
1

1

Remote Reprogramming of
Wireless Sensor Networks!

Rajesh Krishna Panta
PhD Final Examination

Advisor : Prof. Saurabh Bagchi
Committee Members : Profs. Samuel P. Midkiff,

James V. Krogmeier, Vijay Raghunathan

Dependable Computing Systems Laboratory (DCSL)
Electrical and Computer Engineering Department, Purdue University

2

Thesis Statement!
•  Develop novel techniques for building robust,

energy-efficient, and practical middleware services
for networks of low power resource-constrained
embedded devices

•  Contributions
– Reprogramming
– Time Synchronization
– Security
– MAC

2

3

Introduction: Sensor Network Reprogramming!

•  Uploading new software while the nodes are in situ,
embedded in their sensing environment

•  Fix software bugs
•  Adapt to changing user needs

and environmental conditions
in which the network is
deployed

•  Shorten software development
phase

•  Make software robust
•  Fine-tune algorithms
•  Complete application

replacement

4

Requirements of Network Reprogramming!

•  For correctness, all nodes in the network should receive
the code completely
– Reliable dissemination using unreliable wireless channels is

challenging

•  For performance, code upload should minimize
–  reprogramming time so that sensor nodes can quickly resume

their normal function
–  reprogramming energy spent in disseminating code through

the network since sensor nodes have limited energy

•  Solution should fit within computation, memory, and
bandwidth constraints of sensor nodes

3

5

Outline of the Talk!

•  Research contributions
• Hermes: Incremental reprogramming system

– Byte level comparison
– Application level modifications

• Varuna: Steady state maintenance protocol
– Fixed steady state energy cost

•  Conclusion

6

Research Contributions!

Freshet
(TOSN)

May
2010

Fall
2005

Stream
(Infocom, AdHoc,

Patent app)

DStream
(TridentCom)

Full image
replacement

Zephyr
(USENIX ATC,

TOSN submission)

Hermes
(Infocom, Elsevier

submission)

Incremental
reprogramming

Asynchronous
low power

multi-channel
MAC

(Patent app)

Harmonia
(Sensys)

RDAS
(SECON)

Varuna
(SRDS

submission)

4

7

Hermes: Motivation!
•  In practice, software running on the sensor nodes evolves with

incremental changes to its functionality
•  TinyOS [Berkeley] does not support dynamic linking on the

sensor nodes
–  Cannot transfer just the components that have changed and link them in at the

node

•  SOS [Han05] and Contiki [Dunkels04] support dynamic
linking on the nodes
–  Limitations of position independent code in SOS
–  Wireless transfer of symbol and relocation tables in Contiki is costly

•  Instead of transferring the entire image, Hermes transfers the
difference between the old and new versions of the software

[Berkeley] www.tinyos.net
[Dunkels04] Dunkels, A., Gronvall, B. and Voigt, T., “Contiki-a lightweight and flexible operating system for
tiny networked sensors”, Proceedings of the 29th Annual IEEE Conference on Local Computer Networks.
[Han05] Han, C.C., Kumar, R., Shea, R., Kohler, E. and Srivastava, M., “A Dynamic Operating System for
Sensor Nodes”, Proceedings of the 3rd Conference on Mobile Systems, applications and services.

8

Overview of Hermes!

Byte level
comparison

Delta
Script

Delta
distribution

stage

Delta script
downloaded

by nodes

New user
application

Old user
application

Old
application

Image
rebuild

and load
stage

New
application

Executed on host computer

Executed on sensor nodes

Function call
indirection

Global variable
placement

Application level modifications

Delta generation stage

5

9

Byte Level Comparison: Rsync!
•  Rsync[Tridgell99] divides the images to be compared into

fixed size blocks
•  Rsync finds the matching blocks between the two images

using comparison at two levels – checksum and MD4
•  Optimized Rsync finds the maximal superblock

[Tridgell99] Trigdell, A. , “Efficient algorithms for Sorting and Synchronization”, Ph.D. Thesis, Australian
University, 1999.

