogramming time as a function of network size for
(a) linear and (b) grid networks (LRM = 0.9). Number of transmitted
packets as a function of network size for (c) linear and (d) grid networks
(LRM = 0.9). 74

4.8 Simulation results: (a) Reprogramming time and (b) number of trans-
mitted packets as a function of network density (LRM=0.9) for random
network topology; (c) Reprogramming time and (d) number of transmit-
ted packets as a function of link reliability for 100-random topology (Mean
number of neighbors=8). 76

xii

Figure Page

5.1 Overview of Zephyr . 81

5.2 Finding super block . 83

5.3 Pseudo code of optimized Rsync that finds maximal super block 85

5.4 Program image (a) without indirection table and (b) with indirection ta-
ble. 88

5.5 Program image (a) without and (b) with handling problem due to function
pointer. 91

5.6 Image rebuild and load stage. The right side shows the structure of exter-
nal flash in Zephyr. 96

5.7 Delta script size versus block size . 104

5.8 Size of data transmitted for reprogramming 107

5.9 Comparison of reprogramming times for grid and linear networks. . . . 111

5.10 Time to rebuild image on the sensor node. 112

5.11 Comparison of number of packets transmitted during reprogramming. . 115

5.12 Comparison of Zephyr with other approaches for a 5−node single hop
network. (a) Reprogramming time, (b) Number of packets transmitted
during reprogramming, (c) Idle Energy (E1), and (d) Receive/Transmit
Energy (E2 + E3). MAC duty cycle is 2% 121

5.13 Size of indirection table for various software change cases 122

5.14 Simulation results for (a) reprogramming time and (b) number of packets
transmitted during reprogramming (Case D, i.e. Class 2 (MC)) 123

5.15 Preserved Similarity Index (PSI) for different software change cases . . 126

5.16 Without function call indirections, the difference between the identical
code segments require n + 1 COPY commands and n INSERT commands
in the delta script. 126

6.1 Overview of Hermes: The stages with dashed rectangles are the ones which
are introduced or modified by Hermes. 130

6.2 Baseline RAM structures for (a) old and (b) new applications. RAM struc-
tures for corresponding (c) old and (d) new applications using Hermes. 132

6.3 Image rebuild and load stage. The right side shows the structure of exter-
nal flash in Hermes. 136

6.4 Execution latency due to indirection table 146

xiii

Figure Page

6.5 Preserved Similarity Index (PSI) for different software change cases . . 149

6.6 Without Hermes, the difference between the identical code segments re-
quire n+1 COPY commands and n INSERT commands in the delta script.
Here ldi, sts, and lds are different instructions that refer to the global vari-
ables. 149

7.1 If advertisement interval is greater than code download time, inconsis-
tent nodes may communicate, possibly resulting in undesirable network
behavior. 157

7.2 Correctness issue if TREF > TCD. 159

7.3 TREF , the refresh interval cannot made larger than TREP , the minimum
time between two successive code downloads, for correctness reasons. . 161

7.4 State transition diagram of Varuna . 162

7.5 Eventual consistency in Varuna . 168

7.6 Testbed results: Steady state energy cost as a function of time for (a)
neighbor table size=30, and different grid spacings d, and (b) d=10ft and
different neighbor table sizes; (c) Neighbor table occupancy vs time for
d =10ft; (d) Steady delay and (e) MOODy delay; (f) Ratio of number of
packets that face smaller steady delay to those that face larger MOODy
delay. 173

7.7 Simulation results: Steady state energy cost as a function of time for (a)
neighbor table size=50 and (b) neighbor table size=100; (c) Steady state
energy cost for different neighbor table sizes for d=10ft; Neighbor table
occupancy vs time for (d) d=5ft, (e) d=10ft, and (f) d=20ft. 178

7.8 Neighbor table size as a function of density factor. 180

xiv

ABSTRACT

Panta, Rajesh K. Ph.D., Purdue University, May 2010. Remote Reprogramming of
Wireless Sensor Networks. Major Professor: Saurabh Bagchi.

In recent years, advances in hardware and software tools have led to many real-

world sensor network deployments. Management of already deployed sensor networks

is a very important issue. One of the crucial management tasks is that of software

reconfiguration. During the lifetime of a sensor network, software running on the sen-

sor nodes may need to be changed for various reasons like correcting software bugs,

modifying the application to meet the changing environmental conditions in which

the network is deployed, adapting to evloving user requirements, etc. The frequency

of software updates is very high in sensor networks due to various reasons — harsh

and unpredictable environments in which the sensor nodes are deployed, time-varying

nature of the wireless channel, lack of robust tools for developing software, interfer-

ence in the unlicensed ISM band, topology change casued by node mobility, battery

outages, etc. Since a sensor network may consist of hundreds or even thousands of

nodes which may be situated at places which are difficult or, sometimes, impossible to

access physically, remote reprogramming of sensor networks is essential. This thesis

presents energy efficient and fast reprogramming services for wireless sensor networks.

Sensor networks are often battery-powered and need to be operated unattended for

long periods of time. Radio transmission is often the most energy-expensive oper-

ation in sensor networks. Since energy is a very scarce resource, this thesis focuses

on conserving energy during reprogramming. Also, since the performance of the net-

work may be degraded, or even reduced to zero, during software update process, the

reprogramming techniques proposed here minimize reprogramming time significantly

compared to existing reprogramming protocols.

1

1. INTRODUCTION

Wireless sensor networks represent a new class of networked computing devices. A

typical wireless sensor network consists of a large number of small, low-power, low-

cost, battery-powered wireless sensors and (optionally) actuators that integrate com-

putation, communication, sensing, and actuation together. Due to the small size of

these devices, they can be deployed unobtrusively in a wide range of environments,

enabling data collection at a fidelity and scale that was previously unthinkable. Using

wireless communication, these devices coordinate among each other to perform sens-

ing tasks typically over large temporal and spatial scales. Additionally these devices

may also be equipped with actuation capabilities, which allow sensor networks not

only to sense the physical phenomenon, but also power the actuators to affect the

sensed environment. This forms a distributed feedback loop that has the potential

for efficiently controlling geographically distributed processes at a scale that was until

recently infeasible.

The proliferation of many small sensor hardware [1–9] and software [10–15] plat-

forms have opened up possibilities to embed sensors in large and uncontrolled envi-

ronments for a wide range of disciplines. In recent years, many sensor network de-

ployments have been reported in the literature—environmental monitoring [16–25],

structural monitoring [26–28], habitat monitoring [29–32], home and building automa-

tion [33,34], vehicular networks [35–37], data center monitoring and control [38], dis-

aster management [39], shooter localization [40], intrusion detection [41, 42], remote

medicine and patient monitoring [43–45], etc. Management of already deployed sen-

sor networks has thus become very important. One of the crucial management issues

is that of software reconfiguration. Once the sensor network is deployed, it may be

necessary to change the software running on the sensor nodes for various reasons—to

fix software bugs, to add new features to sensor network application, to fine-tune sens-

2

ing algorithms, etc. Before installing software on the sensor nodes, the program code

is first developed and compiled on a resource-rich host computer because the sensor

nodes are resource-constrained (in computation, memory, and energy) devices. Tra-

ditionally, the sensor network is reprogrammed by bringing the sensor nodes from the

deployment field to the laboratory, connecting them one by one to the host computer,

and uploading the code to each node via serial or parallel port (In System Program-

ming or ISP). This method is obviously tedious and expensive—both in terms of

time and money. Furthermore, ISP may be very difficult or sometimes impossible

since the sensor nodes may be situated at places which are difficult or impossible to

access physically (e.g. deep ocean, enemy territory, thickets [46], bird burrows [21],

glaciers [47], volcanoes [48], tops of light poles [22, 49, 50], etc.). Remote reprogram-

ming of wireless sensor network is thus necessary so that the new version of the

software can be wirelessly transferred to all the sensor nodes in the network, without

the need to be in physical contact with the nodes.

1.1 Motivation for remote reprogramming

Wireless sensor networks need software updates in a wide range of scenarios rang-

ing from evaluation and implementation of new functionalities of the existing appli-

cation to complete replacement of the existing application by a new one. This section

presents some of the typical reasons for remote reprogramming of sensor networks.

1.1.1 Shortening software development and testing phase

Before a software application is deployed in a real-world sensor network, it goes

through an iterative process where the software is written, tested, and debugged

many times in laboratory testbeds. The ability to reprogram all the sensor nodes in a

testbed network quickly thorugh wireless medium shortens the software development

and evaluation phase [51].

3

1.1.2 Fixing software bugs

The deployed software on a network may also need to be changed to correct

software bugs. In spite of rigorous testing in laboratory testbed environments, sensor

network applications exhibit higher failure rate in real-world delpoyments comapared

to traditional computer software. There are many reasons for this behaviour. In

the programming environment for sensor nodes, non deterministic bugs, which are

triggered by a difficult-to-recreate combination of environmental and protocol events,

are quite likely. These are discovered during the operational phase when the sensor

nodes are embedded in the environment, rather than during testing in the laboratory

[52]. The harsh and unpredictable nature of the environment often exacerbates this

problem. Below, we present some of the software related problems experienced by

practical sensor networks.

In the LOFAR-agro deployment [53], the complex interaction among different in-

dependently developed protocols (MintRoute [54] and T-MAC [55]) prevented efficient

data logging, resulting in data yield of only 2%. In a surveillance application [42],

some extreme environmental conditions caused software faults on some nodes trigger-

ing false events and resulting in fast draining of the batteries. Similarly, in a vineyard

monitoring application [56], unknown software problems caused severe packet losses.

Their experiments in lab environment had a data yield of 90%, while the actual de-

ployment resulted in a data yield of only 77%, even with 5x redundancy [52]. The

Great Duck Island deployement [32] also faced significant packet loss, partly due to

inability of software to adjust to clock drift among nodes and unexpected humidity

sensor readings. Many other sensor network deployments [57–61] have reported fail-

ure or poor performances due to problems associated with the software running on

the sensor nodes.

Although many tools and approaches [52, 62–75] have been proposed to build

robust software for sensor nodes, they are far from achieving their goals. This is a

very challenging problem because of various reasons. First, limited memory means

4

that sensor nodes cannot store enough system logs and checkpoints. Second, due

to the distributed nature of the sensor network algorithms, sensor nodes need to

communicate with each other, and possibly with the base station, to pinpoint the

cause of the problem. Third, sensor nodes have limited energy supply and hence to

increase its lifetime, the number of radio communications need to be minimized.

In short, compared to traditional computer networks, the software for the sensor

nodes are highly failure prone. Thus, software updates are necessary to fix these

problems.

1.1.3 Adapting to network failures

Extreme and unexpected environmental conditions can also trigger hardware and

network failures. Network link qualities are extremely sensititive to many environ-

mental factors. Since most of the sensor networks operate at unlicensed ISM band,

they are also vulnerable to interference from other nearby transmissions. For ex-

ample, the 2.5 GHz bandwidth used by IEEE 802.15.4 [76] based low power radios

used by many sensor nodes is also shared by other wireless systems like IEEE 802.11

(Wi-Fi [77]), IEEE 802.15.1 (Bluetooth [78]), and even by microwaves. These cause

failures in wireless communications and in some cases may cause more serious prob-

lems like network partitioning, inability to respond to critical events, etc. As a result,

the software running on these nodes need to be modified to make them tolerate such

failures.

A recent deplyoment of sensor network in Swiss Alps showed that wireless com-

munication worked well during the day and the night but failed during mornings and

evenings [79]. Due to different response characteristics of the processor and radio os-

cillators to varying temperature, the unpredictable temperature fluctuations caused

the clocks to drift too much [79, 80]. In CSOnet sensor network deployment [81],

the reliability of the wireless links is observed to decrease due to increasing foliage

5

in spring and summer, and the communication protocol has to be changed subtly to

achieve the same end-to-end reliability for the data.

1.1.4 Fine-tuning the application

Large scale sensor networks may be deployed for long periods of time during which

the requirements from the network or the environment in which the nodes are deployed

may change. Also, the requirement of the user may change over time. The change

may necessitate uploading a new code or retasking the existing code with different sets

of parameters. In many cases, an application developer has a limited or no familiarity

of the environment in which the sensor nodes will be deployed, eg. deep ocean, enemy

territory, or wild nature. In these environemnts, software development may follow an

ad-hoc approach—deploy software based on predicted nature of the environment, use

collected data and the observed performance of the software as a feedback to develop

more effective algorithms, and so on [82]. Remote wireless rerprogramming is crucial

in these scenarios.

1.1.5 Complete application replacement

There are many situations where the application running on the sensor nodes

may need to be replaced with a completely new one. In [83], a sensor network is used

to detect forest fire. When a fire event is detected, the fire fighters need to run a

search and rescue application as well as a fire tracking application [51]. Preloading

all possible applications in memory-constrained sensor nodes may not be scalable.

Hence, reprogramming the sensor network with the new application can be more

economical and scalable. A sensor network may be deployed to monitor vibrations

of the building structure due to, say, earthquake. Later on, instead of using a new

network, the user may want to use the same network for implementing smart lighting

system. Software updates are essential in these scenarios.

6

Because of the above mentioned reasons, practical sensor networks need to be

reprogrammed more frequently than the traditional computer networks. The exact

reprogramming frequency depends on the nature of the deployment. For example,

the Kansei testbed [84] is reprogrammed approximately every 3 months. Also, this

testbed undergoes major updates with significant new features added approximately

every 6 months. Each major update is generally followed by a burst of other small

updates in a short period of time, to fix the bugs associated with the major update.

Kansei network can also be used by researchers and developers from all over the

world to conduct experiments with their applications. Every time a user submits a

new application, it needs to be disseminated to (a subset of) nodes in the network.

The Kansei testbed was reprogrammed 5251 times with applications submitted by

the users between October 2005 to May 2008. In James Reserve deployment [85],

sensor nodes needed several software updates every day in field-testing phase. After

that, one or two updates were needed every week. Finally, as the software got more

stable, updates were required approximately every 4 to 6 weeks.

1.2 Requirements of remote reprogramming

Remote reprogramming in sensor networks poses several challenges. A primary

requirement is that the reprogramming be done while the nodes are in situ, embedded

in their sensing environment. To ensure correctness of the system, it is essential that

the code update be 100% reliable and reach all the nodes that it is destined for.

Each node being reprogrammed must receive each and every bit of the code correctly.

Compared to traditional computer networks, sensor networks are more failure prone.

The network topology cannot be assumed to be static. It can change frequently in

many sensor network deployments because of node mobility, time-varying wireless

channel conditions, physical environmental changes, node failures, battery outages,

unpredictable harsh environmental conditions, etc. A program image is relatively

7

large for the low-bandwidth wireless radio. Thus it is very challenging to ensure that

all nodes are updated with the latest version of the code all the time.

Two important performance metrics in reprogramming are time and energy. The

code upload should be fast since the networks functionality is likely degraded, if not

reduced to zero, during the reprogramming period. Sensor networks often need to

be operated unattended for long periods of time. Once the network is deployed,

it may be very difficult or sometimes impossible to replace the batteries. Thus,

reprogramming should incur as little energy as possible. Often radio transmission

is the most energy expensive operation in sensor networks. Research studies have

shown that transmitting a single bit consumes the same energy as executing 1000

instructions [82,86,87]. Code delivery has to be done efficiently to minimize redundant

transmissions due to multiple senders and extra retransmissions due to link losses or

collisions. Also, sensor nodes have limited energy supply, bandwidth, and memory.

So it is important to minimize these resources consumed for network reprogramming.

It is conceivable that the process of code upload will be infrequent for many de-

ployments and therefore it may appear that its resource consumption need not be

optimized. However, consider that the sensor network environment has inherent un-

reliability in the wireless links that may have transient failures. Thus the environment

is dynamic with nodes coming in and out of periods of disconnectedness. Also, the

network may have nodes added after the initial deployment while new code may be

injected at arbitrary points in time. Since in most deployments, the sensor network is

expected to operate over extended periods of time, it is possible that the parameters

for the application, such as the monitoring period, change. All of these necessitate

retasking some or all of the sensor nodes. The code dissemination therefore cannot

be considered a one shot process and it becomes important to minimize the resource

consumption used in network reprogramming.

8

1.3 Thesis outline

In Chapter 2, we present some related work. The next few chapters present novel

middleware services for reprogramming sensor networks—Stream [88, 89] (Chapter

3), DStream [50] (Chapter 4), Zephyr [90] (Chapter 5), and Hermes [91] (Chapter 6).

Chapter 7 presents a protocol called Varuna that minimizes the energy consumption

during quiescent state—time period during which no code upload is actually being

done.

Stream: The amount of information that needs to be transferred wirelessly dur-

ing reprogramming greatly affects the reprogramming time as well as energy. Stream

significantly reduces the time and energy required to reprogram the network by min-

imizing the amount of information that needs to be transferred wirelessly for re-

programming the network. Deluge [92] is the standard reprogramming protocol for

TinyOS [14] based applications. Deluge attaches the user application with the entire

Deluge reprogramming protocol and sends them as one big image. This is to make

sure that Deluge is always running on the sensor nodes so that they are receptive to

future code updates. Note that sensor nodes are generally not capable of multitask-

ing as it is very expensive because of severe resource-constraints. Stream attaches

the user application with a small component instead of the entire reprogramming

protocol. This component is capable of listening to future code update messages and

running the reprogramming protocol on the nodes on an as-needed basis.

DStream: DStream, an extension to Stream protocol, is capable of using either

single hop or multi hop modes of reprogramming based on current network condi-

tions (like link reliabilities among the nodes). In spite of the current research trend

towards multi hop reprogramming, we show, through mathematical analysis, real

testbed experiments and simulations, that under certain network conditions, single-

hop reprogramming can be faster and more energy efficient than multi hop mode.

DStream is equipped with both the single and multi hop modes of reprogramming so

that a choice can be made between the two based on the current network conditions.

9

Zephyr: Zephyr is an incremental reprogramming protocol that exploits the fact

that in real world scenario, the software running on the sensor nodes evolves with

incremental changes to the functionality. Zephyr significantly reduces reprogramming

time and energy by wirelessly transferring only the difference between the old and

new versions of the software, rather than the entire new software. The sensor nodes

build the new image using the difference and the old image. Zephyr uses modified

Rsync [93] algorithm to compare the two binary images at the byte level and find

the difference between them. We show that the comparison at the byte level alone

is not sufficient to produce a small difference. Modifications at the application level

are also necessary. Zephyr uses function call indirections to mitigate the effects of

function shifts. This increases the similarity between the old and new versions of the

software. As a result, the difference between them is small, and reprogramming time

and energy are significantly reduced.

Hermes: One of the major problems of an incremental reprogramming scheme is

that software modification can cause the global variables to be shifted. As a result,

the difference between the old and the new verions of the software becomes large.

Hermes eliminates the global variable shift problem in incremental reprogramming

systems. Furthermore, in Zephyr, the function call indirections introduce software

latency. Heremes eliminates this problem and still avoids the problem due to function

shifts.

Varuna: Information dissemination protocols used in wireless ad-hoc and sen-

sor networks incur energy expenditure not only during the data-item dissemination

phase, but also during the steady-state when no dissemination is actually being done.

The need for energy expenditure in the steady state arises from transient wireless link

failures, incremental node deployment, and node mobility. To ensure that all nodes

are up-to-date all the time, existing dissemination protocols cause sensor nodes to pe-

riodically advertise their metadata (e.g. the version number of the data-item that the

node currently has) in the steady state. Thus, the steady state energy cost increases

linearly with the steady state time duration, the most dominant phase in a node’s

10

lifetime. Chapter 7 shows that the steady state energy cost can quickly outweigh the

actual dissemination cost in practical systems. Varuna is a maintenance algorithm

that incurs fixed maintenance cost, independent of the steady state duration.

11

2. RELATED RESEARCH

The question of reconfigurability of sensor networks has been an important theme in

the research community. Program execution models affect software reconfigurability.

In recent years, various programming environments have been proposed for sensor

networks. We discern three streams of work in this regard. First, is the class of work

that provides virtual machine abstractions on sensor nodes. Second, is the design for

reconfigurability in sensor operating systems that do not support dynamic linking and

loading. Third, is reconfigurability in systems that do support dynamic linking and

loading. We discuss these three streams in order here. Many scripting language based

systems have been proposed for embedded systems [51], including BASIC variants,

Python interpreters [94], and TCL machines [95]. They are intended for platforms

with more resources than typical sensor networks. We do not include them in our

discussion.

2.1 Virtual machines

A common method used for reducing the cost of transmitting program code is a

virtual machine. Several systems, such as Mate [96], VM* [97], ASVM [98] and [99]

provide virtual machines that run on resource-constrained sensor nodes. They enable

efficient code updates, since the code that runs on these virtual machines is more

compact than the native code. However, they trade off, to different degrees, less

flexibility in the kinds of tasks that can be accomplished through virtual machine

programs and less efficient execution than native code.

12

2.2 Native code with no support for loadable modules

Most of the sensor network systems use native code that is executed directly

by the microcontroller. TinyOS is the primary example of an operating system that

does not support loadable program modules. There are several protocols that provide

reprogramming with full binaries, such as XNP [100], MNP [101], Deluge [92], Freshet

[102], etc. These protocols fall under full image replacement category because the

entire program image is transmitted to the sensor node. These protocols focus on

reliably and efficiently distributing the program image using the unreliable radio

links.

Reliable multicast in unreliable environments, such as ad-hoc networks, can be

achieved by epidemic multicast protocols based on each node gossiping the message

it received to a subset of neighbors [103]. This class of protocols gives probabilistic

guarantee for the update to reach all the group members. The probability is mono-

tonically increasing with the fanout of each node (the number of neighbors to gossip

to) and the quiescence threshold (the time after which a node will stop gossiping to

its neighbors). By increasing the quiescence threshold, the reliability can be made

to approach 1, which is the basic premise behind all the epidemic based code update

protocols in sensor networks — Deluge, MNP, and Freshet.

The push-pull method for data dissemination through the three way handshake of

advertisement-request-code has been used previously in sensor networks with sensed

data taking the place of code. Protocols such as SPIN [104] and SPMS [105] rely on the

advertisement and the request packets being much smaller than the data packets and

the redundancy in the network deployments which make several nodes disinterested

in any given advertisement. However, in the data dissemination protocols, there is

only suppression of the requests and the data sizes are much smaller than the entire

binary code images.

The earliest network reprogramming protocol XNP [100] only operated over a

single hop and did not provide incremental updates of the code image. The Multihop

13

Over the Air Programming (MOAP) protocol extended this to operate over multiple

hops [106]. MOAP introduced several concepts which are used by later protocols,

namely, local recovery using unicast NACKs and broadcast of the code, and sliding

window based protocol for receiving parts of the code image. However, MOAP did

not leverage the pipelining effect with segments of the code image. That is a node

has to download the program image completely before sending it to other nodes in

the network.

The three protocols that are substantially more sophisticated than the rest and

define the state-of-the-art today are Deluge [92], MNP [101], and Freshet [102]. All

use the three way handshake for locally propagating the code. Deluge was the earliest

and laid down some design principles used by the other two. It uses a monotonically

increasing version number, segments the binary code image into equal sized pages,

and pipelines the different pages across the network. It builds on top of Trickle [107],

a protocol for a node to determine when to propagate code in a one hop case. The

code distribution functions through a three-way handshake protocol of advertisement,

request, and broadcast code. The operation of each node is periodic according to a

fixed size time window. The first part of the window is for listening to advertisements

and requests and sending advertisements. The second part of the window is for trans-

mitting or receiving code corresponding to the received requests. Within the first part

of the time window, a node randomly selects a time at which to send an advertisement

with metadata containing the version number, the number of complete pages it has,

and the total number of pages in the image of this version. When the time to transmit

the advertisement comes, the node sees whether it has heard a threshold number of

advertisements with identical metadata, and if so, it suppresses the advertisement.

When a node hears code that is newer than its own, it sends a request for that code

and the lowest number page it needs, to the node that advertised the new code. In

the second part of the periodic window, the node transmits packets with the code

image, corresponding to the pages for which it received requests. A receiving node

only fills its pages in monotonically increasing order thereby eliminating the need for

14

maintaining large state for missing holes in the code. For receiving the code, each

node uses the shared broadcast medium that allows overhearing and can fill in a page

requested by a neighbor.

The design goal of MNP [101] is to choose a local source of the code which can

satisfy the maximum number of nodes. They provide energy savings by turning off

the radio of non-sender nodes. Freshet [102] is different in aggressively optimizing the

energy consumption for reprogramming. It introduces a new phase called blitzkrieg

when the code update is started from the base node. During the blitzkrieg phase, in-

formation about the code and topology (primarily the number of hops a node is away

from the wave front where the code is at) propagates through the network rapidly.

Using the topology information each node estimates when the code will arrive in

its vicinity and the three way handshake will be initiated — the distribution phase.

Each node can go to sleep in between the blitzkrieg phase and the distribution phase

thereby saving energy. Freshet also optimizes the energy consumption by exponen-

tially reducing the metadata rate during conditions of stability in the network when

no new code is being introduced, called the quiescent phase. The time required to

reprogram the network can be reduced by using multiple channels for code dissem-

ination [108]. Also, there have been few works which attempt to ensure that the

code upload process is secure [109–116]. Some systems consider reprogramming in

scenarios where a sensor node may be running multiple applications [117, 118].

In recent years, the research focus has shifted towards multi hop reprogramming.

In Chapter 4, we discuss the scenarios in which single hop reprogramming can be faster

and more energy efficient than multi hop mode and present a protocol called DStream

which provides both single and multi hop modes of reprogramming. To the best of our

knowledge, all of the existing reprogramming protocols provide either single or multi

hop reprogramming features, but not both. Importantly existing work is silent on

the choice between the two approaches for different deployment conditions. Chapter

4 also discusses how link reliabilities affect the choice between these two modes of

reprogramming. There have been some studies which show how low link reliabilities

15

cause problems in multi-hop networks. [119] showed that shortest path algorithm in

a network with lossy links selects a path with poor reliability. In [120], the authors

evaluate Deluge and MNP for different densities and packet organizations. But as

far as we know, there has been no prior work to study the effect of parameters like

link reliabilities on the performance of multi-hop reprogramming. In Chapter 4, we

show how poor link qualities adversely affect multi-hop reprogramming making the

alternate single hop reprogramming approach attractive.

2.3 Incremental reprogramming systems

The reprogramming protocols discussed above transmit the complete code image

during reprogramming. In addition to these full image replacement algorithms, there

are some techniques proposed in the literature which reduce the number of packets

transmitted during reprogramming by comparing the new code with the previously

installed software and transmitting only the difference. Using a diff-like approach,

Reijers and Langendoen [87] compute the diff script which captures the difference

between the old and the new code and consists of copy, insert, address repair and

address patch operations. This approach reduces the network traffic but the drawback

of their approach is that the address patching is dependent on the regular structure of

the instruction set architecture and the authors demonstrate the protocol for a specific

customized node called EYES [4]. Also, their work is focused on the encoding scheme

and does not demonstrate a fully functional implementation of reprogramming. Jeong

and Culler [121] describe an incremental network reprogramming protocol which uses

the Rsync algorithm [93] to find the blocks of the code that are identical in the new

and the old code images. A drawback of their approach is that their protocol is meant

for single hop reprogramming. Also, since they do not use the knowledge about the

application structure, even small code shifts can result in a large number of address

patches leading to high bandwidth consumption. Koshy and Pandey [122] have the

design goal of keeping address patches to a small number. They use slop regions after

16

each function in the application so that the function can grow. However, the slop

regions lead to fragmentation and inefficient usage of the Flash and the approach only

handles growth of functions up to the slop region boundary. The authors in [123]

present a mechanism for linking components on the sensor node without support

from the underlying OS. This is achieved by sending the compiled image of only the

changed component along with the new symbol and relocation tables to the nodes,

where the new image is created. This has been demonstrated only in an emulator [124]

and makes extensive use of Flash. Also, the symbol and relocation tables can grow

very large resulting in large updates. Some schemes [82, 125] change the compiler to

increase the similarity of two versions of the software.

Reconfigurability is simplified in operating systems that support linkable mod-

ules. The prominent examples are SOS [10], Contiki [15], and RETOS [11]. In all

of these, individual modules can be loaded. Specific challenges exist in the matter of

reconfiguration in individual protocols. SOS uses position independent code and due

to architectural limitations on common embedded platforms, the relative jumps can

be within a certain offset only (such as 4 KB for the Atmel AVR platform). Contiki is

an operating system developed for resource constrained systems like sensor networks.

Based on Contiki, Dunkels et al. [51] describe a reprogramming approach using dy-

namic linking on the sensor nodes. Contiki disseminates the symbol and relocation

tables, which may be quite large for cases where many functions are referenced in

the application. Unlike these incremental approaches, we propose Stream (Chapter

3) that uses the full image replacement technique and still manages to greatly reduce

the amount of data transmitted during reprogramming. We also propose incremen-

tal reprogramming protocols Zephyr (Chapter 5) and Hermes (Chapter 6) that do

not require dynamic linking feature from the underlying operating system and the

transfer of symbol and relocation tables.

17

3. STREAM: LOW OVERHEAD REPROGRAMMING

PROTOCOL

In recent years, some protocols have been proposed for reprogramming in sensor

networks, the state-of-the-art being defined by three protocols—Deluge [92], MNP

[101], and Freshet [102]. Common to the three protocols is the notion of transferring

the code image in chunks of pages on a hop-by-hop basis with each node disseminating

code to its immediate neighbor through a three-way handshake of advertisement,

request, and actual code transfer. MNP and Freshet build on Deluge and respectively

optimize the transfer through judicious sender selection for dense networks and sleep-

awake protocols for large networks.

The critical problem that besets all three protocols is what is transferred. Common

intuition would be to transfer just what is needed, in other words, the application im-

age (or the image of the updates to the application). However, each protocol transfers

the image of the entire reprogramming protocol together with the minimally necessary

part. The reason behind this is the fact that the reprogramming component should

be running on the sensor nodes all the time for them to be receptive to future code

updates. However, the existing sensor network operating systems do not support mul-

titasking feature and, as a result, the reprogramming component should be attached

to the application image. Since the reprogramming protocols are of considerable com-

plexity, the inflation in the program image size that gets transferred over the wireless

medium increases greatly. The exact amount of increase is application specific — for

a simple stand-alone application (without wireless communication feature) of 1 page,

the increase is 20 folds, while for a communicating application of the same size, the

increase is 11 folds. In a sensor network environment, this is problematic. First, the

network links are prone to transient failures and yet, the code upload process needs

to be 100% reliable. Second, the networks are envisaged to be large and the cost

18

of larger image is incurred at every hop and does not get amortized. Third, it puts

pressure on multiple scarce resources of a node – communication bandwidth leading

to communication contention, and program Flash memory. The authors of Deluge

argue convincingly that it is difficult to improve over Deluge the rate of transfer over

the wireless link. Therefore, the logical approach appears to be to optimize what

needs to be transferred, keeping the basic mode of transfer the same as in Deluge.

This thinking gives rise to our protocol called Stream which transfers close to the

minimally required image size by segmenting the program image into an application

image and the reprogramming protocol image. It transfers over the wireless link the

former with a minimal addition. It pre-installs in each node, before deployment,

the reprogramming protocol image. Stream utilizes the ability to segment the ex-

ternal Flash memory into multiple images and stores the two in two different image

areas. An application is modified by linking it to a small component called Stream-

ApplicationSupport (Stream-AS) while Stream-ReprogrammingSupport (Stream-RS) is

pre-installed in each node. Stream-AS is generic and can be inserted in any TinyOS

application through the insertion of two lines of nesC [126] code. Stream-RS builds

on Deluge to operate in the changed mode. Overall, Stream’s design principle is to

limit the size of Stream-AS and providing it the facility to switch to Stream-RS when

triggered by a code update related message. The advantage afforded by Stream is

demonstrated over Deluge, though it can apply to any of the three protocols, since

the problem Stream addresses is shared by each. What would change in applying to

a different protocol is that Stream-RS will be based on that protocol.

There are several challenges to implementing the basic idea of Stream in the mote

platform. First, the node that has been updated with the recent code needs to remain

receptive to future code updates. Thus, it cannot be running just the application.

The mote platform does not support multi-tasking and therefore the two programs

(reprogramming protocol and application) cannot be executing concurrently. A design

option we explored was to pre-install the reprogramming protocol components in

the node and dynamically link it to the application to create a single executable

19

image once the application is uploaded. However, TinyOS [14] does not provide a

linking facility on the node itself. As we will show in chapter 5, although some

operating systems like SOS [10] and Contiki [15] support dynamic linking on the

nodes, some sensor node architectural issues make them impractical or very energy-

intensive. Second, it is unreasonable to assume that the code update will always

occur according to a preset schedule in which case the node could have queried the

base station for it. Third, Stream has to consider the possibility that new nodes may

be introduced into the network and may query a given node for coming up-to-date

with the latest version of the code. Thus a node cannot be content to handle just its

own need for staying up-to-date.

When a node has received all its code update, Stream optimizes the steady-state

energy expenditure by switching from a push-based mechanism (where the node pe-

riodically sends advertisements) to a pull-based mechanism where a newly inserted

node requests for the code. The benefit of Stream shows up in fewer number of bytes

transferred over the wireless medium leading to increased energy savings and reduced

delay for reprogramming. To further reduce the energy used in reprogramming the

sensor network, Stream causes the nodes to be involved in reprogramming only when

they are actually required to do so, i.e., a node is neither woken up nor switched over

from its application duties till the new code has reached the neighborhood and the

node has to be involved in the three way handshake for getting the code. Freshet [102]

reduces the reprogramming energy by cleverly estimating how long a node can sleep

before the new code, after being injected at one point in the network, arrives its

vicinity. However, due to the variability of the wireless channel, the estimate made

by Freshet based on the hop count is often inaccurate. An inaccurate estimate either

causes higher energy expenditure (if the time estimate is too low) or higher delay in

completing the reprogramming (if the estimate is too high). Stream achieves the goal

without needing to estimate the time, but by rebooting the node from Stream-RS for

the purpose of reprogramming only when the new code arrives at one of its neighbors.

As a result, the user application running on the node can put the node to sleep till

20

the time to reboot comes. This opportunistic sleeping feature of Stream is useful in

conserving the energy in resource constrained sensor networks, especially for large

networks where the amount of time to disseminate the code can be quite significant

(tens of minutes). Coupled with this fact is the observation that reprogramming is

not a one-time task, but rather is done periodically, and quite frequently, in some

networks.

We demonstrate the above mentioned claims by implementing Stream in nesC

[126] for the Mica2 [1] mote platform. We conduct experiments with Deluge and

Stream on a real small-sized testbed (of up to 16 nodes) in linear and grid topologies.

The output metrics we measure are number of bytes transferred (which relates to

the energy spent) and the delay. We see that Deluge requires 63% to 98% more

reprogramming time and transfers 75% to 132% more number of bytes than Stream for

the grid topologies. To evaluate Stream for larger sized networks, we use the TOSSIM

[127] simulation environment. We present a mathematical analysis to evaluate the

performance of Stream and compare it to the ideal case when exactly the application

image is transferred.

3.1 Stream Design

3.1.1 Design Approach

Stream builds on the code distribution method of Deluge. It optimizes the num-

ber of bytes that needs to be disseminated over the wireless medium so that in-

stead of transferring the entire Deluge component along with the new application,

only a small subset of reprogramming functionality is included in the program im-

age. The idea is to have all nodes in the network be pre-installed with the Stream-

ReprogrammingSupport (Stream-RS) component that includes the complete function-

ality for network reprogramming. Stream-RS is installed as image 0 in external

flash memory. The application image augmented with the Stream-ApplicationSupport

(Stream-AS) component that provides minimal support for network reprogramming

21

is installed as image 1 in external flash memory. The addition to the size of the

program image over the application image size with Stream is significantly less than

in the Deluge case. When a new program image is to be injected into the network, all

the nodes in the network running image 1 reboot from image 0 and the new image is

injected into the network using Stream-RS. The new image again includes Stream-AS

and we avoid the entire Deluge component from being transferred to all the nodes

each time the network needs to be reprogrammed. This modification does not entail

modification of the application on the part of the user. Instead of adding the Deluge

component, she adds the much smaller component (Stream-AS) to her application.

Both are localized two line changes in the application code.

The saving in terms of the number of pages transferred is quite significant. The

exact figure depends on the application. Any application that uses radio communi-

cation will need to add about 11 more pages if Deluge is used while Stream-AS adds

only one more page. We stress that this benefit is demonstrated here for Deluge,

but applies equally to all the current network reprogramming protocols since each

transfers the entire protocol image along with the application image.

3.1.2 Protocol Description

Consider that initially all nodes have Stream-RS as image 0 and the application

with Stream-AS as image 1 in their external flash memory. Each node is executing

the image 1 code in program memory. The node that initiates the reprogramming is

attached to a computer through the serial port and is called the base node.

Following is the description of how Stream works when a new user application,

again with the Stream-AS component added to it, has to be injected into the network.

1. In response to the reboot command from the user, all nodes in the network

reboot from image 0. This is accomplished as follows:

22

(a) The base node executing image 1 initiates the process by generating a

command to reboot from image 0. It broadcasts the reboot command to

its one hop neighbors and itself reboots from image 0.

(b) When a node running the user application receives the reboot command,

it rebroadcasts the reboot command and itself reboots from image 0.

2. Once the reboot command reaches all nodes, all nodes start running Stream-RS.

Then the new user application is injected into the network using Stream-RS.

3. Stream-RS starts to reprogram the entire network. It does so by using the

three way handshake method (like in Deluge [92]) where each node broadcasts

the advertisement about the code pages that it has. When a node hears the

advertisement of newer data than it currently has, it sends a request to the node

advertising newer data. Then the advertising node broadcasts the requested

data. Each node maintains a set S containing the node ids of the nodes from

which it has received the requests.

4. Once the node downloads the new user application completely, it performs a

single hop broadcast of an ACK indicating it has completed downloading.

5. Upon receiving the ACK from a node, it removes the id of that node from the

set S.

6. When the set S is empty and all the images are complete (by complete we mean

that all pages of all images have been downloaded), the node reboots from image

1. So, after sometime the entire network is reprogrammed and all nodes reboot

from image 1.

3.1.3 Handling incremental network deployment

This approach works well when new nodes join the network. Let nodes n1, n2, ..., nk

(k ≥ 1) having an older version of application as image 1 and running Stream-

23

RS (image 0) join the network. Nodes n1, n2, ..., nk advertise the data they have

using Stream-RS. When neighbors of nodes n1, n2, ..., nk running image 1 hear the

advertisement, they reboot from their image 0 (Stream-RS). Note that the neighbors

of n1, n2, ..., nk do not broadcast the reboot message and thus only the neighbors of

n1, n2, ..., nk reboot from Stream-RS. For this, the nodes should be able to distinguish

whether the reboot message is coming from the base node or non-base node. This

is achieved by looking at the source field of the reboot message. We assume that all

nodes in the network know the id of the base node. Now using the steps 2 through 6,

the new nodes download the new application as image 1 and all nodes reboot from

image 1 (the new application).