Optimized
Rsync

Old
software

New
software

Delta script
COPY <oldOffset> <newOffset> <len>
INSERT <newOffset> <len> <data>

10

Byte Level Comparison Alone is not Sufficient (1)!

•  To see the drawback of using optimized Rsync alone, consider
the following cases of software changes:

• Case I (Changing Blink application)

–  Changing an application from blinking a green LED every second to blinking
every 2 seconds

–  A single parameter change (very small change)
–  Delta script produced by optimized Rsync (byte level comparison) is 23 bytes

- proportional to the amount of the actual change made in the software

• Case II (Adding few lines of code to Blink application)
–  This is also a small change.
–  But delta script is 2183 bytes - disproportionately larger than the amount of

actual change made in the software

• Case III (Adding one global variable to Blink
application)

–  Again a small change
–  The delta script is 6090 bytes.

6

11

Byte Level Comparison Alone is not Sufficient (2)!

•  None of the functions shift in Case I
•  Functions following the added lines get shifted in

Case II, causing all the function call statements
referring to the shifted functions to change

•  In Case III, many global variables are shifted in
memory due to addition of a new variable, causing all
the instructions that refer to the shifted variables to
change

Size of the delta script produced by byte level comparison alone may be
huge even if the actual amount of change is small. So application level
modifications are necessary before performing byte level comparison

12

Function Call Indirections!

call fun1

call fun2

call funn

funn

fun1

fun2

…

…

…

…

…

…

call loc1

call loc2

call locn

funn

fun1

fun2

…

…

…

…

…

…

call fun1
ret
call fun2
ret

…
call funn
ret

a

b

c

a

b

c

Program image without
indirection table

Program image with
indirection table

loc1

loc2

locn

7

13

Effect of Function Call Indirections!

Optimized
Rsync

Blink
Blink with

few (4) lines
added

Optimized Rsync
+ Function call

indirections

Delta script
Size= 2183 Bytes

Delta script
Size= 280 Bytes

14

Placement of Global Variables in RAM!

iv1
iv2

. . .

ivn
uv1
uv2

uvn

Heap

Stack

.data

.bss

iv1
ivn+1

. . .

ivn
uv1
uv2

uvn

Heap

Stack

.data

.bss

iv2

Shifted
global
variables

. . .

. . .

Initialized global variables

Uninitialized global variables

(a) Old program (b) New program

Order of placement of global
variables is dependent on the
compiler implementation

New global variable added

8

15

•  Members of a structure are placed in memory in the
same order as they are defined in the structure

•  Hermes scans through all the source files of the
application and transforms the initialized and un-
initialized global variables into members of two
structures, iglobStruct and uglobStruct respectively
– Hermes places a global variable in the new version of the

software at the same location in the structure, and hence in
RAM as in the old version

Hermes Solution Approach!

16

Improvement due to Elimination of
Global Variable Shifts!

Optimized
Rsync

Blink
Blink with
one global

variable added

Optimized Rsync
+ Placement of

variables

Delta script
Size= 6090 Bytes

Delta script
Size= 156 Bytes

9

17

Latency due to Function Call Indirection!

•  One level of indirection increases the latency of the
user program by few CPU cycles (e.g. 8 cycles in AVR
platform) for each function call

•  The increase in latency accumulates over time
– Sensor network applications run in a continuous loop

•  Hermes avoids this latency by using the exact function
address in call statements while loading the latest
software image from the external flash to the program
memory

18

Delta Distribution, Image Rebuild and Load Stages!