3.1.4 Design of Stream-AS

Stream-AS should be designed such that the increase in the size of the application

image when it is attached to the user application is minimum and at the same time, the

network should be able to reprogram itself whenever required. Stream-AS provides

the functionality to reboot from image 0 when the user gives the reboot command.

Before injecting the application to the network, user gives a reboot command to

the base node. The base node running image 1 (user application plus Stream-AS)

broadcasts the reboot command and itself reboots from image 0 (Stream-RS). The

reboot command is flooded through the network. Ultimately all nodes in the network

reboot from image 0 and actual application image transfer is done by Stream-RS.

This kind of flooding technique used to reboot all the nodes in the network does not

cause congestion because each node broadcasts the reboot command only once and

reboots from Stream-RS immediately after.

Stream-AS provides functionality to reboot from image 0 when new nodes are

introduced to the network. When new nodes join the network, they periodically

broadcast the advertisement. After one hop neighbors of these new nodes hear the

advertisement, they reboot from image 0 (Stream-RS). Then Stream-RS takes care

24

of sending the new application image to the new nodes. One disadvantage of the

current implementation of Stream is that the new nodes must be running image 0 so

that upon hearing the advertisement from these nodes, already deployed nodes can

reboot from Stream-RS.

From the above discussion, it is clear that incorporating Stream-AS requires min-

imal change in the user application. In TinyOS, following is the nesC code required

to be added when Deluge is attached to the user application:

Components DelugeC;

Main.StdControl→DelugeC;

To attach user application to Stream-AS instead, replace DelugeC by StreamASC.

This difference translates to a considerable difference in the size of the program

image that is transferred over the wireless channel.

Steady-state Behavior

In Deluge, once a node’s reprogramming is over, it keeps on advertising the code

image that it has. This is to ensure that the new nodes joining the network get the

latest version of the application image and also for future injection of code image. As

a result, radio resources are continuously used by Deluge even in the steady state. On

the other hand, in Stream, there is no advertising of data in the steady state because

Stream-AS does not advertise the data that it has. As mentioned earlier, the nodes

running user application plus Stream-AS in the steady state receive the advertisement

from the new nodes running Stream-RS, reboot from Stream-RS and send the new

application to the new nodes. When reprogramming is to be done, the nodes running

user application plus Stream-AS get the reboot command from the base node, reboot

from Stream-RS, and download the new application, thereby avoiding the need to

advertise at steady state. That means the user application has to share the node’s

radio resources with Deluge while this is not the case when Stream is used. Also,

since the nodes always run the user application except during reprogramming period,

25

Source node Destination node

Advertisement

Request

Data

Fig. 3.1. Three-way handshake for data dissemination

RAM usage is much less for Stream than for Deluge because of the smaller size of the

user application plus Stream-AS compared to user application plus Deluge.

3.1.5 Design of Stream-RS

Stream-RS, preinstalled in all nodes as image 0 and executed only during repro-

gramming phase, is responsible for actual image transfer among the nodes in the

network. It is based on Deluge with the significant changes mentioned below. When

a new application image is to be injected into the network, all nodes reboot from

Stream-RS. Then, reprogramming is done by using a three-way handshake (Figure

3.1) in which each node broadcasts the advertisement about the code pages that it

currently has. A node, upon hearing the advertisement of newer data than it currently

has, sends a request to the node advertising newer data. The advertising node then

broadcasts the requested code pages. Deluge optimizes this reprogramming method

by a proper choice of the time when advertisements and code pages are sent. For a

complete discussion of Deluge, see [92].

Changes from Deluge

Once reprogramming is done we want all the nodes to reboot from the new ap-

plication automatically. One obvious approach would be to reboot each node from

the user application after it completes downloading the new application. But the

26

flaw with this approach is that even though a node has completed downloading the

new application, it may still be serving other nodes in the network. Therefore the

node needs to continue to run Stream-RS. When a node receives a request for data,

it puts the node-id of the requesting node in the set S. This set S is not shared and

is maintained by each node. This structure is essential because a design philosophy

of Stream is to have all nodes running the user application all the time except when

reprogramming is being done. Without knowledge of the nodes to which a node A is

currently sending code, A may reboot from image 1 after it has downloaded all the

pages of the new user application even though some nodes in the network may still

be receiving code fragments from A.

In Stream-RS when a node downloads the new application, it broadcasts an ACK

saying that it has completed downloading the new application. When a node receives

an ACK from its neighbor, it removes the id of that node from the set S. So, the

following invariant is maintained at all times:

A.S = {x|REQ(x, A) = true ∧ ACK(x, A) = false}

This ensures that the set S at a node A consists of the ids of those nodes to which it

is currently sending code fragments. The condition for a node A to reboot from the

user application (image 1) is as follows:

A.S = φ ∧ A.♯ pages = Total number of pages

The first condition is that A is not sending code to any node and the second

condition is that A itself has downloaded all the pages of the application. Eventually

all nodes in the network download all the pages of the new application and reboot

from image 1. So in the steady state all the nodes run the application attached with

Stream-AS.

There is a subtle drawback to the synchronization in Stream-RS. A node A may

be serving a node B without B having explicitly sent a request to A. Thus node B

would never be included in A’s set S. Let us consider a scenario when a node n1

27

hears an advertisement of newer data than it currently has from node n2 during the

reprogramming phase. Before node n1 sends request for the new data, some other

one-hop neighbor n3 of the advertising node n2 may send the request. In response to

the request from node n3, n2 broadcasts the code. So, the node n1 may never send the

request to node n2 but keep on receiving the code from node n2, triggered by request

from node n3. If all the nodes that explicitly request data from the advertising node

n2 complete downloading the new application earlier than the node n1, node n2 will

reboot from the new application. This leaves node n1 in the middle of downloading

the new application. This drawback, however, does not pose a correctness problem,

but a performance problem. This is due to the design that after the advertising node

n2 has rebooted from the user application, it still can hear the advertisement sent by

the node n1 due to Stream-AS. Upon hearing the advertisement, node n2 will reboot

from Stream-RS and start sending code to node n1 through the three-way handshake.

In Deluge, in contrast to the automatic operation here, once all nodes complete

downloading the new user application, they reboot from the new application only

after the user gives the reboot command manually from the computer attached to

the base node.

3.2 Stream Analysis

Here we present an approximate analysis of the reprogramming time and energy

cost of uploading applications using three different protocols: Deluge, Stream and an

ideal protocol in which only the application needs to be uploaded without any extra

overhead. Let the application consist of Np pages and each page has Apkt packets.

Let Ps be the probability of successful transmission of a packet over a single link.

3.2.1 Reprogramming time

In this section, we analyze the reprogramming time for a grid network. We assume

that the transmission range is equal to
√

2 times the grid spacing. The reprogramming

28

model that we use for the analysis is an approximation of the behavior of Stream. In

it, we divide the time line into fixed-size rounds. The source sends the advertisement

at the beginning of each round and the destination, the one hop neighbor of the source

that hears the advertisement, sends one request for each new advertisement received.

We assume, for tractability of analysis, that the advertisement and the request packets

are reliably delivered. This can be achieved in practice by either having a separate

control channel or by transmitting the control signals multiple times to give a desired

reliability. If this assumption is not true, then the multi-hop reprogramming time

we find is a lower bound rather than the exact time. Once the source receives the

request, the data packets are sent immediately. If not all the data packets in a page

can be sent to the destination, the remaining data packets are sent over the following

one or more rounds. The time Tr is defined as the time to send a new advertisement,

receive a request, and send all the Npkt packets of the page being advertised when

the link reliability is 1.0. The number of rounds that it takes for all the packets in

a page to be received at the destination is thus a random variable. Let us call it

Nr. The probability of completing the upload of the entire page within the kth round

since the start of transmitting the page is the probability that each packet in the

page is successfully delivered within k rounds. Assuming independence of the losses

of different packets within a page, we have

P (Nr ≤ k) =

[

k
∑

j=1

Ps(1 − Ps)
j−1

]Npkt

(3.1)

The expected number of rounds for successfully sending a whole page is

E[Nr] =

∞
∑

i=1

i.P (Nr = i) =

∞
∑

i=1

P (Nr ≥ i) (3.2)

E[Nr] =
∞

∑

i=1

(1 − P (Nr < i)) =
∞

∑

i=1

(1 − P (Nr ≤ i − 1)) (3.3)

E[Nr] =
∞

∑

i=1



1 −
[

i−1
∑

j=1

Ps(1 − Ps)
j−1

]Npkt



 (3.4)

29

The code transmission is pipelined. That is, a node does not have to completely

download the new image before sending it to the next hop. As soon as the node

downloads the first page of the new application, it can send that page to the other

nodes if it gets the request for that page. Since the page transmission is pipelined,

the expected number of rounds it takes to download the whole application at a node

h−hop away is given by,

E[Nr,h] = min {3(Np − 1) + h, NP .h}E[Nr] (3.5)

Here h.E[Nr] is the number of rounds to download the first page, 3.(Np − 1).E[Nr] is

the number of rounds to download the rest of the pages if the network spans across

more than 4 hops because of two-hop interference effect on pipelining, i.e. at any

point of time, if a node at hop h receives data from hop h − 1, no node at hop h + 1

can send data at the same time because of collision at hop h. For networks with

maximum hop separation less than 4, there is no pipelining of the code transfer and

Np.h.E[Nr] is the number of rounds to download all the pages. Plugging Equation

3.4 into Equation 3.5, we get

E[Nr,h] = min {3(Np − 1) + h, NP .h} .

∞
∑

i=1



1 −
[

i−1
∑

j=1

Ps(1 − Ps)
j−1

]Npkt



 (3.6)

Assuming maximum number of hops to be hmax and the round time to be Tr, the

expected reprogramming time Trep is

Trep = Tr.E[Nr,hmax
]

= Tr.min {3(Np − 1) + h, NP .h} .
∞

∑

i=1



1 −
[

i−1
∑

j=1

Ps(1 − Ps)
j−1

]Npkt



(3.7)

We calculate the reprogramming time for (a) standalone application (one that

does not perform radio communication) and (b) application that uses GenericComm

component (provided by TinyOS) for communication. The application size is taken

to be 1, 10, or 100 pages. In case (a), the increases in the size of the program image

(in units of a page) are 10 and 20 respectively for Stream and Deluge, while in case

30

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100

R
ep

ro
gr

am
m

in
g

tim
e

(t
im

e
un

its
)

Application size (pages)

Ideal
Stream
Deluge

Fig. 3.2. Reprogramming time for 10x10 grid topology with standalone applications

 0

 100

 200

 300

 400

 500

 600

 1 10 100

R
ep

ro
gr

am
m

in
g

tim
e

(t
im

e
un

its
)

Application size (pages)

Ideal
Stream
Deluge

Fig. 3.3. Reprogramming time for 10x10 grid topology with applica-
tions having communication capability

(b), these increases are 1 and 11 respectively for Stream and Deluge. We use Ps =

0.98 and Tr = 1 time unit. Assuming that Ps stays constant across the three cases

(Ideal, Stream, and Deluge), the reprogramming time becomes directly proportional

to the number of pages (since the other factors are constant). Figure 3.2 and Figure

3.3 show the reprogramming time for the 10X10 grid. Clearly Stream outperforms

31

Deluge and for applications having communication features (almost all sensor network

applications have this feature), Stream is almost as fast as the ideal case.

3.2.2 Energy Cost

Let C be the energy cost of transmitting a single packet. The energy cost of

receiving packets depends on the specifics of the underlying application such as sleep-

ing schedules. Packet transmission and writing received packets to external flash are

the major sources of energy consumption during reprogramming. Both of these are

functions of the number of packets transmitted during reprogramming. In this anal-

ysis, we count the number of transmitted packets and use that as an indicator of the

energy performance of the two modes. This simplification is commonly done in the

literature, e.g. [128]. Assuming that retransmissions of a packet are independent, the

expected number of transmissions over a link for a successful transmission of a packet

Nret is

K = E[Nret] =

k=∞
∑

k=1

[

k.
(

Ps(1 − Ps)
k−1

)]

=
1

Ps
(3.8)

Let the redundant set at hop h be Sh, where Sh is the set of nodes at hop h that

can be reprogrammed by one node at hop h − 1. Let |Sh| be the average size of the

set. Moreover, let αh be the cardinality of the subset of nodes at hop h − 1 that can

reprogram all the nodes at hop h. The additional energy cost to reprogram all the

nodes at hop h given that all the nodes at hop h−1 have been reprogrammed is given

by

Eh = K.NP .Npkt.C.αh =
NP .Npkt.C.αh

P
|Sh|
S

(3.9)

The total energy overhead of reprogramming all the nodes in a network in which the

maximum number of hops is hmax is given by

E =

h=hmax
∑

h=1

Eh =

h=hmax
∑

h=1

[

NP .Npkt.C.αh

P
|Sh|
S

]

(3.10)

32

For a linear topology of N nodes with Rtx = d, where d is the spacing between nodes,

and Rtx is the transmission range, αh = 1, |Sh| = 1, and hmax = (N − 1) . For an

n × m grid topology, ignoring edge effects, with r =
√

2d, αh = ⌈n
2
⌉, |Sh| = 3, and

hmax = (m − 1) . Let Npkt = Apkt + 1 + E[Nr], where the second term is to account

for the advertisement packet and the last term represents the expected number of

request packets to successfully transmit the whole page (Equation 3.4).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 60 100

E
ne

rg
y

(jo
ul

es
)

Application size (pages)

Ideal
Stream
Deluge

Fig. 3.4. Total energy consumed in the 10x10 grid topology with
standalone applications

We calculate total energy E expended for (a) standalone application (one that

does not perform radio communication) and (b) application that uses GenericComm

component (provided by TinyOS) for communication. The application size is taken

to be 1, 10, or 100 pages. In case (a), the increases in the size of the program image

(in units of a page) are 10 and 20 respectively for Stream and Deluge, while in case

(b), these increases are 1 and 11 respectively for Stream and Deluge. We use fixed

energy cost as 50 nJ/bit, Ps = 0.98, the variable (distance dependent) energy cost

is 100 pJ/bit × r2, for a transmission distance of r, the receiving energy is equal to

the fixed energy cost. As expected, Figure 3.4 and Figure 3.5 show that Stream is

faster and more energy efficient than Deluge. These figures also reaffirm that for the

communicating applications, energy costs of Stream and ideal case are comparable.

33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 20 60 100

E
ne

rg
y

(jo
ul

es
)

Application size (pages)

Ideal
Stream
Deluge

Fig. 3.5. Total energy consumed in the 10x10 grid topology with
applications having communication capability

3.3 Experiments and Results

We implement Stream using the nesC [126] programming language in TinyOS [14].

In this section, we compare the performances of Stream and Deluge for different

network sizes and node densities. Both testbed experiments and simulations are

used to demonstrate the advantages of Stream over Deluge. Testbed experiments are

performed by using Mica2 [1] nodes and simulations are performed using TOSSIM

[127], a bit level simulator for TinyOS platform. Testbed experiments show the

performance of Stream and Deluge in realistic environment while simulations exhibit

the scalability of these protocols.

3.3.1 Evaluation Metrics

Any network reprogramming protocol must ensure that all nodes in the network

receive the application image completely in a short period of time without expending

too much energy. Reliability of code upload is an important evaluation metric. A

second important metric is the time required to reprogram the network since the

network functionality is degraded during reprogramming. Since the sensor network

34

consists of energy-constrained sensor nodes, the reprogramming protocol should use

minimum energy to increase the lifetime of the network.

Both Deluge and Stream are 100% reliable, i.e. all nodes in the network download

every byte of the user application. So, in the following sections, we focus on com-

parison in terms of time to reprogram the network and the energy consumed during

reprogramming.

3.3.2 Testbed Description and Results

We perform the experiments using Mica2 nodes having a 7.37 MHz, 8 bit micro-

controller. Each Mica2 node is equipped with 128KB of program memory, 4KB of

RAM and 512KB external flash which is used for storing multiple code images. These

nodes communicate via a 916 MHz radio transceiver.

The first set of experiments is performed in 2X2, 3X3 and 4X4 square grid net-

works having a distance of 10 ft between adjacent nodes in each row and column. Ex-

periments of network reprogramming using Stream are carried out by pre-installing

Stream-RS as image 0 and same version of application image plus Stream-AS as image

1 on all nodes in the network. A new application image plus Stream-AS is injected

into the source node (situated at one corner of the grid) via a computer attached

to it. Then the source node starts disseminating the new application image to the

network. Experiments with Deluge are performed similarly by installing Deluge as

image 0 and the application image plus Deluge as image 1. A new application image

plus Deluge is injected into the network.

Time to reprogram the network is the time interval between the instant t0 when

the source node sends the first data packet to the instant t1 when the last node (the

one which takes the longest time to download the new application) completes down-

loading the new application. Since clocks maintained by the nodes in the network are

not synchronized, we cannot take the difference between the time instant t1 measured

by the last node and t0 measured by the source node. Although a synchronization

35

protocol can be used to solve this issue, we do not use it in our experiments because

we do not want to add to the load in the network (due to synchronization messages)

or the node (due to the synchronization protocol). Instead, once each node completes

downloading the new application image, it sends a special packet to the source node

saying that it has completed downloading the new application. The source node mea-

sures the time instant t′1 when it receives such packet, timestamps the packet with

t′1 and sends the packet to the computer. If the network has n nodes including the

source node, the computer attached to the source node receives one t0 and (n − 1)

number of t′1’s. We take tprog = maxt′
1
(t′1 − t0) as the reprogramming time. It should

be noted that the actual reprogramming time is maxt′
1
(t′1 − t0 − td) where td is the

time required to send the special packet from the last node to the source node. Since

td is negligible compared to the reprogramming time, our formula is a reasonable ap-

proximation to the actual reprogramming time. Furthermore, since we are interested

in the difference between the reprogramming times of Stream and Deluge, the effect

of td cancels out assuming td is same for Stream and Deluge experiments.

Among the various factors that contribute to the energy used in the process of

reprogramming, two important ones are the amount of radio transmissions in the

network and the number of flash-writes (the downloaded application is written to

the external flash as image 1). Since the radio transmissions are the major sources of

energy consumption, we take the total number of bytes transmitted by all nodes in the

network as the measure of energy used in reprogramming. In our experiments, each

node counts the number of bytes it transmits and logs that data to its external flash.

By reading the external flash and taking the sum of the number of bytes transmitted

by each node, we find the total number of bytes transmitted in the network for the

purpose of reprogramming. Since the amount of flash-writes in Deluge is higher, the

energy advantage will be increased if we take that factor into account.

As mentioned earlier, compared to Deluge the exact gain achieved by Stream in

terms of number of pages transmitted depends on the user application. For a simple

application which does not write to external flash and does not perform any radio

36

communication, attaching Deluge to the user application increases the size of the

application image by 20 pages whereas the increase is only 10 pages with Stream.

If the user application has radio communication functionality but does not write to

external flash, Stream and Deluge increase the number of pages by 1 page and 11

pages respectively. In our experiments, we use a simple application that performs

radio communication but does not write to external flash. The application image

alone is 11 pages, application image plus Stream-AS is 12 pages and application

image plus Deluge is 22 pages.

 0

 100

 200

 300

 400

 500

 2x2 3x3 4x4

R
ep

ro
gr

am
m

in
g

T
im

e
(s

ec
on

ds
)

Stream
Deluge

Fig. 3.6. Comparison of reprogramming time of Stream with that of
Deluge for grid networks

Figure 3.6 compares the average time taken by Stream and Deluge to reprogram

2X2, 3X3 and 4X4 grid networks. Interestingly, we observe from the experiments

that the number of hops between two nodes is dependent on environmental condi-

tions and changes during multiple runs of the experiment. For example, a node is

sometimes able to communicate with a node separated by more than one grid point.

Expectedly, the experiments show that Stream reduces the reprogramming time sig-

nificantly. This large gain in reprogramming time is because Stream needs to transfer

only 12 pages whereas Deluge has to transfer 22 pages. The reduction in reprogram-

ming time becomes more pronounced for larger networks. Figure 3.7 shows the total

37

 0

 50

 100

 150

 200

N
um

be
r

of
 b

yt
es

(x
10

3)

Stream
Deluge

 2x2 3x3 4x4

Fig. 3.7. Comparison of number of bytes transmitted in the network
by Stream with that of Deluge for grid networks

 0

 100

 200

 300

 400

 500

R
ep

ro
gr

am
m

in
g

tim
e

(s
ec

on
ds

)

 2 nodes 3 nodes 4 nodes

Stream
Deluge

 5 nodes

Fig. 3.8. Comparison of reprogramming time of Stream with that of
Deluge for linear networks

number of bytes transmitted in the network during the reprogramming period. Both

data packets and control packets (request and advertisement packets for Deluge and

request, advertisement and ACK packets for Stream) are considered while calculating

the number of bytes. These results indicate that the energy required to reprogram

the network can be greatly reduced by using Stream instead of Deluge. Although the

percentage gain in reprogramming time and total number of bytes transmitted in the

38

 0

 20

 40

 60

 80

 100

N
um

be
r

of
 b

yt
es

(x
10

3)

 2 nodes 3 nodes 4 nodes 5 nodes

Stream
Deluge

Fig. 3.9. Comparison of number of bytes transmitted in the network
by Stream with that of Deluge for linear networks

network vary for different topologies, in our experiments we see that Deluge requires

63% to 98% more reprogramming time and transfers 75% to 132% more number of

bytes than Stream for these grid topologies.

Next we performed the experiments for linear topologies with 10 ft. distance

between adjacent nodes. Source node is situated at one end of the line. Figure 3.8

and Figure 3.9 provide the comparison of the reprogramming time and total number of

bytes transmitted in the network respectively between Stream and Deluge for different

sizes of the linear topologies. Again Stream is more efficient than Deluge with respect

to reprogramming time and energy used for reprogramming. In our experiments, we

noticed that compared to Stream, Deluge takes 58% to 90% more reprogramming

time and transfers 59% to 70% more number of bytes for different linear topologies.

If we compare the reprogramming time of 2X2 grid and linear network with 4 nodes,

we find that the latter takes longer time to reprogram itself because 2X2 network can

involve at most 2 hop communications (mostly 1 hop) while 4 linear nodes can have

at most 3 hop communications.

The above graphs show only the number of bytes that are transmitted during the

reprogramming period. In Deluge, each node keeps on broadcasting the advertisement

39

packets even after the reprogramming period is over. As a result, the nodes have to

spend energy in advertising even when reprogramming is not being done. Stream

does not have this problem because as soon as the reprogramming period is over, the

nodes reboot from the application image plus Stream-AS which does not broadcast

advertisements. As a result, we observe a monotonically increasing difference in the

number of bytes as the protocols are allowed to continue to run in the steady state.

3.3.3 Simulation Results

In order to demonstrate the scalability of Stream and to compare it with Deluge

for larger network sizes on the order of hundreds of nodes, we performed some simula-

tions using TOSSIM [127], a discrete event simulator for TinyOS. Although TOSSIM

does not model TinyOS hardware precisely, it provides more accurate modeling of

the physical layer than many other simulators, such as ns-2. As TOSSIM does not

model execution time accurately, the simulation results presented here only exhibit

the overall behavior and trend and proper scaling is required to give the absolute

values for the Mica2 platform. Since it takes tens of hours to complete simulations

for larger networks, in our simulations, we reduce the number of packets per page

from 48 to 24 packets. This reduction in page size is not of serious concern because

we are interested in the comparison of performances of Stream and Deluge and not

on the absolute values.

Effect of Network Size

We use several square grid networks (10 ft distance between successive nodes in

any row and column) of varying size (up to 16X16 grid) for our simulations. A

source node at one corner of the grid disseminates the user application to all other

nodes in the network. Like before, Stream and Deluge need to transfer 12 and 22

pages respectively to all nodes in the network. Figure 3.10 and Figure 3.11 compare

the reprogramming times and number of bytes transmitted in the network between

40

Stream and Deluge for different grid sizes. It shows that both Stream and Deluge

are scalable, at least up to 256 nodes simulated. In our experiments, we found that

compared to Stream, Deluge requires 41% to 101% more reprogramming time for

different network sizes. We noticed that the increase in the total number of bytes

transmitted in the network for Deluge compared to Stream was between 75% to 112%

for different network sizes.

 0

 2000

 4000

 6000

 8000

 10000

R
ep

ro
gr

am
m

in
g

tim
e(

se
co

nd
s) Stream

Deluge

 2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

Fig. 3.10. Simulation comparison of reprogramming time of Stream
with that of Deluge for nxn grid networks

 0

 500

 1000

 1500

 2000

N
um

be
r

of
 b

yt
es

(x
10

4)

 2x2 4x4 6x6 8x8 10x10 12x12 14x14 16x16

Stream
Deluge

Fig. 3.11. Simulation comparison of number of bytes transmitted by
Stream with that by Deluge for nxn grid networks

41

The goals of the mathematical analysis in Section 3.2 and simulation in this section

are not to find the exact values of the reprogramming time and energy. The exact

mathematical analysis is extremely difficult to do and as far as we know, there has

been no such attempt in any published literature. Also TOSSIM does not simulate

the node hardware and execution time exactly. So our objective in both mathematical

analysis and simulation is to compare Stream and Deluge in terms of reprogramming

time and energy and show the trend of these quantities as a function of the parameters

like network sizes, size of the user application, etc. For example, if we compare

the ratios of the reprogramming time for Deluge to that for Stream for 10X10 grid

networks, it is about 1.8 from mathematical analysis and about 1.9 from simulation

results. The results from simulation and analysis can be used only to observe the trend

and to compare the two protocols. It would be incorrect to try to obtain accurate

absolute values of any of the output parameters from either simulation results or

analytical results. The absolute results are given by the testbed experiments.

Effect of Network Densities

To compare the performances of Stream and Deluge for different node densities,

we vary the number of nodes in a 90 ft by 90 ft area. For each node density, the

nodes are still arranged in grid fashion with uniform spacing between the adjacent

nodes (just the spacing decreases with increasing density). Figure 3.12 shows that

Stream reprograms the network much faster than Deluge for all network densities and

Figure 3.13 shows that Stream uses lesser number of bytes than Deluge. The increase

in node density increases the reprogramming time due to two reasons. First, there

is an increase in the number of nodes in a given area resulting in more collisions of

the transmitted packets. Second, there are simply more nodes that need to download

the new application. These figures show that for higher node densities, the gap

between reprogramming times as well as number of bytes between Stream and Deluge

42

widens further. This can be explained by the fact that Stream reduces collisions more

effectively due to the reduced number of bytes transferred.

 0

 1000

 2000

 3000

 4000

 5000

 0.005 0.01 0.015 0.02 0.025 0.03

R
ep

ro
gr

am
m

in
g

tim
e(

se
co

nd
s)

Density(nodes/sq.ft)

Stream

Deluge

Fig. 3.12. Comparison of reprogramming time of Stream with that of
Deluge for different node densities

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.005 0.01 0.015 0.02 0.025 0.03

N
um

be
r

of
 b

yt
es

(x
10

3)

Density(nodes/sq.ft)

Stream
Deluge

Fig. 3.13. Comparison of number of bytes transmitted by Stream with
that by Deluge for different node densities

43

Source Node

568<t<730

730<t<900

900<t<1000

t>1000

Fig. 3.14. Code dissemination profile according to the convergence time of a node

Profile of Code Dissemination

Figure 3.14 shows the profile of code dissemination with Stream in a 9X9 grid

with 10 ft separation. The fill-pattern of the node indicates its time to download the

application code. The results indicate that the dissemination takes place uniformly

with hop distance from the source (which is at the top left corner). The results are

close to what we get for Deluge and matches with what the authors find in [92] for a

low density network.

3.4 Stream with Opportunistic Node Sleeping

3.4.1 Background and Rationale

Since sensor networks consist of energy-constrained nodes, one of the biggest goals

of any sensor network protocol is to minimize the energy consumed by the nodes.

As idle listening is a major source of energy consumption, many practical sensor

network applications put the nodes to sleep as much as possible when the nodes are

not doing any work, primarily sensing and communicating. Thus the sensor network

reprogramming protocol should also aim at putting the nodes to sleep mode whenever

they are not actually involved in reprogramming. When the new code is injected into

the network, it takes some time for the new code to reach the nodes which are far

44

from the point of injection in the network. Freshet [102] cleverly estimates how long

it takes for the new code to reach one of the neighbors of a given node and puts that

node to sleep for the estimated duration. It does this by having each node estimate

the number of hops it is away from the point of injection and then using an empirically

calculated formula relating the time to the number of hops. Secondly, Freshet also

puts the node to sleep for part of the time in the quiescent phase, i.e., when the

code upload is complete. Note that Stream possesses the second advantage because

immediately after the code upload is over, all nodes in the network reboot from image

1 (User application + Stream-AS) and the user application can put the node to sleep

as it deems necessary. If Stream is operated in the alternate mode (to be described

in this section), it can also achieve the other advantage of Freshet—putting nodes to

sleep until the newly injected code arrives at one of its neighbors.

In this new mode of operation called Opportunistic Sleeping, Stream does not

reboot a node from image 0 (Stream-RS) until the new code arrives at one of the

neighbors of the node. A sensor node running image 1 (User application + Stream-

AS) reboots from image 0 for reprogramming only if it hears an advertisement which

is different from its metadata. We will describe this mode in Section 3.4.2. It should

be noted that in Freshet, each node estimates how long it takes for the code to reach

one of its neighbors based on its distance (hop count) to the base node. Because

of the variability of the code propagation characteristics, such an estimate may not

always be accurate resulting either in decrease of energy savings (underestimate of

the time for the code to reach the node) or delay in reprogramming (overestimate).

However, Opportunistic Sleeping mode of Stream does not have this problem because

it does not put the node to sleep for some estimated interval, but it causes the node

to reboot from image 0 (Stream-RS) only when the new code actually arrives at one

of its neighbors.

Some sensor network applications may require all the nodes in the network to be

running the same version of the application at any given time. The opportunistic

45

sleep mode of Streams operation violates this requirement. As a result, this mode

should be used only if such restrictions are not present.

3.4.2 Protocol Description

Consider that initially nodes in the network have Stream-RS as image 0 and

Stream-AS plus user application as image 1. A new user application attached to

Stream-AS is injected at the base node. Then the base node running Stream-RS

(image 0) is placed within the communication range of its single hop neighboring

nodes. All nodes in the network are reprogrammed with the new code as follows:

1. Let α1 be the set of nodes running image 1 which are within the communication

range of the base node. Each of these nodes listens to the advertisement from

the base node. The advertisement as usual carries an image version number,

total number of pages in the code image and number of complete pages. If the

advertisement is different than the code image version it currently has, each

node in α1 reboots from image 0. Otherwise, it does not reboot from image 0.

Since the base node has newly injected image 1, all nodes in α1 reboot from

image 0. Note that unlike in the primary mode of Stream, no reboot message

needs to be broadcast through the network.

2. After nodes in α1 reboot from image 0, they start getting pages of the new code

image from the base node. The three-way handshake to get the code image

pages remains unchanged from the primary mode of Stream.

3. The nodes in α1 advertise their metadata once they have a completed page of

the code image. In line with existing multi-hop reprogramming protocols, they

do not wait for the entire code image to be downloaded before advertising their

metadata. This is identical to the primary mode of Stream.

4. Let α2 be the set of nodes which are within communication range of at least

one node in α1. When nodes in α2 hear the new advertisement from nodes in

46

α1, they also reboot from image 0. In this way, the nodes reboot from image 0

for the purpose of reprogramming only when the new code image has arrived

at one of its neighbors.

5. Using the same method as explained in 3.1.2, all nodes in the network get

reprogrammed and reboot from image 1 (the new code image that was just

downloaded).

A node running image 1 (Stream-AS plus user application) has to check the ad-

vertisement received from another node against its own metadata, consisting of in-

formation about the images it currently has, such as version number. It uses this

information to decide if it has to reboot from Stream-RS for reprogramming. Read-

ing data from the external flash where the metadata is stored is expensive because

it increases the size of image 1 (Stream-AS plus user application) and also incurs a

higher current draw. The exact amount of increase in image size is application de-

pendent, but for the user applications which do not use external flash, this increase

is 2 pages. Since the goal of Stream is to reduce the size of image 1 that gets trans-

ferred over the wireless medium during reprogramming, this increase in size reduces

the advantage of Stream. To avoid this, Stream stores the metadata information in

internal EEPROM memory. Reading from internal EEPROM increases the size of

image 1 by few bytes (about 50 bytes in the applications that we considered). So,

this mode of operation does not sacrifice the gains of original Stream.

In opportunistic sleeping mode, no reboot message is explicitly sent. Instead,

a node x running Stream-AS decides whether to reboot from Stream-RS based on

the advertisement message it receives from say node y. If the advertisement from

the node y has y.version 6= x.version, then the node x reboots from Stream-RS. If

y.version < x.version, then the node x reboots with the intention of bringing the

node y up-to-date. However the neighbors of node x (z1, z2, z3 in Figure 3.15) will not

reboot from Stream-RS if they are not neighbors of node y because they only hear the

advertisement from node x and x.version = z1.version = z2.version = z3.version.

47

On the other hand, if y.version > x.version, node x will reboot from Stream-RS

and once it gets the first page of the new image, it will start advertising the new

image. Then the neighbors of node x (z1, z2, z3 in Figure 3.15) will also reboot from

Stream-RS because they find that node x has new version of the image. As a result,

those nodes also start getting reprogrammed with the new image.

y x

z1

z2

z3

Cy Cx

Fig. 3.15. Illustration of which nodes reboot for reprogramming. Cx

and Cy are the communication ranges of nodes x and y respectively.

3.4.3 Experiments and Results

We performed testbed experiments and TOSSIM simulations with opportunistic

sleeping mode of Stream to show how long a node can sleep before rebooting from

image 0 during the initial stage of reprogramming before the newly injected code

arrives at one of its neighbors. Note that the delay between the injection of the new

code image and the instant when this code arrives at one of its neighbors of a given

node depends on how far (hop count) the node is from the base node. As this hop

distance increases, the delay also increases. The advantage of this mode of Stream

is pronounced only for larger-hop networks. To do this with the limited number of

sensor nodes that we have, we ran the experiments on various linear topologies having

up to 11 nodes. As shown in Figure 3.16 an originator node (node 0) situated at one

end of the line disseminates code to all the nodes in the network. Let the nodes be

arranged as shown in Figure 3.16 where the node next to node 0 is node 1, the node

48

next to node 1 is node 2 and so on. To achieve maximum possible hops between the

base node and the farthest node from the base node, we restrict the communication

of a node i with node (i−1) and node (i+1) only. Figure 3.17 shows the delay (time

interval between the instant when new code is injected to the base node to the instant

when the node reboots from image 0) for each node in the network as a function of

its hop count from the base node. As expected, the delay increases with the hop

count. Note that significant amount of energy can be saved if the nodes sleep for

these intervals since the current draw in the sleep mode is three orders of magnitude

less than in the idle mode for the mote class of sensor nodes (µA versus mA).

As explained above, the advantage of the new mode of Stream becomes more

pronounced for larger-hop networks. So, we conducted TOSSIM simulations for linear

networks of sizes up to 150 nodes. As with testbed experiments, we restrict the

communication of a node i with node (i−1) and node (i+1) only to achieve maximum

possible number of hops in the network. Figure 3.18 shows the simulation results.

The amount of energy saved by the opportunistic sleeping mode of Stream is quite

significant for larger networks. Note that TOSSIM simulations do not provide the

exact numbers and should be used only to observe the trend.

0 1 2 N-1 N

Fig. 3.16. Linear topology with nodes being reprogrammed using
alternate mode of Stream with node 0 as the base node (N=1,2,...,11)

It should be noted that in real sensor network applications, the exact amount

of time a node sleeps depends on the sleep cycle schedule of the user application

running on the sensor node. Stream cannot unilaterally decide how long a node can

sleep. It can put the node to sleep only during those time intervals when the user

application running on the node does not require it to be awake. Without this new

mode of Stream, nodes reboot from Stream-RS and remain awake even during the

delay for the code to reach its vicinity. But with the new mode of Stream, the nodes

49

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

D
el

ay
(s

ec
on

ds
)

Hop count

Fig. 3.17. Testbed result: Delay before a node reboots from Stream-
RS for reprogramming as a function of its hop count from the base
node

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140

D
el

ay
(s

ec
on

ds
)

Hop count

Fig. 3.18. Simulation result: Delay before a node reboots from
Stream-RS for reprogramming as a function of its hop count from
the base node

can sleep during this delay interval if the user application does not require it to be

awake. In other words, depending upon the user applications sleep schedule, the

nodes may not sleep for the entire delay interval shown in Figure 3.17 and Figure

3.18. Since most of the sensor applications sleep for a longer interval before waking

50

up for a short interval to do its job (sensing, sending data etc), the sleep time will

likely be close to the delay values shown in Figure 3.17 and Figure 3.18. The energy

savings per reprogramming due to this delay is shown in Figure 3.19 for different duty

cycles (ratio of sleep time to one cycle consisting of sleep time and awake time) of

the sensor node. Energy savings is calculated using the formula: Savings = Voltage

× (Current for idle radio + Current for idle CPU) × Sleeping time (as calculated

from the TOSSIM experiments) × (1-duty cycle). For mica2 platform, current for

idle radio=7.03 mA, current for idle CPU=3.2 mA. We neglect the current draw in

the sleep mode, which is less than 1 µA.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 40 60 80 100 120 140

E
ne

rg
y(

Jo
ul

es
)

Hop count

Duty cycle=5%
Duty cycle=10%
Duty cycle=15%
Duty cycle=20%

Fig. 3.19. Energy saving achieved by Stream over Deluge due to nodes
sleeping till the code image arrives at its vicinity

3.4.4 Mathematical Analysis

Next, we analyze the delay between the injection of the code in the base node

and the instant when it arrives at one of the neighbors of a node h hops away from

the base node. For a node one hop away from the originator of the new code, this

time interval is the time for a single round of a three way handshake. Assuming

perfect pipelining of the single page of the code, the time interval Tdelay,h for a node

51

h hops away from the originator of the new code is Tdelay,h = h.Tround where Tround is

the time for a single round of the three way handshake. Tround consists of following

components:

Tround = Tadv + Treq + Tdata

where Tadv is the time used by the nodes in advertising their metadata before the

node requiring the new code decides to send the request. Treq is the time used for

requesting the data and Tdata is the time required to send one page of data.