Image 0
(Dissemination component)

Image 1
(Delta script)

Image 2
(User app version n)

Image 3
(User app version n-1)

Unused part

External flash

Bootloader

Program memory

Image 2
(User app
version n)

Image 0
(Dissemination component)

Image 1
(Delta script)

Image 2
(User app version n)

Image 3
(User app version n-1)

Unused part

External flash

Bootloader

Program memory

Image 2
(User app
version n)

User app
version n

Ind
Table

User app
version n+1

Ind
Table

- Delta
script

Base
node

Base node Sensor node

(generated
in the host
computer)

Image 1
(New delta script)

Reboot from image 0

Reboot from
Image 0

(broadcast)

Image 0
(Dissemination component)

Image 2
(User app version n)

Image 0
(Dissemmination

component)

Broadcast reboot command
(controlled flooding)

Image 0
(Dissemination component)

Image 2
(User app version n)

Image 0
(Dissemination

component)

Inject delta script

Delta script
disseminated using
3-way handshake

(adv-request-data)

Image 1
(New delta script)

Bootloader

Image 0
(Dissemination
Component)

Image 0
(Dissemination component)

Image 1
(New delta script)

Image 2
(user app version n)

Image 3
(user app version n-1)

Unused part

Image
rebuilder Image 3

(user app version n+1)
Read new

app

Load new app
avoiding

indirection table

Image 3
{ user app
ver (n+1)’ }

Image 3
(user app version n+1)

Image 0
(Dissemination component)

Program memory External flash

10

19

Experiments : Evaluation of Function Call Indirections!
Case 1 Blink application blinking green LED every second to blinking every

2 seconds.
Small change (SC)

Case 2 Few lines added to the Blink application Moderate change (MC)

Case 3 Blink application to CntToLedsAndRfm Very large change (VLC)

Case 4 CntToLeds to CntToLedsAndRfm Very large change (VLC)

Case 5 Blink to CntToLeds Large change (LC)

Case 6 Blink to Surge Very large change (VLC)

Case 7 CntToRfm to CntToLedsAndRfm Large change (LC)

Case A An application that samples battery voltage and temperature from
MTS310 sensor board to one where few functions are added to sample
the photo sensor also.

Large change (LC)

Case B Few functions were deleted to remove the light sampling features. Large change (LC)

Case C Added the features for sampling all the sensors on the MTS310 board
except light (e.g. magnetometer, accelerometer, microphone).
Collected mean and mean square values of the samples taken during a
user specified window size.

Very large change (VLC)

Case D Same as Case C but with addition of few lines of code to get
microphone peak value over the user specified window size.

Moderate change (MC)

Case E Removed the feature of sensing and wirelessly transmitting to the base
node the microphone mean value.

Moderate change (MC)

Case F Added the feature of allowing the user to put the nodes to sleep for the
user specified duration.

Very large change (VLC)

Case G Changed the microphone gain parameter. Small change (SC)

Standard TinyOS
applications

eStadium
applications

20

Testbed Experiments!
•  Topology: 2x2, 3x3, and 4x4 grid networks; Linear network with

2, 3, …, 10 nodes (mica2 motes)
•  A node at one corner of the grid or the end of the line acts as a

base node.
–  Base node generates delta for the various software change cases discussed

above and injects the delta in the network

•  Compare delta script size, network reprogramming time and
energy of Zephyr (same as Hermes except it does not eliminate
variable shifts) with Deluge[Hui], Stream[Panta], Rsync[Jeong],
and Optimized Rsync
–  Use number of packets transmitted in the network as a measure of

reprogramming energy
[Hui]J.W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for network programming
at scale.” SenSys 2004.
[Panta] R.K.Panta, I. Khalil, S. Bagchi, “Stream: Low Overhead Wireless Reprogramming for Sensor Networks,”
Infocom 2007.
[Jeong]J. Jeong, D. Culler, “Incremental network programming for wireless sensors,” SECON 2004.