To calculate Tadv, Treq and Tdata, we need to find the expected number of transmis-

sions required for a successful transmission of a packet. Let Ps be the probability of a

successful transmission of a packet over a single hop. Assuming that the retransmis-

sions of a packet are independent, the probability that the number of transmissions

of a packet, Ntx, equals k is given by

P (Ntx = k) = (1 − PS)k−1PS

The expected number of transmissions for a given packet is

E[Ntx] =

∞
∑

k=1

k(1 − PS)k−1PS =
1

PS

Tadv can be approximated as follows:

Tadv = E[Ntx](tl + GX2 + Tx + Tproc)

where tl is the approximate time interval between two advertisements. Note that

Stream uses Deluges advertisement policy. It divides time into intervals [tl, th] and

each node decides whether to advertise or not in a given interval based on the number

of similar advertisements it has heard in the previous interval. We take the lower value

tl because once the originator gets the new version of the code, it sets its advertisement

period to tl and the nodes hearing the advertisement from the originator also set

their advertisement periods to tl. We also assume that there were not enough similar

advertisements in the previous interval to prevent the node from advertising in the

current interval. GX2 is the MAC delay for a single packet, where X is the number

52

of contending nodes. The MAC delay is difficult to compute analytically and to

the best of our knowledge, no closed form solution has yet been proposed. The

authors in [129] show that for the region of interest (low contention) the delay is

approximately proportional to the square of the number of contending nodes. Here

G is the proportionality constant and X is the number of contending nodes. Tx is the

transmission time for a single packet. Tproc is the processing time required by a node

after receiving the packet. Treq can be calculated as follows:

Treq = E[Ntx]E[Nreqs]
(

E[tr] + GX2 + Tx + Tproc

)

where N is the number of packets in a page.

Figure 3.20 shows the delay as a function of hop count for a grid network with

δ=10 ft separation between adjacent nodes. Probability of successful transmission of a

packet Ps is taken as 0.9. For Stream, tl=2 seconds, tr=0.5 seconds and N=48 packets.

From [92], we take E[Nreqs]=5.4. For mica2 node, transmission rate is 19.2 Kbps and

hence Tx=0.015 seconds. We take Tproc=0.001 seconds. To calculate MAC delay GX2,

we take G=1 [105]. For a given node, the number of contending nodes varies with

the location of the node in the network. For example, for the grid network, the nodes

along the diagonal of the grid have higher number of contending nodes while those at

the periphery have less contending nodes. We assume that the network is large and

hence the average number of contending nodes is 9/4δ2 (eliminating boundary effects)

and the number of contending nodes is 9/4δ2×πr2 where r is the transmission range.

The interference range of a node may be different from its transmission range. The

difference can be easily accommodated in our analysis by replacing the communication

range with the given interference range. Figure 3.20 shows that the time delay before

the node reboots from Stream-RS for reprogramming is quite large for the nodes

distant from the originator of the code. Under the new mode of operation of Stream,

the nodes can sleep for this duration, and thus Stream can conserve energy for network

reprogramming which increases with the network size. As mentioned before, results

from TOSSIM simulations and mathematical analysis are not exact and should be

used just to observe the trends. The trends of the delay values with increasing hop

53

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

D
el

ay
(s

ec
on

ds
)

Hop count

Fig. 3.20. Analytical result: Delay before a node reboots from Stream-
RS for reprogramming as a function of its hop count from the base
node

count obtained from analysis (Figure 3.20), real testbed experiments (Figure 3.17)

and simulations (Figure 3.18) are comparable.

3.5 Effect of User Application’s Sleep-Awake Scheme on Reprogramming

We have to be aware that Stream does not execute in isolation at the sensor

nodes. The nodes run some user application which generally causes the node to

operate with a low duty cycle, i.e., the node sleeps for most of the time and wakes up

for short time interval to perform its tasks (like sensing, sending data to base station,

etc.). This helps the node to reduce the energy consumption due to idle listening

and thus to lengthen the lifetime of the node. Generally, for the best performance

(small reprogramming time), all nodes in the network should be awake during the

reprogramming period. So, for the quick reprogramming of the network, it is better if

the network owner puts all nodes to the awake state during reprogramming. If that is

not the case, all the existing reprogramming protocols (Deluge, Freshet etc) including

Stream (both the original and the opportunistic sleeping modes) suffer performance

degradation, i.e., they take longer time to be reprogrammed.

54

Beside performance degradation, the reprogramming protocol may not be able to

reprogram all the nodes in the network due to the application induced sleeping of

the nodes. For example, in Deluge, when all nodes complete downloading the new

image, the user has to manually send a reboot command to reboot all the nodes in the

network from the freshly injected image. If at the time when the reboot command is

issued by the user, some nodes are not awake, they cannot reboot from the new image.

The same problem occurs in Freshet also. In Stream (original mode), this problem is

slightly different. Although the nodes automatically reboot from the newly injected

image (after it is completely downloaded), the user has to give the reboot command to

reboot all the nodes in the network from Stream-RS while starting the reprogramming

process itself. Therefore all nodes need to be awake at that time. However, in the

opportunistic sleeping mode of Stream, this problem does not exist. The user does

not have to give the reboot command at all. But another problem can occur in the

alternate mode of Stream. Let us assume that n1 and n2 are respectively the first hop

and second hop neighbors of the base node. Let the base node has new image stored

in its external Flash and it is running Stream-RS. The node n1, running Stream-AS

plus user application, hears the advertisement from the base node and since the base

node’s advertisement says that it has a new image, n1 reboots from Stream-RS and

starts downloading the pages of the new image from the base node. Let us assume

that n2 never wakes up during the entire period when n1 is downloading the new

image and sending out its advertisements. Then n1 reboots from the new image since

there was no request to it for the new image. As a result, n2 is not reprogrammed. To

overcome this possible problem, each node running Stream-AS plus user application

periodically sends the advertisement so that even if a node like n2 wakes up after

the node n1 has downloaded the new image completely and rebooted from the new

image, n2 will eventually hear the advertisement from n1.

55

3.6 Conclusion

In this chapter, we presented a sensor network reprogramming protocol called

Stream that significantly reduces the number of bytes to be transmitted over the wire-

less medium for reprogramming. It addresses a fundamental problem in all existing

network reprogramming protocols, whereby the application image together with the

reprogramming protocol image is transferred. Stream pre-installs the reprogramming

protocol image in a node and transfers the application image with a small addition.

Consequently, it reduces the reprogramming time, number of bytes transferred, and

the energy expended. Stream is implemented in TinyOS for the Mica family of sen-

sor nodes. Experiments are conducted on a testbed of Mica2 motes to demonstrate

the efficiency of Stream over Deluge. Our experiments show that Deluge requires up

to 98% more reprogramming time and transfers up to 132% more number of bytes

compared to Stream. Simulation experiments are conducted using TOSSIM to show

the scalability of Stream and increasing advantages over Deluge with larger network

sizes. We also presented an opportunistic sleeping mode of operation for Stream that

lets nodes in the network sleep till the new code image reaches the neighborhood of

the node. This extension is analyzed, simulated, and empirically demonstrated to

achieve energy savings, which become significant for large networks.

56

4. SINGLE VERSUS MULIT-HOP REPROGRAMMING

In recent years, the focus of the sensor network reprogramming has shifted from

single hop reprogramming (only nodes within the transmission range of the base node

(BN) are reprogrammed) to multi-hop reprogramming (all nodes in the multi-hop

network are reprogrammed) because of various reasons. First and perhaps the biggest

advantage is that from user’s point of view, it is tedious to perform many rounds of

single hop reprogramming to completely reprogram the multi-hop network. Second,

multi-hop reprogramming protocols like Deluge [92], Freshet [102], and Stream [88]

spatially pipeline the code transfer (also called spatial multiplexing) and thus reduce

the time to reprogram the network. That is, a node does not need to completely

download the code image before starting to send the code to its neighbors. These

protocols divide the entire code image into pages consisting of fixed number of packets.

When a node completes downloading a single page, it can send that page to other

nodes in the network.

But in some deployment conditions, like in combined Sewage Overflow (CSO) [81]

project implemented in South Bend, Indiana, multi-hop reprogramming can be costly

in terms of reprogramming time and energy. In CSO, a multi-hop sensor network,

called CSOnet, with nodes mounted on traffic lights and lamp posts, is used to collect

alerts from monitoring sensors planted in the manholes of the municipal sewage sys-

tem. The network then forwards these alerts to gateways at major traffic intersections

which make distributed control decisions to channel the flow to temporary reservoirs

so that dumping the waste water into rivers or lakes can be avoided.

At first glance, it may appear pointless to sacrifice the relative ease of the multi-

hop reprogramming in favor of node by node reprogramming. The conditions in which

a sensor network is deployed may change over time. For example, the link reliabilities

between the nodes in the network may change because of varying environmental fac-

57

tors. When link reliabilities are low, sending entire application image over multiple

links imposes a heavy burden in terms of retransmissions. This increases the repro-

gramming cost — both reprogramming energy and time — and congestion in the

wireless links which may be better utilized in transferring critical data. In fact, for

many current reprogramming protocols, except Stream, what needs to be transferred

over the network is the entire application image plus the reprogramming protocol

image. This exacerbates the problem by increasing the number of packets that needs

to be transmitted reliably through the network.

This specific problem reared its head in the CSOnet deployment where it was

observed that the batteries were being drained much faster than the theoretical cal-

culations had predicted. Our investigation revealed that regular code updates being

sent using the multi-hop method were the culprit for parts of the network, particu-

larly the parts having linear topology and unreliable links. We decided to explore the

possibility of judiciously using single hop reprogramming. In contrast to multi-hop

reprogramming, in the single-hop method, the user visits each node in the deployment

field and remotely reprograms it being physically as close as possible to the node. The

severity of the above problem can thus be greatly reduced because the user goes as

close as possible to the node to be reprogrammed to maximize link reliability. This

reduces the number of retransmissions and hence reprogramming time and energy

will be conserved. Generally hardwired reprogramming (by directly connecting the

sensor node to the computer via say serial port) cannot be a substitute for single hop

reprogramming to tackle the high cost of multi-hop reprogramming. For example,

in the CSOnet deployment, since the sensor nodes are situated on top of the traffic

posts, it is tedious and difficult to bring down the sensor nodes from the traffic posts

and manually upload the code to these sensor nodes. The company responsible for

the implementation of the project — EmNet LLC [81] in Granger, Indiana — reports

high cost and logistical difficulties in reprogramming the sensors manually. This mode

of operation cost EmNet $200 to reprogram each node including 3 persons involved

and the rental cost of a bucket truck. Moving to a single hop reprogramming brings

58

the cost down by a factor of 10 and therefore, economically, the single hop wireless

reprogramming appears a good compromise.

In this chapter, we present a protocol called DStream having both single and multi-

hop reprogramming capabilities. We use the terms DStream-SHM and DStream-

MHM to represent the single and multi-hop reprogramming modes of Stream. Using

mathematical analysis, testbed experiments and simulations, we draw valuable infer-

ences about the two reprogramming approaches. The common insight that all three

gives us is that single hop may be more energy efficient and faster than multi-hop

in some scenarios. For a given topology, the cutoff depends on the link reliability

of the links in the network. High link reliability favors multi-hop reprogramming.

However the cross-over point depends on which metric is of interest to the network

owner — if it is reprogramming time, the cross-over happens at a lower link reliability

value than for energy. Second, for networks that are linear (or close to linear), single

hop reprogramming tends to be favored since a single broadcast of the code image

can satisfy only a few nodes. The actual choice between the two modes will also be

determined by the human cost of reprogramming a node at a time as in single hop

reprogramming. For reference, we quantify this value for the CSOnet deployment.

To summarize, our contributions are:

1. Motivate the community to consider situations where single hop method may

be more attractive than the currently held view of multi-hop reprogramming.

2. Design a dual reprogramming protocol, DStream, that does not significantly in-

crease the code size or the memory footprint over the previous Stream protocol.

3. Through analytical, experimental and simulation results, provide a set of guide-

lines that help the network owner to choose single or multi-hop reprogramming

approach based on current network conditions.

59

4.1 Protocol Design

4.1.1 Background and Rationale

It is desirable to have the sensor nodes equipped with the facility of both single

and multi-hop reprogramming so that a choice can be made at runtime based on

the current network conditions (topology, link reliabilities, density etc). The obvious

approach is to have two separate reprogramming protocols (a single hop protocol like

XNP [100] and a multi-hop protocol like Stream) stored in each nodes permanent

storage (external flash) so that it can run the appropriate protocol when required

by loading that protocol from external flash to the program memory. This is not an

attractive solution because requiring a node to store two reprogramming protocols

decreases the storage (e.g. external flash for Mica2 is 512KB) for the application

running on the nodes. Our proposed approach is to have a single protocol with both

single and multi-hop reprogramming capabilities. Existing single-hop reprogramming

protocols, such as XNP, were not designed with the ability of propagating the code

updates through the network in a multi-hop manner. Therefore they cannot serve

as a starting point for our protocol. Multi-hop reprogramming protocols like Deluge,

Stream and Freshet are more suited for this purpose. Since Stream is the most

energy efficient and fastest among these protocols, we chose Stream and modified it

to DStream, having both single and multi-hop reprogramming capabilities.

For this chapter, the meaning of single hop reprogramming is that only a single

node, specified by the user, within single hop of the BN is reprogrammed. Contrary to

what the name suggests, single hop reprogramming does not mean that all the nodes

within the single hop of the BN are reprogrammed by this approach. This is because

the main rationale behind single hop reprogramming is to avoid reprogramming nodes

which have low link reliability to the BN but may technically be considered within

a single hop of the BN. If we attempt to reprogram a node within single hop of the

BN but with low link reliability, this may take considerable time and energy to be

reprogrammed, defeating the purpose of single hop reprogramming.

60

4.1.2 Design Approach of DStream

Next we describe DStream that can provide both single and multi-hop reprogram-

ming features. Let initially all nodes have Stream-RS as image 0 and the application

with Stream-AS as image 1. Each node is executing the image 1 code. Consider that

a new user application has to be injected into the network.

1. If multi-hop reprogramming is to be used, in response to the reboot command

from the user, all nodes in the network reboot from image 0. This is accom-

plished as follows:

(a) From the computer, the user sends the command to reboot from image 0

to the BN.

(b) The BN executing image 1 broadcasts the reboot command to its one hop

neighbors and itself reboots from image 0.

(c) When a node running the user application receives the reboot command,

it rebroadcasts the reboot command and reboots from image 0.

2. If single hop reprogramming is to be used, in response to the reboot command

from the user, a single node specified by the user reboots from image 0. This is

accomplished as follows:

(a) From the host computer, the user sends the command to reboot a single

node, say node α, from image 0 to the BN.

(b) The BN running image 1 broadcasts the reboot command along with the

user specified node id α to its one hop neighbors. The BN then reboots

from image 0.

(c) Each node that receives the reboot command, determines if the reboot

command is targeted to it. If yes, it reboots from image 0. Otherwise, it

ignores the reboot command. So, only the node α reboots from image 0

(Stream-RS) and is subsequently reprogrammed.

61

3. Stream-RS starts to reprogram the node(s) that has rebooted from image 0.

Thus, Stream-RS which forms the bulk of the reprogramming protocol does not

need any modification to support the single-hop mode of operation.

4. Stream-RS uses the three way handshake method for reprogramming [92] where

each node broadcasts the advertisement about the code pages that it has. When

a node hears the advertisement of newer data than it currently has, it sends a

request to the node advertising newer data. Then the advertising node broad-

casts the requested data. Each node maintains a set S containing the node ids

of the nodes from which it has received the requests.

5. Once the node downloads the new user application completely, it performs a

single-hop broadcast of an ACK indicating it has completed downloading. In

single-hop reprogramming, only one node sends the ACK while in multi-hop all

nodes in the network are ultimately reprogrammed and send the ACK message.

When a node n1 receives the ACK from node n2, n1 removes the id of n2 from

the set S. Note that in multi-hop reprogramming case, set S is maintained

by all the nodes that are participating in sending code to any of its neighbors,

while only the BN has a non-empty set S in single hop reprogramming and it

only contains the node id α.

6. When the set S is empty and all the images are complete (by complete we mean

that all pages of all images have been downloaded), the node reboots from image

1. So, in multi-hop case, at completion, the entire network is reprogrammed

and all nodes reboot from image 1. In the single hop case, the set S is always

empty for the node α that is reprogrammed and hence immediately after it

completes downloading the image, the node α sends ACK and reboots from

image 1. When the BN receives the ACK from the node α, it removes the id of

node α from its set S and reboots from image 1.

From the above discussion, it is clear that DStream can provide both multi-hop

and single hop reprogramming features. If the user specifies the id of the node to

62

be reprogrammed in the reboot command, DStream reprograms only the specified

node (single hop reprogramming). Besides this, the user can also specify an option

(switch SH) for automatic switching between single and multi-hop approaches. When

this option is specified, DStream starts with multi-hop reprogramming. When a node

n1 receives a request from a node n2 for a page of the new image, n1 keeps track of

how many packets are requested for the same page in the next request by n2. This

gives n1 the estimate of the link reliability between n1 and n2. If the estimated link

reliability is less than some threshold (user specified), a message is sent back to the

BN informing it about the current link reliability between n1 and n2. The BN then

forwards that message to the computer. This suggests the user to switch to single hop

reprogramming for n2. In this way, nodes with low link qualities are reprogrammed

using single hop method and other nodes are reprogrammed using multi-hop method.

4.2 Mathematical Analysis

Here we present an approximate analysis of the reprogramming time and energy for

DStream-SHM and DStream-MHM for linear and grid networks. For linear networks,

we assume that the spacing between consecutive nodes is equal to the transmission

range and for grid networks, it is
√

2 times the grid spacing. Let the application consist

of Np pages with Apkt packets per page. Let LRS and LRM be the link reliability of

single hop reprogramming (for the link between the BN and the single node being

reprogrammed) and multi-hop reprogramming (we assume identical link reliability for

all links) respectively. Let Ps be the probability of successful transmission of a packet

over a single link, which is equal to LRS in single hop mode and LRM in multi-hop

mode.

4.2.1 Reprogramming Time

The reprogramming model and the assumptions that we use to compare the repro-

gramming times of single and multi hop modes of reprogramming are same as those in

63

the previous chapter (section 3.2). From equation 3.7, the multi hop reprogramming

time is

Tconv(M) = Tr.E[Nr,hmax
] (4.1)

where

E[Nr,h] = min {3.(NP − 1) + h, NP .h} .

∞
∑

i=1



1 −
[

i−1
∑

j=1

PS(1 − PS)j−1

]Npkt





For multi-hop reprogramming, Ps = LRM . For single-hop reprogramming, Ps = LRS ,

and the pages can not be pipelined. Therefore, the reprogramming time for the

single-hop mode is

Tconv(S) = N.Tr.NP

∞
∑

i=1



1 −
[

i−1
∑

j=1

LRS(1 − LRS)j−1

]Apkt



 (4.2)

The relative reprogramming time of single-hop to that of multi-hop is given by

Tconv(S/M) =
Tconv(S)

Tconv(M)

=

N.NP

∞
∑

i=1



1 −
[

i−1
∑

j=1

LRS(1 − LRS)j−1

]Apkt





(3.(NP − 1) + hmax)

∞
∑

i=1



1 −
[

i−1
∑

j=1

LRM (1 − LRM)j−1

]Apkt





(4.3)

Using Equation 4.3, Figure 4.1 and Figure 4.2 show the relative reprogramming time

(single hop/ multi-hop) respectively for linear and grid topologies as a function LRM

for different network sizes with LRS=0.95, Np=12 pages, Apkt=48 packets, hmax=N −
1, for the line topology, where N is the number of nodes, and hmax = m − 1 for the

nxm grid (ignoring the edge effects).

For the linear topology, as the network size increases the multi-hop mode repro-

gramming is faster due to the pipelining effect of multiple pages. However for the

5 node network, when the multi-hop link reliability is less than 0.8, single hop re-

programming is preferred from the delay point of view. For the grid topology, the

reprogramming time of the multi-hop mode is always better than that of the single

64

Fig. 4.1. Relative reprogramming time (single hop : multi-hop) as a
function of link reliability for linear topologies

Fig. 4.2. Relative reprogramming time (single hop : multi-hop) as a
function of link reliability for grid topologies

hop mode due to two factors — the spatial multiplexing and multiple nodes receiv-

ing the same single broadcast of the code packet. The spatial multiplexing becomes

65

more efficient with increasing network size, which explains the advantage of multi-hop

reprogramming as network size increases.

4.2.2 Energy Cost

From equation 3.10 in the previous chapter, the total energy overhead of multi-hop

reprogramming all the nodes in a network with maximum number of hops = hmax is

EM =
h=hmax
∑

h=1

Eh =
h=hmax
∑

h=1

[

NP .Npkt.C.αh

L
|Sh|
RM

]

(4.4)

For a linear topology of N nodes with Rtx = d, where d the spacing between nodes,

and Rtx is the transmission range, αh = 1, |Sh| = 1, and hmax = (N − 1) . For an

n × m grid topology, ignoring edge effects, with r =
√

2d, αh = ⌈n
2
⌉, |Sh| = 3, and

hmax = (m − 1) (ignoring the edge effects). Let Npkt = Apkt + 1 + E[Nr], where the

second term is to account for the advertisement packet and the last term represents

the expected number of request packets to successfully transmit the whole page. For

single-hop reprogramming (Ps = LRS), the total energy to reprogram all the nodes is

given by

ES =
NP .Npkt.C.N

LRS
(4.5)

The relative energy consumption of single-hop to multi-hop reprogramming is given

by,

ES/M =
ES

EM

=
NP . (Apkt + 1 + ES[Nr]) .C.N/LRS

h=hmax
∑

h=1

[

NP . (Apkt + 1 + EM [Nr]) .C.αh

L
|Sh|
RM

]

=

N.L
|Sh|
RM



Apkt + 1 +

∞
∑

i=1



1 −
[

i−1
∑

j=1

LRS(1 − LRS)j−1)

]Apkt









LRS

h=hmax
∑

h=1

(αh)



Apkt + 1 +
∞

∑

i=1



1 −
[

i−1
∑

j=1

L
|Sh|
RM

(

1 − L
|Sh|
RM

)j−1
]Apkt









(4.6)

66

Fig. 4.3. Relative energy overhead (single hop : multi-hop) as a func-
tion of link reliability for linear topologies

Fig. 4.4. Relative energy overhead (single hop : multi-hop) as a func-
tion of link reliability for grid topologies

Using equation 4.6, we plot relative energy overhead (single hop/ multi-hop) versus

LRM for linear and grid topologies for different network sizes. Figure 4.3 shows that

the single hop mode is more efficient than the multi-hop mode for the linear topology

67

with link reliability less than 0.8. Moreover, the difference increases, in favor of the

single hop mode, as the network size increases. In linear topologies, only one node

can be satisfied by the transmission by a node and this negatively impacts the energy

consumption of the multi-hop mode. This is due to the low link reliabilities with

|Sh| = 1 for the line topology. Figure 4.4 shows that for a grid topology, almost

irrespective of its size, the single hop mode is better when the link reliability is less

than or equal to 0.8 and the multi-hop mode is better otherwise. Below multi-hop

link reliability of 0.8, a redundant set of size |Sh| = 3 is not enough to compensate

for the lower reliability, however, it becomes enough for multi-hop link reliabilities of

more than 0.8. For a deployment with higher transmission ranges and hence higher

values of |Sh|, the balance will shift in favor of multi-hop reprogramming.

4.3 Experiments and Results

We implement DStream using the nesC programming language in TinyOS. In this

section, we compare the performances of DStream-SHM and DStream-MHM using

both testbed experiments and simulations. The metrics that we use to compare single

and multi-hop reprogramming approaches are reprogramming time and energy.

4.3.1 Calculation of Reprogramming Time and Energy

For multi-hop reprogramming, time to reprogram the network is the time interval

between the instant t0 when the BN sends the first advertisement packet to the instant

t1 when the last node (the one which takes the longest time to download the new

application) completes downloading the new application. Since clocks maintained by

the nodes in the network are not synchronized, we cannot take the difference between

t1 and t0. Although a synchronization protocol can be used to solve this issue, we

do not use it in our experiments because we do not want to add to the load in the

network (due to synchronization messages) or the node (due to the synchronization

protocol). Instead we follow the following approach. When the BN sends the first

68

advertisement packet, it reads its local clock and stores the current local time ti0 in

its external flash. Then it broadcasts a special packet called the sync packet after

putting its node id i in the src field of the packet. It stores the time ti1 when the sync

packet is sent (i.e. when sendDone() event is signaled). Each node i in the network

stores the local time ti0 when it receives the first sync packet. It also stores the id of

the node from which it received the first sync packet. Let us define a parent of a node

i to be the node j from which the node i receives the first sync packet. Then the node

i broadcasts the sync packet (with its id inserted into the src field) after random time

uniformly distributed between some interval (0, T). This is to avoid the collision of

the sync messages broadcast by different nodes within the communication range of

each other. Finally the node i stores the time ti2 when it completes downloading all

the pages of the new image. Note that a node i may receive many sync packets but

it discards all of them except the first one. Also, a node sends a sync packet only

once. So, this approach floods the sync packet across the network in a controlled

manner. Let Ri be the reprogramming time for a node i — the time interval between

the instant when the BN sends the first advertisement packet and the instant when

the node i downloads the new code image completely. Let the parent of the node i be

i1 whose parent is i2 and so on, and in is the BN. Reprogramming time Ri for node

i is

Ri = (ti2 − ti0) +
n

∑

k=1

(tik1 − tik0)

Reprogramming time for the network is max(Ri) over all nodes i in the network.

For DStream-SHM, we calculate the time ts to reprogram a single node using the

same method as explained above. Time to reprogram the network using single hop

method is R = N ∗ts where N is the number of nodes in the network. Of course, we do

not include the time required by the user to move from one node to another since such

travel times differs from deployment to deployment. To compare the reprogramming

times for single and multi-hop approaches for a given sensor network deployment, one

should add these travel times to the single hop reprogramming times mentioned in

69

this thesis. Alternately, the reprogramming of the nodes can be done concurrently

through multiple base stations at a higher resource cost.

Among the various factors that contribute to the energy used in the process of

reprogramming, two important ones are the number of radio transmissions in the

network and the number of flash-writes (the downloaded application is written to

the external flash as image 1). Since the radio transmissions are the major sources

of energy consumption and the number of writes to the external Flash is the same

in the two cases (DStream-SHM and DStream-MHM), we take the total number of

packets transmitted by all nodes in the network as the measure of energy used in

reprogramming. The listening energy depends on two primary factors — the first is

the time to complete reprogramming (which is already captured in our first metric)

and the second is application policy about setting the node off to sleep (which is not

related to the reprogramming protocol itself). The receiving energy and the listening

energy are therefore neglected in the evaluation.

4.3.2 Testbed Description

We perform the experiments using Mica2 nodes having a 7.37 MHz, 8 bit mi-

crocontroller; 128KB of program memory; 4KB of RAM; 512KB external flash and

916 MHz radio transceiver. Testbed experiments are performed for three different

network topologies: grid, linear and actual CSOnet networks (Figure 4.5). For each

network topology, we define neighbors of a node n1 as those nodes which can receive

the packets sent by n1. In our testbed experiments, if a node n1 receives a packet

from a node n2 which is not its neighbor, the packet is dropped. Otherwise if n1

and n2 are neighbors, n1 generates a random number u uniformly distributed in the

interval [0,1] and if u < LRM , then n1 accepts the packet, otherwise the packet is

dropped. This emulates different link reliabilities, since it is difficult to generate ex-

perimental conditions with exact link reliabilities. For the grid network used in our

experiments, the transmission range Rtx of a node satisfies
√

2d < Rtx < 2d, where d

70

EmNet1

EmNet2

95% 95% 60% 78% 90% 68% 99%

95% 68% 83% 95%
97%

95%

95% 95%

95%

85%

95%

95% 59%89%

Fig. 4.5. Two CSOnet networks: EmNet1 and EmNet2

is the separation between the two adjacent nodes in any row or column of the grid.

For the linear networks, d < Rtx < 2d. For multi-hop reprogramming of grid network,

a node situated at one corner of the grid acts as the BN while the node at one end

of the line is the BN for linear networks. For DStream-SHM, the link reliability of

the single wireless link from the user to the one node being reprogrammed is kept

constant (0.95) in the experiments. In practice, this is a high value since the user

can get close to the node with the BN and there is no other transmission going on.

In DStream-MHM, the link reliabilities LRM of all links are identical and we vary it

from 0.6 to 1.0 (perfect link). The link reliabilities shown in Figure 4.5 are derived

from data collected over a summer period by doing a ping test with two radios with

no other traffic in the CSOnet network. The values of link reliabilities among the

nodes vary over different seasons of the year and even within the same season, the

current environmental conditions may change these values from one day to another.

4.3.3 Testbed Experiment Results

Figure 4.6-a and Figure 4.6-b compare the average reprogramming time and en-

ergy for 2X2, 3X3 and 4X4 grid networks using DStream-SHM and DStream-MHM

with different values of link reliabilities. These figures show that multi-hop repro-

gramming takes more time and energy to reprogram the network if link reliability

71

 0

 500

 1000

 1500

 2000

 2x2 3x3 4x4

R
ep

ro
gr

am
m

in
g

tim
e(

se
co

nd
s)

Single hop

Multi hop/Link Rel=0.6
Multi hop/Link Rel=0.7
Multi hop/Link Rel=0.8

Multi hop/Link Rel=0.9

Multi hop/Link Rel=1.0

(a)

 0

 500

 1000

 1500

 2000

 2-linear

R
ep

ro
gr

am
m

in
g

tim
e(

se
co

nd
s) Multi hop/Link Rel=0.6

Multi hop/Link Rel=0.7
Multi hop/Link Rel=0.8
Multi hop/Link Rel=0.9
Multi hop/Link Rel=1.0

Single hop

 3-linear 4-linear 5-linear

(b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

N
um

be
r o

f p
ac

ke
ts

Multi hop/Link Rel=0.6
Multi hop/Link Rel=0.7
Multi hop/Link Rel=0.8
Multi hop/Link Rel=0.9
Multi hop/Link Rel=1.0

Single hop

 2x2 3x3 4x4

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

N
um

be
r o

f p
ac

ke
ts

 2-linear 3-linear 4-linear 5-linear

Multi hop/Link Rel=0.6
Multi hop/Link Rel=0.7
Multi hop/Link Rel=0.8
Multi hop/Link Rel=0.9
Multi hop/Link Rel=1.0

Single hop

(d)

 0

 500

 1000

 1500

 2000

R
ep

ro
gr

am
m

in
g

tim
e(

se
co

nd
s)

Emnet1 Emnet2

Multi hop

Single hop

(e)

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
um

be
r o

f p
ac

ke
ts

Emnet1 Emnet2

Multi hop

Single hop

(f)

Fig. 4.6. Testbed results: Reprogramming time for (a) grid, (b) lin-
ear , and (e) CSOnet networks. Number of packets transmitted in
the network during reprogramming for (c) grid, (d) linear, and (f)
CSONet networks. For grid and linear topologies, the leftmost bar is
reprogramming time for single hop and the remaining bars are multi-
hop reprogramming times with increasing link reliabilities. The order
of the legends is the order of the bars from left to right.

72

is decreased because of more retransmissions (and hence more time) required for a

packet to be successfully received by the sensor node. Figure 4.6-a shows that in

small networks (2X2 in the experiment), for LRM < 0.8, single hop reprogramming is

faster than multi-hop reprogramming. However, for larger networks, DStream-MHM

is always better for the range of LRM (0.6-1.0) considered in these experiments. But

it should be noted that even in large grids, if we carry out the experiments for link

reliabilities less than 0.6, then below some value rt, single hop becomes faster than

multi-hop reprogramming. Figure 4.6–b shows that there exists some value of link

reliability LRM > 0.6 for which multi-hop reprogramming takes less energy than sin-

gle hop reprogramming. For good link reliabilities, multi-hop approach is faster and

more energy efficient than single hop because of the following reasons: (1) Multiple

listening nodes: In multi-hop reprogramming, a single broadcast of the data packet

by a node can be received by all its neighbors simultaneously. On the other hand, in

single hop reprogramming, a single broadcast of the data packet is received by only

one node at a time. (2) Spatial multiplexing: In multi-hop reprogramming, spatial

multiplexing of the code transfer makes reprogramming faster. Note that spatial mul-

tiplexing contributes in reducing the reprogramming time, not the energy. As link

reliability decreases, the difference between single and multi-hop approaches in terms

of both reprogramming time and energy decreases and for r < rt, single hop repro-

gramming becomes faster and for r < re single hop reprogramming is more energy

efficient. An experimental observation is that rt 6= re in general; thus system design-

ers have to make a decision depending on which metric is more important, energy or

delay. In linear networks, the only advantage that multi-hop reprogramming has over

single hop reprogramming is spatial multiplexing of the code transfer. By definition,

a single broadcast cannot satisfy more than one node in linear networks and thus this

factor cannot provide an advantage to DStream-MHM. Hence as shown in Figure

4.6-c and Figure 4.6-d, the advantage of DStream-MHM over DStream-SHM is not as

pronounced as in grid networks. Further, spatial multiplexing helps to make repro-

gramming faster but does not contribute in reducing the reprogramming energy. As

73

a result, as shown in Figure 4.6-d single hop reprogramming is always more energy ef-

ficient than multi-hop reprogramming for linear networks. Since spatial multiplexing

of the code transfer is effective for larger networks, multi-hop reprogramming incurs

less delay than single hop reprogramming for large networks (for example in Figure

4.6-c, for networks having at least 4 nodes) for good link reliabilities.

We can conclude that for linear networks (or networks which are approximately

linear, i.e. most of the nodes have degree 2) single hop reprogramming is always

more energy efficient than multi-hop reprogramming and except for very high link

reliabilities among the nodes, single hop method is also faster than multi-hop method.

On the other hand, multi-hop reprogramming is faster and more energy efficient

for reasonable link reliabilities in grid networks, with the advantage increasing with

network size. However consider that for practical deployments other factors, such as

travel times may be added to the cost of DStream-SHM.

Figure 4.6-e and Figure 4.6-f compare reprogramming time and energy for the

two CSOnet networks (Figure 4.5). Since EmNet1 is a linear network, reprogram-

ming energy for EmNet1 is always less for single hop case than the multi-hop case.

Reprogramming time of EmNet1 is also less for single hop reprogramming than multi-

hop reprogramming because some link reliabilities are very low (like 60% and 68%).

Even though multi-hop reprogramming for EmNet1 has the advantage of spatial mul-

tiplexing of the code transfer which helps to reduce the reprogramming time, the

disadvantage due to low link reliabilities outweighs this advantage. For EmNet2,

multi-hop reprogramming is faster than single hop reprogramming because multiple

listening nodes can receive the single broadcast of the data packet simultaneously and

spatial multiplexing of the code transfer make multi-hop reprogramming faster. The

reprogramming energy for single and multi-hop reprogramming are almost equal for

EmNet2.

74

 0

 2000

 4000

 6000

 8000

 10000

Re
pr

og
ra

m
m

in
g

tim
e

(s
ec

on
ds

)

Network size (line)

Multi hop

Single hop

9 16 25 36 49 64 81 100 121

(a)

 0

 2000

 4000

 6000

 8000

 10000

R
ep

ro
gr

am
m

in
g

tim
e

(s
ec

on
ds

)

Network size (grid)

Multi hop

Single hop

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x1011x1112x12

(b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

Nu
m

be
r o

f p
ac

ke
ts

Network size (line)
9 16 25 36 49 64 81 100 121

Multi hop

Single hop

(c)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

Nu
m

be
r o

f p
ac

ke
ts

Network size (grid)

3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x1011x1112x12

Multi hop

Single hop

(d)

Fig. 4.7. Simulation results: Reprogramming time as a function of
network size for (a) linear and (b) grid networks (LRM = 0.9). Num-
ber of transmitted packets as a function of network size for (c) linear
and (d) grid networks (LRM = 0.9).

4.3.4 Simulation Results

We used TOSSIM simulator to examine the trend of overhead energy and repro-

gramming time for larger sized networks. We perform simulations for three different

network topologies: grid, linear and random. The random topology is generated by

uniformly distributing nodes with some given density over a square field. Figure 4.7-a

to Figure 4.7-d compare DStream-SHM and DStream-MHM for linear and grid net-

works with LRM = 0.9 and LRS = 0.95. These results confirm with the analytical

and testbed results.

75

Figure 4.8-a and Figure 4.8-b show the reprogramming time and the overhead en-

ergy respectively as a function of network density (shown as number of neighbors per

node) for a random topology consisting of 100 nodes with LRM = 0.9 and LRS = 0.95.

The figures show that the performance of multi-hop reprogramming improves as the

network density increases. This is due to the increase in the number of nodes that

can listen to the single broadcast of the code packet as the network density increases.

Figure 4.8-c and Figure 4.8-d show the reprogramming time and the overhead energy

respectively as a function of the multi-hop link reliability for a random topology with

N = 100 and LRS=0.95. Figure 4.8-c shows that multi-hop reprogramming is al-

ways faster and gets better as the multi-hop link reliability increases-again due to the

pipelining of the code in multi-hop reprogramming. Figure 4.8-d shows that overhead

energy of single hop reprogramming is lower than that of multi-hop reprogramming

when the link reliability is less than or equal to 0.7 and the multi-hop mode is better

otherwise. Below a link reliability of 0.7, the number of the nodes that can simulta-

neously receive the single broadcast of the code packet is not enough to compensate

for the lower reliability. However, it becomes enough for link reliabilities of greater

than 0.7. For a deployment with higher transmission ranges, the balance will shift in

favor of multi-hop reprogramming.

4.4 Conclusion

Contrary to the prevalent idea explored in wireless reprogramming protocols, this

chapter posits that single hop reprogramming can be a better choice under specific

network conditions. To identify the conditions which favor single hop reprogramming,

we performed mathematical analysis, testbed experiments (including experiments on

real- world sensor networks) and simulations. Using Equation 4.3 and Equation 4.6,

we can approximately find under what values of link reliabilities, and redundancy

in the network, single hop can be better than multi-hop method in terms of re-

programming time and/or energy. Further from our mathematical analysis, testbed

76

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Re
pr

og
ra

m
m

in
g

tim
e

(s
ec

on
ds

)

Average # neighbors (random)Multi hop
Single hop

8 10 12 14 16 18 20

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Nu
m

be
r o

f p
ac

ke
ts

Average # neighbors (random)

8 10 12 14 16 18 20
Multi hop
Single hop

(b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Re
pr

og
ra

m
m

in
g

tim
e

(s
ec

on
ds

)

Link reliability (random)

0.6 0.7 0.8 0.9 1.0
Multi hop
Single hop

(c)

 0

 20000

 40000

 60000

 80000

 100000

Nu
m

be
r o

f p
ac

ke
ts

Link reliability (random)

Multi hop
Single hop

0.6 0.7 0.8 0.9 1.0

(d)

Fig. 4.8. Simulation results: (a) Reprogramming time and (b) number
of transmitted packets as a function of network density (LRM=0.9) for
random network topology; (c) Reprogramming time and (d) number
of transmitted packets as a function of link reliability for 100-random
topology (Mean number of neighbors=8).

experiments and simulations, we can provide the following insights which can serve

as a guideline to the network-owner:

1. If the network is linear or approximately linear, single hop reprogramming is

favored in terms of energy.

2. For smaller linear networks, single hop is faster than multi-hop if link reliabili-

ties are poor. Our testbed results show that for a linear network consisting of 5

nodes, single hop is faster if link reliability is less than 0.9. Even for larger net-

77

works, if some of the links are very unreliable (as in the CSOnet deployments),

single hop can be faster than multi- hop reprogramming. However as the net-

work size increases, multi-hop improves relative to single hop since pipelining

becomes more efficient.

3. For non linear networks, unless the link reliabilities are very poor, multi-hop

reprogramming is both more energy efficient and faster than single hop. But

single hop is worth considering if some links are really unreliable.

4. The exact cross-over link reliability below which single hop outperforms multi-

hop depends on what metric we are interested in. If it is reprogramming time,

then the cross-over value is lower than that for reprogramming energy.

5. With increasing density, multi-hop performs better since more number of nodes

can be satisfied by a single broadcast of the code image. Also, this reaffirms the

claim of Stream and Deluge that they are able to handle high network densities

by appropriate collision arbitration schemes.

78

5. ZEPHYR: INCREMENTAL REPROGRAMMING

USING FUNCTION CALL INDIRECTIONS

This chapter presents an incremental reprogramming system. The basic idea behind

incremental reprogramming is that in practice, software running on a node evolves,

with incremental changes to functionality, or modification of the parameters that con-

trol current functionality. The change may involve addition, deletion, or modification

of one or a few components. Thus the difference between the currently executing code

and the new code is often much smaller than the entire code. This makes incremental

reprogramming attractive because only the changes to the code need to be trans-

mitted, and the new application can be reassembled at the node from the existing

application and the received changes. The goal of incremental reprogramming is to

transfer a small delta, the difference between the old and the new software, so that

reprogramming time and energy are minimized.

The design of incremental reprogramming protocol for sensor nodes poses several

challenges. Many operating systems do not support dynamic linking of software com-

ponents on a sensor node. For example, the standard release of TinyOS [14], one of

the widely used operating systems for sensor nodes, does not provide this feature.

TinyOS executes on each node a single monolithic image, that contains what would

be called the kernel parts in a traditional OS, as well as the application parts. This

rules out the straightforward transfer of only the components that have changed and

dynamically linking them to at the node. The second class of operating systems, rep-

resented by SOS [10] and Contiki [15], do support dynamic linking. However, their

reprogramming support also does not handle changes to the kernel modules. More-

over, the specifics of the position independent code strategy employed in SOS limit

the kinds of changes to a module that can be handled. In Contiki, the requirement

79

to transfer the symbol and relocation tables to the node for runtime linking increases

the amount of traffic that needs to be disseminated through the network.

In this chapter, we present a fully functional incremental multi-hop reprogram-

ming protocol called Zephyr. It transfers the changes to the code, does not need

dynamic linking on the node and does not transfer symbol and relocation tables.

Dynamic linking on the nodes can violate the low overhead requirement of the sensor

nodes because linker requires considerable computation resources and memory. Also,

wireless transmission of symbol, relocation tables and other data structures for dy-

namic linking can consume significant energy. Zephyr uses an optimized version of

the Rsync algorithm [93] to perform byte-level comparison between the old and the

new code binaries. As we will show, even an optimized difference computation at

the low level generates large deltas because of changes in the position of application

components. Therefore, before performing byte-level comparison, Zephyr performs

application-level modifications, the most important of which is to use function call

indirections to mitigate the effects of changes in the location of functions caused

by software modification. This requires a level of indirection for function calls but

significantly reduces the size of delta where applications have high function reuse.

We implement Zephyr on TinyOS and demonstrate it using real multi-hop net-

works of Mica2 [1] nodes and through simulations. Zephyr can also be used with SOS

or Contiki to upload incremental changes within a module, i.e. instead of transferring

the entire module, only the difference between the old and the new modules can be

transmitted to the sensor nodes. We evaluate Zephyr for a wide range of software

change cases — from a small parameter change to almost complete application rewrite

— using applications from both the TinyOS distribution and various versions of a

real world sensor network application called eStadium [130] that has been deployed

at the Ross-Ade football stadium at Purdue University. Our experiments show that

Deluge [92], Stream [88], and the incremental protocol by Jeong and Culler [121] need

to transfer up to 1987, 1324, and 49 times more number of bytes than Zephyr, respec-

tively. This translates to a proportional reduction in reprogramming time and energy

80

for Zephyr. Furthermore, Zephyr enhances the robustness of the reprogramming pro-

cess in the presence of failing nodes and lossy or intermittent radio links typical in

sensor network deployments because of the significantly smaller amount of data that

it needs to transfer across the network. Zephyr suffers from fewer link failures and

retransmissions than the existing protocols because the amount of data that needs to

be transmitted across the network is significantly less in Zephyr.

Our contributions in this chapter are as follows:

1. We present a technique that uses optimized byte-level comparisons and leads

to small deltas.

2. We present application-level modifications that increase the structural similarity

between different software versions, also leading to small delta.

3. We present techniques that support modification of any part of the software

(i.e. kernel and user code), without requiring dynamic linking on sensor nodes.

4. We present the design, implementation and demonstration of a fully functional

multi-hop reprogramming system. Most previous works have concentrated on

some of the stages of the incremental reprogramming system, but have not

delivered a functional complete system.

5.1 High level overview of Zephyr

Figure 5.1 is the schematic diagram showing various stages of Zephyr. First Zephyr

performs application-level modifications on the old and new versions of the software to

mitigate the effect of shifts in the function locations (hereafter called function shifts)

so that the similarity between the two versions of the software is increased. Next

the two executables are compared at the byte-level using a novel algorithm derived

from the Rsync algorithm [93]. This produces the delta script which describes the

differences between the old and new versions of the software. These computations

are performed on the host computer. The delta script is then transmitted wirelessly

81

 New user
application

 Old user
application

Application level
 modifications

Byte level
comparison

Delta
script

 Delta
distribution
 stage

Delta script
 downloaded
 by nodes

 Image
rebuild
and load
 stage

 Old
application

 New
application

Executed on host computer

Executed on sensor nodes

Delta genration steps

Fig. 5.1. Overview of Zephyr

to all the nodes in the network in the delta distribution stage. In this stage, first

the delta script is injected by the host computer to the base node (a node physically

attached to the host computer via, say, a serial port). The base node then wirelessly

sends the delta script to all nodes in the network, in a multi hop manner, if required.

The nodes save the delta script in their external flash memory. After the sensor nodes

download the delta script, they build the new image using the delta and the old image

and store it in the external flash. Finally the bootloader loads the newly built image

from the external flash to the program memory and the node runs the new software.

We describe these stages in the following sections. We first describe byte-level com-

parison and show why it is not sufficient and thus motivate the need for application-

level modifications.

5.2 Byte-level comparison

We first describe the Rsync algorithm [93] and then our extensions to reduce the

size of the delta script that needs to be disseminated.

5.2.1 Application of Rsync algorithm

The Rsync algorithm was originally developed to update binary data between

computers over a low bandwidth network. Rsync divides the files containing the bi-

82

nary data into fixed size blocks and both the sender and the receiver compute the

pair (Checksum, MD4) over each block. If this algorithm is used as is for incremental

reprogramming, then the sensor nodes need to perform an expensive MD4 computa-

tion for each block of the binary image. We modify Rsync such that all the expensive

operations regarding delta script generation are performed on the host computer and

not on the sensor nodes. The modified algorithm runs on the host computer only and

works as follows: 1) The algorithm first generates the pair (Checksum, MD4 hash) for

each block of the old image and stores it in a hash table whose key is the checksum.

2) The checksum is calculated for the first block of the new image. 3) The algorithm

checks if this checksum matches the checksum for any block in the old image using a

hash-table lookup. If a matching block is found, Rsync checks if their MD4 hashes

also match. If MD4 hashes also match, then that block is considered as a matching

block. Note that if two blocks do not have the same checksum, then MD4 is not

computed for that block. This ensures that the expensive MD4 computation is done

only when the inexpensive checksum matches between the two blocks. If no matching

block is found then the algorithm moves to the next byte in the new image and the

same process is repeated until a matching block is found. While the probability of

collision is not negligible for two blocks having the same checksum, but with MD4

the collision probability is negligible. To ensure the correctness of our scheme in the

rare case when two different blocks have the same MD4 hash, the algorithm can be

modified to perform byte-by-byte comparison when MD4 hashes match. Since this

algorithm runs on a powerful host computer, this is not a problem.

After running this algorithm, Zephyr generates a list of COPY and INSERT com-

mands for matching blocks and non matching portions respectively (the size of the

non-matching portions may not be equal to the block size):

COPY <oldOffset> <newOffset> <len>

INSERT <newOffset> <len> <data>

The COPY command copies len number of bytes from oldOffset at the old image

to newOffset at the new image. Note that len is equal to the block size used in the

83

1

2

3

4

10

x

x+1

x+2

x+3

x+4

1

2

3

4

5

z

z+1

z+2

z+3

z+4

1

2

y

y+1
.
.
.

New ImageOld Image

Fig. 5.2. Finding super block

Rsync algorithm. The INSERT command inserts len number of bytes, i.e. data, to

newOffset of the new image. Note that this len is not necessarily equal to the block

size or its multiple.

5.2.2 Rsync optimization

With the Rsync algorithm, if there are n contiguous blocks in the new image that

match n contiguous blocks in the old image, n COPY commands are generated. We

change the algorithm so that it finds the largest contiguous matching block between

the two binary images. Note that this does not simply mean merging n COPY

commands into one COPY command. As shown in Figure 5.2, let the blocks at the

offsets x and x+1 in the new image match those at the offsets y and y+1 respectively

in the old image. Let blocks at x through x + 3 of the new image match those at z

through z + 3 respectively of the old image. Note that blocks at x and x + 1 match

those at y and y + 1 and also at z and z + 1. The Rsync algorithm creates two

COPY commands as follows: COPY 〈y〉 〈x〉 〈B〉 and COPY 〈y+1〉 〈x+1〉 〈B〉, where

B is the block size. Simply combining these 2 commands as COPY 〈y〉 〈x〉 〈2*B〉
does not result in the largest contiguous matching block. The blocks at the offsets

z through z + 3 form the largest contiguous matching block. We call contiguous

matching blocks a super-block and the largest super-block the maximal super-block.

84

The optimized Rsync algorithm finds the maximal super-block and uses that as the

operand in the COPY command. Thus, optimized Rsync produces the single COPY

command as COPY 〈z〉 〈x〉 〈4*B〉 for the example just given. Figure 5.3 shows the

pseudo code for optimized Rsync. Its complexity is O(n2) where n is the number

of bytes in the image. This is not a concern because the algorithm is run on the

host computer and not on the sensor nodes, and is run only when a new version of

the software needs to be disseminated. As we will show in Section 8.2, optimized

Rsync running on the desktop computer took less than 4.5 seconds for a wide range

of software change cases that we experimented with.

5.2.3 Drawback of using only byte-level comparison

To see the drawback of using optimized Rsync alone, we consider two cases of

software changes.

Case 1: Changing Blink application: Blink is an application in the TinyOS dis-

tribution that blinks an LED on the sensor node every second. We change the ap-

plication from blinking a green LED every second to blinking it every two seconds.

Thus, this is an example of a small parameter change. The delta script produced

with optimized Rsync is 23 bytes long which is small and congruent with the actual

amount of change made in the software.

Case 2: We added four lines of code to Blink. The delta script between the Blink

application and the one with these four lines added is 2183 bytes. The change made

in the software for this case is slightly more than that in the previous case, but the

delta script produced by optimized Rsync in this case is disproportionately larger.

When a single parameter is changed in the application, as in Case 1, no part of the

already matching binary code is shifted. All functions start at the same location as in

the old image. But with the few lines added to the code (as in Case 2), the functions

following the added lines are shifted. As a result, all the calls to those functions refer

85

/* Terminology
mbl=matching block list
cbl=contiguous block list
*/
1. j=0 and cblStretch=0
2. while j< number of bytes in the new image
3. mbl=findAllMatchingBlocks(j)
4. if mbl is empty
5. j++
6. if cbl is not empty
7. Store any one element in cbl as maximum superblock
8. else
9. j=j+blockSize
10. if (cblStretch==0)
11. cbl=mbl
12. cblStretch++
13. else
14. Empty tempCbl
15. for each element in cbl do
16. if (cbl.element + cblStretch == any entry in mbl)
17. tempCbl=tempCbl U {cbl.element}
18. if tempCbl is empty
19. Store any one element in cbl as maximum superblock
20. Empty cbl
21. cblStretch=0
22. else
23. cbl=tempCbl
24. cblStretch++
25. end while
findAllMatchingBlocks (j)
 /*Same as Rsync algorithm, but instead of returning the offset
 of just one matching block, returns a linked list consisting
 of offsets of all matching blocks in the old image for the
 block starting at offset j in the new image.*/

Fig. 5.3. Pseudo code of optimized Rsync that finds maximal super block

86

to new locations. This produces several additional changes in the binary file resulting

in the large delta script.

The boundaries between blocks can be defined by Rabin fingerprints as is done

in [131,132]. A Rabin fingerprint is the polynomial representation of the data modulo

a predetermined irreducible polynomial. These fingerprints are efficient to compute

on a sliding window in a file. It should be noted that a Rabin fingerprint can be a

substitute for a byte-level comparison only. Because of the content-based boundary

between the chunks in Rabin fingerprint approach, the editing operations change only

the chunks affected by those edits even if they change the offsets. Only the chunks that

have changed need to be sent. But when the function addresses change, all the chunks

containing calls to those functions change, and need to be sent explicitly. This results

in a large delta—comparable to the delta produced by the optimized Rsync algorithm

without application-level modifications. Also the anchors that define the boundary

between the blocks have to be sent explicitly. The chunks in Rabin fingerprints are

typically quite large (8 KB compared to less than 20 bytes for our case). As we can

see from Figure 5.7, the size of the difference script will be much larger at 8 KB than

at 20 bytes.

5.3 Application-level modifications

The size of the delta script produced by a byte-level comparison is not always

consistent with the extent of the change made in the software. This is a direct

consequence of neglecting the structure of the code at the application level of the

software and using only the binary comparison for generating the delta script. So we

need to make modifications at the application level so that the subsequent stage of

byte-level comparison produces delta script that is congruent in size with the amount

of software change. One way of tackling this problem is to leave some slop (empty)

space after each function as in [122]. With this approach, even though a function

expands (or shrinks), the location of the following functions will not change as long as

87

the expansion is accommodated by the slop region assigned to that function. But this

approach wastes program memory, and thus is not desirable for memory-constrained

sensor nodes. Also, this approach creates a host of complex management issues such as

what should be the size of the slop region (possibly different for different functions),

and what should be done with the empty memory space caused by relocation of

functions when they expand beyond the assigned slop region. Choosing too large of

a slop region means wasting too much memory and too small a slop region means

functions frequently need to be relocated, leading to large differences in the binary

images. Another way of mitigating the effect of function shifts is by making the

code position independent [10]. Position independent code (PIC) uses relative jumps

instead of absolute jumps. However, not all architectures and compilers support

this. For example, the AVR platform allows relative jumps within 4KB only and for

MSP430(used in Telos nodes), no compiler is known to fully support PIC.

5.3.1 Function call indirections

For the byte-level comparison to produce a small delta script, it is necessary to

make structural adjustments at the application-level to preserve maximum similarity

between the two versions of the software. For example, let the application shown in

Figure 5.4-a be changed such that the functions fun1, fun2, and funn are shifted

from their original positions b, c, and a to new positions b ′, c ′, and a ′ respectively.

Note that there can be (and generally will be) more than one call to a function. When

these two images are compared at the byte-level, the delta script will be large because

all the calls to these functions in the new image will have different target addresses

from those in the old image. The approach we take to mitigate the effects of function

shifts is as follows: Let the application be as shown in Figure 5.4-a. We modify the

linking stage of the executable generation process to produce the code as shown in

Figure 5.4-b. Here calls to functions fun1, fun2, ..., funn are replaced by jumps to

fixed locations loc1, loc2, ..., locn respectively. In common embedded platforms, the

88

call fun1

funn

fun1

fun2

a

b

c

...

...

...

...

call fun2
 ...

call funn
 ...

call loc1

funn

fun1

fun2

a

b

c

...

call loc2

call locn

call fun1
ret
call fun2
ret

call funn
ret

loc1

loc2

locn

(a)

(b)

...

...

...

...

...

...

Fig. 5.4. Program image (a) without indirection table and (b) with
indirection table.

call can be to an arbitrarily far off location. The segment of the program memory

starting at the fixed location loc1 acts like an indirection table. In this table, the

actual calls to the functions are made. When the call to the actual function returns,

the indirection table directs the flow of the control back to the line following the call

to locx(x = 1, ..., n). The location of the indirection table is kept fixed in the old and

the new versions to reduce the size of the delta.

When the application shown in Figure 5.4-a is changed to the one where the func-

tions fun1, fun2, ..., funn are shifted, during the process of building the executable

for the new image, we add the following features to the linking stage: When a call

to a function is encountered, the linker checks if the indirection table in the old file

contains the entry for that function (we also supply the old file (Figure 5.4-b) as an

input to the executable generation process). If it does, then it creates an entry for

that function in the indirection table in the new file at the same location as in the

old file. Otherwise it assigns a slot in the indirection table for the function (call it a

89

rootless function) but does not yet create the slot. After assigning slots to the existing

functions, it checks if there are any empty slots in the indirection table. These would

correspond to functions which were called in the old file but are not in the new file.

If there are empty slots, it assigns those slots to the rootless functions. If there are

still some rootless functions without a slot, then the indirection table is expanded

with new entries to accommodate these rootless function. Thus, the indirection table

entries are naturally garbage collected and the table expands on an as-needed basis.

As a result, if the user program has n calls to a particular function, they refer to

the same location in the indirection table and only one call, namely the call in the

indirection table, differs between the two versions. On the other hand, if no indi-

rection table were used, all the n calls would refer to different locations in the new

application than in the old one.

This approach ensures that the segments of the code, except the indirection table,

preserve the maximum similarity between the old and new images because the calls to

the functions are redirected to the fixed locations even when the functions have moved

in the code. The basic idea behind function call indirections is that the location of

the indirection table is fixed and hence the target addresses of the jump to the table

are identical in the old and new versions of the software. If we do not fix the location

of the indirection table, the jump to the indirection table will have different target

addresses in the two versions of the software. As a result, the delta script will be large.

In situations where the functions do not shift (as in Case 1 discussed in Section 5.2.3)

Zephyr will not produce a delta script larger than optimized Rsync does without an

indirection table. This is due to the fact that the indirection tables in the old and the

new software match and hence Zephyr finds the large super-block that also contains

the indirection table.

The linking changes in Zephyr are transparent to the user. She does not need

to change the way she programs. The linking stage automatically makes the above

modifications. We use linker command language to implement function call indirec-

90

tions. Zephyr does introduce one level of indirection during function calls (e.g., 8

clock cycles on the AVR platform).

5.3.2 Pinning the interrupt service routines

It should be noted that changes in the application software can cause changes not

only in the positions of the user functions but also the positions of interrupt service

routines. Such routines are not explicitly called by the user application. In most

microcontrollers, there is an interrupt vector table at the beginning of the program

memory, typically after the reset vector at 0x0000. Whenever an interrupt occurs,

the control goes to the appropriate entry in the vector table that causes a jump to

the required interrupt service routine. Zephyr does not change the interrupt vector

table to direct the calls to the indirection table (as described above for the normal

functions). Instead it modifies the linking stage to always put the interrupt service

routines at fixed locations in the program memory so that the targets of the calls in

the interrupt vector table do not change. This further preserves the similarity between

the versions of the software. This approach is based on the assumption that interrupt

service routines generally do not change. If interrupt service routines change, it does

not cause a correctness problem, but causes the delta script to be larger.

5.3.3 Handling function pointers

Other than function call statements, shift in function addresses resulting from

software changes can affect statements that use the function address. One important

example of this is any instruction that uses function pointers. When a function is

shifted in memory due to changes in the software, the instructions that use a function

pointer referencing the shifted function also change between the old and the new

versions of the software, causing the delta script to be large. Function pointers can

be used in different ways by different systems. In this section, we take the function

91

TOS_post
/*Put the contents of
r24,r25 in task queue*/

(a)

ldi r24,lo8(pm(task_name))
ldi r25,hi8(pm(task_name))
call TOS_post

...

call loc_m

call loc_n

...

...

...

ldi r24,lo8(pm(task_name))
ldi r25,hi8(pm(task_name))

Indirection
 table

loc_m

ret

loc_n call TOS_post
ret

...

(b)

TOS_post
/*Put the contents of
r24,r25 in task queue*/

Fig. 5.5. Program image (a) without and (b) with handling problem
due to function pointer.

pointer usage in TinyOS as an example to illustrate how the concept of indirection

can be extended to handle such situations.

Function pointers are used in TinyOS to put tasks in the task queue. TinyOS

is an event-based operating system which uses two computational abstractions—

asynchronous events and synchronous tasks. An event-based application is imple-

mented as a set of event-handlers and tasks. Tasks are a form of deferred procedure

calls that are placed in a FIFO task queue, and allow the application to defer some

computations until a later time. The TinyOS scheduler sequentially executes the

tasks from the queue, and a task is run to completion and cannot be preempted by

another task. However, hardware interrupts trigger the event-handlers and can pre-

empt a task. When an interrupt occurs, the corresponding event-handler performs

the minimum amount of computation and (may) post a task to the task queue for

further computation.

The task queue in TinyOS is a circular buffer of function pointers. When a task

is posted, TinyOS puts the task’s function pointer in the next free slot of the buffer.

92

Figure 5.5-a shows the code snippet generated by avrgcc (for AVR platform) to put

the function pointer of the task in the task queue. First, the address of the task is

loaded into the register pair r24, r25. Then the function TOS post is called, which

puts the contents of the registers r24, r25 in the task queue. If the position of the

task is shifted due to a change in the software, the first three instructions in this

code snippet change between the two versions of the software. Note that the third

statement is a function call statement and is handled by Zephyr as explained in

Section 5.1. But the first two statements use function pointers.

The concept of indirection can be used here to handle function pointers as shown

in Figure 5.5-b. The first two load statements are replaced with a jump to the fixed

location call loc m in the indirection table. The registers are loaded with the function

address (contained in the indirection table) of the task. Finally the the flow of control

is directed back to the line following call loc m by the use of the ret statement. In

this way, we preserve the similarity between the two versions of the software in all

parts of the code except the indirection table. In the case where the task is posted

to the task queue multiple times, this technique minimizes the change. If the task

is posted n times during program execution, there would be n changes between the

old and the new versions in the baseline case. With Zephyr, however, there will be a

single change (in the indirection table) regardless of the number of times the task is

posted to the task queue.

For a wide range of software change cases that we experimented with (as explained

in Section 5.6), we find that a given task is generally posted only once in the program.

Only very few tasks are posted more than once (typically less than 5 times). On

the other hand, a given function is typically called multiple times in the program.

As a result, there is not much reduction in the size of the delta script by using

this technique for handling function pointers. Hence in our experiments, we do not

perform the change depicted in Figure 5.5. However, if the user application has many

tasks each of which are posted multiple times in the program, then this technique

could be used to further reduce the size of the delta script.

93

5.4 Metacommands for common patterns of changes

After the delta script is created through the above mentioned techniques, Zephyr

scans through the script file to identify some common patterns and applies the fol-

lowing optimizations to further reduce the delta size.

5.4.1 CWI command

In many cases, the delta script has the following sequence of commands:

COPY <oldOffset=O1> <len=L1> <newOffset=N1>

INSERT <newOffset> <len=l1> <data1>

COPY <oldOffset=O2> <len=L2> <newOffset=N2>

INSERT <newOffset> <len=l1> <data2>

COPY <oldOffset=O3> <len=L3> <newOffset=N3>

INSERT <newOffset> <len=l1> <data3>

and so on. Let Li indicate a large value, and li a small value. Here, small INSERT

commands are present in between large COPY commands. Here we have COPY

commands that copy large chunks of size L1, L2, L3, ... from the old image followed

by INSERT commands with very small values of len= l1. Further O1+L1+l1=O2,

O2+L2+l1=O3, and so on. In many software change cases that we evaluated, we

found that two blocks in two versions of the image match perfectly, except at few

places where a single byte operand of some instructions differ. In other words, if the

blocks corresponding to INSERT commands with small len had matched, we would

have obtained a very large superblock. So Zephyr replaces such sequences with the

COPY WITH INSERTS (CWI) command.

CWI <oldOffset=O1> <newOffset=N1>

<len=L1+l1+...+Ln> <dataSize=l1>

<numInserts=n> <addr1> <data1>

<addr2> <data2> ... <addrn> <datan>

94

Here dataSize=l1 is the size of datai (i=1,2..., n), numInserts=n is the number of

(addr,data) pairs, datai are the data that have to be inserted in the new image at

the offset addri. This command tells the sensor node to copy the len=L1+l1+...+Ln

number of bytes of data from the old image at offset O1 to the new image at the

offset N1, but to insert datai at the offset addri (i=1, 2, ..., n).

5.4.2 REPEAT command

This command is useful for reducing the number of bytes in the delta script

that are needed to transfer the indirection table. As shown in Figure 5.4-b, the

indirection table consists of the pattern call fun1, ret, call fun2, ret , ... where the

same string of bytes (say S1 = ret; call) repeats, with only the addresses for fun1,

fun2, etc. changing between them. So Zephyr uses the following command to transfer

the indirection table.

REPEAT <newOffset> <numRepeats=n>

<addr1> <addr2> ... <addrn>

This command puts the string S1 at offset newOffset in the new image followed by

addr1, then S1, then addr2, and so on till addrn. Note that the CWI command could

have also been used for this case, but since string S1 is fixed, fewer bytes are needed

using the REPEAT command. This optimization is not applied if the addresses of

the call instructions match in the indirection tables of the old and new images. In

that case, the COPY command is used to transfer identical portions of the indirection

table.

5.4.3 No offset specification

We note that if we build the new image on the sensor nodes in a monotonic order,

then Zephyr does not need to specify the offset in the new file in any of the above

commands. Monotonic means Zephyr always writes at location x of the new image

95

before writing at location y, for all x < y. Instead of the new offset being provided, a

counter is maintained and incremented as the new image is built, and the next write

always happens at this counter, allowing the newOffset field to be dropped from all

the commands.

We find that for Case 2, where some functions are shifted due to the addition of

few lines in the software, the delta script produced with the application-level modifi-

cations is 280 bytes compared to 2183 bytes when optimized Rsync is used without

application-level modifications. The size of the delta script without the metacom-

mands is 528 bytes. This illustrates the importance of application-level modifications

in reducing the size of the delta script and making it consistent with the amount of

actual change made in the software.

5.5 Delta distribution stage

One of the factors that we considered for the delta distribution stage was to have

as small a delta script as possible even in the worst case when there is a huge change

in the software. In this case there is little similarity between the old and the new code

images, and the delta script basically consists of a large INSERT command to insert

almost the entire binary image. To have a small delta script even in such extreme

cases, it is necessary that the binary image itself be small. Since the size of the binary

image transmitted by Stream [88] is almost half the size of that of Deluge [92], Zephyr

uses the approach from Stream, with some modifications for wirelessly distributing

the delta script. The core data dissemination method of Stream is the same as in

Deluge. Deluge uses a monotonically increasing version number, segments the binary

code image into pages, and pipelines the different pages across the network. The

code distribution occurs through a three-way handshake of advertisement, request,

and code broadcast between neighboring nodes. Unlike Deluge, Stream does not

transfer the entire reprogramming component every time a code update is done. The

reason for this requirement in Deluge is that the reprogramming component needs to

96

Reprogramming
 component

 Delta script

Old application
 (v1)

Indirection table
 for image-2

image-0

image-1

image-2

New application
 (v2)

image-3

 ...
 ...

call loc1;
 ...
 ...

loc1: call fun1;
 ret;
loc2: call fun2;
 ret;

...

...

locn: call funn;
 ret;

Indirection
 table for
 image-3

Unused part

External
Flash

Program
memory

bootloader

 New
application
 (v2)

 Read new
application

 Load new
application

 Image
Rebuilder

 Old
application

Zephyr New
application

+ Delta
script

Fig. 5.6. Image rebuild and load stage. The right side shows the
structure of external flash in Zephyr.

be running on the sensor nodes all the time so that the nodes can be receptive to future

code updates and these nodes are not capable of multitasking (running more than

one application at a time). Stream solves this problem by storing the reprogramming

component in the external flash and running it on demand—whenever reprogramming

is to be done.

Distinct from Stream, Zephyr divides the external flash as shown in the right side

of Figure 5.6. The reprogramming component and delta script are stored as image

0 and image 1 respectively. Image 2 and image 3 are the user applications—one old

version and the other current version which is created from the old image and the

delta script as discussed in Section 5.5.1. The protocol works as follows:

97

1. Let image 2 be the current version (v1) of the user application. Initially all

nodes in the network are running image 2. At the host computer, delta script

is generated between the old image (v1) and the new image (v2).

2. The user gives the command to the base node to reboot all nodes in the network

from image 0 (i.e. the reprogramming component).

3. The base node broadcasts the reboot command and itself reboots from the

reprogramming component.

4. The nodes receiving the reboot command from the base node rebroadcast the

reboot command and themselves reboot from the reprogramming component.

This is controlled flooding because each node broadcasts the reboot command

only once. Finally, all nodes in the network are executing the reprogramming

component.

5. The user then injects the delta script into the base node. It is wirelessly trans-

mitted to all nodes in the network using the usual 3-way handshake of adver-

tisement, request, and code broadcast, as in Deluge. Note that unlike Stream

and Deluge, which transfer the application image itself, Zephyr transfers only

the delta script.

6. All nodes store the received delta script as image 1.

As mentioned above, Zephyr uses a simple flooding scheme to send reboot com-

mands to all nodes in the network. This method is generally sufficient to ensure that

all nodes receive the reboot command. Note that every node broadcasts the reboot

command once, before rebooting from the reprogramming component (i.e. img-0 as

shown in Figure 5.6). So, even if a node does not receive the reboot command from

one of its neighbors due to, say, poor link quality between them, it may receive the

command from other neighbor(s). However, due to very poor link reliability with

all neighbors, or hardware/software faults, some nodes may not be able to receive

98

the reboot command. To address this issue, Zephyr provides “eventual consistency”

property, similar to Stream [88].

Let us call the nodes which do not receive reboot command from any of its neigh-

bors the faulty nodes. In Zephyr, sensor nodes use Trickle [107] algorithm to periodi-

cally advertise their metadata consisting of the version number of the program images

that they possess (img-0 through img-3 in Figure 5.6). When the faulty nodes eventu-

ally recover from their faults, they will receive the advertisement message from their

neighbors and learn that they do not possess the latest version of the binary image.

This causes the faulty node to broadcast its advertisement message immediately and

reboot from the reprogramming component (img-0). If the neighbors of the faulty

node are executing img-0 (this happens if they have not yet completed downloading

the new version of the application image), the faulty node starts downloading the new

image from its neighbors according to the Deluge algorithm. If the neighbors of the

faulty node are not executing img-0 (this happens if they have already downloaded

the new version of the application image and have already started running the new

image), they find that their faulty neighbor is not up-to-date and hence reboot from

img-0 to bring the faulty node up-to-date. Then the faulty node downloads the delta

and and builds the new image. Note that due to inherent failure-prone nature of

sensor networks, many prior works [88,92,107] have shown that eventual consistency

is a satisfactory solution. Hence Zephyr follows this approach.

5.5.1 Image rebuild and load stage

After the nodes download the delta script, they rebuild the new image using the

script (stored as image 1 in the external flash) and the old image (stored as image 2

in the external flash). The image rebuilder stage consists of a delta interpreter which

interprets the COPY, INSERT, CWI, and REPEAT commands of the delta script

and creates the new image which is stored as image 3 in the external flash.

99

The methods of rebooting from the new image are slightly different in Stream and

Zephyr. In Stream, a node automatically reboots from the new code once the code

update has completed and it has satisfied all other nodes that depend on this node to

download the new code. This means that different nodes in the network begin execut-

ing the new version of the code at different times. However, for Zephyr, we modified

Stream so that all the nodes reboot from the new code after the user manually sends

the reboot command from the base station (as in Deluge). We made this change

because in many software change cases, the size of the delta script is so small that a

node (say n1) nearer to the base station quickly completes downloading the code be-

fore a node (say n2) further away from the base station even starts requesting packets

from n1. As a result, n1 reboots from the new code so fast that n2 cannot even start

the download process. Note that this does not, however, pose a correctness issue.

After n1 reboots from the new code, it will switch again to the reprogramming state

when it receives an advertisement from n2. This, however, incurs the performance

penalty of rebooting from a new image. Our design choice has a good consequence

—all nodes come up with the new version of the software at the same time. This

avoids the situation where different nodes in the network run different versions of the

software. When a node receives the reboot command, its bootloader loads the new

software from image 3 of the external flash to the program memory (Figure 5.6). In

the next round of reprogramming, image 3 will become the old image and the newly

built image will be stored as image 2. As we will show later, the time to build the

image is negligible compared to the total reprogramming time.

5.5.2 Dynamic page size

Stream divides the binary image into fixed-sized pages. The remaining space in

the last page is padded with all 0s. Each page consists of 1104 bytes (48 packets

per page with 23 bytes payload in each packet). With Zephyr, it is likely that in

many cases, the size of the delta script will be much smaller than 1104 bytes. For

100

example, we have delta script of sizes of 17 bytes and 280 bytes for Case 1 and Case

2 respectively. Also, as we will show in Section 5.6.2, during the natural evolution of

the software, it is more likely that the nature of the changes will be small or moderate

and as a result, delta scripts will be much smaller than the standard page size. After

all, the basic assumption behind any incremental reprogramming protocol is that in

practice, the software changes are generally small and the similarities between the

two versions of the software can be exploited to send only small delta. When the size

of the delta script is much smaller than the page size, it is wasteful to transfer the

whole page. So, we change the basic Stream protocol to use dynamic page sizes.

When the delta script is being injected in to the base node, the host computer

informs it of the delta script size. If it is less than the standard page size, the

base node includes this information in the advertisement packets that it broadcasts.

When other nodes receive the advertisement, they also include this information in

the advertisement packets that they send. As a result, all nodes in the network know

the size of the delta script and they make the page size equal to the actual delta

script size. So unlike Deluge or Stream which transmit all 48 data packets per page,

Zephyr transmits only the required number of data packets if the delta script size is

less than 1104 bytes. Note that the granularity of this scheme is the packet size, i.e.,

the last packet of the last page may be padded with zeros. But this results in small

enough wastage that we did not feel justified in introducing the additional complexity

of dynamic packet sizes. Our scheme can be further modified to advertise the actual

number of packets in the last page to minimize the wastage. For example in the case

where the delta script has 1105 bytes, it would transfer two pages, the first page with

48 packets and the second with 1 packet.

101

5.6 Experiments and results

In order to evaluate the performance of Zephyr, we consider a number of software

change scenarios. The software change cases for standard TinyOS applications that

we consider are as follows:

Case 1 : Change the Blink application from blinking a green LED every second to

blinking it every 2 seconds.

Case 2 : Add a few lines added to the Blink application.

Case 3 : Change the Blink application to CntToLedsAndRfm: CntToLedsAndRfm is

an application that displays the lowest 3 bits of the counting sequence on the LEDs

as well as sends them over radio.

Case 4 : Change CntToLeds to CntToLedsAndRfm: CntToLeds is the same as Cnt-

ToLedsAndRfm except that the counting sequence is not transmitted over radio.

Case 5 : Change Blink to CntToLeds.

Case 6 : Change Blink to Surge: Surge is a multi hop routing protocol. This case

corresponds to a complete change in the application.

Case 7 : Change CntToRfm to CntToLedsAndRfm: CntToRfm is the same as Cnt-

ToLedsAndRfm except that the counting sequence is not displayed on the LEDs.

In order to evaluate the performance of Zephyr with respect to natural evolution of

the real world software, we considered a real world sensor network application called

eStadium [130] which is deployed in Ross Ade football stadium at Purdue University.

eStadium applications provide safety and security functionality, infotainment features

such as coordinated cheering contests among different parts of the stadium using the

microphone data, information to fans about lines in front of concession stands, and

so forth. We considered a subset of the changes that the software had actually gone

through, during various stages of refinement of the application.

Case A: Change an application that samples battery voltage and temperature from

an MTS310 [1] sensor board to one where a few functions are added to also sample

the photo sensor.

102

Case B : During the deployment phase, we decided to use opaque boxes for the sensor

nodes. So, a few functions were deleted to remove the light sampling features.

Case C : In addition to temperature and battery voltage, we added the features for

sampling all the sensors on the MTS310 board except light (e.g., microphone, ac-

celerometer, magnetometer). This was a huge change in the software with the addi-

tion of many functions. For accelerometer and microphone, we collected mean and

mean square values of the samples taken during a user-specified window size.

Case D : This is the same as Case C but with addition of few lines of code to get

microphone peak value over the user-specified window size.

Case E : We decided to remove the feature of sensing and wirelessly transmitting to

the base node, the microphone mean value since we were interested in the energy of

the sound which is given by the mean square value. A few lines of code were deleted

for this change.

Case F : This is same as Case E except we added the feature of allowing the user to

put the nodes to sleep for a user-specified duration. This was also a huge change in

the software.

Case G : We changed the microphone gain parameter. This is a simple parameter

change.

We can group the above changes into 4 classes:

Class 1 (Small change SC): This includes Case 1 and Case G where only a parameter

of the application was changed.

Class 2 (Moderate change MC): This includes Case 2, Case D, and Case E. They

consist of the addition or deletion of few lines of the code.