11

21

Size of Delta Script!
Case 1 Case 2 Case 3 Case 4 Case

5
Case

6
Case 7 Case

A
Case

B
Case

C
Case D Case E Case F Case G

Deluge : Zephyr
1400.82 85.05 4.52 4.29 8.47 1.83 29.76 7.60 7.76 2.63 203.57 243.25 2.75 1987.2

Stream : Zephyr
779.29 47.31 2.80 2.65 4.84 1.28 18.42 5.06 5.17 1.82 140.93 168.40 1.83 1324.8

Rsync : Zephyr
35.88 20.81 2.06 1.96 3.03 1.14 8.34 3.35 3.38 1.50 36.03 42.03 1.50 49.6

OptRsync :
Zephyr 1.35 7.79 1.64 1.57 2.08 1.07 3.87 2.37 2.37 1.35 7.84 9.016 1.33 1.4

Deluge needs to transfer up to 1987 times more bytes than Zephyr.
Optimized Rsync generates delta script of size up to 9.01 times more than Zephyr.

Small
change

Moderate
change

Large
change

Very large
change

Case 7

29.76

18.42

8.34

3.87

Case 4

4.29

2.65

1.96

1.57

Case E

243.25

168.40

42.03

9.016

Case G

1987.2

1324.8

49.6

1.4

22

Reprogramming Time!

Zephyr is up to 48.9, 40.1 and 4.09 times faster than Deluge, Stream, and
optimized Rsync without application level modifications, respectively.

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Deluge:Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1

Stream:Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.46 2.23 1.54

Optimized
Rsync:Zephyr

1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

12

23

Reprogramming Energy!

Class 1 (SC) Class 2 (MC) Class 3 (LC) Class 4 (VLC)

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Deluge:Zephyr 90.01 215.3 162.5 40 204.3 101.1 12.27 55.46 25.65 2.51 2.9 2.35

Stream:Zephyr 53.76 117.9 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7

Optimized
Rsync:Zephyr

1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

Deluge, Stream, and optimized Rsync without application level modifications
transfer up to 215, 146 and 22 times more bytes than Zephyr, respectively.

24

TOSSIM Simulation Results!

Zephyr is up to 92.9, 73.4, and 6.3 times faster than Deluge, Stream, and
optimized Rsync without application level modifications, respectively.

Deluge, Stream, and optimized Rsync transmit up to 146.4, 97.9 and 6.4
times more number of packets than Zephyr, respectively.

13

25

Experiments: Evaluation of Elimination of Variable Shifts !
Case 1 Blink to Blink with a global variable added

Case 2 Blink to CntToLeds

Case 3 Blink to CntToLedsAndRfm

Case 4 CntToLeds to CntToLedsAndRfm

Case A An application that samples battery voltage and temperature from
MTS310 sensor board to one where few functions are added to
sample the photo sensor also.

Case B Few functions were deleted to remove the light sampling features.

Case C Added the features for sampling all the sensors on the MTS310
board except light (e.g. magnetometer, accelerometer,
microphone).

Case D Same as Case C but with the addition of a feature to reduce the
frequency of sampling battery voltage.

Case E Same as Case D but with the addition of a feature to filter out
microphone samples (considering them as noise) if they are
greater than some threshold value.

Standard
TinyOS
applications

eStadium
applications

26

Size of Delta Script!

•  Delta script generated by Deluge and Zephyr are up to 201 and 62 times
larger than Hermes, respectively

•  Deluge and Zephyr transfer up to 150 and 46 times more bytes than
Hermes, respectively.

14

27

Outline of the Talk!

•  Research contributions
• Hermes: Incremental reprogramming system

– Byte level comparison
– Application level modifications (Main focus)

• Varuna: Steady state maintenance protocol
– Fixed steady state energy cost

•  Conclusion

28

Steady State Maintenance: Motivation!