Class 3 (Large change LC): This includes Case 5, Case 7, Case A, and Case B where

few functions are added or deleted or changed.

Class 4 (Very large change VLC) : This includes Case 3, Case 4, Case 6, Case C,

and Case F, where the software has changed completely (the goal of the software

has changed). For example, in Case 6, the goal of the software is changed from

periodically blinking an LED to perform routing.

103

These classes of software changes are based on the degree of the change that the

software has undergone at the application level. Many of the above cases involve

changes in the OS kernel as well. Strictly speaking, in TinyOS, there is no separation

between the OS kernel and the application. The two are compiled as one large

monolithic image that is run on the sensor nodes. So, if the application is modified

such that new OS components are added or existing components are removed, then

the delta generated would include OS updates as well. For example, in Case C

we change the application that samples temperature and battery voltage to the one

that samples microphone, magnetometer and accelerometer sensors in addition to

temperature and battery. This causes new OS components to be added—the device

drivers for the added sensors.

5.6.1 Block size for byte-level comparison

We modified Jarsync [133], a java implementation of the Rsync algorithm, to

achieve the optimizations mentioned in Section 4.2. From here onward, by “semi-

optimized Rsync”, we mean the scheme that combines two or more contiguous match-

ing blocks into one super-block. It does not necessarily produce the maximal super-

block. By “optimized Rsync” we mean our scheme that produces the maximal super-

block but without the application-level modifications.

As shown in Figure 5.7, the size of the delta script produced by either Rsync or

optimized Rsync depends on the block size used in the algorithm. Recollect that the

comparison is done at the granularity of a block. As expected, Figure 5.7 shows that

the size of the delta script is largest for Rsync and smallest for optimized Rsync.

Figure 5.7 also shows that as the block size increases, the size of the delta script

produced by Rsync and semi-optimized Rsync decreases till a certain point after which

it has an increasing trend. The size of the delta script depends on two factors: 1) the

number of commands in the delta script and 2) the size of the data in the INSERT

command. For Rsync and semi-optimized Rsync, for block size below the minima

104

 0

 5000

 10000

 15000

 20000

 20 40 60 80 100 120 140

D
el

ta
 s

cr
ip

t
si

ze
 (

b
yt

es
)

Block size (bytes)

Rsync
Rsync with superblock

Rsync with maximal superblock

Fig. 5.7. Delta script size versus block size

point, the number of commands is high because these schemes find lots of matching

blocks but not (necessarily) the maximal super-block. As block size increases in this

region, the number of matching blocks and hence the number of commands drops

sharply, causing the delta script size to decrease. However, as the block size increases

beyond the minima point, the decrease in the number of commands in the delta script

is dominated by the increase in the size of new data to be inserted. As a result, the

delta script size increases.

For optimized Rsync, there is a monotonic increasing trend for the delta script size

as block size increases. There are, however, some small oscillations in the curve, as a

result of which the optimal block size is not always one byte. The small oscillations

are because increasing the block size decreases the size of maximal super-blocks and

increases the size of data in INSERT commands. But sometimes the small increase in

the size of the data can contribute to reducing the size of the delta script by reducing

the number of COPY commands. Nonetheless, there is an overall increasing trend for

optimized Rsync. This has the important consequence that a system administrator

using Zephyr does not have to figure out the block size to use in uploading code

for each application change. She can use the smallest or close to smallest block size

and let Zephyr be responsible for compacting the size of the delta script. In all

105

further experiments, we use the block size that gives the smallest delta script for each

scheme—Rsync, semi-optimized Rsync, and optimized Rsync.

5.6.2 Size of delta script

The goal of an incremental reprogramming system is to reduce the size of the

delta script that needs to be transmitted to the sensor nodes. A small delta script

translates to less reprogramming time and energy due to fewer packet transmissions

over the network and small number of external flash writes on the node. Figure 5.8

and Table 5.1 compare the delta script produced by Deluge, Stream, Rsync, semi-

optimized Rsync, Optimized Rsync, and Zephyr. Table 5.1 also compares Zephyr

with ZephyrWOMetaCmds—the case where all application level modifications are

used except meta commands. For Deluge and Stream, the size of the information

to be transmitted is the size of the binary image, while for the other schemes it is

the size of the delta script. Deluge, Stream, Rsync, and semi-optimized Rsync take

up to 1987, 1324, 49, and 6 times more bytes than Zephyr, respectively. Note that

for cases belonging to moderate or large change, the application level modifications

of Zephyr contribute to significantly reducing the size of delta script compared to

optimized Rsync. Optimized Rsync takes up to nine times more bytes than Zephyr.

These cases correspond to function shifts in the software. As a result, application-

level modifications have great effect in those cases. In practice, these are probably the

most frequently occurring categories of changes in the software. Case 1 and Case G

are parameter change cases which do not shift any function. As a result, we find that

delta scripts produced by optimized Rsync without application-level modifications

are only slightly larger than the ones produced by Zephyr. Also, even for very large

software change cases (like cases 6, F, and C), Zephyr is more efficient compared to

other schemes. In summary, application-level modifications have the greatest effects

in moderate and large software change cases, a significant effect in the very large

106

Table 5.1
Comparison of delta script size of various approaches. Deluge, Stream
and Rsync represent prior work.

Deluge:Zephyr Stream:Zephyr Rsync:Zephyr SemiOptRsync:Zephyr OptRsync:Zephyr ZephyrWOMetaCmds:Zephyr

Case 1 1400.82 779.29 35.88 6.47 1.35 1.35

Case 2 85.05 47.31 20.81 11.75 7.79 1.99

Case 3 4.52 2.80 2.06 1.80 1.64 1.38

Case 4 4.29 2.65 1.96 1.72 1.57 1.30

Case 5 8.47 4.84 3.03 2.22 2.08 1.39

Case 6 1.83 1.28 1.14 1.11 1.07 1.05

Case 7 29.76 18.42 8.34 5.61 3.87 1.52

Case A 7.60 5.06 3.35 2.66 2.37 1.6

Case B 7.76 5.17 3.38 2.71 2.37 1.61

Case C 2.63 1.82 1.50 1.39 1.35 1.16

Case D 203.57 140.93 36.03 14.36 7.84 2.33

Case E 243.25 168.40 42.03 17.66 9.01 2.43

Case F 2.75 1.83 1.50 1.36 1.33 1.18

Case G 1987.2 1324.8 49.6 6.06 1.4 1.4

software change case (in terms of absolute delta size reduction) and a small effect on

the very small software change cases.

Comparison with other incremental approaches: Rsync represents the algorithm used

by Jeong and Culler [121] to generate the delta by comparing the two executables

without any application-level modifications. We find that [121] produces up to 49

times larger delta script than Zephyr. As mentioned above, in [122]’s approach, the

program memory is fragmented and used less efficiently than in Zephyr. Flexcup [123],

though capable of incremental linking and loading on TinyOS, generates high traffic

through the network because of large symbol and relocation tables. Also, Flexcup

is implemented only on an emulator whereas Zephyr runs on the real sensor node

hardware.

To describe function shifts, [87] augments the delta script with a patch list com-

mand—a list of {begin address, end address, offset}-tuples, each of which describes

the offset by which each function is shifted in the new version of the user application.

107

 0

 5000

 10000

 15000

 20000

 25000

 30000

Nu
mb

er
 of

 by
tes

Deluge
Stream
Rsync
Semi Optimized Rsync
Optimized Rsync
Zephyr

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

(a) TinyOS software change cases

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Nu
mb

er
 of

 by
tes

Case A Case B Case C Case D Case E Case F Case G

Stream
Rsync
Semi Optimized Rsync
Optimized Rsync
Zephyr

Deluge

(b) eStadium software change cases

Fig. 5.8. Size of data transmitted for reprogramming

More specifically, this command says that all functions which lie between {begin ad-

dress, end address} are shifted by the offset bytes in the new version. The patch list

command incurs an overhead of 2 + 6 ∗ count bytes (2 bytes for count—the number

of patch lists; 2 bytes each for begin address, end address, and offset). The patch

list command is useful for small software change scenarios where many functions are

shifted by the same offset and thus can be described by a few patch lists. However,

for many practical software change cases, different functions are shifted by different

offsets (e.g. software change cases 3, 4, 5, 6, 7, B, C, and F in our experiments). In

such cases, the overhead due to the patch list command can be significant because

108

of the increase in the number of patch lists required to express the shifts in all the

functions between the old and the new versions of the code.

The patch list command can also significantly increase the size of the delta script

(although patch list command can be thought of as a part of the delta script, we

categorize COPY, INSERT commands as delta script, and patch lists as patch list

command, for convenience of explanation). Note that in [87], when executing a

COPY command, a node checks for each word that it copies if the previous word

is the opcode of a patchable instruction—the instruction that uses function address.

If so, and if the copied word lies in the range covered by one of the entries in the

patch list, the node adds the corresponding offset to the copied word. However,

implementing this is difficult as well as architecture-dependent. This is because it

is not always possible to distinguish a patchable instruction by just looking at the

opcode in the binary executable. For example, while pushing a task in the task

queue, TinyOS uses ldi statements to load registers r24 and r25 with the address of

the task (a function). By just looking at the binary code, it is not possible to say

whether the operand of ldi instruction is a function address or say some constant.

As a result, implementation in [87] does not look for patchable instruction. Instead

it patches all binary words that lie in the {begin address, end address} range. As

a consequence, the node ends up performing many “mispataches” as acknowledged

by the authors. To correct these mispatches, [87] uses REPAIR commands (these

are used for other purposes also) in the delta script, thereby increasing the size of

the delta script. This is illustrated by the fact that for most of the software change

cases used in [87], the decrease in the size of the delta script is not as significant as

in our experiments. Furthermore, [87] assumes that the function address is always

preceded by an instruction opcode (for simplifying the identification of the patchable

instruction). This, however, is dependent on the microcontroller architecture and may

not be true for many architectures. For example, in ATmega128, as mentioned above,

the second operand of the ldi statement can be the function address. We believe that

Zephyr offers an elegant solution without all these complications and overhead.

109

Apart from these core differences, [87] does not present an implementation of a

complete incremental reprogramming system. They focus mainly on the generation

of the difference, and not on actual dissemination. Zephyr, on the other hand, is a

complete usable incremental reprogramming system. Furthermore, [87] presents an

evaluation of their system with very few software change scenarios, whereas in this

chapter, we present a comprehensive evaluation of Zephyr.

In the software change cases that we considered, the time to compile, link (with

the application-level modifications) and generate the executable file was at most 2.85

seconds, and the time to generate the delta script using optimized Rsync was at

most 4.12 seconds on a 1.86 GHz Pentium processor. These times are negligible com-

pared to the time to reprogram the network, for any but the smallest of networks.

Furthermore, these times can be made smaller by using more powerful server-class

machines. TinyOS applies extensive optimizations on the application binaries to run

it efficiently on the resource-constrained sensor nodes. One of these optimizations

involves inlining of several (small) functions. We do not change any of these opti-

mizations. In systems which do not inline functions, Zephyr’s advantage will be even

greater since there will be more function calls. Zephyr’s advantage will be minimal

if the software change does not shift any function. For such a change, the advantage

will be only from the optimized Rsync algorithm. But such software changes are

very rare, e.g. when only the values of the parameters in the program are changed.

Any addition/deletion/modification of the source code in any function except the one

which is placed at the end of the binary will cause all following functions to be shifted.

5.6.3 Testbed experiments

We perform testbed experiments using Mica2 [1] nodes for grid and linear topolo-

gies. For the grid network, the transmission range Rtx of a node is set such that
√

2d < Rtx < 2d, where d is the separation between the two adjacent nodes in any

row or column of the grid. The linear networks have the nodes with Rtx such that

110

Table 5.2
Ratio of reprogramming times of other approaches to Zephyr

Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Deluge:Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1

Stream:Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.54 2.23 1.46

Rsync:Zephyr 1.03 8.17 2.55 5.66 12.78 8.07 5.22 10.89 6.50 1.34 1.71 1.42

Optimized Rsync:Zephyr 1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

d < Rtx < 2d, where d is the distance between the adjacent nodes. Due to fluctuations

in transmission range, occasionally a non-adjacent node will receive a packet. In our

experiments, if a node receives a packet from a non-adjacent node, it is dropped, to

achieve a truly multi-hop network. This kind of software topology control has been

used in other works also [50,134]. A node situated at one corner of the grid or end of

the line acts as the base node. We provide a quantitative comparison of Zephyr with

Deluge [92], Stream [88], Rsync [121] and optimized Rsync without application-level

modifications. Note that Jeong and Culler [121] reprogram only nodes within one hop

of the base node, but we used their approach on top of a multi-hop reprogramming

protocol to provide a fair comparison. The metrics for comparison are reprogram-

ming time and energy. We perform these experiments for grids of size 2x2 to 4x4 and

linear networks of size 2 to 10 nodes. We choose four software change cases, one from

each equivalence class: Case 1 for Class 1 (SC), Case D for Class 2 (MC), Case 7 for

Class 3 (LC), and Case C for Class 4 (VLC). Note that in the evaluations that follow,

Rsync refers to the approach by Jeong and Culler [121].

Reprogramming time

Time to reprogram the network is the sum of the time to download the delta script

and the time to build the new image. The time to download the delta script is the

time interval between the instant t0, when the base node sends the first advertisement

111

 0

 100

 200

 300

 400

 500

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Class 1 (SC)

Rsync

Deluge

2x2 3x3 4x4
 0

 100

 200

 300

 400

 500

 600

Ti
m

e(
se

co
nd

s)

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Class 2 (MC)

Rsync

Deluge

 0

 100

 200

 300

 400

 500

Ti
m

e(
se

co
nd

s)

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 100

 200

 300

 400

 500

 600

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2x2 3x3 4x4

 0

 100

 200

 300

 400

 500

 600

 700

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 100

 200

 300

 400

 500

 600

 700

 800

Ti
m

e(
se

co
nd

s)

2Linear 4Linear 6Linear 8Linear 10Linear

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

 0

 100

 200

 300

 400

 500

 600

 700

Ti
m

e(
se

co
nd

s)

2Linear 4Linear 6Linear 8Linear 10Linear

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 100

 200

 300

 400

 500

 600

 700

 800

Ti
m

e(
se

co
nd

s)

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2Linear 4Linear 6Linear 8Linear 10Linear

Fig. 5.9. Comparison of reprogramming times for grid and linear networks.

112

 0

 2

 4

 6

 8

 10

 12

 14

Im
ag

e
re

bu
ild

 ti
m

e(
se

co
nd

s)

Optimized Rsync
Zephyr

Rsync

Class 1
 (SC)

Class 2
 (MC)

Class 3
 (LC)

Class 4
 (VLC)

Fig. 5.10. Time to rebuild image on the sensor node.

packet, to the instant t1 when the last node (the one that takes the longest time

to download the delta script) completes downloading the delta script. Since clocks

maintained by the nodes in the network are not synchronized, we cannot take the

difference between the time instant t1 measured by the last node and t0 measured by

the base node. To solve this synchronization problem, we use the approach of [50],

which achieves this with minimal overhead traffic.

Figure 5.9 compares reprogramming times of other approaches with Zephyr for dif-

ferent grid and linear networks. Table 5.2 compares the ratio of reprogramming times

of other approaches to Zephyr. It shows minimum, maximum and average ratios over

these grid and linear networks. As expected, Zephyr outperforms non-incremental re-

programming protocols like Deluge and Stream significantly for all the cases. Zephyr

is also up to 12.78 times faster than Rsync, the approach of Jeong and Culler [121].

This illustrates that the Rsync optimization and the application-level modifications

of Zephyr are important in reducing the time to reprogram the network. Zephyr is

also significantly faster than optimized Rsync without application-level modifications

for moderate, large, and very large software changes. In these cases, the software

changes cause function shifts. So, these results show that application level modifica-

113

tions greatly mitigate the effect of function shifts and reduce the reprogramming time

significantly. For the small change case where there are no function shifts, Zephyr,

as expected, is only marginally faster than optimized Rsync without application-level

modifications. In this case, the size of the delta script is very small (17 and 23 bytes

for Zephyr and optimized Rsync respectively) and hence there is little room for im-

provement. Since Zephyr transfers less information at each hop, Zephyr’s advantage

will increase with the size of the network. Figure 5.10 shows the time to rebuild

the new image on a node. It increases with the increase in the scale of the software

change, but is negligible compared to the total reprogramming time.

Reprogramming energy

The most important factors that contribute to energy consumption during repro-

gramming are radio transmissions, receptions, idle listening, and flash writes. By idle

listening, we mean the state when a node turns on its radio transceiver, but does

not transmit or receive any packet. Obviously, the energy cost due to radio trans-

missions and receptions are directly proportional to the number of packets that are

transmitted by all nodes in the network for reprogramming. As mentioned earlier,

the downloaded delta script is first stored in the external flash by each sensor node.

The new image, which is built using the delta script and the old image, is also stored

in the external flash. Then the new image is loaded from from external flash to the

flash program memory by the bootloader. Thus the number of flash program memory

accesses for loading the new image from external flash is independent of the number

of packets received by the sensor node, and is same for all reprogramming protocols

because ultimately each protocol is creating the same new version of the program.

However, the number of external flash accesses (to store the delta script) is directly

proportional to the number of packets received by the sensor node. Thus, the total

number of packets transmitted by all nodes in the network during reprogramming is

a good measure of the energy cost due to radio transmissions and receptions, as well

114

as flash writes. In this section, we first compare different protocols in terms of total

number of packets transmitted by all nodes in the network for reprogramming. Later

we will analyze idle listening energy cost.

Table 5.3
Ratio of number of packets transmitted during reprogramming by
other approaches to Zephyr

Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Deluge:Zephyr 90.01 215.39 162.56 40 204.3 101.12 12.27 55.46 25.65 2.51 2.9 2.35

Stream:Zephyr 53.76 117.92 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7

Rsync:Zephyr 2.47 7.45 5.38 6.66 38.28 21.09 3.28 12.68 6.69 1.50 1.78 1.60

Optimized Rsync:Zephyr 1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

Figure 5.11 and Table 3 compare the number of packets transmitted by Zephyr

with other schemes for grid and linear networks of different sizes. The number of

bytes transmitted by all nodes in the network for reprogramming by Deluge, Stream,

Rsync, and optimized Rsync is up to 215, 146, 38, and 22 times more than that

by Zephyr. The fact that Rsync:Zephyr>1 indicates that Zephyr is more energy

efficient than the incremental reprogramming approach of [121]. The application-level

modifications are significant in reducing the number of packets transmitted by Zephyr

compared to optimized Rsync without such modifications. Note that in cases like Case

7 and Case D (moderate to large change class), application-level modifications have

the greatest impact where the functions get shifted. Application-level modifications

preserve maximum similarity between the two images in such cases, thereby reducing

the reprogramming traffic overhead. In cases where only some parameters of the

software change without shifting any function, the application-level modifications

achieve a smaller reduction. But the size of the delta is already very small and hence

reprogramming is not resource intensive in these cases. Even for very large software

changes, Zephyr significantly reduces the reprogramming traffic.

115

 0

 2000

 4000

 6000

 8000

 10000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

 0

 2000

 4000

 6000

 8000

 10000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

2x2 3x3 4x4

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
um

be
r o

f p
ac

ke
ts Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 1 (SC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 2 (MC)

2Linear 4Linear 6Linear 8Linear 10Linear

 0

 2000

 4000

 6000

 8000

 10000

 12000

N
um

be
r o

f p
ac

ke
ts

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 3 (LC)

2Linear 4Linear 6Linear 8Linear 10Linear
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

N
um

be
r o

f p
ac

ke
ts

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

Class 4 (VLC)

2Linear 4Linear 6Linear 8Linear10Linear

Fig. 5.11. Comparison of number of packets transmitted during reprogramming.

116

As mentioned above, radio communication is a major source of energy consump-

tion during reprogramming. The energy cost due to radio communication can be

grouped into 3 categories: 1) Idle listening energy cost, E1: It is the energy con-

sumption due to nodes listening to the wireless medium when there is no packet

transmission in their neighborhood. 2) Energy cost due to transmission and recep-

tion of unnecessary packets, E2: By unnecessary packets, we mean a) the corrupt

packets, b) code packets that a node has already downloaded, and c) the code pack-

ets which a node does not store upon reception. Note that in Zephyr, like in Deluge,

a node downloads code packets in a monotonic order—it downloads packets of a page

x before packets of page y, for all x < y. This is done to avoid the state maintenance

overhead. 3) Energy cost due to transmission and reception of necessary packets, E3:

By necessary packets, we mean the code packets that a node stores upon reception.

The underlying MAC protocol affects energy costs E1, E2, and E3. Low power

listening (LPL) MAC protocols [135–137] cause the sensor nodes to put the radio

transceiver to sleep mode for most of the time and wake it up periodically for a short

period of time to sample the channel to check if there is any radio transmission in

their neighborhood. Idle listening energy cost is significantly reduced by duty-cycling

LPL MACs because the time duration for which the radio is turned on without any

packet transmission or reception is limited to short channel sampling periods. The

asynchronous LPL MACs (like BMAC [136], XMAC [135]) avoid the need for time

synchronization among nodes by having the transmitter transmit a (long) preamble

sequence before each packet transmission such that the preamble duration is at least

as long as the sleep period of the nodes1. The long preamble ensures that when a

node wakes up to sample the channel, it is guaranteed to to hear the preamble. When

a node hears a preamble, it turns its radio on until the packet is received. Thus the

1In some MAC protocols like XMAC, the preamble can be made shorter than than the sleep period
for unicast packets. But for broadcast packets, the preamble should be at least as long as the sleep
duration. Since most of the packet transmissions during reprogramming are of broadcast nature
(except request packets of advertisement-request-data handshake), we assume that the preamble
length is at least as long as the sleep period.

117

energy cost is incurred not only during packet transmission and reception, but also

during preamble transmission and reception.

The energy costs E2 and E3 are due to transmission and reception of both pream-

bles and actual packets (unnecessary packets for E2 and necessary packets for E3).

Note that E2 also includes the energy cost due to a node keeping its radio on after

receiving a preamble for a packet that it later finds it is not interested in. Let NP

be the total number of packets transmitted by all nodes in the network during repro-

gramming. It is the sum of all necessary and unnecessary packets. Clearly, the energy

costs E2 and E3 are directly proportional to NP . Thus the total number of packets

transmitted by all nodes in the network during reprogramming provides a measure of

E2 and E3. From figure 5.11, we see that Zephyr incurs significantly low energy costs

E2 and E3 compared to other protocols.

Each node spends some time (say t) in transmitting and receiving necessary and

unnecessary packets. t also includes preamble duration. During rest of the time

period (say, TR − t, where TR is the total reprogramming period), the node samples

the channel periodically (without detecting radio transmission in its neighborhood)

according to its duty-cycling schedule. Thus, the reprogramming period TR provides

a measure of idle energy cost E1. Figure 5.9 shows that Zephyr incurs significantly

less idle energy cost E1 compared to other protocols.

Next we present a simplified mathematical analysis to demonstrate the qualitative

argument that we presented above—the total number of packets transmitted by all

nodes in the network is a measure of the energy costs E2 and E3, and the reprogram-

ming period is a measure of the energy cost E1. To simplify the analysis, we consider

a single hop network. Let this network takes TR time to be reprogrammed. Suppose

that NP is the total number of packets transmitted by all nodes in the network during

reprogramming. The upper bound 2 of the time period t spent by each node in the

2This is an upper bound because a) a node may not turn its radio on for the entire preamble duration
if it detects the preamble at an instant other than the exact start of the preamble, and b) during
the periodic channel sampling, a node may miss the preamble because of bad link conditions.

118

network for receiving and transmitting necessary and unnecessary packets (including

preamble) is

t = NP ∗ tp (5.1)

where tp is the time to transmit a single packet. tp is given by

tp = tPR + tDATA (5.2)

where tPR is the time to transmit the preamble and tDATA is the time to transmit the

actual (data) packet. To calculate tPR and tDATA, let us consider XMAC, which

is the LPL MAC used by TinyOS. As mentioned above, in LPL MAC schemes,

before transmitting a packet, each node transmits a preamble which is at least as

long as the sleep period to ensure that its neighbor receives the preamble and hence

keeps its radio on to receive the actual data packet. In XMAC, the length of the

preamble is reduced (for unicast packets) because during the preamble period, a

sender node transmits a series of strobe packets containing the receiver’s address with

a gap between the successive strobe packets. When the receiver node wakes up and

detects the strobe packet, it sends an ACK during the gap between two successive

strobe packets. Upon receiving the ACK, the sender node stops transmitting the

strobe packets and immediately sends the actual data packet. Note that during

reprogramming, most of the packets are broadcast (except request packets). Hence,

in XMAC, the preamble strobe packets have to be sent for the entire sleep period to

make sure that all neighbors receive the broadcast packet. As a result, the preamble

duration (tPR) in XMAC is equal to the sleep period. The sleep period depends upon

duty cycle and time required by the radio transceiver to sample the channel. Let tcs

be the channel sampling period. Since duty cycle is given by dc = tcs/(tcs + tPR), thus

the preamble period is given by

tPR =
tcs(1 − dc)

dc
(5.3)

119

tcs should be long enough to ensure that it does not lie in the gap between the preamble

strobe packets, and thus the receiver does not miss the preamble strobe packet. For

this, tcs should be slightly longer than the gap between the strobe packets. Let us

approximate tcs as follows:

tcs = TACK + TTA (5.4)

where TACK is the time required by the receiver to transmit the ACK packet and TTA

is the turnaround time—time required by the radio transceiver to switch from receive

mode to transmit mode. Time to transmit actual data packet depends on the size of

the packet and the data rate supported by the radio transceiver. Assuming packet

size=36 bytes (the default maximum packet size in TinyOS) and data rate=250kbps

(for IEEE 802.15.4 based radios like CC2420), time to transmit a single data packet is

1.152 ms. Thus total time to transmit a single packet, tp, is the sum of the preamble

and actual data packet durations.

tp = 1.152 ∗ 10−3 +
(TACK + TTA)(1 − dc)

dc

(5.5)

Substituting tp from equation 5.5 in equation 5.2, we get t, the time spent by each

node for receiving and/or transmitting necessary and unnecessary packets. Thus the

energy costs E2 and E3 incurred by all nodes in the network for transmitting and

receiving necessary and unnecessary packets is

E2 + E3 = t ∗ P ∗ N (5.6)

where P is the transmission or receive power and N is the total number of nodes

in the network. Note that for most of the currently used radio transceivers like

CC2420 [138], the transmit and receive powers are almost equal. For example, for

CC2420, transmit power is 52.2 mW and receive power is 56.4 mW.

TR − t is the time period spent by nodes in not receiving or sending packets.

During this time it incurs idle listening energy cost due to periodic sampling of the

wireless medium. The idle listening energy cost E1 for N nodes is given by

120

Table 5.4
Parameter values used for analysis, based on CC2420 datasheet

Parameter Value

Data rate 250 Kbps (for IEEE 802.15.4 radio)

TTA 192 us

TACK 352 us (Time to transmit 11 byte ACK, based on IEEE 802.15.4 standard

P 52.2 mW

E1 = (TR − t) ∗ P ∗ dc (5.7)

We conduct testbed experiments to find reprogramming time and total number of

packets transmitted by all nodes in the network during reprogramming for a 5-node

single-hop network of mica2 nodes. Figure 5.12-(a) and (b) show reprogramming time

and number of packets transmitted, respectively, for four software change cases, one

from each equivalence class: Case 1 for Class 1 (SC), Case D for Class 2 (MC), Case

7 for Class 3 (LC), and Case C for Class 4 (VLC). We see that Zephyr significantly

reduces reprogramming time and number of packet transmissions. We then use the

mathematical analysis presented above to find the transmission and reception energy

cost (E2 + E3) and idle listening energy cost (E1). Parameter values used for our

computations are shown in table 5.4. All of these values are computed using CC2420

datasheet [138]. We use 2% duty cycle value in our calculations. The results are plot-

ted in Figure 5.12-(c) and (d). As expected, they show that transmission/reception

and idle listening energy costs are directly proportional to the total number of packets

transmitted by all nodes in the network during reprogramming and reprogramming

time, respectively.

121

 0

 20

 40

 60

 80

 100

Ti
m

e
(s

ec
on

ds
)

Deluge
Stream
Rsync

Zephyr

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

(a)

 0

 200

 400

 600

 800

 1000

N
um

be
r o

f p
ac

ke
ts

Deluge
Stream
Rsync

Zephyr

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Id
le

 li
st

en
in

g
en

er
gy

, E
1

(m
J)

Deluge
Stream
Rsync

Zephyr

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

Tr
an

sm
is

si
on

/re
ce

pt
io

n
en

er
gy

, E
2+

E
3

(m
J)

Deluge
Stream
Rsync

Zephyr

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

(d)

Fig. 5.12. Comparison of Zephyr with other approaches for a 5−node
single hop network. (a) Reprogramming time, (b) Number of pack-
ets transmitted during reprogramming, (c) Idle Energy (E1), and (d)
Receive/Transmit Energy (E2 + E3). MAC duty cycle is 2%

122

 0

 50

 100

 150

 200

 250

 300

In
di

re
ct

io
n

ta
bl

e
si

ze
 (

by
te

s)

Old software

New software

Software change cases
1 2 3 4 5 6 7 A B C D E F G

Fig. 5.13. Size of indirection table for various software change cases

5.6.4 Size of Indirection Table

Zephyr needs to allocate extra space in program memory for storing the indirection

table. Figure 5.13 shows the size of the indirection table for various software change

cases mentioned above. The size of the indirection table is directly proportional to

the number of functions in the software.

5.6.5 Simulation Results

We perform TOSSIM [127] simulations on grid networks of varying size (up to

14x14) to demonstrate the scalability of Zephyr and to compare it with other schemes.

Figure 5.14 shows the reprogramming time and number of packets transmitted dur-

ing reprogramming for Case D (Class 2 (MC)). We find that Zephyr is up to 92.9,

73.4, 16.1, and 6.3 times faster than Deluge, Stream, Rsync [121], and optimized

Rsync without application-level modifications, respectively. Also, Deluge, Stream,

Rsync [121], and optimized Rsync transmit up to 146.4, 97.9, 16.2, and 6.4 times

more packets than Zephyr, respectively. Most software changes in practice are likely

to belong to this class (moderate change), and we see that application-level modifica-

tions significantly reduce the reprogramming overhead. Zephyr inherits its scalability

property from Deluge since none of the changes in Zephyr (except the dynamic page

123

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Ti
m

e(
se

co
nd

s)

6x6 8x8 10x10 12x12 14x14

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

(a)

 0

 50000

 100000

 150000

 200000

N
um

be
r o

f p
ac

ke
ts

6x6 8x8 10x10 12x12 14x14

Stream

Optimized Rsync
Zephyr

Rsync

Deluge

(b)

Fig. 5.14. Simulation results for (a) reprogramming time and (b)
number of packets transmitted during reprogramming (Case D, i.e.
Class 2 (MC))

size) affects the network or is driven by the size of the network. All application-level

modifications are performed on the host computer and the image rebuilding on each

node does not depend upon the number of nodes in the network.

5.6.6 Best and Worst Case Scenarios

In the best case, when there is no change in the software, Zephyr needs a single

COPY command in the delta script as follows:

COPY 0 <image_size>

Here 0 is the offset in the old image. It says “copy image size number of bytes from

old offset 0 to the new image”. Note that we do not need to mention the offset

in the new image as mentioned in Section 5.4.3. This delta script takes 5 bytes.

However, this best case example is just hypothetical because when there is no change

in the software, there is no need for (incremental) software update. So, we do not

include this hypothetical case scenario in the experimental evaluation section. The

small change (SC), moderate change (MC), large change (LC), and very large change

(VLC) software change cases evaluated in this chapter represent the realistic spectrum

124

of the best case to the worst case scenarios, with SC representing the best case and

VLC representing the worst case. Furthermore, we believe that most of the software

change cases are of SC or MC types and thus they represent the average cases. Ideally,

the worst case scenario would be the one where the two versions of the software are

completely different. However, in practice, some portions of the software (e.g. driver

code, core operating system code, etc) rarely change, or even if they change, they are

very rarely entirely different from the previous version. So, the VLC cases presented

in this chapter are good measures of practical worst case scenarios for Zephyr. In the

hypothetical worst case example where the two versions of the software are completely

different, Zephyr uses the following command in the delta script:

INSERT <software_size> <entire_software_image>

In this hypothetical example, the size of the delta script in Zephyr is 3 bytes more

than the size of the binary image. The entire binary image is what would be sent by

earlier works, such as Stream [88].

5.7 Analysis

The main idea of function call indirections is that if the positions of NS functions

have changed in the new software and those shifted functions are called CS times in

the new program code, Zephyr’s technique of function call indirections causes only

NS function calls in the indirection table to be different between the two versions

of the software. On the other hand, CS function call statements are different in the

baseline case. Typically CS >> NS and thus function call indirection reduces the size

of the delta script significantly. The effectiveness of function call indirection depends

on the number of times the shifted functions are called in the new program.

In this section, we analyze the effect of function call indirection and the meta-

commands in reducing the size of the delta script. First we define a few terms. Two

function call statements in the old and new programs are said to be identical if they

call the same function. The target addresses in the identical function call statements

125

may or may not be same. We use an attribute called Preserved Similarity Index (PSI)

to quantify the amount of similarity preserved in the new version of the software with

respect to the old version due to function call indirections. We define PSI as

PSI =
CS

C
(5.8)

where CS is the number of identical function call statements in the new software

that would have different target addresses than those in the old software (due to the

change in the position of the corresponding functions) if function call indirections

were not used. C is the total number of identical function call statements in the

old and the new images. Note that CS ≤ C and hence the PSI values lie between 0

and 1. A high PSI value means that the amount of similarity preserved by function

call indirections is also high. For example, if PSI = 1, then without function call

indirections, all the identical function call statements in the old and new images use

different target addresses whereas with function call indirections, they have same

target addresses (except the ones in the indirection table). Note that PSI=0 means

that even without function call indirections, the identical call statements would have

same target addresses because the locations of the corresponding functions are not

changed by the software modification. Hence, in this case, there is no advantage due

to Zephyr’s function call indirections. Figure 5.15 shows the PSI values for different

software change cases discussed earlier. For Case 1 and Case G where only a single

parameter in the software is changed, PSI=0 as expected. Note that for most of the

cases, PSI has a very high value. This suggests that most of the software change cases

cause many functions to be shifted and hence without function call indirections, the

number of identical function call statements with different target addresses in the two

versions of the software is high. This causes the delta script to be large. This explains

the observation that byte-level comparison alone is not sufficient and application-level

modifications are necessary to create a small delta script.

As shown in Figure 5.16, let us consider two code segments, one in the old and

one in the new new version of the software, which are identical except that the target

addresses of n identical function call statements are different. Without function call

126

 0

 0.2

 0.4

 0.6

 0.8

 1

P
S

I

Cases
1 2 3 4 5 6 7 A B C D E F G

Fig. 5.15. Preserved Similarity Index (PSI) for different software change cases

.

.

.

call fun1<0x8000>

call fun2<0x8100>

call funn<0x8200>

.

.

.

call fun1<0x9000>

call fun2<0x9100>

call funn<0x9200>

COPY

INSERT

COPY

INSERT

INSERT

COPY

COPY

Old image New image

Fig. 5.16. Without function call indirections, the difference between
the identical code segments require n + 1 COPY commands and n
INSERT commands in the delta script.

indirections and metacommands, we need (n + 1) COPY commands and n INSERT

commands to describe the difference between these code segments. Thus the delta

script for these two identical code segments is (n + 1) ∗ 7 + n ∗ 7 = 14n + 7 bytes long

(since each COPY and INSERT command takes 7 bytes assuming that the target

addresses of the function call statements is 2 bytes). With function call indirections,

127

Zephyr needs only one COPY command which requires only 5 bytes (if we do not use

newOffset as explained in Section 6.3). However, Zephyr also needs to describe, in

the delta script, the difference between the corresponding segments in the indirection

table. With the REPEAT command, this can be done with 3 + 2n bytes. Note

that the CWI command is not necessary in this context. Thus Zephyr saves 12n − 1

bytes compared to the scheme that uses only byte-level comparison without function

call indirections and metacommands. In other words, function call indirections and

metacommands decrease the size of the delta script by approximately 12 times the

number of times the shifted functions are called in the new program code. To evaluate

the effect of function call indirections only (without metacommands), let us assume

that the base line case takes 5 bytes each for COPY and INSERT commands (i.e.

newOffset is not used). Then the delta script for these identical code segments takes

(n + 1) ∗ 5 + n ∗ 5, whereas Zephyr takes 5 bytes for COPY command and 3 + 2n

bytes for the REPEAT command. Thus function call indirections save 8n − 3 bytes

compared to the scheme that uses only byte-level comparison without function call

indirections. Note that these savings are the worst case figures, since the number of

function references are generally higher than the number of functions. As a result,

the REPEAT command needs less than 3 + 2n bytes in Zephyr.

5.8 Conclusions

In this chapter, we presented a multi-hop incremental reprogramming protocol

called Zephyr that minimizes the reprogramming overhead by reducing the size of the

delta script that needs to be disseminated through the network. We use techniques like

function call indirections to mitigate the effect of function shifts for reprogramming of

sensor networks. Our scheme can be applied to systems that do not provide dynamic

linking on the nodes (like the standard release of TinyOS), as well as to incrementally

upload the changed modules in operating systems like SOS and Contiki that do

provide the dynamic linking feature. Our experimental results show that for a large

128

variety of software change cases, Zephyr significantly reduces the volume of traffic that

needs to be disseminated through the network compared to the existing techniques.

This leads to reductions in reprogramming time and energy. As future work, we are

investigating the use of multiple nodes as the source of the new code instead of a

single base node to further speed up reprogramming.

129

6. HERMES: MITIGATING THE EFFECTS OF

VARIABLE RELOCATIONS FOR INCREMENTAL

REPROGRAMMING

In the previous chapter, we presented an incremental reprogramming protocol called

Zephyr that transfers the difference between the old and new versions of the software,

instead of transferring the entire new software. Zephyr increases the similarity be-

tween the two versions of the software by using one level of indirection for function

calls to mitigate the effects of function shifts. Each function call is redirected to a

fixed location in the program memory where the actual call to the function is made. In

this chapter, we identify two issues with Zephyr in particular and incremental repro-

gramming in general — 1) Function call indirections decrease the program execution

speed. Although one such indirection increases the latency of a single function call

by only few clock cycles (e.g. 8 clock cycles on the AVR platform [139]), the increase

in latency accumulates as the application executes repeatedly in a loop. Increase

in latency in performing processing tasks means less amount of time for the sensor

nodes to sleep causing the energy consumption to increase and network lifetime to

decrease. 2) Function call indirections do not handle the increase in delta size due to

movement of the global data variables. As the user software is changed, positions of

the global variables may change and the instructions which refer to those variables

may change as well between the two versions of the software. This causes a huge

increase in the size of the delta. For example, for a wide range of software change

cases that we experimented with, we found that the global variable shifts increase

the delta size by 1369.56% on average. The increase in the size of the delta due to

the relocation of the global variables depends on the number of global variables that

are shifted in memory due to software modification and the number of instructions

that refer to the shifted variables. From our experiments, we find that the practical

130

 New user
application

 Old user
application

Function call
 indirection

Global variable
 placement

Application level modifications

Byte level
comparison

Delta
script

 Delta
distribution
 stage

Delta script
 downloaded
 by nodes

 Image
rebuild
and load
 stage

 Old
application

 New
application

Executed on host computer

Executed on sensor nodes

Delta genration steps

Fig. 6.1. Overview of Hermes: The stages with dashed rectangles are
the ones which are introduced or modified by Hermes.

software changes generally cause many global variables to be shifted. Furthermore,

compared to function shifts, global variable shifts cause the delta to be much larger

because the frequency of the global variable references in the program code is gener-

ally much larger than that of function calls. This translates to proportionate increase

in the time and energy required to reprogram the network. These problems exist in

all protocols that use function call indirections and in all existing reprogramming

protocols.

In this chapter, we present a fully functional incremental reprogramming protocol

called Hermes (messenger of gods, in Greek mythology) which solves the problems

mentioned above. It uses indirection table to mitigate the effects of function shifts

and performs local optimizations at the node to avoid the latency caused by such

indirection. Thus, function call indirections are used to reduce the size of the delta

that is transferred wirelessly, while efficient code, without indirections, is executed,

after some local transformations. Hermes also reduces the size of delta significantly by

pinning down global variables to existing locations. We implement Hermes in TinyOS

[14] and demonstrate it on real multi-hop testbeds as well as using simulations. Our

experiments show that Deluge [92], Stream [88], protocol by Jeong and Culler [121],

and Zephyr [90] need to transfer up to 201.41, 134.27, 64.75 and 62.09 times more

bytes than Hermes, respectively.

131

6.1 Overview of Hermes

Figure 6.1 is the schematic diagram showing various stages of Hermes. As seen

from the figure, the overall structure of Hermes is similar to Zephyr with some extra

stages added to avoid latency due to function call indirections and eliminate the effect

of global variable shifts. First, Hermes performs two application level modifications

on the old and new versions of the software — one to mitigate the effect of function

shifts (like in Zephyr) and the other to eliminate the effect of global variable shifts.

Then the two executables are compared at the byte level using an optimized Rsync

algorithm [90] to produce the delta script, which is wirelessly to all the nodes in the

network using the delta distribution stage. Once the nodes download the delta script,

they rebuild the new software using the old software and the received delta script.

The sensor nodes run the newly rebuilt software by using bootloader to load it in

the program memory. During the image load stage, Hermes avoids the funnction call

indirections and consequently the latency due to such indirections. In the following

sections, We describe the stages of Heremes that are different than Zephyr.

6.1.1 High-level idea of Hermes

The basic idea behind application level modifications is to mitigate the structural

changes in the user program caused by the modification of the software so that the

similarity between the old and new software is preserved and a small delta script is

produced. Apart from function shifts, the other structural change caused by software

modification is the global variable shifts. These result in all the instructions that refer

to those variables to change between the two versions of the software. Note that local

variables can also get shifted due to change in the software, but this does not cause

the instructions that refer to these variables to change. To understand this, let us

see how different variables are stored in RAM. As shown in Figure 6.2-a, initialized

global variables are stored as .data variables in RAM followed by uninitialized global

variables which are stored as .bss variables. The local variables are stored in stack

132

iv1
iv2

ivn
uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

iv1
ivn+1

ivn
uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iv2

iv1
iv2

ivn

uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iglobStruct

uglobStruct

iv1

ivn

uv1

.

.

.

.

.

.

uv2

uvn

stack

RAMEND

heap

.data
section

.bss
section

iv2

iglobStruct

uglobStruct

ivn+1Gap
Gap

 Shifted
 global
variables

(a) (b)

(c) (d)

.data
section

.bss
section

heap

Fig. 6.2. Baseline RAM structures for (a) old and (b) new applica-
tions. RAM structures for corresponding (c) old and (d) new appli-
cations using Hermes.

which grows upward from the end of RAM. Since the local variables are referred to

using the addresses relative to the stack pointer, their exact locations in RAM do not

affect the size of the delta script.

To see the severeness of the global variable shifts, consider an example where a

global variable is added to the Blink application. In this case, the size of the delta

script produced by using only indirection table is 6090 bytes. This is disproportion-

ately larger than the actual amount of change made in the software. The size of the

delta script depends on the number of global variables that are shifted and the number

of instructions that refer to those shifted variables. So, a mechanism to mitigate the

effects of global variable shifts should be a very important component of application

level modifications to make the delta script size proportional to the actual amount of

change made in the software.

133

It should be noted that the actual order of the global variables in RAM is deter-

mined by the compiler implementation, not by the order in which they are declared

in the user program. So the programmer has no control over the placement of the

global variables in RAM. Since the location of global variables in RAM is dependent

on the compiler specifics, one solution is to change the compiler itself and place the

global variables such that the similarity in positions of the variables between the old

and the new versions is maximized. But this calls for a complex modification to the

core of a compiler, which in turn makes the solution difficult to port.

6.1.2 Placement of global variables

Since we desire a compiler-independent solution, Hermes uses the fact that mem-

bers of a structure are placed in the same order in RAM as they are declared within

the structure. Hermes adds one more stage (Structure generator) to the executable

building process. If this is the first time software is being installed on the sensor

nodes (i.e. no old software exists), this stage scans through the application source

files and transforms the initialized global variables into members of one structure,

called iglobStruct, and uninitialized global variables into members of another struc-

ture, called uglobStruct. This stage also replaces instructions that refer to the global

variables by the instructions that refer to them as the corresponding members of these

structures. When the software is modified, the structure generator scans through the

new software to find the global variables. When such variable is found, it checks if

that variable is present in the old software. If yes, it places that variable as a member

of the corresponding structure (iglobStruct or uglobStruct) at the same slot in that

structure as in the old software. Otherwise, it makes a decision to assign a slot in

the corresponding structure for that variable (call it a rootless variable), but does

not yet create the slot. After assigning the slots for the existing global variables, it

checks if there are any empty slots in the new software. These would correspond to

variables which were present in the old software, but not in the new software. If there

134

are empty slots, Hermes assigns those slots to the rootless variables. If there are still

some rootless variables without a slot, then the corresponding structure is expanded

to accommodate the rootless variables. Thus, both these structures are naturally

garbage collected and the structures expand on an as-needed basis. For example,

let default RAM structures for old and new applications be as shown in Figure 6.2-

a and Figure 6.2-b respectively. The old application has initialized global variables

iv1, iv2, ..., ivn in the .data section and uninitialized global variables uv1, uv2, ..., uvn in

the .bss section. Let a single initialized global variable ivn+1 be added to .data section

due to the modification in the software and the compiler places it after iv1 (Figure

6.2-b). As a result, global variables iv2, iv3, ..., ivn, uv1, uv2, ...uvn are shifted to new

positions in RAM causing all the instructions in program memory that refer to these

shifted variables to vary between the two versions of the application. This results in

a large delta script. Hermes uses the two structures, iglobStruct and uglobStruct, to

put .data and .bss variables respectively as shown in Figure 6.2-c for the old appli-

cation. Hermes also leaves some space between .data and .bss sections to allow the

former to grow with less chance of the latter being straddled which would cause an

undesirable shift in the uninitialized global variables. In Section 6.4, we discuss how

Hermes avoids this gap. In the new application (Figure 6.2-d), Hermes places the

added variable ivn+1 at the end of the .data section so that the variables which are

common between the two versions of the application are located at the same locations

in RAM. So the instructions referring to the global variables that exist in both the

versions do not change resulting in a small delta script.

These changes in Hermes are transparent to the user. She does not need to change

the way she programs. Hermes applies these changes during the executable generation

process when the user invokes program compilation.

With this approach, the size of the delta script produced by Hermes for the case

where one global variable was added to Blink application is 156 bytes compared to

6090 bytes when only indirection table is used (as in Zephyr). In other words, with

the addition of the structure generator to the application level modification stage, the

135

size of the delta script is significantly reduced making it proportional to the actual

amount of change made in the software.

6.2 Image rebuild and load stage

For wirelessly distributing the delta script, Hermes uses an approach similar to

that of Zephyr. After the nodes download the delta script, they rebuild the new

image using the script (stored as image 1 in the external flash) and the old image

(stored as image 2 in the external flash). The image rebuilder stage consists of a delta

interpreter which interprets the COPY command by copying the specified number of

bytes from the specified location in the old image to the specified location in the new

image. All these locations are specified in the COPY command of the delta script.

The interpreter inserts the bytes present in the INSERT command at the specified

location in the new image. The new image is stored as image 3. The bootloader then

loads the new software from image 3 of the external flash to the program memory

(Figure 6.3). In the next round of reprogramming, image 3 becomes the old image

and the newly rebuilt image is stored as image 2. Next we describe the processing at

the bootloader when creating the executable image.

Avoiding latency due to indirection table: As mentioned earlier, Hermes uses Zephyr’s

approach of function call indirections to mitigate the effects of the function shifts. Use

of one extra level of indirection increases the latency of the user program. Though it

might look like one such indirection increases the time taken for one function call by

only few clock cycles (e.g. 8 clock cycles for the AVR platform), it should be noted

that the increase in latency accumulates over time. This is especially true for sensor

networks where applications typically run in a loop — sample the sensor, process the

sensed data, send data to some sink node, and then repeat the same process. Many

functions are called in each iteration of the loop and the latency increases over time.

To solve this problem, we observe that there are two conflicting requirements: we

need indirection table to reduce the size of the delta script and we need to remove

136

Reprogramming
 component

 Delta script

Old application
 (v1)

Indirection table
 for image-2

image-0

image-1

image-2

New application
 (v2)

image-3

 ...
 ...

call loc1;
 ...
 ...

loc1: call fun1;
 ret;
loc2: call fun2;
 ret;

...

...

locn: call funn;
 ret;

Indirection
 table for
 image-3

Unused part

External Flash

Program
memory

bootloader

 New
application
 (v2’)

 Read new
application

 Load new
application
 avoiding
indirection
 table Image

Rebuilder

Fig. 6.3. Image rebuild and load stage. The right side shows the
structure of external flash in Hermes.

any indirection for optimized execution speed. We solve this by having the sensor

nodes store the application with indirection table in the external flash, but we change

the bootloader to avoid using indirection table. As shown in Figure 6.3, when the

bootloader loads the new image (image-3) from external flash to program memory,

it eliminates the indirection by using the exact function address from the indirection

table. For example, in Figure 6.3, when the bootloader reads call loc1, it finds from

the indirection table that the actual target address for this call instruction is fun1.

So when writing to program memory, it writes call fun1 instead of call loc1. Thus as

shown in Figure 6.3, the application image in program memory (v′
2) is different from

that in the external flash (v2) in that it does not use indirection table. In this way, the

sensor nodes still possess the program image with the indirection table in the external

flash which helps to rebuild the new image in future, and yet the currently running

instance of the program image does not use the indirection table and is thus optimized

for execution speed. With this, we put forward a new idea for reprogramming sensor

nodes — since radio transmissions are the most expensive operations, optimize for

the transfer and let the sensor nodes perform some inexpensive local operations to

optimize for execution speed.

137

6.3 Failure Handling

In this section, we discuss one of the problems associated with all incremental

reprogramming approaches, which, to the best of our knowledge, has not been con-

sidered by any previous work. Let us consider a situation where a node n1 (or a set

of nodes) goes into a disconnection state for some time. A disconnection state means

all the links of a node have failed, in a transient manner. In practical sensor network

deployments, nodes may get disconnected from the rest of the network for some time

due to various reasons, such as time-varying nature of wireless channels, changing

environmental conditions, transient software or hardware failures, battery outages,

etc.

Let ∆i,i+1 represent the delta script that can be used to build the application code

of version vi+1 from the code of version vi, i.e. vi + ∆i,i+1 = vi+1. Before going to

the disconnection state, let the node n1 had vj version of the application code. When

n1 comes out of disconnection state, let us suppose that it missed ∆j,j+1, ..., ∆k−1,k

versions of the delta script, where k − j ≥ 1. In other words, n1 missed one or

more incremental code updates while it was in the disconnection state. After coming

out of disconnection state, n1 needs vk−1 version of the application code and ∆k−1,k

version of the delta script to build the code of version vk (vk−1 + ∆k−1,k = vk). It can

download ∆k−1,k from its neighbors. However, n1 does not possess vk−1 version of

the user application. Thus it cannot build the latest version of the application. Note

that this is a correctness problem, not only a performance issue.

Hermes provides the following intuitive solution to this problem. Note that the ac-

tual dissemination of the delta script occurs using 3-way handshake of advertisement-

request-data as in Deluge [92]. Nodes periodically advertise their metadata consisting

of the version number of the images that they currently possess. When a node receives

an advertisement message with ∆i−1,i version of the delta script, it checks if it has

∆i−2,i−1 version of the delta script. If yes, then as usual it requests the ∆i−1,i version

of the delta script (i.e. image-1), downloads it, and rebuilds the new image using the

138

downloaded delta script and the old image (version vi−1). Otherwise if it has ∆j−1,j

version of the delta script and i − j > 1, then instead of requesting the delta script,

it requests the entire image of the new application. Note that this approach works

well even if a cluster of nodes in a geographical vicinity misses one or more recent

delta script downloads. Some of those out-of-date nodes may not have any up-to-date

neighbor. But as long as at least one out-of-date node has a functioning link with

at least one up-to-date node, all the out-of-date nodes will eventually get the latest

version of the entire image.

Obviously downloading the entire new image is more costly than downloading just

the delta script. But Hermes compromises performance for correctness. However,

it should be noted that the excessive radio transmissions for downloading the entire

program image are localized only in the neighborhood of the node(s) which has missed

n recent code updates.

6.4 Avoiding empty space between .data and .bss sections

One drawback of the scheme outlined above is that we need to leave some empty

space between .data and .bss variables in RAM to allow for .data variables to grow

in future. If this space is too small, the probability of .data variables extending

beyond the empty space when the software is modified becomes high, causing the

.bss variables to shift. As a result, the delta script becomes large. To avoid this

situation, we need to leave sufficiently large space between .data and .bss variables in

RAM. But RAM is a limited resource on the sensor nodes. For example, mica2 and

micaz motes have 4KB RAM. Next we explain how we solve this problem in Hermes.

One possible soultion is to leave a large space between .data and .bss sections

while compiling the application on the host computer, generate the delta script on

the host computer, distribute the delta script to all the sensor nodes in the network

and change the bootloader running on the sensor nodes to avoid that space. When

the bootloader loads the application from external flash to the program memory, it

139

can change the instructions that refer to .bss variables by subtracting gapSize from

the addresses used by these instructions where gapSize is the size of the empty space

between .data and .bss variables. Because of the complex addressing schemes on

the common sensor node platforms, an algorithm with some control flow analysis is

needed. Given the tight computational and memory constraints of the sensor nodes,

this may not be feasible.

To solve this problem, Hermes uses two different approaches, respectively for

Von-Neumann (e.g. msp430 platform [2]) and Harvard (e.g. AVR platform [139])

architectures. In Von-Neumann architecture, a single bus is used as the instruction

and the data bus. Program memory (where program code is stored) and RAM (where

global variables, stack and heap are stored) share the same logical address space and

therefore the same mode for addressing the two kinds of memory. As a result, we

can move .bss variables from RAM to program memory and avoid the space between

the .data and .bss variables in RAM. We implemented this approach on TMote [3]

(msp430 platform) sensor nodes. Note that program memory is larger than RAM

on the sensor nodes (e.g. TMote has 10KB RAM and 48KB program memory).

Reprogramming protocol that we use occupies only about 25KB of program memory

and hence enough space is available for .bss variables in program memory.

In Harvard architecture, program memory and RAM lie in separate address spaces.

So, if we move .bss variables to program memory, we need to change all the instruc-

tions that use data bus to refer to .bss variables with different addressing modes to

use the instruction bus instead. This increases the complexity of the implementation.

Furthermore, even if .bss variables are stored in program memory, we can write to

those locations only from restricted areas of the program memory (e.g. bootloader

section) due to memory protection. This would disallow references to the .bss vari-

ables from general-purpose user programs. Thus for Harvard architecture, when the

application is compiled on the host computer, Hermes leaves a small space between

the two sections in RAM. If .data section expands beyond this space, we move only

those .bss variables which are straddled by the .data section expansion to the end of

140

the .bss section. For our mica2 [1] experiments, we leave an empty space of 10 bytes

between .data and .bss sections. This is not a significant number because mica2 (and

also micaz) nodes have 4KB RAM.

6.5 Experiments and Results

To evaluate the performance of Hermes, we considered following software change

scenarios for TinyOS applications.

Case 1: Blink to Blink with a global variable added.

Case 2: Blink to CntToLeds.

Case 3: Blink to CntToLedsAndRfm.

Case 4: CntToLeds to CntToLedsAndRfm.

CntToLeds is an application that displays the lowest 3 bits of the counting se-

quence on the LEDs. In addition, CntToLedsAndRfm transmits the counting se-

quence over the radio. To evaluate the performance of Hermes with respect to nat-

ural evolution of the real world software, we considered a real world sensor network

application called eStadium [130] deployed in Ross Ade football stadium at Purdue.

eStadium applications provide safety and security functionality, infotainment features

such as coordinated cheering contests among different parts of the stadium using the

microphone data, information to fans about lines in front of concession stands, etc.

We considered a subset of the changes that the software had actually gone through,

during various stages of refinement of the application.

Case A: An application that samples battery voltage and temperature from MTS310

[1] sensor board to one where few functions are added to sample the photo sensor

also.

Case B: We decided to use opaque boxes for the sensor nodes. So, few functions were

deleted to remove the light sampling features.

141

Case C: In addition to temperature and battery, we added the features for sampling

all the sensors on the MTS310 board except light (e.g.microphone, accelerometer,

magnetometer).

Case D: Same as case C but with the addition of a feature to reduce the frequency

of sampling battery voltage.

Case E: Same as case D but with the addition of a feature to filter out microphone

samples (considering them as noise) if they are greater than some threshold value.

Case 1, Case D and Case E are small changes; Case 2 is a moderate change; Case

A, Case B and Case 4 are large changes; Case 3 and Case C are huge changes in the

software.

6.5.1 Size of delta script

Table 6.1 shows the ratios of the number of bytes required to be transmitted for

reprogramming by Deluge, Stream, Rsync and Zephyr to Hermes for the software

change cases mentioned above. For Deluge and Stream, the size of the information

to be transmitted is the size of the binary image while for the other schemes it is

the size of delta script. A small delta script translates to smaller reprogramming

time and energy due to less number of packet transmissions over the network and

less number of flash writes on the node. For small changes in software (like Case

1, Case D, and Case E), the incremental reprogramming protocols perform much

better. Deluge, Stream, Rsync and Zephyr take up to 201, 134, 64 and 62 times

more bytes than Hermes, respectively. Koshy and Pandey [122] use slop region after

each function to avoid the effects of the function shifts. Hence the delta script for

their best case (when none of the functions expand beyond the assigned slop regions)

will be same as that of Zephyr. But even in their best case scenario, the program

memory is fragmented and the ratios of Hermes to [122] would be identical to that

of Hermes to Zephyr. Table 6.1 shows that [122] requires to transmit 1.79 to 62.09

times more information than Hermes for reprogramming. This huge advantage shows

142

Table 6.1
Comparison of number of bytes to be transmitted by various approaches

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes Hermes

Case 1 148.62 84.92 63.47 39.04 156

Case 2 34.81 19.89 12.49 4.11 666

Case 3 12.37 7.66 5.64 2.73 1874

Case 4 13.41 8.3 6.14 2.95 1729

Case A 13.52 9.01 5.96 1.79 1960

Case B 15.21 10.14 6.62 1.96 1742

Case C 5.5 3.8 3.14 2.08 5223

Case D 45.65 30.43 26.02 15.51 653

Case E 201.41 134.27 64.75 62.09 148

the importance of our approach to eliminate the effects of global variable shifts. The

exact amount of advantage of Hermes over Zephyr is directly proportional to the

number of global variables that are shifted in Zephyr due to change in the software

and the number of times those shifted variables are referred to in the program code.

For example, the addition or deletion of .data variables results in more reduction in

the size of the delta script by Hermes compared to Zephyr than the .bss variables.

We refer to Jeong and Culler [121] as Rsync because their approach is to generate the

difference using Rsync. Their approach compares the two executables without any

application level modifications. The ratios of Rsync to Hermes greater than 1 show

the importance of the Rsync optimization [90] and the application level modifications

(both function call indirections and global variable placements). Rsync [121] approach

needs to transfer 3.14 to 64.75 times more bytes than Hermes.

6.5.2 Testbed experiments

We perform testbed experiments using Mica2 [1] nodes for grid and linear topolo-

gies. For each network topology, we define neighbors of a node n1 as those nodes

which are adjacent to that node n1 in the specific topology. For the grid network, the

transmission range Rtx of a node satisfies
√

2d < Rtx < 2d, where d is the separation

143

Table 6.2
Ratio of reprogramming times of other approaches to Hermes

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Case 1 24.77 44.66 34.24 14.12 25.96 20 10.98 19.78 15.63 7.69 16.08 11.39

Case 2 19.02 50.67 30.16 10.62 29.45 17.8 7.66 19.21 12.27 2.25 5.71 3.6

Case 3 6.14 13.48 9.8 4.77 9.15 6.37 3.37 5.57 4.56 2.06 3.56 2.8

Case 4 6.13 13.55 10.37 4.78 9.2 6.74 3.38 6.54 4.87 1.97 3.72 2.94

Case A 6.58 14.95 11.36 4.98 10.41 7.8 3.66 6.67 5.13 1.62 2.84 2.06

Case B 7.07 15.39 11.95 5.35 10.65 8.21 3.87 7.09 5.33 1.64 2.59 2.05

Case C 3.95 6.2 4.92 2.69 4.14 3.32 2.27 3.23 2.88 1.73 2.31 2.01

Case D 26.83 76.61 45.21 18.09 44.78 27.77 16.22 40.81 25.61 8.99 22.91 14.67

Case E 36.97 78.16 59.23 23.9 47.83 36.81 21.05 42.8 29.51 13.56 25.83 17.92

between the two adjacent nodes in any row or column of the grid. The linear networks

have the nodes with the transmission range Rtx such that d < Rtx < 2d where d is

the distance between the adjacent nodes. Due to fluctuations in transmission range,

occasionally a non-adjacent node will receive a packet. In our experiments, if a node

receives a packet from a non-adjacent node, it is dropped. This kind of software

topology control has been used in other works also [50, 134]. For the grid network,

a node situated at one corner of the grid acts as the base node while the node at

one end of the line is the base node for linear networks. We provide quantitative

comparison of Hermes with Deluge [92], Stream [88], Rsync (Jeong and Culler [121])

and Zephyr [90]. Note that Jeong and Culler [121] reprogram only nodes within one

hop of the base node, but we used their approach on top of multi hop reprogramming

protocol to provide a fair comparison. We perform these experiments for grids of size

2x2 to 4x4 and linear networks of size 2 to 10 nodes. The results presented here are

the minimum, maximum and average over these grid and linear networks.

144

Table 6.3
Ratio of number of packets transmitted during reprogramming by
other approaches to Hermes

Deluge:Hermes Stream:Hermes Rsync:Hermes Zephyr:Hermes

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Case 1 28.54 140.31 91.83 17.05 78.5 49.87 11.02 53.28 33.2 6.23 35.43 20.26

Case 2 13.84 60.72 31.73 8.42 34.84 17.45 4.75 19.27 9 3.26 11.57 5.72

Case 3 5.93 13.03 10.4 4.16 8.21 6.45 2.89 6.34 4.73 1.67 2.66 2.12

Case 4 6.2 13.26 10.11 4.04 7.84 6.27 2.6 5.96 4.59 1.77 2.53 2.12

Case A 6.34 14.79 11.56 4.51 10.7 7.88 3.03 6.64 5.11 1.86 2.28 2.02

Case B 6.37 16.53 12.41 4.53 11.46 8.46 3.03 7.71 5.49 1.85 2.26 2.01

Case C 3.94 7.6 6.17 2.84 6.02 4.4 2.49 4.74 3.68 1.56 2.85 2.3

Case D 18.87 103.12 46.34 12.64 49.1 27.7 11.63 46.74 24.91 6.94 30.27 14.63

Case E 46.67 194.19 124.29 26 114.93 76.91 20.65 87.28 59.27 12.54 53.18 35.12

Reprogramming time and energy

Time to reprogram the network is the sum of the time to download the delta script

and the time to rebuild the new image. We used the approach of [50] to measure the

network reprogramming time. Table 6.2 compares the ratio of reprogramming times of

other approaches to Hermes. As expected, Hermes outperforms the non incremental

reprogramming protocols Deluge and Stream significantly. Hermes is also 2.27 to 42.8

times faster than Rsync [121]. This illustrates that application level modifications that

Hermes applies are very important in reducing the time to reprogram the networks.

As mentioned above, the best case scenario for Koshy and Pandey [122] is same as that

of Zephyr. Hermes is 1.62 to 25.83 times faster than Zephyr. This shows how Hermes’

technique to eliminate the effects of the global variable shifts translates into speeding

up the reprogramming process. To see the significance of these improvements, let us

consider Case E. Deluge, Stream, Rsync, Zephyr, and Hermes took 648.68, 347.19,

299.78, 196.06, 195.06 and 14.24 seconds respectively to reprogram the 4x4 grid. Note

that Hermes is most effective for small or moderate software change cases (like Case

1, Case 2, Case D and Case E) which are more likely to happen in practice. The time

to rebuild the new image at the sensor node depends on the size of the delta script,

145

but is small compared to the total reprogramming time. In all these experiments,

the image rebuild time even on the resource-constrained sensor nodes is less than 6

seconds which is small compared to the total reprogramming time (in the order of

several minutes).

Among the various factors that contribute to the energy consumed during re-

programming, two important ones are the amount of radio transmissions and the

number of flash writes (the downloaded delta script is written to the external flash).

Since both of them are proportional to the number of packets transmitted in the net-

work during reprogramming, we take the total number of packets transmitted by all

nodes in the network as the measure of energy consumption. Table 6.3 compares the

total number of packets transmitted by all nodes in the network using Hermes with

other schemes for the above mentioned grid and linear networks. Like reprogramming

time, Hermes reduces the number of packets transmitted during reprogramming sig-

nificantly compared to other approaches. As indicated by the ratios of Zephyr to

Hermes, the elimination of the global variable shifts results in a very large savings

(1.56 to 53.18 times) in energy.

Execution speed

In order to demonstrate latency improvement for Hermes due to the use of the

technique to avoid the indirection table, we considered a typical sensor network ap-

plication which operates in a loop with each run of the loop consisting of work and

sleep periods. In the work period, a node samples all the sensors on MTS310 sensor

board [1], processes the sampled data and sends the data to the cluster head. In

the sleep period, the node goes to sleep to save energy. All function calls happen in

the work period. Figure 6.4 shows the additional latency due to indirections in all

function calls during the work period. That is, the amount of time taken by Zephyr

is larger than that by Hermes by the amount shown in Figure 6.4. By removing the

indirection table, Hermes saves this latency, enabling lower duty cycle. So the nodes

146

can sleep for this extra time and hence the amount of energy saved is significant in

the long run.

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

La
te

nc
y

(s
ec

on
ds

)

Number of runs

Fig. 6.4. Execution latency due to indirection table

6.5.3 Simulation Results

We perform TOSSIM [127] simulations on grid networks of varying size (up to

14x14) to demonstrate the scalability of Hermes and to compare it with other schemes.

Table 6.4 shows the reprogramming time and number of packets transmitted during

reprogramming for Case E. We find that Hermes is up to 94, 70, 54, 34 times faster

than Deluge, Stream, Rsync and Zephyr respectively. Also, Deluge, Stream, Rsync

and Zephyr transmit up to 149, 97, 74 and 46 times more number of packets than

Hermes respectively. Hermes is as scalable as Deluge since none of the changes in

Hermes affects the 3-way code dissemination handshake or changes with the scale of

the network. All application level modifications are performed on the host computer

and the image rebuilding on each node does not depend upon the number of nodes

in the network. These simulation results also show that as the network grows larger,

Hermes’ advantage over existing protocols increases. This happens because with the

increase in the network size, the existing protocols face more contention and collisions

as they need to transfer more bytes than Hermes.

147

Table 6.4
Simulation results: Ratio of reprogramming time and number of pack-
ets transmitted by other approaches to Hermes

6x6 8x8 10x10 12x12 14x14

Time # Pkts Time # Pkts Time # Pkts Time # Pkts Time # Pkts

Deluge:Hermes 27.41 61.11 53.61 60.07 70.87 73.02 76.88 105.68 94.3 149.82

Stream:Hermes 15.55 34.16 40.01 38.68 48.25 45.4 53.28 67.66 70.52 97.55

Rsync:Hermes 12.34 26.68 2.12 27.87 28.43 34.22 38.16 49.56 54.43 74.77

Zephyr:Hermes 8.31 17.33 10.69 16.81 13.93 21.22 22.73 29.96 34.27 46.28

6.6 Analysis

A principle design technique of Hermes is to make sure that if a global variable is

present in both the old and the new versions of the software, it is placed at the same

location in memory. As a result, the instructions in the program code that refer to

these common variables do not change between the two versions of the software. In

existing incremental reprogramming approaches, these common variables may not be

placed in the same memory location, causing the delta script to be large. Thus, the

effectiveness of Hermes depends on the number of global variables that are shifted in

the new version of the software (without the use of Hermes) and the number of times

those shifted variables are referenced in the program code.

In this section, we analyze the performance of Hermes in terms of reduction in the

size of the delta script by keeping the common global variables in the same memory

location in the new version of the software as in the old one. First, we define a few

terms. Let two instructions — one in the old and the other in the new version of the

software — referencing the same global variable be called identical references. Note

that in the baseline case, which may not place a common global variable at the same

memory location, the actual variable addresses in the identical instructions may be

different. But in Hermes, the variable addresses in the identical references are made

identical. We use an attribute called Preserved Similarity Index (PSI) to quantify

148

the amount of similarity preserved by Hermes in the new version of the software with

respect to the old version. We define PSI as

PSI =
RS

R
(6.1)

where RS is the number of identical references in the new software that would have

different variable addresses than those in the old software if Hermes were not used.

R is the total number of identical references in the old and the new images. Note

that RS ≤ R and hence, the PSI value lies between 0 and 1. A high PSI value means

that the amount of similarity preserved by Hermes is also high. For example, if PSI

= 1, then without Hermes, all the identical references in the old and new images

use different global variable addresses, whereas with Hermes, they have the same

address. This translates to a large advantage due to the use of Hermes. Note that

PSI = 0 means that even without Hermes, the identical references would have same

global variable address because the memory locations of the corresponding global

variables are not changed by the software modification. Hence, in this case, there is

no advantage due to Hermes. Figure 6.5 shows the PSI values for different software

change cases discussed earlier. Note that for many cases, PSI > 0.9. This suggests

that many software change cases cause a lot of global variables to be shifted. Hence,

without avoiding the effects of such shifts, the number of identical references with

different global variable addresses in the two versions of the software is high. This

causes the delta script to be large. This also explains the observation that byte-level

comparison alone is not sufficient, and we need to enhance the structural similarity

between the two versions of the software by keeping locations of global variables

identical to create a small delta script.

Next we quantify the effect of global variable shift on the size of the delta script.

As shown in Figure 6.6, let us consider two code segments in the old and the new

versions of the software, which are identical except that the global variable address of

n identical references are different. Without Hermes, we need n+1 COPY commands

and n INSERT commands to describe the difference between these code segments.

The delta script would therefore be (n + 1) ∗ 7 + n + 7 = 14n + 7 bytes long (since

149

 0

 0.2

 0.4

 0.6

 0.8

 1

P
S

I

Case
 1

Case
 2

Case
 3

Case
 4

Case
 A

Case
 B

Case
 C

Case
 D

Case
 E

Fig. 6.5. Preserved Similarity Index (PSI) for different software change cases

.

.

.

sts globVar1,r16

ldi r22,lo8(globVar2)

lds r10,globVar3

COPY

INSERT

COPY

INSERT

INSERT

COPY

COPY

Old image New image

Identical reference 1

Identical reference 2

Identical reference n

.

.

.

sts globVar1,r16

ldi r22,lo8(globVar2)

lds r10,globVar3

Fig. 6.6. Without Hermes, the difference between the identical code
segments require n+1 COPY commands and n INSERT commands
in the delta script. Here ldi, sts, and lds are different instructions
that refer to the global variables.

each COPY and INSERT command takes 7 bytes assuming that the address of a

global variable is 2 bytes). With Hermes, only one COPY command is required,

which is 7 bytes long. In other words, Hermes decreases the size of the delta script

by (approximately) 14 times the number of times that the shifted global variables

are referenced in the new program code. Note that this analysis only quantifies the

reduction in the size of the delta script due to the shifted global variables.

6.7 Conclusions

In this chapter, we presented a multi-hop incremental reprogramming protocol

called Hermes that minimizes the reprogramming overhead by reducing the size of

150

the delta script that needs to be disseminated through the network. To the best

of our knowledge, we are the first ones to use techniques to mitigate the effects

of global variable shifts and avoid the latency caused by function call indirections

for incremental reprogramming of sensor networks. Our scheme can be applied to

systems like TinyOS which do not provide dynamic linking on the nodes as well as to

incrementally upload the changed modules in operating systems like SOS and Contiki

that provide the dynamic linking feature. Our experimental results show that for a

large variety of software change cases, Hermes significantly reduces the volume of

traffic that needs to be disseminated through the network compared to the existing

techniques. This leads to reductions in reprogramming time and energy.

151

7. VARUNA: FIXED COST MAINTENANCE IN STEADY

STATE

Wireless ad-hoc and sensor networks use various dissemination protocols [62, 88, 92,

140,141] for one-to-many communication to disseminate information to all or a subset

of nodes in the network. Examples of such communication are base station sending

code updates for wireless reprogramming of the network, sending network commands

or queries to nodes in the network. These dissemination protocols incur energy ex-

penditure not only during the information dissemination phase but also during the

steady state when no dissemination is actually being done. The need for energy ex-

penditure in the steady state arises from dynamic changes to the network topology.

Such changes are caused by the failure-prone nature of radio communications, node

mobility, and incremental node deployment. For the rest of the chapter, we will use

the term steady state to denote the state when no one-to-many information dissem-

ination is taking place in the network, though the network will be performing other

functionality, such as data collection from the many sensor nodes toward the base

station.

Because of transient failures, nodes may remain disconnected from other nodes

in the network for some time and may miss the information dissemination that had

occurred during that period. After they come out of disconnection, they must be

able to detect the data-item inconsistency and then initiate the process to become

up-to-date. Inconsistency of information may also happen due to incremental node

deployment or node mobility which causes a node to move into a region where its

neighbors have received an update. For convenience, we are going to refer to all these

events that can cause a node to get out-of-date as topology changes. Importantly, since

these topology changes can happen at arbitrary time points and are not scheduled,

any protocol to keep the network up-to-date needs to execute on a continuing basis.

152

Inconsistent data items can have serious consequences. For example, in wireless

reprogramming, running an old version of the code could lead to wrong computation

leading to erroneous aggregation and finally incorrect data being received at the base

station. Even worse, different versions of the code in the network can cause the the

network to be partitioned.

The traditional way of enhancing the dependability of the dissemination protocols

in the presence of the unpredictable topology changes is periodic advertisements (or

some variations) of some metadata by each node. For example, this is the approach

used in the Trickle algorithm [107] which is used as the basic building block by

most of the current dissemination protocols [88,92,102]. The metadata is a compact

representation of the data-item that a node currently has. The representation has

to be such that, by inspecting the metadata, a node can determine if it needs the

corresponding data-item for it to become updated. A common case of metadata is

a monotonically increasing version number for the data-item that the node currently

has. When a node hears an advertisement from a neighbor with a newer version

of the data-item than it currently has, both enter the dissemination phase through

which the data-item is actually exchanged. This can be accomplished through one of

several well-known protocols such as Deluge [92], Stream [88], etc.

Radio communication is often the most significant source of energy consumption

in sensor networks. The problem with continuous periodic advertisements is that the

steady state energy cost increases linearly with the steady state interval, which is

the most dominant phase in a node’s lifetime. In fact, in practice, learning when to

disseminate a data-item can be much more costly than disseminating the data-item

itself and as a result, steady state energy cost is several orders of magnitude higher

than the energy cost during actual data-item dissemination phase. For example,

Deluge, the default reprogramming protocol for TinyOS [14]-based sensor networks,

performs periodic broadcast of the advertisement packets every 2 minutes in the

steady state. Periodic advertisements at this rate for one day requires the same

amount of radio transmissions as disseminating a 25 KB program code. The steady

153

state energy cost can be reduced by increasing the advertisement interval. However,

the interval cannot be increased significantly because it increases the detection latency,

the time taken by the nodes to determine whether they have inconsistent data-items.

This in turn increases the probability of the communication between nodes with

different versions of the data-item, which is a serious concern as we have seen above.

Our holy grail is to break this barrier of continuously increasing energy expenditure

for state maintenance in the steady state of the network, and achieve a constant

maintenance cost, independent of the duration of the steady state. We achieve this

goal in the common case through our protocol called Varuna. Common case implies

reasonable link reliabilities and reasonable memory allocation for state maintenance.

To achieve this, we make two fundamental observations and leverage them.

First, if the neighborhood topology and the metadata of a node have not changed

since its last advertisement transmission, then the node does not need to send any ad-

vertisement message. In periodic advertisement schemes like Trickle, practically most

of the advertisements in the steady state are, therefore, unnecessary. A node can de-

termine trivially whether its metadata has changed, through a local lookup. However,

determining whether the neighborhood topology has changed is difficult and requires

wireless communication among the neighboring nodes. The periodic advertisement

in Trickle is essentially a way for a node to check if the neighborhood topology has

changed, and if so, inform the “new” neighbors about its metadata. In Varuna, on

the contrary, a node transmits advertisement messages only when required—either its

metadata or local neighborhood or both have changed. Let us group all communica-

tion arising from a node into two categories—one-to-many information dissemination

kind, and all the others. We will call this latter category User Application (UA)

traffic. In Varuna, each node observes the communication pattern of UA packets of

its neighbors to determine if its neighborhood has changed. Advertisement message

is transmitted only when a node hears radio transmission from “new” neighbors.