•  Why steady state energy cost?
–  Dynamic network topology caused by transient link failures, node mobility,

incremental node deployment, etc
–  Nodes may remain disconnected from the network for some time and may

miss the code dissemination
–  After they come out of disconnection, they must detect the inconsistency
–  To ensure that all nodes are up to date all the time, existing systems

periodically broadcast advertisement message containing metadata – e.g.
version number of the code

Dissemination
state

Steady
state

Out of date

Up to date

Up to date Out of date

Energy expenditure
for code dissemination

Energy expenditure even when
there is no code dissemination

15

29

Drawback of Periodic Advertisement!
•  Steady state energy cost increases linearly with

the steady state period – the most dominant phase
in a node’s lifetime
–  In one day, default steady state advertisement rate of Deluge (1

adv/2 mins) incurs the same number of radio transmissions as
disseminating a 25KB program code

•  Radio transmissions are the most energy
expensive operations

•  Learning when to disseminate code is overwhelmingly more
expensive than disseminating the code itself
•  Goal: Make steady state energy cost independent of steady
state duration

30

Trickle !
•  Each node broadcasts an advertisement message at a time instant

chosen randomly from an interval T if it has not heard more than k
identical advertisements in that interval

•  TL≤T≤TH
•  When a node hears a different advertisement, T = TL
•  When a node does not hear a different advertisement, T is doubled

in successive intervals till T = TH, and kept constant thereafter
•  Advertisement suppression is necessary to make the scheme

scalable with high node density
–  Without loss, collision, and with perfect time synchronization, the number of advertisements in

any time interval within a single hop is bounded by k
–  With these practical conditions, the number of advertisements in a given time interval is O

(logN) where N is the number of nodes within a single hop [Levis]
–  Number of advertisements during steady state period TS (TS>>T) is O(TS)

[Levis] P. Levis, N. Patel, D. Culler, and S, Shanker, “Ttickle: A Self Regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor Networks” NSDI 2004.

16

31

Increasing Advertisement Interval is not a Solution!
•  Steady state energy cost can be reduced by increasing the

advertisement interval
•  Increase in advertisement interval also increases detection latency –

time taken by a node to realize that it is out of date
•  Steady state energy cost still increases linearly with time
•  If advertisement interval is greater than the time required by a node to

download the code, communication between inconsistent nodes is
possible

n0

n1

Time

Time

Adv

Adv

Code download

Disconnection

Adv

Adv

UA

UA

32

Insight 1: Unnecessary Advertisements!
•  A node does not need to broadcast an advertisement

message if its metadata and neighborhood topology have
not changed since its last advertisement transmission

•  Most of Trickle’s advertisements in the steady state are
unnecessary

•  A node can determine trivially whether its metadata has
changed – through a local lookup

•  Determining if the neighborhood topology has changed
is difficult – requires wireless communication among the
neighboring nodes

17

33

Insight 2 : Monitor User Application Traffic!

•  Relaxed requirement: It is generally sufficient for a node
to verify the freshness of its metadata not with all
neighbors, but only with the nodes with which it
communicates

•  Instead of periodic advertisements, listen to User
Application (UA) traffic to check if the neighborhood
has changed
– UA traffic – all messages that are not part of the dissemination

protocol

34

Intuitive Approach!
•  Time is divided into intervals of length TREF
•  Each node monitors the UA traffic to see if it

receives a UA packet from a node from which it
did not receive any packet in the previous interval

•  If so, the node assumes that the neighborhood
topology might have changed since the last
interval
– Exchange the advertisement messages to check if the nodes are

consistent

•  Significant reduction of energy consumption

18

35

How to Choose TREF? (1)!
•  TREF should be sufficiently large so that with a high probability, a

node hears UA packets from all its neighbors within each TREF
–  In the worst case when the neighbor table changes in every TREF

interval, this scheme is equivalent to Trickle with advertisement
period equal to TREF

•  But TREF cannot be increased arbitrarily

n0

n1

Time

Time

Code download

Disconnection
UA UA

Previous TREF Current TREF

Necessary condition: TREF ≤ TCD (TCD: Time to download the code by a node)