The problem with the above observation is that it is impossible to determine

the change in neighborhood topology based solely on communication pattern of the

154

neighbors. For example, application-specific decisions at a node (say, n1) may cause it

not to use a link to its neighbor (say, n2). Such a decision can be taken for example by

a routing protocol that determines there is no route to some destination or the route

should not use the link n1 to n2. In that case, n2 does not have a way of determining,

by observing the UA packets alone, if n1 is still a neighbor or n2’s neighborhood has

changed. Therefore, we complement the first observation with a second one. It is

critically necessary for a node to be up-to-date only when it is communicating with

other nodes. This is so that stale metadata is localized to the out-of-date node only

and is not propagated to other nodes. At worst, the out-of-date node may have to

discard the results of some local computation that it might have performed while it

was out-of-date. A fundamental problem in the premise of the previous approaches

is that every node is responsible for ensuring that all nodes in the network are up-

to-date. This means that each node needs to advertise periodically in the steady

state to bring typically a few, if any, nodes up-to-date. Instead, Varuna shifts this

responsibility to those few nodes which think that they may be out of date. Part of the

design complexity of Varuna lies in solving the following question: how does a node

determine that it may be out-of-date, without generating continuous transmissions

for state maintenance?

In Varuna, we tradeoff some state maintenance for removing the cost of continuous

advertisements by having each node maintain a small amount of state (of the order

of 100 bytes) through which each node keeps track of which nodes it has heard UA

packets from, since it last got updated. Also, we relax the logical invariant that if

a node n1 communicates with a node n2, the information at the two nodes will be

made consistent (and updated to that of the more up-to-date node). Let us say n1 is

out-of-date and n2 is up-to-date. Then, in Varuna, n2 may send a UA packet to n1

without them realizing the inconsistency, but whenever n1 communicates with n2, the

two nodes will detect the inconsistency and switch to the information dissemination

phase. This notion of eventual consistency may be sufficient in many application

155

contexts because it prevents stale information from the out-of-date node propagating

through the network.

Our contributions in the chapter are:

1. We present the first protocol for maintenance of up-to-date information in a

multi-hop wireless network that does not incur a monotonically increasing cost

(in terms of energy) with the length of the steady state period.

2. We show how a reasonable amount of local state maintenance can avoid the

energy cost of transmissions to determine when a node is (possibly) out-of-date.

3. Our experimental and simulation results show that the actual gains realized

over the current state-of-the-art is two orders of magnitude, for a steady state

duration of just few days. This benefit grows linearly with increasing duration.

7.1 Trickle Overview and Problems

Trickle is the standard steady state algorithm for one-to-many information dis-

semination in sensor networks [88, 92, 102, 141] and forms our reference comparison

point. In Trickle, each node broadcasts its advertisement message once every time

interval randomly chosen from [τ/2, τ] if it has not heard more than k identical ad-

vertisements in that interval. An advertisement contains the metadata about the

data-item the node has. The metadata in this context is the version number of the

data-item. When a node hears an advertisement with different metadata than its

own, it sets τ = τl. When it hears advertisement with same metadata as its own,

it keeps on doubling τ in the successive intervals. A protocol like Deluge [92] which

uses Trickle for code dissemination stops this increment after reaching some thresh-

old, τ = τh. The suppression of advertisement broadcast (if a node has heard more

than k identical advertisements in an interval) is necessary to ensure that redundant

advertisements are not broadcast and it is scalable with high node density. Clearly,

without loss, collision, and with perfect time synchronization of the interval τ among

156

the sensor nodes, the number of advertisement broadcasts in any time interval within

a single hop is bounded by k. The authors of Trickle show that with loss, collision,

and lack of synchronization, the number of advertisement broadcasts in a single pe-

riod τ is O(logN) where N is the number of nodes within a single hop. However the

number of advertisements in a given period T (>> τ) is O(T). This linear increase in

maintenance cost with time results in continuous energy drain in the steady state.

The steady state energy cost can be reduced by increasing the advertisement

period. However, this has several problems. First, the increase in the advertise-

ment period also increases the detection latency, the time taken by a node to realize

that it is out-of-date. Detection latency and steady state energy cost have an in-

verse relationship—a smaller advertisement period decreases the detection latency

but increases the maintenance cost and vice-versa. Trickle handles this tradeoff by

decreasing the advertisement period when data-item inconsistency is detected and

increasing it when nodes are up-to-date. Thus, Trickle decreases the propagation

time during the dissemination phase and reduces the maintenance cost during the

steady state. To ensure acceptable detection latency, advertisement interval cannot

be increased arbitrarily. In Deluge, the maximum interval is 2 minutes by default.

Second, although increasing the advertisement period reduces the energy cost, this is

only a constant order improvement. The steady state cost still increases linearly with

the steady state duration. Since a sensor node spends most of its time in the steady

state, the linearly increasing energy cost becomes a serious problem in the long run.

Third, if advertisement interval is greater than the time required by a node to

download the code, this makes it possible to have communication between the nodes

with different versions of the code. As shown in Figure 7.1, let us suppose a node

n1 goes into a transient disconnection state during the time interval [t1, t2] during

which it misses a code update. We define a node to be in disconnection state if it has

no functioning incoming and outgoing link. Let its neighbor n0 download the new

code during this interval. Since the advertisement interval is large, n0 and n1 may

exchange UA packets before the next advertisement, i.e. before they detect the code

157

Time

Time

New code
downloadedAdv

Adv

Adv

Adv

t
1 t

2

UA UA

node n1

node n0

* *

Disconnection

Fig. 7.1. If advertisement interval is greater than code download time,
inconsistent nodes may communicate, possibly resulting in undesir-
able network behavior.

inconsistency. Note that this may have serious effects—the network may trigger a

false alarm, or even worse, it may not detect critical events like wildfire. To avoid

this problem, the advertisement interval must be less than the code download time

of a node. Code download time of a node is generally in the order of few minutes.

Thus the advertisement interval cannot be made arbitrarily large, which increases the

steady state energy cost. In this discussion, we have used Trickle as an example. All

one-to-many information dissemination protocols in wireless networks today suffer

from the problem mentioned above—monotonically increasing energy cost with the

duration of the steady state.

7.2 Design Background

Without loss of generality, we present Varuna with respect to wireless code dis-

semination in sensor networks. Varuna, however, is applicable to a broad range of

one-to-many dissemination protocols for wireless ad-hoc networks. We first explore

several intuitively appealing approaches that can reduce the maintenance cost for the

steady state interval and point out the flaw that besets each approach.

158

7.2.1 Piggybacking metadata in UA packets

Instead of periodically advertising the metadata, a node can piggyback the meta-

data in each UA packet transmission because the energy cost of piggybacking is sig-

nificantly lower than transmitting a separate advertisement packet. However, since

metadata can be quite large, piggybacking reduces the number of bytes available in

a packet for the application. For example, in Deluge, for each user application, the

metadata is 12 bytes and, where dissemination of multiple applications is attempted,

the metadata is even larger. Instead of piggybacking the entire metadata, only a hash

value of the metadata can be piggybacked. However, this is again a constant order

improvement and the overhead energy cost due to piggybacking in each UA packet

transmission increases linearly with the steady-state time like in Trickle.

7.2.2 Checking neighborhood periodically

As mentioned above, if a node’s metadata and neighborhood have not changed

since its last advertisement transmission, it does not need to advertise its metadata. A

node can check if its metadata has changed using local information, without commu-

nicating with its neighbors. However, for verifying if its neighborhood has changed,

instead of energy-intensive proactive verification by broadcasting advertisement mes-

sages periodically as in Trickle, a node can simply listen for already existing UA

packet transmissions from its neighbors. It is generally impossible for a node to de-

rive the information about the change in neighborhood using the traffic pattern from

its neighbors. Various application-specific decisions may cause a node not to use a

particular link, making it impossible for its neighbor to know if its neighborhood has

changed. However, it is practically sufficient for a node to verify the freshness of its

metadata, not with all nodes in its neighborhood, but only with the node from which

it receives a UA packet. When the nodes are not communicating, the consequence

of not being up-to-date is localized to the out-of-data node only and is thus not as

serious.

159

Time

Time

t1 t2node n1

node n0

Previous TREF Current TREF

* *

TCD

New code
downloaded

UA UA

Fig. 7.2. Correctness issue if TREF > TCD.

An intuitive scheme would be for each node to maintain a neighbor table consisting

of ids of the nodes from which it has heard UA packets in the last threshold time

duration, call it the refresh interval, TREF . In the next TREF interval, if a node n1

receives a UA packet from a node n2 which does not exist in its neighbor table, n1

and n2 exchange advertisements through which they determine if they are up-to-date

with respect to each other. If they are, then n1 accepts the UA packet from n2.

Otherwise, n1 and n2 enter the dissemination state through which their information

is made consistent. If n1 cannot exchange the metadata with n2 after a set number

of attempts (due to link failures), it discards the UA packet from n2 and goes back

to the steady state.

Note that in this scheme each node essentially checks if its neighborhood has

changed since the last TREF interval using the already existing UA packet transmis-

sions of the neighboring nodes. This scheme significantly reduces the steady state

energy cost because a node needs to advertise its metadata only when its neighbor

table—a measure of neighborhood topology—changes. As long as the neighbor table

does not change and the node has itself not received an update, advertisements are

not transmitted.

The problem with this scheme is the difficulty in choosing TREF properly. It

should be sufficiently large so that with a high likelihood, a node hears UA packets

from all its neighbors within each TREF . Otherwise, the node will needlessly perform

the advertisement exchange, only to realize that both were up-to-date. In the extreme

case when the neighbor table changes every TREF interval, this scheme is equivalent to

160

Trickle with advertisement period equal to TREF . However, if TREF is larger than the

code download time TCD of a node, this scheme fails. Figure 7.2 illustrates this. Here

a node n1 goes into the disconnection state for time interval [t1, t2] during which its

neighbor n0 downloads the new version of the code, which n1 misses. n1 receives a UA

packet from n0 in the previous TREF interval and since TREF > TCD, let us suppose n1

receives a UA packet from n0 in the current TREF interval also. As a result, n1 thinks

that it is up-to-date with respect to n0 since its neighbor table has not changed. The

code inconsistency, thus, goes undetected for a potentially unbounded period of time.

7.2.3 Informing neighbors of code downloads

The above correctness problem can be solved by having each node piggyback a

Code Downloaded (CD) bit in each UA packet transmission for TREF interval, each

time after downloading the new version of the code. For example, in Figure 7.2,

when n1 comes out of disconnection, if it hears a UA packet from n0 in the current

TREF interval, it will have the CD bit turned on. Then n1 realizes that it has not

downloaded the new version of the code in the last TREF interval, but n0 has. Thus

the code inconsistency is detected.

However, even with this revised scheme, TREF cannot be made larger than TREP ,

the minimum time interval between two consecutive reprogramming procedures. Fig-

ure 7.3 illustrates this. Here n0 and n1 download version vn of the code in the current

TREF interval. But after that, n1 goes into the disconnection state for interval [t1, t2].

During this time, n0 downloads vn+1 version of the code, which n1 misses. When

n1 comes out of disconnection, it receives a UA packet from n0 with CD bit turned

on and believes that it is up-to-date with n0 because n1 also downloaded code in

the current TREF interval. Hence the code inconsistency goes undetected again for a

potentially unbounded time.

Note that instead of piggybacking the CD bit, if n0 had piggybacked “the number

of times the code was downloaded in the current TREF ” or “the latest version of

161

Time

Time

t1 t2node n1

node n0

Previous TREF Current TREF

* *

TCD

code version
vn+1 downloaded

UA UA with
CD bit

TCD

TCD

code version
vn downloaded

TREP

Fig. 7.3. TREF , the refresh interval cannot made larger than TREP , the
minimum time between two successive code downloads, for correctness
reasons.

the code downloaded in TREF ”, n1 would have detected the inconsistency. But this

is generally not possible since a sensor node may be running multiple applications

and thus it would need to explicitly say which versions of which applications were

downloaded in the last TREF interval. This information is too large to be piggybacked

in every UA packet for a “large” TREF interval.

Any scheme that uses threshold (refresh) time intervals to check if the neighbor-

hood has changed between such intervals has a fundamental performance problem—

since UA can be arbitrary, no matter how large a TREF is chosen, a neighbor can

be such that it sends UA packet at every other TREF interval, causing the neighbor

table to change in every TREF interval. As a result, the node needs to advertise in

every TREF interval and thus, in terms of energy cost performance, such scheme is

equivalent to Trickle with advertisement period equal to TREF .

7.3 Varuna Design

Based on the above observation that a node cannot determine if its neighborhood

topology has changed by monitoring the communication pattern for a finite time

duration, we arrive at a very simple maintenance algorithm, called Varuna, that does

not use the notion of refresh interval. The above approaches (Sections 7.2.2 and 7.2.3)

try to make sure that the code inconsistency is detected when nodes with different

162

Quiescent MOODy

(1)

No Adv Msg received for t<=TMOODy

(1)UA Msg
 received from
 a new neighbor

(2)Similar Adv Msg
 received from destn
 or no Adv Msg is
 received for TMOODy

(3)ReqToDisseminate
 Msg received or
 broadcast

Disseminate

(2)

(3)

(3)

(4)

(4)Code update
 complete

MOODy=May be Out Of Date

Fig. 7.4. State transition diagram of Varuna

versions of the code communicate. Varuna relaxes this requirement and, instead,

guarantees that the following invariant is satisfied—When a node receives a packet

from another node with a lower version of the metadata than its own, the metadata

inconsistency is detected by the receiving node. This invariant also implies that Varuna

achieves eventual consistency—even though a node n1 may not detect inconsistency

while it is receiving packets from a node n2 which has a higher version of the metadata

than n1, eventually when n2 receives the packet from n1, the inconsistency is detected.

We believe this relaxed form of consistency is satisfactory in most application contexts

and is necessary in practice to achieve a constant cost of state maintenance. With

Varuna’s invariant, information does not flow from out-of-date nodes to up-to-date

nodes, and thus, the erroneous result is not propagated in the network. Note that

base stations (or nodes close to them) can be assumed to be always up-to-date. Thus,

erroneous results from out-of-date nodes will not be collected by the base station.

Before presenting a formal description, we first present an overview of Varuna. Figure

7.4 shows the state transition diagram of Varuna.

163

7.3.1 Design Overview

Each node maintains a neighbor table consisting of the ids of the nodes from which

it has received any packet since the last time it updated its metadata (i.e. downloaded

the new version of the code). When a node is booted up or its metadata is updated,

the neighbor table is cleared and the node goes to the Quiescent state. When a node

n1 receives a UA packet from a node n2, it checks if n2 exists in its neighbor table.

The case of overflow of the neighbor table is discussed later. If n2 exists in the table,

n1 accepts the packet. If it does not, n1 suspects that it (or n2) May be Out Of

Date (MOODy) and goes to the MOODy state where it tries to verify if n2 has the

same version of the metadata as that of n1. We will shortly explain how this is done.

If n1 finds that both have same version of the metadata, it inserts n2 in its neighbor

table, goes to the Quiescent state, and accepts the packet from n2. Otherwise, it

goes to the Disseminate state. In the Disseminate state, the out-of-date node receives

the latest version of the code from the up-to-date node(s) following any one of the

available dissemination protocols [88, 92]. Varuna’s design is orthogonal to that of

the dissemination protocol and it can work with any of them.

Verifying if metadata is up-to-date: In the MOODy state, n1 broadcasts Ad-

vertisement packet containing its metadata, source id, and a field called dest set to

n2. Let vk
i (i = 1, 2, ..., n) represent the version numbers of n application codes (or

data-items) present in node k. When n2 receives the Advertisement packet with dest

set to its node id, it compares the received metadata with its own. If n2 finds that it

needs an update (i.e. vn2

i < vn1

i for any i), it broadcasts a ReqToDisseminate packet

and transitions to the Disseminate state. When n1 and other neighbors of n2 receive

the ReqToDisseminate packet, they also go to the Disseminate state. If n2 finds that

it does not need an update (i.e. vn2

i ≥ vn1

i for all i), it broadcasts an Advertisement

packet with dest set to NULL. When n1 receives this advertisement packet, it verifies

if it needs an update. If it does not (i.e. vn1

i = vn2

i for all i), it goes back to the Qui-

escent state, adds n2 to its neighbor table, and accepts the packet received from n2.

164

If n1 needs an update (i.e. vn1

i < vn2

i for any i), it broadcasts a ReqToDisseminate

packet. Neighbors of n1 (including n2) go to the Disseminate state after receiving

this packet. Advertisement and ReqToDisseminate messages are transmitted using

random backoff intervals—[0,ADV RAND] and [0,DISS RAND] respectively, to avoid

collisions due to concurrent transmissions from nearby nodes.

The use of dest field in the broadcast Advertisement message avoids the trans-

mission of redundant advertisements in the neighborhood of the MOODy node n1.

A node which receives the advertisement message with dest set to NULL or dest not

set to its own id will reply with its own advertisement message only if required (i.e.

either the receiver or the sender needs an update) and suppression threshold has not

been reached. For example, when neighbors of MOODy node n1 other than n2 hear

advertisement from n1 with dest set to n2, they do not advertise if they don’t have

to—i.e. if vn
i = vn1

i for all i, where n ∈ N(n1) and N(n1) is the set of neighbors

of n1 except n2. If any node in N(n1) needs an update (i.e. vn
i < vn1

i for any i),

it broadcasts ReqToDisseminate and goes to the Disseminate state. Otherwise, if a

node n in N(n1) finds that n1 needs an update (i.e. vn
i > vn1

i for any i) , n broadcasts

its advertisement message if it has not heard more than k (suppression threshold) ad-

vertisements with same metadata as its own since it heard the advertisement from n1.

Because of this advertisement suppression, which is borrowed from Trickle, Varuna

scales well with varying node density. When n2 receives advertisement from n1 with

dest set to n2, it replies by broadcasting its Advertisement message with dest set to

NULL, irrespective of whether it is up-to-date with n1. This is because n1 wants

confirmation about the freshness of its metadata with respect to n2 that caused n1

to become MOODy.

Similarly, when n2 replies with its metadata broadcast with dest set to NULL,

neighbors of n2 will not broadcast advertisement if their metadata is same as n2’s.

If they do not match, the neighbor node behaves similarly to the behavior when it

heard the advertisement from n1 with dest=n2. In this way, even if n1 and n2 have

the same but outdated versions of the data-item, their neighbors help them detect

165

the inconsistency and make them transition to the Disseminate state where they can

be updated.

Retries to deal with link failures: In the MOODy state, n1 may not receive any

response to its Advertisement message from n2 even though n1 had received a UA

packet from n2 that triggered n1 to be MOODy. The link between n1 and n2 may

be functional in only one direction (n2 to n1), n2 or n1 may have moved after n2’s

UA packet is received by n1, or n2 may have had a transient node failure. If n1 does

not receive any response, it re-broadcasts the Advertisement message after every τ

interval for TMOODy duration. If no response is received during TMOODY , n1 returns

to the Quiescent state and discards the UA packet received from n2.

Dealing with a full neighbor table: A node inserts a new neighbor in its neighbor

table in the next available slot as long as the neighbor table is not full. When the

table is full, it replaces the least recently used (LRU) neighbor with the new neighbor.

The LRU node is the one from which it has not received any packet for the longest

duration. Thus, in addition to the neighbor id, a neighbor table entry must contain

the last time the node received a UA packet from this neighbor. An important design

point of Varuna is that there is no notion of refresh time interval for clearing off the

local state. Rather, Varuna uses a neighbor table which is cleared in its entirety when

the node receives a code update or it is turned on.

7.3.2 Formal Protocol Description

Here we describe the local rules followed by each node in Quiescent and MOODy

states. In the Disseminate state, nodes follow any of the current protocols used for

dissemination [88,92,102]. Conceptually, the gain due to Varuna arises from the fact

that a node spends most of its time in the Quiescent state, where it does not transmit

any advertisement packet. It transitions to the MOODy state only when there is some

likelihood that neighborhood topology has changed and therefore it is worthwhile for

166

the node to check if it needs to be updated. Varuna intelligently controls when the

transitions to the more expensive MOODy state need to happen.

Quiescent State

A node in the Quiescent state follows these local rules.

Q.1: When a node goes to the Quiescent state upon booting up or updating its

metadata, it clears its neighbor table.

Q.2: When a node n1 receives a UA packet from a node n2, n1 checks if n2 exists

in its neighbor table. If it exists, n1 accepts the packet. Otherwise, n1 goes to the

MOODy state to verify if n2 is up-to-date with n1.

Q.3: If a node hears an Advertisement packet from a neighbor and finds that it is

up-to-date with the neighbor, the neighbor is added to the neighbor table if it does

not already exist in the table.

Q.4: If a node n2 receives an Advertisement packet from a node n1 with dest set to n2,

it compares the received metadata with its own. If n2 needs an update (i.e. vn2

i < vn1

i

for any i), n2 broadcasts ReqToDisseminate packet, after a time interval randomly

chosen from [0, DISS RAND], and goes to the Disseminate state. Otherwise, it

broadcasts an Advertisement packet with dest set to NULL.

Q.5: If a node n3 hears a broadcast Advertisement message from a node n1 with

dest set to NULL or dest other than n3, it compares the received metadata with its

own. If it finds that it has the same version of the metadata as the received one, it

ignores the Advertisement message. If they are different and n3 needs an update (i.e.

vn3

i < vn1

i for any i), n3 broadcasts ReqToDisseminate, after a time interval randomly

chosen from [0, DISS RAND], and goes to the Disseminate state. Otherwise, if the

metadata are different but n1 needs an update (i.e. vn1

i < vn3

i for any i), n3 broadcasts

Advertisement packet with dest set to NULL, after a random time from the interval [0,

ADV RAND], conditioned on advertisement suppression. Advertisement suppression

167

implies that if the node has heard more than k advertisements with the same metadata

as its own, then it will not broadcast its advertisement message.

Q.6: If a node receives a ReqToDisseminate packet, it goes to the Disseminate state.

MOODy state

Let n1 be the node which transitions to the MOODy state after receiving a UA

packet message from a node n2 that does not exist in n1’s neighbor table. The node

n1 in the MOODy state follows these rules.

M.1: As long as n1 does not receive any Advertisement message from n2, it broadcasts

Advertisement message with dest set to n2 after every τ interval, conditioned on

advertisement suppression.

M.2: If n1 does not receive any Advertisement message from n2 for TMOODy, it goes

back to the Quiescent state and discards the packet received from n2.

M.3: If n1 receives an Advertisement message from n2, it checks its metadata with

that of n2. If they match (i.e. vn1

i = vn2

i for all i) and the neighbor table is not full,

n1 adds n2 to its neighbor table, goes to the Quiescent state, and accepts the UA

packet received from n2. If the neighbor table is full, n1 replaces the LRU node in

its neighbor table with n2, goes to the Quiescent state, and accepts the UA packet

received from n2. If the metadata don’t match and if n1 finds that it needs an update

(i.e. vn1

i < vn2

i for any i), n1 broadcasts ReqToDisseminate packet, after a time

interval randomly chosen from [0,DISS RAND], and goes to the Disseminate state.

M.4 Same as Q.5.

M.5 Same as Q.6.

7.3.3 Eventual consistency

Varuna ensures that if a node receives a packet from another node with a lower

version of the metadata than its own, the metadata inconsistency is detected by the

receiving node. So, in Varuna, communication from a node with a higher version

168

Time

Timet1 t2

node n1

node n0

* *

TCD

New code
downloaded

UA0 UA1

Neighbor table
cleared

UA2

n0 detects
code inconsistency

Fig. 7.5. Eventual consistency in Varuna

of the metadata to another node with a lower version of the metadata can happen,

without the nodes detecting the inconsistency. For example, as shown in Figure 7.5,

let n1 go to disconnection state in the time interval [t1, t2], during which its neighbor

n0 downloads a new version of the code. After n1 comes out of disconnection, let it

receive a UA packet, UA1, from n0. n1 finds n0 in its neighbor table since n1 had

earlier received UA0 from n0. Since receiving UA0, n1 has not cleared its neighbor

table as its metadata has not changed. Thus the communication from a node with

a higher version of the code (here n0) to a node with lower version (here n1) goes

undetected. However, Varuna ensures eventual consistency—when n0 receives UA2

from n1 after some time, n0 does not find n1 in its neighbor table as it has been

cleared after downloading the code. Thus n1 goes to the MOODy state and detects

the code inconsistency. Note that in Trickle, a node with a lower version of the code

can communicate with a node with a higher version of the code (and vice-versa),

without them detecting the inconsistency, as illustrated in Figure 7.1.

An interesting parallel to this notion of eventual consistency is seen in data storage

in massive (wireline) distributed systems. The community looks at three dimensions

of the problem of data storage—data consistency, resilience to network partitions,

and availability. There is convergence toward the view that to support the last two

attributes, designers have to relax the consistency model to eventual consistency [142].

Likewise, here to support fixed energy cost for data-item consistency and resilience to

network topology changes (due to link failures, mobility, or incremental deployment),

we have to relax the consistency model to eventual consistency.

169

7.3.4 Fixed steady state cost

In Varuna, after a node downloads a new version of the code, it verifies its changed

metadata with each of its neighbor only once. After this verification, if the neighbor

table does not overflow, no further advertisements are necessary. So, in the common

case, Varuna incurs fixed cost in the steady state, independent of the steady state

interval. However, in some cases, a node may need to advertise occasionally due to

the poor neighbor problem, which we define as follows. In some large networks, a

node may occasionally receive a UA packet from “far neighbors” with very poor link

reliabilities. Let us call such neighbors poor neighbors. This triggers the node to be

MOODy. Since the MOODy node tries to verify the freshness of its metadata with a

poor neighbor for a finite time duration (TMOODy), the probability that it will succeed

is low. As a result, the node goes back to the Quiescent state without success, and

the poor neighbor is not added to the neighbor table. Every time a node receives

a UA packet from the poor neighbor, though it happens rarely due to the low link

reliability, it incurs the cost of transitioning to and back from the MOODy state.

The poor neighbor problem occurs very rarely because of various reasons. First,

for the MOODy node to be unsuccessful in verifying the freshness of its metadata with

the poor neighbor, the link reliability between them should be very poor. This means

that the node will hear from the poor neighbor very rarely in the first place. Second,

according to rule Q.3, whenever a node overhears an Advertisement packet with the

same metadata as its own, it adds that neighbor to its neighbor table if it does not

already exist in the table. This means that a node n1 gets multiple opportunities to

add a poor neighbor n2 to its neighbor table—not only when n1 hears directly from

n2, but also when n2 broadcasts an advertisement in response to an advertisement

message from a neighbor of n2. This in turn means a stray message from n2 does not

necessarily cause n1 to transition to the MOODy state and expend energy. Third,

not all UA packets from poor neighbors cause n1 to be MOODy. If the poor neighbor

sends a unicast message not destined for n1, it does not cause n1 to be MOODy. The

170

one-hop unicast messages from the poor neighbor are generally not directed to n1

as the poor node may not even know the existence of n1 because of the poor link.

Note that Varuna only tries to enforce code consistency when nodes communicate

with each other. Not all communications in sensor networks are of broadcast nature.

Thus the effect of poor neighbor is greatly reduced. Hence, it is only in rare cases

that Varuna incurs the small increase in energy cost with the duration of the steady

state period.

The advantage of Varuna over Trickle is even more pronounced in networks for

rare event detection. Nodes generate packets very rarely in response to the occurrence

of certain events. As a result, in Varuna, nodes need to verify their metadata very

rarely. The effect of the poor neighbor problem is also significantly reduced. Trickle,

on the other hand, needs to advertise periodically. The period cannot be chosen to be

as large as the average event occurrence period because if events occur faster than the

estimated average, the likelihood of communication between the inconsistent nodes

increases, as shown in Figure 7.1. Also, if the events occur less frequently than the

average estimated duration, redundant advertisements are transmitted.

7.3.5 State maintenance cost

Trickle does not require any state maintenance, while in Varuna, each node main-

tains state in the form of a neighbor table to reduce energy consumption due to

periodic advertisements. Commercially available sensor nodes today have more mem-

ory at low cost, and this trend is likely to continue in future. Thus we believe that

this tradeoff makes sense because reducing the energy consumption and increasing

the network lifetime are, generally, more important than saving some memory. The

neighbor table is a localized data structure and its size does not increase with the

size of the network, but with the size of the neighborhood of the node. Also, as we

will show from our experiments, for most practical deployments, the neighbor table

consumes less than 200 bytes of memory. For “very large” and “very dense” net-

171

works, less than 600 bytes are enough. Consider the memory available in current

sensor nodes: TelosB, micaz, IMote2, IRIS, BTNode, and SunSPOT have 10KB,

4KB, 256KB, 8KB, 180KB, 512KB RAM, respectively.

Furthermore for many sensor networks, neighbor table is a fundamental data

structure. It is used by many protocols and services—MAC protocols [143, 144],

AODV based routing protocols [145], 6LoWPAN [146] standard for IP based sensor

networks, ZigBee [147], and many other applications. Thus, Varuna can leverage the

existing structure and add to each entry the field for the time the neighbor was last

heard from.

In all but some very large and very dense networks, the size of the neighbor table

is small, and can be fixed beforehand. In very large and very dense networks, the

size of the neighbor table can be adjusted dynamically based on runtime observations

of the table overflow. Each node starts with a small neighbor table. Each overflow

triggers a multiplicative increase of the neighbor table and low occupancy causes an

additive decrease.

7.3.6 Detection latency

Traditionally, detection latency is defined as the time duration from the instant

when a node becomes out-of-date to the instant when it knows that it is out-of-date.

Clearly, higher advertisement rate and UA packet rate decrease detection latency in

Trickle and Varuna, respectively. However, one of the basic ideas of Varuna is that

nodes need not be up-to-date with all neighbors all the time. Rather, information

should not flow from a lower version node to a higher version node. Thus, in this

context, a more suitable definition of detection latency is the time interval from when

an out-of-date node communicates with an up-to-date node for the first time to the

instant when it realizes that it is out-of-date. As is obvious from Varuna’s design,

this detection latency is zero, because whenever an out-of-date node communicates,

172

its inconsistency is detected. Even with this new definition of detection latency, for

Trickle this is still a function of advertisement period.

7.4 Implementation and Evaluation

We implement Varuna on TinyOS [14]. Varuna lies logically between MAC and

the higher layer. MAC forwards the received UA packet to Varuna, which executes its

algorithm to decide if the packet should be forwarded to the appropriate application in

the higher layer. In TinyOS, Active Message ID uniquely identifies each type of packet

sent from each application. For packet transmission, the higher layer application or

service gives the packet directly to the MAC layer, bypassing Varuna.

In order to evaluate the performance of Varuna and compare it with Trickle, we

perform testbed experiments using TelosB sensor nodes [1]. For large scale evaluation,

we use TOSSIM [127] simulations. We run the network in the steady state since that

is the focus of Varuna. This means in the experiments no information dissemination

is taking place. We use steady state energy cost as a metric to compare Varuna and

Trickle. Since the energy cost is directly proportional to the number of advertisement

transmissions in the steady state, we use the total number of advertisement packets

transmitted by all nodes in the network as a measure of steady state energy cost.

We also quantify the memory cost for state maintenance in Varuna for various node

densities and network sizes. Each entry in the neighbor table takes 6 bytes (2 bytes

for neighbor-id and 4 bytes for the time when this neighbor was last heard from).

7.4.1 Testbed Results

We perform testbed experiments using a 30-node network of TelosB nodes ar-

ranged in a 5X6 grid. We vary the distance d between the successive nodes in any

row or column to evaluate the performance of Trickle and Varuna with respect to node

density. The output transmission power of each node is set to the minimum possible

value. In Varuna, each node broadcasts UA packets after every TUA interval, which is

173

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000 1200 1400

Nu
m

be
r o

f a
dv

 tr
an

sm
iss

io
ns

Steady state time (mins)

Varuna,d=10ft

Trickle,d=10ft

Varuna,d=5ft

Trickle,d=5ft

(a)

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100 120

N
um

be
r o

f a
dv

 tr
an

sm
is

si
on

s

Steady state time (mins)

Neighbor Table Size=10

Neighbor Table Size=20
Neighbor Table Size=30

(b)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

N
ei

gh
bo

r T
ab

le
 O

cc
up

an
cy

Steady state time(mins)

Neighbor Table Size=30

Neighbor Table Size=20

Neighbor Table Size=10

(c)

 50

 100

 150

 200

Av
er

ag
e

st
ea

dy
 d

el
ay

 (u
s)

NeighborTable
=10

NeighborTable
=20

NeighborTable
=30

(d)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Av
er

ag
e

M
O

O
D

y
de

la
y

(m
s)

ADV_RAND=1sec,tau=4sec
ADV_RAND=2sec,tau=8sec

ADV_RAND=5sec,tau=20sec

d=5ft d=10ft

(e)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120

St
ea

dy
Pa

ck
et

/M
O

O
D

yP
ac

ke
t

Steady state time(mins)

d=5ft

d=10ft

(f)

Fig. 7.6. Testbed results: Steady state energy cost as a function of
time for (a) neighbor table size=30, and different grid spacings d,
and (b) d=10ft and different neighbor table sizes; (c) Neighbor table
occupancy vs time for d =10ft; (d) Steady delay and (e) MOODy
delay; (f) Ratio of number of packets that face smaller steady delay
to those that face larger MOODy delay.

174

Table 7.1
Parameters for the experiment.

TUA U[0,60sec] (τl, τh) (2sec,2min)

τ 4,8,and 20sec k 2

ADV RAND 1,2,and 5sec TMOODy 1min

uniformly distributed between 0 and 60 seconds. The values of the parameters used

in the testbed experiments are shown in Table 7.1.

Comparison of steady state energy cost

Figure 7.6-a compares the number of advertisement transmissions by Trickle and

Varuna as a function of steady state time. In this experiment, each node allocates a

neighbor table of size 30, i.e. 180 bytes. As expected, the steady state energy cost

increases linearly with time in Trickle. However, in Varuna, it does not increase after

some time because once a node verifies the freshness of its metadata with each of its

neighbors, it does not need to transition to the MOODy state and advertise anymore.

In just 1 day, the steady state energy cost in Trickle is about 8 and 11 times more

than that of Varuna for node spacing, d = 10 ft and d = 5 ft, respectively. As sensor

networks are generally expected to operate for months, if not years, Varuna would

achieve energy savings of several orders of magnitude compared to Trickle. A simple

extrapolation of the data in Figure 7.6-a shows that in one month, Trickle consumes

about 223 and 336 times more energy than Varuna, for d = 10 ft and 5 ft, respectively.

Note that in our experiments nodes are not duty-cycled. With duty cycling, identical

energy savings due to Varuna will take longer to be realized, increasing in inverse

proportion to the duty cycle.

When the distance d between successive nodes in the grid is increased, the energy

consumption increases both in Trickle and Varuna. The increase in d (equivalently,

decrease in node density) causes the link quality to be poor between the neighboring

nodes. As a result, in Trickle, a node may not hear k or more identical advertisement

175

broadcasts in its neighborhood, even though that many may have been broadcast in

reality. Consequently, the node will not suppress its own advertisement. This leads to

more redundant advertisements for d=10ft than d=5ft. In Varuna, poor link qualities

cause many retransmissions of advertisement packets in the MOODy state and thus

the energy cost is higher for the sparser network.

Effect of neighbor table size

In the above experiment, Varuna incurs fixed cost in the steady state because

the neighbor table does not overflow as it is sufficiently large. If the neighbor table

is small, a node n1 may need to evict an LRU node n2 from the neighbor table to

accommodate a “new” neighbor n3. Later, when n1 receives a UA packet from n2 , n1

goes to the MOODy state (even though n2 is up-to-date with n1) as n2 does not exist

in its neighbor table. So, the steady state energy cost cannot be a fixed value if the

neighbor table is small. Figure 7.6-b shows the steady state energy cost in Varuna

for different neighbor table sizes for d =10 ft. When the size of the neighbor table is

30, the steady state energy cost is fixed. But when the neighbor table is 10 or 20, it

increases linearly with time. Although not shown in the figure, obviously the slope

of this linear relationship increases with the increase in the UA packet reception rate

because UA packet reception causes the node to be MOODy if the source of the UA

packet is not in the neighbor table. For small or moderate size networks, the neighbor

table can be made sufficiently large to ensure fixed energy cost in the steady state.

In the next section, we will show through simulation results that, even for very large

and dense networks, the memory requirement for state maintenance is reasonable. It

is fundamentally because the neighbor table size does not grow with the network size.

Rather, it grows with increasing number of nodes in a neighborhood, or equivalently,

the network density.

Figure 7.6-c shows how the actual neighbor table occupancy varies with time.

The neighbor table occupancy shown in this graph is an average over all nodes in

176

the network. When 30 slots are allocated for the neighbor table, on average each

node uses about 26 slots, but with 10 or 20 slots, the occupancy reaches the capacity

and there is overflow. Thus, 10 or 20 slots are not sufficient, which causes the linear

increase in steady state energy consumption shown in Figure 7.6-b.

Delay introduced by Varuna

Varuna intercepts the UA packet from MAC layer en route to the application,

executes its algorithm to determine if the source of the packet is up-to-date with it,

and if so, gives the UA packet to the application. Thus, Varuna delays the packet

receipt by the higher layer. There are two types of Varuna delays—steady delay and

MOODy delay. Steady delay is the delay when the source of the UA packet exists in

the neighbor table. MOODy delay is the delay when the source does not exist in the

neighbor table, causing the node to go to the MOODy state and verify its metadata

with the source of the UA packet. Figure 7.6-d shows average steady delay for various

neighbor table sizes. This delay is very small because the node just needs to scan

its neighbor table in which it finds the source of the UA packet. This can be done

in few microseconds as TelosB node has a 8MHz microcontroller. As the size of the

neighbor table increases, the steady delay increases because the table look-up needs

more time.

Figure 7.6-e shows the average MOODy delay for various values of the MOODy

state parameters—ADV RAND and τ . Recollect that when a node goes to the

MOODy state, it waits for a random duration uniformly distributed between 0 and

ADV RAND before broadcasting the advertisement message. In the MOODy state,

it advertises every τ time interval as long as it does not receive response from the

node that caused it to be MOODy, or some threshold time interval TMOODy expires.

As expected, the increase in (ADV RAND,τ) values increases the MOODy delay.

Also, MOODy delay is higher for the sparse network than the dense network because

poorer links in the sparse network causes more advertisement retransmissions in the

177

MOODy state, thereby increasing the MOODy delay. For d =5ft, ADV RAND is the

dominant factor in the MOODy delay. The MOODy delay is less than 12 seconds in

our experiments. Also, initially many packets face the larger MOODy delay, but as

neighbors are added to the neighbor table, the packets increasingly face the smaller

steady delay. This is illustrated in Figure 7.6-f which shows that the ratio of the UA

packets that face small steady delay to large MOODy delay increases linearly with

the steady state time. Thus, overall Varuna introduces negligible delay while passing

the received UA packet from MAC to the application.

7.4.2 Simulation Results

Use of sufficient memory for state maintenance is critically important in Varuna.

As illustrated by testbed experiments, if sufficient memory is allocated for neighbor

table, the steady state energy cost is fixed, independent of the steady state time pe-

riod. In small and moderate size networks, the size of the neighbor table can be made

sufficiently large. In order to find the appropriate size of the neighbor table to ensure

fixed steady energy cost in large networks, we perform TOSSIM [127] simulations on

a 20x20 grid network. Distance d between the grid points is taken as 5ft, 10ft, and

20ft. The values of various parameters used for the simulation experiments are same

as those used for testbed experiments (Table 7.1). In our simulations, all UA packets

are broadcast. In practice, not all UA traffic is of broadcast nature. If the amount

of broadcast traffic is less, then as explained in Section 7.3.4, the number of MOODy

transitions of the node, steady state energy cost, and the necessary neighbor table

size are all reduced.

As Figure 7.7-a shows, the steady state energy cost increases linearly with time in

Trickle, whereas it is fixed in Varuna for d =10ft and 20ft, for a neighbor table size

of 50 slots. Trickle consumes about 5 and 147 times more energy than Varuna in one

day and one month, respectively, for d =20ft. For a dense network with d=5ft, Figure

7.7-b shows that a neighbor table of 100 slots is required to achieve fixed steady state

178

 0

 50000

 100000

 150000

 200000

 250000

 0 200 400 600 800 1000 1200 1400

Nu
m

be
r o

f a
dv

 tr
an

sm
iss

io
ns

Steady state time (minutes)

Varuna,d=10ft
Varuna,d=20ft
Trickle,d=10ft
Trickle,d=20ft

(a)

 0

 10000

 20000

 30000

 40000

 50000

 0 200 400 600 800 1000 1200 1400

Nu
m

be
r o

f a
dv

 tr
an

sm
iss

io
ns

Steady state time (minutes)

Varuna,d=5ft
Trickle,d=5ft

(b)

 0

 50000

 100000

 150000

 200000

 250000

 0 20 40 60 80 100 120

N
um

be
r o

f a
dv

 tr
an

sm
is

si
on

s

Steady state time (mins)

Neighbor Table Size=10

Neighbor Table Size=30

Neighbor Table Size=50,70

(c)

 0

 20

 40

 60

 80

 100

 0

Ne
ig

hb
or

 ta
bl

e
oc

cu
pa

nc
y

Steady state time (mins)

Neighbor Table Size=10

Neighbor Table Size=30

Neighbor Table Size=50

Neighbor Table Size=100

Neighbor Table Size=200

 0 20 40 60 80 100 120

(d)

 0

 5

 10

 15

 20

 25

 30

 35

 0

Ne
ig

hb
or

 ta
bl

e
oc

cu
pa

nc
y

Steady state time (mins)

Neighbor Table Size=10

Neighbor Table Size=30,50,100

 0 20 40 60 80 100 120

(e)

 0

 2

 4

 6

 8

 10

 12

 14

 0

Ne
ig

hb
or

 ta
bl

e
oc

cu
pa

nc
y

Steady state time (mins)

Neighbor Table Size=10,30,50,100

 0 20 40 60 80 100 120

(f)

Fig. 7.7. Simulation results: Steady state energy cost as a func-
tion of time for (a) neighbor table size=50 and (b) neighbor table
size=100; (c) Steady state energy cost for different neighbor table
sizes for d=10ft; Neighbor table occupancy vs time for (d) d=5ft, (e)
d=10ft, and (f) d=20ft.

179

energy cost in Varuna. For the dense network, Trickle’s performance is better than

for the sparse network because of its good advertisement suppression mechanism. But

as the steady state time increases, Varuna outperforms Trickle. Figure 7.7-c shows

the steady state energy cost for various values of neighbor table size and d =10 ft.

Identical to the conclusion from the testbed experiments, if the neighbor table is

kept sufficiently large, the steady state energy cost becomes independent of time in

Varuna.

Figure 7.7-d, e, and f show the actual neighbor table size occupancy for d =5ft,

10ft, and 20ft. For sparse network with d =20ft, neighbor table with less than 10

slots is sufficient. For a denser network with d =10ft, less than 30 slots are sufficient.

For a very dense network with d =5ft (and the large 400 node network), less than

100 slots (i.e. less than 600 bytes) are sufficient.

In the TOSSIM simulation model, each node has a transmission radius of 50ft, and

the bit error rates are modeled using the empirical results from TinyOS experiments.

To evaluate the size of the neighbor table necessary to ensure fixed steady state energy

cost for different node densities, we introduce the notion of density factor. It is the

ratio of actual network node density (nodes/ft2) to connectivity density (nodes/ft2).

Connectivity density is the node density in a minimally connected network where

every pair of neighboring nodes are at the farthest possible distance that allows direct

one-hop communication between them. For example, in the grid network for our

TOSSIM simulation, connectivity density is 4/2500 nodes/ft2 since a square of 50ft

side requires four nodes at four corners of the square to be minimally connected. Thus,

density factor is also a measure of node redundancy in the network. For example, if

density factor is k, then the network has k times more nodes than that minimally

required for connectivity. For our experiments with d =20ft, 10ft, and 5ft, density

factors are 6.25, 25, and 100, respectively. Note that because of failures and the

fact that sensing range is generally smaller than the transmission range, a minimally

connected network is generally not suitable for practical deployments. Nevertheless,

a redundancy of factor 100 (for d =5ft) will likely be more than sufficient for most

180

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

N
ei

gh
bo

r
ta

bl
e

si
ze

Density factor

Fig. 7.8. Neighbor table size as a function of density factor.

deployments. For such a deployment, a neighbor table of 100 slots is sufficient. Figure

7.8 shows how the size of the neighbor table required for fixed steady state energy

cost in Varuna increases with the density factor.

7.5 Related Work

Reliable data dissemination in wireless networks with unreliable communication

characteristics has been the focus of several research efforts. For disseminating data-

items to the nodes in wireless networks, [148] showed that indiscriminate flooding

results in the highly resource-inefficient broadcast storm problem. Controlled flood-

ing [149], gossiping [140] and probabilistic flooding [103] algorithms have been pro-

posed for one-to-many communications in wireless ad-hoc networks to address this

inefficiency.

Dissemination is more challenging in sensor networks where transient failures oc-

cur more frequently and unpredictably than in other types of wireless networks. Also

energy consumption is a major concern as the sensor nodes have limited energy supply.

Various protocols have been proposed for disseminating different types of data-items

in sensor networks. Drip [150] disseminates various network parameters to the net-

work nodes; Marionette [62] distributes network queries for debugging; [88, 92, 102]

disseminate code binaries; Tenet [151] disseminates tasks. All these protocols use

181

Trickle [107] or some modified form of the Trickle algorithm. Trickle’s design achieves

fast and energy efficient distribution of the data-items in the dissemination phase un-

der varying node densities. Dip [141] reduces the size of the metadata that has to

be transmitted in an advertisement message if the information to be disseminated

consists of several sub data-items. However the steady state energy expenditure of all

of these protocols increases linearly with the steady state time, the most dominant

phase in the lifetime of a network. To the best of our knowledge, Varuna is the first

protocol to address the issue of steady state resource expenditure.

7.6 Conclusions

To maintain data-item consistency, existing systems cause nodes in the network

to advertise their metadata periodically in the steady state when no dissemination is

actually being done. In this chapter, we identify this as a severe problem—the steady

state cost is overwhelmingly larger than the cost during the dissemination state. The

steady state cost of all existing approaches increases linearly with the steady state

time, which is the most dominant part of a network’s lifetime. We presented the

design and implementation of Varuna, whose steady state cost is independent of

the steady state interval for most practical cases. Varuna achieves energy savings

of several orders of magnitude compared to the existing standard algorithm called

Trickle, as demonstrated through our testbed and simulation results.

The price that Varuna pays for achieving fixed steady state energy cost are mem-

ory requirement for storing neighbor table and guarantee of a relaxed invariant that

information cannot flow from a higher version node to a lower version node. As is ev-

ident from our experiments, even for a very dense network with 100 times more nodes

than that required for minimal connectivity, the memory requirement is reasonable

for the currently available commercial sensor nodes. Also, in most sensor network

deployments, the flow of information from up-to-date nodes to out-of-date nodes for

some time (before it is eventually detected by Varuna when the information flow in

182

the opposite direction is attempted) is acceptable. The possibly erroneous informa-

tion does not affect the up-to-date nodes, and cannot force wrong decisions at the

base station, which can be assumed to be always up-to-date. Furthermore, in Trickle

also, the information can flow in both directions (up-to-date to out of date and vice

versa) for some time. Thus we believe that it is worthwhile to pay these relatively

less important costs to ensure energy savings of several orders of magnitude, which

proportionally increases the lifetime of the network.

183

8. CONCLUSIONS

The ability to reprogram the sensor nodes in situ using wireless medium is a very im-

portant requirement for the management of large scale sensor networks. The amount

of information (often in kilobytes) that needs to be disseminated through the wireless

channels for reprogramming purpose can be very large in the context of sensor net-

works where nodes typically use radio communications for exchanging small packets

containing few bytes of sensed data. Wireless dissemination of software code updates

can thus be very expensive in terms of energy consumption because radio transmis-

sions are the most energy-intensive operations in typical sensor networks. Sensor

nodes have limited energy supply and often need to be operated without changing

batteries for long periods of time. Another important metric for wireless software

update is the time required to reprogram the network. Since the performance of the

sensor network may be degraded during reprogramming, it should be done quickly so

that the nodes can resume their normal functions. This dissertation proposed some

robust middleware services for sensor networks, that wirelessly reprogram the sensor

network quickly, using less energy and bandwidth.

First, this thesis presented Stream that minimizes the amount of information that

needs to be disseminated for reprogramming by partitioning the software running on

the sensor nodes in two parts—reprogramming component and user application. By

equipping the sensor nodes with the feature to load the reprogramming component

on demand, Stream avoids the dissemination of the reprogramming component every

time software update is done. This technique achieves a reduction of about 50% in

both reprogramming time and energy compared to the state of the art scheme (Del-

uge) that bundles the reprogramming component and the user application into one

image and disseminates the entire image. Stream also minimizes energy consumption

184

by putting nodes to sleep during the time period until the new code arrives at their

neighborhood.

In spite of the current research trend towards multi hop reprogramming, in our

next work DStream we use mathematical analysis, testbed experiments and simula-

tions to show that under certain network conditions (low link qualities and small node

degree), single hop reprogramming can be faster and more energy efficient than multi

hop mode. DStream can switch between the two modes of reprogramming based on

the current network conditions and thus save energy and increase network lifetime.

Reprogramming time and energy can be significantly reduced by wirelessly trans-

ferring the difference between the old and the new versions of the software (instead

of the entire software) and letting the sensor nodes build the new software using

the old software and the received difference. The difference between the currently

executing code and the new code is typically much smaller than the entire code in

practice. However, this dissertation shows that no matter how good a difference gen-

erator is, the difference will be disproportionately larger than the actual amount of

change made in the software because of the shift of various software components.

Even a small change in the software, for example, can cause many functions and

global variables to be shifted in memory. As a result, all the instructions that refer

to the shifted functions and variables change between the old and the new versions of

the software, causing the difference to be large. This thesis proposed an incremental

reprogramming system called Zephyr that, along with other features, mitigates the

effect of function shifts, creating a small difference. We also presented Hermes that

further reduces reprogramming time and energy by completely eliminating the effect

of global variable shifts.

Finally this thesis presented Varuna that incurs fixed steady state energy cost

independent of the steady state duration—time period during which no code update

is being done in the network. Existing systems broadcast advertisement message

periodically to make sure that all nodes are up-to-date all the time. This causes

the energy expenditure in the steady state to increase linearly with the steady state

185

duration. Using the key observation that if the code running on the sensor node and

neighborhood topology have not changed since the last advertisement, a node does not

need to broadcast advertisement message, Varuna achieves energy savings of several

orders of magnitude in the steady state comapared to existing systems. Varuna can

also be used as a steady state maintenance protocol for information dissemination

(not just code dissemination) in wireless ad-hoc networks (not just sensor networks).

LIST OF REFERENCES

186

LIST OF REFERENCES

[1] http://www.xbow.com/.

[2] http://www.ti.com/msp430/.

[3] http://www.sentilla.com/.

[4] http://www.eyes.eu.org.

[5] http://www.sunspotworld.com/.

[6] http://www.nanork.org/wiki/FireFly.

[7] http://www.tinynode.com/.

[8] http://www.sensinode.com/.

[9] http://www.redwirellc.com/.

[10] C. Han, R. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava, “SOS: A
dynamic operating system for sensor networks,” Third International Conference
on Mobile Systems, Applications, And Services (Mobisys), pp. 163–176, 2005.

[11] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, “RETOS:
resilient, expandable, and threaded operating system for wireless sensor net-
works,” Proceedings of the 6th international conference on Information process-
ing in sensor networks (IPSN), pp. 148–157, 2007.

[12] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruen-
wald, A. Torgerson, and R. Han, “MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms,” Mobile Networks and
Applications, vol. 10, no. 4, pp. 563–579, 2005.

[13] “The btnut operating system,” in http://www.vs.inf.ethz.ch.

[14] http://www.tinyos.net/.

[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible op-
erating system for tiny networked sensors,” 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, 2004.

[16] J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity planning
for micro-solar power sensor networks,” in Proceedings of the 7th international
conference on Information processing in sensor networks (IPSN), pp. 407–418,
IEEE Computer Society, 2008.

187

[17] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele,
C. Tschudin, M. Woehrle, et al., “Operating a sensor network at 3500 m above
sea level,” in Proc. of the 8th Int. Conf. on Information Processing in Sensor
Networks (IPSN), 2009.

[18] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A macroscope in the red-
woods,” in Proceedings of the 3rd international conference on Embedded net-
worked sensor systems (Sensys), ACM, 2005.

[19] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees, “Deploying
a wireless sensor network on an active volcano,” IEEE Internet Computing,
vol. 10, pp. 18–25, 2006.

[20] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele,
C. Tschudin, M. Woehrle, et al., “PermaDAQ: A scientific instrument for preci-
sion sensing and data recovery in environmental extremes,” in Proceedings of the
2009 International Conference on Information Processing in Sensor Networks
(IPSN), pp. 265–276, IEEE Computer Society, 2009.

[21] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a sensor
network expedition,” Wireless Sensor Networks, pp. 307–322.

[22] J. Koo, R. Panta, S. Bagchi, and L. Montestruque, “A tale of two synchronizing
clocks,” in Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems (Sensys), pp. 239–252, ACM, 2009.

[23] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X. Li, and G. Dai, “Canopy closure
estimates with GreenOrbs: sustainable sensing in the forest,” in Proceedings
of the 7th ACM Conference on Embedded Networked Sensor Systems (Sensys),
pp. 99–112, ACM, 2009.

[24] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Harmon,
and D. Estrin, “Suelo: human-assisted sensing for exploratory soil monitoring
studies,” in Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems (Sensys), pp. 197–210, ACM, 2009.

[25] M. Keller, M. Yucel, and J. Beutel, “High-Resolution Imaging for Environmen-
tal Monitoring Applications,” in Proc. International Snow Science Workshop
(ISSW Europe), vol. 10, Citeseer, 2009.

[26] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon,
“Health monitoring of civil infrastructures using wireless sensor networks,” in
Proceedings of the 6th international conference on Information processing in
sensor networks (IPSN), ACM, 2007.

[27] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
N. Kushalnagar, L. Nachman, and M. Yarvis, “Design and deployment of in-
dustrial sensor networks: experiences from a semiconductor plant and the north
sea,” in Proceedings of the 3rd international conference on Embedded networked
sensor systems (Sensys), ACM, 2005.

[28] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin, “A wireless sensor network for structural monitoring,” in Proceed-
ings of the 2nd international conference on Embedded networked sensor systems
(Sensys), pp. 13–24, ACM, 2004.

188

[29] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wire-
less sensor networks for habitat monitoring,” in Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications (WSNA),
pp. 88–97, ACM, 2002.

[30] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat
monitoring: Application driver for wireless communications technology,” ACM
SIGCOMM Computer Communication Review, vol. 31, no. 2 supplement, p. 41,
2001.

[31] T. Liu, C. Sadler, P. Zhang, and M. Martonosi, “Implementing software on
resource-constrained mobile sensors: experiences with impala and zebranet,” in
Proceedings of the 2nd international conference on Mobile systems, applications,
and services (Mobisys).

[32] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An
analysis of a large scale habitat monitoring application,” in Proceedings of the
2nd international conference on Embedded networked sensor systems (Sensys),
pp. 214–226, ACM, 2004.

[33] V. Singhvi, A. Krause, C. Guestrin, J. Garrett Jr, and H. Matthews, “Intelligent
light control using sensor networks,” in Proceedings of the 3rd international
conference on Embedded networked sensor systems (Sensys), ACM, 2005.

[34] X. Jiang, M. Van Ly, J. Taneja, P. Dutta, and D. Culler, “Experiences with
a high-fidelity wireless building energy auditing network,” in Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems (Sensys),
pp. 113–126, ACM, 2009.

[35] S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Ahn, and A. Campbell,
“BikeNet: A mobile sensing system for cyclist experience mapping,” ACM
Transactions on Sensor Networks (TOSN), vol. 6, no. 1, pp. 1–39, 2009.

[36] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,
H. Balakrishnan, and S. Madden, “CarTel: a distributed mobile sensor com-
puting system,” in Proceedings of the 4th international conference on Embedded
networked sensor systems (Sensys), ACM, 2006.

[37] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan,
S. Toledo, and J. Eriksson, “VTrack: accurate, energy-aware road traffic delay
estimation using mobile phones,” in Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (Sensys), pp. 85–98, ACM, 2009.

[38] C. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao, “RACNet: a high-fidelity
data center sensing network,” in Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (Sensys), pp. 15–28, ACM, 2009.

[39] http://fire.me.berkeley.edu/.

[40] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap,
J. Sallai, and K. Frampton, “Sensor network-based countersniper system,” in
Proceedings of the 2nd international conference on Embedded networked sensor
systems (Sensys), pp. 1–12, ACM, 2004.

189

[41] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathumani,
H. Zhang, H. Cao, M. Sridharan, et al., “Exscal: Elements of an extreme scale
wireless sensor network,” in 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pp. 102–108, 2005.

[42] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, and M. Gouda, “A line in the sand: A wireless sensor
network for target detection, classification, and tracking,” Computer Networks,
vol. 46, no. 5, pp. 605–634, 2004.

[43] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, D. Standaert,
M. Akay, J. Dy, M. Welsh, and P. Bonato, “Monitoring motor fluctuations in
patients with Parkinsons disease using wearable sensors,” IEEE Transactions
on Information Technology in Biomedicine, vol. 13, no. 6, pp. 864–873, 2009.

[44] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: An ad
hoc sensor network infrastructure for emergency medical care,” in International
Workshop on Wearable and Implantable Body Sensor Networks, vol. 5, Citeseer,
2004.

[45] B. Yang and S. Rhee, “Development of the ring sensor for healthcare automa-
tion,” Robotics and Autonomous Systems, vol. 30, pp. 273–281, 2000.

[46] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,
W. Kang, J. Stankovic, D. Young, and J. Porter, “Luster: wireless sensor
network for environmental research,” in Proceedings of the 5th international
conference on Embedded networked sensor systems (Sensys), ACM, 2007.

[47] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “PermaSense: investigating
permafrost with a WSN in the Swiss Alps,” in Proceedings of the 4th workshop
on Embedded networked sensors, p. 12, ACM, 2007.

[48] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity
and yield in a volcano monitoring sensor network,” in Proceedings of the
7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), vol. 7, 2006.

[49] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, and M. Welsh,
“CitySense: A vision for an urban-scale wireless networking testbed,” in Pro-
ceedings of the 2008 IEEE International Conference on Technologies for Home-
land Security, Waltham, MA, Citeseer, 2008.

[50] R. Panta, S. Bagchi, I. Khalil, and L. Montestruque, “Single versus multi-hop
wireless reprogramming in sensor networks,” in Proceedings of the 4th Interna-
tional Conference on Testbeds and research infrastructures for the development
of networks & communities (Tridentcom), pp. 1—7, ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering), 2008.

[51] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking
for reprogramming wireless sensor networks,” in Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems (Sensys).

[52] M. Wachs, J. Choi, J. Lee, K. Srinivasan, Z. Chen, M. Jain, and P. Levis, “Visi-
bility: A new metric for protocol design,” in Proceedings of the 5th international
conference on Embedded networked sensor systems (Sensys).

190

[53] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes: Experi-
ences from a pilot sensor network deployment in precision agriculture,” in 20th
International Parallel and Distributed Processing Symposium (IPDPS).

[54] A. Woo and T. Tong, “Tinyos mintroute collection protocol,” in tinyos-
1.x/lib/MintRoute.

[55] T. Van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol
for wireless sensor networks,” in Proceedings of the 1st international conference
on Embedded networked sensor systems (Sensys).

[56] R. Beckwith, D. Teibel, P. Bowen, and I. Res, “Unwired wine: Sensor networks
in vineyards,” in Proceedings of IEEE Sensors, pp. 561–564, 2004.

[57] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden, “Task: Sensor
network in a box,” in Proceedings of the Second European Workshop on Wireless
Sensor Networks (EWSN), 2005.

[58] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. Stankovic, et al., “VigilNet: An integrated sensor network sys-
tem for energy-efficient surveillance,” ACM Transactions on Sensor Networks
(TOSN), vol. 2, no. 1.

[59] T. Schmid, H. Dubois-Ferriere, and M. Vetterli, “Sensorscope: Experiences with
a wireless building monitoring sensor network,” in Workshop on Real-World
Wireless Sensor Networks (REALWSN05), 2005.

[60] V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer, and M. Witt, “The
heathland experiment: Results and experiences,” in Proceedings of the Work-
shop on Real-World Wireless Sensor Networks (REALWSN), Citeseer, 2005.

[61] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring
volcanic eruptions with a wireless sensor network,” in Proceeedings of the Second
European Workshop on Wireless Sensor Networks (EWSN), pp. 108–120, 2005.

[62] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta,
and D. Culler, “Marionette: using rpc for interactive development and debug-
ging of wireless embedded networks,” in Proceedings of the 5th international
conference on Information processing in sensor networks (IPSN).

[63] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proceedings of the 3rd inter-
national conference on Embedded networked sensor systems (Sensys).

[64] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil,
and T. Schoellhammer, “A system for simulation, emulation, and deployment
of heterogeneous sensor networks,” in Proceedings of the 2nd international con-
ference on Embedded networked sensor systems (Sensys), pp. 201–213, ACM,
2004.

[65] P. Li and J. Regehr, “T-Check: Bug Finding for Sensor Networks,”

[66] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. Necula, “Dependent types
for low-level programming,” Programming Languages and Systems, pp. 520–535,
2007.

191

[67] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “Efficient mem-
ory safety for TinyOS,” in Proceedings of the 5th international conference on
Embedded networked sensor systems (Sensys).

[68] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo, “Declarative
tracepoints: a programmable and application independent debugging system
for wireless sensor networks,” in Proceedings of the 6th ACM conference on
Embedded network sensor systems (Sensys), pp. 85–98, ACM New York, NY,
USA, 2008.

[69] M. Khan, H. Le, H. Ahmadi, T. Abdelzaher, and J. Han, “Dustminer: trou-
bleshooting interactive complexity bugs in sensor networks,” in Proceedings of
the 6th ACM conference on Embedded network sensor systems (Sensys), pp. 99–
112, ACM, 2008.

[70] N. Kothari, T. Millstein, and R. Govindan, “Deriving state machines from
TinyOS programs using symbolic execution,” in Proceedings of the 7th in-
ternational conference on Information processing in sensor networks (IPSN),
pp. 271–282, IEEE Computer Society, 2008.

[71] V. Krunic, E. Trumpler, and R. Han, “NodeMD: Diagnosing node-level faults in
remote wireless sensor systems,” in Proceedings of the international conference
on Mobile systems, applications, and services (MobiSys), pp. 43–56, ACM, 2007.

[72] R. Kumar, E. Kohler, and M. Srivastava, “Harbor: software-based memory
protection for sensor nodes,” in Proceedings of the 6th international conference
on Information processing in sensor networks (IPSN).

[73] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, and J. Stankovic, “Achieving
repeatability of asynchronous events in wireless sensor networks with envirolog,”
tech. rep., Citeseer, 2006.

[74] N. Nguyen and M. Soffa, “Program representations for testing wireless sensor
network applications,” in Workshop on Domain specific approaches to software
test automation: in conjunction with the 6th ESEC/FSE joint meeting.

[75] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle, “KleeNet: Discovering Insidious Interaction Bugs in Wireless Sen-
sor Networks Before Deployment,” in Proc. of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2010.

[76] I. S. 802.15.4, “Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs),” 2006.

[77] I. S. 802.11, “IEEE 802.11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications,” 2007.

[78] I. S. 802.15.4, “Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Wireless Personal Area Networks,” 2005.

[79] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The hitchhiker’s
guide to successful wireless sensor network deployments,” in Proceedings of the
6th ACM conference on Embedded network sensor systems (Sensys), pp. 43–56,
ACM, 2008.

192

[80] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and J. Regehr, “Surviving
sensor network software faults,” in Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles (SOSP), pp. 235–246, ACM, 2009.

[81] http://www.heliosware.com/.

[82] W. Li, Y. Zhang, J. Yang, and J. Zheng, “UCC: update-conscious compilation
for energy efficiency in wireless sensor networks,” in Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and implementa-
tion (PLDI).

[83] C. Fok, G. Roman, and C. Lu, “Rapid development and flexible deployment
of adaptive wireless sensor network applications,” in 25th IEEE International
Conference on Distributed Computing Systems (ICDCS), pp. 653–662, 2005.

[84] http://ceti.cse.ohio-state.edu/kansei/.

[85] http://www.jamesreserve.edu/.

[86] V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. Welsh, “Simulating
the power consumption of large-scale sensor network applications,” in Proceed-
ings of the 2nd international conference on Embedded networked sensor systems
(Sensys), pp. 188–200, ACM, 2004.

[87] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor
networks,” Proceedings of the 2nd ACM international conference on Wireless
sensor networks and applications, pp. 60–67, 2003.

[88] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless Repro-
gramming for Sensor Networks,” IEEE Conference on Computer Communica-
tions (Infocom), pp. 928–936, 2007.

[89] R. Panta, S. Bagchi, and I. Khalil, “Efficient wireless reprogramming through
reduced bandwidth usage and opportunistic sleeping,” Ad Hoc Networks, vol. 7,
no. 1, pp. 42–62, 2009.

[90] R. Panta, S. Bagchi, and S. Midkiff, “Zephyr: Efficient incremental reprogram-
ming of sensor nodes using function call indirections and difference computa-
tion,” in USENIX Annual Technical Conference (USENIX ATC), 2009.

[91] R. Panta and S. Bagchi, “Hermes: Fast and Energy Efficient Incremental Code
Updates for Wireless Sensor Networks,” in IEEE Conference on Computer
Communications (Infocom), 2009.

[92] J. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol
for network programming at scale,” Proceedings of the international conference
on Embedded networked sensor systems (Sensys), pp. 81–94, 2004.

[93] A. Tridgell, “Efficient Algorithms for Sorting and Synchronization,” 1999.

[94] J. Lilius and I. Paltor, “Deeply embedded python,
a virtual machine for embedded systems,” in
http://www.tucs.fi/magazin/output.php?ID=2000.N2.LilDeEmPy.

193

[95] A. Boulis, C. Han, and M. Srivastava, “Design and implementation of a frame-
work for efficient and programmable sensor networks,” in Proceedings of the 1st
international conference on Mobile systems, applications and services, pp. 187–
200, ACM, 2003.

[96] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,”
ACM SIGOPS Operating Systems Review, pp. 85–95, 2002.

[97] J. Koshy and R. Pandey, “VMSTAR: synthesizing scalable runtime environ-
ments for sensor networks,” Proceedings of the international conference on Em-
bedded networked sensor systems (Sensys), pp. 243–254, 2005.

[98] P. Levis, D. Gay, and D. Culler, “Active sensor networks,” Proceedings of the
2nd USENIX/ACM Symposium on Network Systems Design and Implementa-
tion (NSDI), 2005.

[99] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. Sirer, “Design and implementation
of a single system image operating system for ad hoc networks,” in Proceedings
of the 3rd international conference on Mobile systems, applications, and services
(MobiSys), pp. 06–08, 2005.

[100] C. Inc, “Mote In-Network Programming User Reference,” 2003.

[101] S. Kulkarni and L. Wang, “MNP: Multihop Network Reprogramming Service
for Sensor Networks,” vol. 25.

[102] M. Krasniewski, R. Panta, S. Bagchi, C. Yang, and W. Chappell, “Energy-
efficient on-demand reprogramming of large-scale sensor networks,” ACM
Transactions on Sensor Networks (TOSN), 2008.

[103] J. Luo, P. Eugster, and J. Hubaux, “Route driven gossip: probabilistic reliable
multicast in ad hoc networks,” IEEE Conference on Computer Communications
(Infocom), pp. 2229–2239, 2003.

[104] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-based protocols
for disseminating information in wireless sensor networks,” Wireless Networks,
vol. 8, no. 2, pp. 169–185, 2002.

[105] G. Khanna, S. Bagchi, and Y. Wu, “Fault tolerant energy aware data dissemi-
nation protocol in sensor networks,” in International Conference on Dependable
Systems and Networks (DSN), pp. 795–804, 2004.

[106] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mech-
anism for wireless sensor networks,” University of California, LA, Tech. Rep.
CENS-TR-30, 2003.

[107] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating al-
gorithm for code propagation and maintenance in wireless sensor networks,”
in Proceedings of the First USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI), vol. 246, pp. 15–28.

[108] R. Simon, L. Huang, E. Farrugia, and S. Setia, “Using multiple communica-
tion channels for efficient data dissemination in wireless sensor networks,” in
IEEE International Conference on Mobile Adhoc and Sensor Systems Confer-
ence (MASS), 2005.

194

[109] P. Dutta, J. Hui, D. Chu, and D. Culler, “Securing the deluge network program-
ming system,” in Fifth International Conference on Information Processing in
Sensor Networks (IPSN), pp. 326–333, 2006.

[110] P. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice: Secure dissemination of
code updates in sensor networks,” in 26th IEEE International Conference on
Distributed Computing Systems (ICDCS), 2006.

[111] H. Tan, S. Jha, D. Ostry, J. Zic, and V. Sivaraman, “Secure multi-hop network
programming with multiple one-way key chains,” in Proceedings of the first
ACM conference on Wireless network security, pp. 183–193, ACM, 2008.

[112] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and dos-resistant code
dissemination in wireless sensor networks,” in Proceedings of the international
conference on Information processing in sensor network (IPSN), pp. 445–456,
2008.

[113] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and DoS-resistant multi-
hop code dissemination protocol for wireless sensor networks,” in Proceedings
of the second ACM conference on Wireless network security, pp. 245–252, ACM
New York, NY, USA, 2009.

[114] O. Ugus, D. Westhoff, and J. Bohli, “A ROM-friendly secure code update mech-
anism for WSNs using a stateful-verifier τ -time signature scheme,” in Proceed-
ings of the second ACM conference on Wireless network security, pp. 29–40,
ACM, 2009.

[115] C. de la Parra and J. Garcia-Macias, “A protocol for secure and energy-aware
reprogramming in WSN,” in Proceedings of the 2009 International Conference
on Wireless Communications and Mobile Computing: Connecting the World
Wirelessly, pp. 292–297, ACM, 2009.

[116] W. Itani, A. Kayssi, and A. Chehab, “PETRA: a secure and energy-efficient
software update protocol for severely-constrained network devices,” in Proceed-
ings of the 5th ACM symposium on QoS and security for wireless and mobile
networks, pp. 37–43, ACM, 2009.

[117] W. Li, Y. Zhang, and B. Childers, “MCP: An Energy-Efficient Code Distri-
bution Protocol for Multi-Application WSNs,” in Proceedings of 5th IEEE In-
ternational Conference on Distributed Computing in Sensor Systems (DCOSS),
Springer-Verlag New York Inc, 2009.

[118] W. Li, Y. Du, Y. Zhang, B. Childers, P. Zhou, and J. Yang, “Adaptive Buffer
Management for Efficient Code Dissemination in Multi-Application Wireless
Sensor Networks,” in IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, 2008. EUC’08, vol. 1, 2008.

[119] D. De Couto, D. Aguayo, B. Chambers, and R. Morris, “Performance of multi-
hop wireless networks: Shortest path is not enough,” ACM SIGCOMM Com-
puter Communication Review, vol. 33, no. 1.

[120] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wireless sensor networks:
challenges and approaches,” IEEE Network, vol. 20, no. 3, pp. 48–55, 2006.

195

[121] J. Jeong and D. Culler, “Incremental network programming for wireless sen-
sors,” Annual IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON), pp. 25–33, 2004.

[122] J. Koshy and R. Pandey, “Remote incremental linking for energy-efficient repro-
gramming of sensor networks,” Proceeedings of the Second European Workshop
on Wireless Sensor Networks (EWSN), pp. 354–365, 2005.

[123] P. Marron, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rother-
mel, “Flexcup: A flexible and efficient code update mechanism for sensor net-
works,” Wireless Sensor Networks, pp. 212–227.

[124] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. Baras, “Atemu: A fine-grained
sensor network simulator,” in First Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks (SECON),
pp. 145–152, 2004.

[125] W. Li, Y. Zhang, J. Yang, and J. Zheng, “Towards update-conscious compila-
tion for energy-efficient code dissemination in WSNs,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 6, no. 4, pp. 1–33, 2009.

[126] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesC language: A holistic approach to networked embedded systems,” in Pro-
ceedings of the ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI).

[127] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and scalable
simulation of entire tinyOS applications,” Proceedings of the international con-
ference on Embedded networked sensor systems (Sensys), pp. 126–137, 2003.

[128] S. Bandyopadhyay and E. Coyle, “An energy efficient hierarchical clustering al-
gorithm for wireless sensor networks,” in IEEE Conference on Computer Com-
munications (Infocom), vol. 3, pp. 1713–1723, 2003.

[129] J. Kim and J. Lee, “Performance analysis of Mac protocols for wireless LAN
in Rayleigh and shadow fast fading,” in IEEE Global Telecommunications Con-
ference (GLOBECOM), vol. 1, pp. 404–408, 1997.

[130] http://estadium.purdue.edu/.

[131] H. Pucha, D. Andersen, and M. Kaminsky, “Exploiting similarity for multi-
source downloads using file handprints,” Proceedings of the USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI), 2007.

[132] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth network file
system,” Proceedings of the ACM SIGOPS symposium on Operating systems
principles (SOSP), pp. 174–187, 2001.

[133] http://jarsync.sourceforge.net/.

[134] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes: maxi-
mizing sensor network data persistence,” Annual conference of the ACM Special
Interest Group on Data Communication (SIGCOMM), pp. 255–266, 2006.

196

[135] M. Buettner, G. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble
MAC protocol for duty-cycled wireless sensor networks,” in ACM 4th interna-
tional conference on Embedded networked sensor systems (Sensys), 2006.

[136] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless
sensor networks,” in ACM 2nd international conference on Embedded networked
sensor systems (Sensys), pp. 95–107, 2004.

[137] A. El-Hoiydi and J. Decotignie, “Low power downlink mac protocols for infras-
tructure wireless sensor networks,” Mobile Networks and Applications, pp. 675–
690, 2005.

[138] cc2420, “http://focus.ti.com/lit/ds/symlink/cc2420.pdf.”

[139] http://www.atmel.com/.

[140] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content de-
livery across adaptive overlay networks,” ACM Transactions on Networking
(TON), pp. 767–780, 2004.

[141] K. Lin and P. Levis, “Data discovery and dissemination with dip,” Proc. of
the ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pp. 433–444.

[142] W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1,
pp. 40–44, 2009.

[143] “Wireless systems for industrial automation, process control, and related appli-
cations,” ISA 100.11a, Draft standard, 2009.

[144] G. Ahn, S. Hong, E. Miluzzo, A. Campbell, and F. Cuomo, “Funneling-mac:
a localized, sink-oriented mac for boosting fidelity in sensor networks,” in Pro-
ceedings of the international conference on Embedded networked sensor systems
(Sensys), 2006.

[145] C. Perkins, E. Royer, and S. Das, “Ad hoc on-demand distance vector (AODV),”
in IEEE Workshop on Mobile Computing Systems and Applications (WMCSA),
1999.

[146] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks,” Internet proposed standard RFC 4944,
2007.

[147] “http://www.zigbee.org,” ZigBee Allinance.

[148] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in a
mobile ad hoc network,” in Proceedings of the 5th annual ACM/IEEE interna-
tional conference on Mobile computing and networking (Mobicom), pp. 151–162,
ACM, 1999.

[149] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang, “A Reliable Mul-
ticast Framework for light-weight Sessions and Application Level Framing,”
Annual conference of the ACM Special Interest Group on Data Communication
(SIGCOMM, pp. 342–356, 1995.

197

[150] G. Tolle and D. Culler, “Design of an application-cooperative management sys-
tem for wireless sensor networks,” Proceeedings of the Second European Work-
shop on Wireless Sensor Networks (EWSN), pp. 121–132, 2005.

[151] O. Gnawali, K. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A. Joki,
D. Estrin, and E. Kohler, “The tenet architecture for tiered sensor networks,”
Proceedings of the international conference on Embedded networked sensor sys-
tems (Sensys), pp. 153–166, 2006.

VITA

198

VITA

Rajesh Krishna Panta received B.E. in Electronics Engineering from Tribhuwan

University, Nepal. He obtained Masters degree in Information Engineering from Ni-

igata University, Japan, under Japanese government scholarship. He started Ph.D.

program in Purdue in Fall, 2005.

Rajesh’s research interests are in broad areas of embedded, networked, and dis-

tributed systems, with an emphasis on wireless ad-hoc and sensor networks. He

worked in Robert Bosch Research and Technology Center during summer 2009.