TCD

36

How to Choose TREF? (2)!
•  When TREF > TCD, piggyback a Code Downloaded (CD) bit in each UA packet

transmission for TREF interval, after downloading the new version of the code
•  But TREF cannot be larger than TREP (minimum time between successive

reprogramming procedures)
n0

n1

Time

Time

Code download
version n

Disconnection
UA

UA with
CD bit

Previous TREF Current TREF

Necessary condition TREF ≤ TREP

TCD

Code download version n+1

TCD

TCD

TREP

•  Fundamental problem with any scheme that uses refresh interval – since UA
can be arbitrary, no matter how well a TREF is chosen, in the worst case, a
neighbor can be such that it sends a UA packet at every other TREF interval
(equivalent to Trickle with advertisement period equal to TREF)

19

37

Varuna Design!

•  No refresh interval
•  Neighbor table is cleared when the node boots or its metadata changes
•  When the neighbor table is full, the least recently used (LRU) neighbor is

replaced by a new node

Quiescent MOODy

Disseminate

(1) UA msg received
from a new neighbor

(2) Similar Adv msg received
from dest or no Adv Msg is

received for TMOODy

(3) ReqToDisseminate msg
received or broadcast

(4) Code update complete

(5) No Adv Msg received
for t≤ TMOODy

MOODy: May be
Out Of Date

(1)

(2)

(3)
(4)

(3)

(5)

38

Eventual Consistency!
•  Varuna’s invariant: If a node receives a packet from another node

with a lower version of the metadata than its own, the metadata
inconsistency is detected by the receiving node
– Communication from up-to-date node to out-of-date is possible
– Eventual consistency when out-of-date node sends a UA packet

to up-to-date node

n0

n1

Time

Time

Code download

Disconnection
UA0 UA1 UA2

Neighbor table
cleared

n0 detects code
inconsistency

20

39

Fixed Steady State Cost!
• After a node downloads a new version of

the code, it verifies its metadata with each of
its neighbor only once

• Steady state energy cost is independent of
the steady state period
– Sufficient memory
– Relatively good link reliability

40

State Maintenance Cost!
•  No state maintenance in Trickle
•  Varuna needs to maintain a neighbor table
•  Trend towards increasing RAM for sensor nodes

–  512 bytes in Rene mote to 256KB in IMote2

•  Reasonable RAM requirement
–  Size of neighbor table increases with density, not the total number of

nodes in the network
–  For most practical cases, neighbor table requires less than 200 bytes
–  For very dense networks, less than 600 bytes are sufficient

•  Neighbor table is a fundamental data structure
–  Used by many MAC protocols, routing protocols, 6LoWPAN

standard, ZigBee, and many applications

21

41

Experiments and Evaluation!
•  5x6 grid network of TelosB

nodes
•  UA packets → U[0,60sec]
•  TL = 2 sec, TH = 120 sec, k = 2
•  TMOODy = 60 sec
•  Use number of packets

transmitted in the network by
the Trickle and Varuna as a
measure of energy cost

App1 App2 … Appn

Varuna

MAC

42

Testbed Results: Steady State Energy Cost!

•  In just 1 day, Trickle consumes 8 and 11 times more energy than Varuna
for d=10ft and d=5ft, respectively.
•  Steady state cost is independent of the steady state duration in Varuna.

22

43

Simulation Results: Neighbor Table Size!

For very dense network with 100x redundancy, less
than 100 slots are sufficient for neighbor table

•  TOSSIM
•  20x20 grid
•  Other parameters same as

those for testbed experiments

d Neighbor table size
20 ft 8 slots
10ft 26 slots
5 ft 90 slots

44

Conclusions!
•  Proposed complete software image dissemination

protocols
•  Introduced an idea of single vs. multi-hop modes of

reprogramming
•  Used novel techniques for incremental reprogramming

of sensor networks
•  Proposed a steady state maintenance protocol
•  Significant reduction in time required to reprogram the

network as well as dissemination and steady state
energy consumption

23

45

Publications (1)!
1.  Rajesh K. Panta, Saurabh Bagchi, Samuel P. Midkiff, “Efficient Incremental Code Update for

Wireless Sensor Networks,” Submitted to ACM Transactions on Sensor Networks(TOSN).
2.  Rajesh K. Panta, Saurabh Bagchi, “Mitigating the Effects of Software Component Shifts for

Incremental Reprogramming of Wireless Sensor Networks”, Submitted to Elsevier AdHoc
Networks Journal.

3.  Rajesh K. Panta, Madaline Vintila, Saurabh Bagchi, “Fixed Cost Maintenance for Information
Dissemination in Wireless Sensor Networks,”Submitted to SRDS 2010.

4.  Rajesh K.Panta, Saurabh Bagchi, Issa Khalil, “Efficient wireless reprogramming through
reduced band width usage and opportunistic sleeping,” Elsevier AdHoc Networks Journal, 2009.

5.  Rajesh K. Panta, Saurabh Bagchi, Samuel P. Midkiff, “Zephyr: Efficient Incremental
Reprogramming of Sensor Nodes using Function Call Indirections and Difference Computation,”
USENIX ATC, 2009.

6.  Rajesh K. Panta, Saurabh Bagchi, “Hermes: Fast and Energy Efficient Incremental Code Updates
for Wireless Sensor Networks,” IINFOCOM, 2009.

7.  Mark D. Krasniewski, Rajesh K. Panta, Saurabh Bagchi, C-L. Yang,W.J. Chappell, “Energy-
efficient, On-demand Reprogramming of Large-scale Sensor Networks,” ACM Transactions on
Sensor Networks (TOSN), 2008.

8.  Rajesh K. Panta, Saurabh Bagchi, Issa Khalil, Luis Montestruque, “Single versus Multi-hop
Wireless Reprogramming in Sensor Networks,” TridentCom, 2008.

9.  Rajesh K. Panta, Issa Khalil, Saurabh Bagchi, “Stream: Low Overhead Wireless Reprogramming
for Sensor Networks,” INFOCOM, 2007.

46

Publications (2)!
10. Carlos Perez-Toro, Rajesh K. Panta, Saurabh Bagchi,“RDAS: Reputation-Based Resilient Data

Aggregation in Sensor Network,” To appear IEEE SECON, 2010.
11.  JinKyu Koo, Rajesh K. Panta, Saurabh Bagchi, Luis Montestruque,“A Tale of Two

Synchronizing Clocks,” SenSys, 2009.
12. Vinaitheerthan Sundaram, Matthew TanCreti, Rajesh K. Panta, Saurabh Bagchi, “Component

Dependency based Micro-Rejuvenation Scheduling,” Fast Abstract in DSN, 2008.
13. Keisuke Nakano, Rajesh K. Panta, Masakazu Sengoku, Shoji Shinoda,“On performance of a

charging/rewarding scheme in mobile ad-hoc networks,” IEEE ISCAS, 2005.
14. Rajesh K. Panta,Keisuke Nakano, Masakazu Sengoku,Shoji Shinoda,“Basic Properties of

Charging and Rewarding Scheme in Ad-hoc Networks,” IEICE Society Conference, 2004.
15. Rajesh K. Panta, Keisuke Nakano, Masakazu Sengoku, Narumi Umeda, Shoji Shinoda, “Analytic

Estimation of Cell Extension with Finite Relaying Capacity of Relay Nodes,” IEEE MWSCAS,
2004.

16. Keisuke Nakano, Rajesh K. Panta, Satoshi Narita, Masakazu Sengoku, Narumi Umeda, Shoji
Shinoda, “Multi-hop Networking with Relaying Capacity for Cellular Mobile Systems,” IEEE
VTC, 2004.

17. Rajesh K. Panta, Keisuke Nakano, Masakazu Sengoku, Shoji Shinoda, “Effects of Mobility and
Capacity on Cell Extension by Wireless Multi-hop Networking,”IEICE Society Conference,
2003.

24

47

Thank you

