
ALGORITHMS FOR DISTRIBUTED MONITORING

IN MULTI-CHANNEL AD HOC WIRELESS NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Donghoon Shin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2012

Purdue University

West Lafayette, Indiana

ii

Dedicated to my wife Misook Kim, my parents Sungjoon Shin and Bongsoon Lee,

and my brother Dongmin Shin for their love, support and encouragement

iii

ACKNOWLEDGMENTS

I would like to first and foremost thank my advisor, Professor Saurabh Bagchi,

for his guidance, support and encouragement during the entire of my Ph.D. years.

His constant patience, motivation and enthusiasm as well as his insightful discussions

and practical inputs tremendously helped my research. He also carefully taught me

how to write good papers and give clear and impressive presentations. It has been

my privilege and great pleasure to have him as my advisor and work with him.

I would like to thank Professor Ness B. Shroff, Professor Xiaojun Lin and Professor

Chih-Chun Wang for serving my doctoral advisory committee. I am also privileged to

be advised and taught by these wonderful professors. I am grateful to Professor Ness

B. Shroff for his guidance and advice during the early stage of my thesis research.

I was fascinated and motivated by his nice and elegant mathematical modeling of

wireless communications and networking systems to pursue such kinds of research. I

am thankful to Professor Xiaojun Lin for his guidance, advice, help and encourage-

ment during the research projects that I have conducted under his guidance. Also, I

learned a lot of mathematical modelings and theory on convex optimization through

his courses. I am grateful to Professor Chih-Chun Wang for his guidance, advice and

help during the senior years of my Ph.D. course. Without him, it would have been

much more difficult for me to complete this thesis.

I am also grateful to the Dependable Computing Systems Laboratory (DCSL) and

the Network Group lab-mates and friends. I have had many enthusiastic discussions

and enjoyable moments with them. Finally, I would like to give my special thanks to

Wallyholics who made my life at Purdue much more enjoyable.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 OPTIMAL PLACEMENT AND CHANNEL SELECTION OF MON-
ITORING NODES . 2

1.2 DISTRIBUTED ONLINE CHANNEL ASSIGNMENT FOR MONI-
TORING LARGE-SCALE NETWORKS 3

1.3 OPTIMAL SNIFFER-CHANNEL ASSIGNMENT FOR RELIABLE
MONITORING . 3

2 OPTIMAL MONITORING IN MULTI-CHANNEL MULTI-RADIO WIRE-
LESS MESH NETWORKS . 5

2.1 INTRODUCTION . 5

2.2 PROBLEM FORMULATION . 8

2.3 APPLICATIONS . 11

2.4 NP-HARDNESS OF MCMC AND GREEDY APPROXIMATION AL-
GORITHM . 12

2.4.1 NP-HARDNESS OF MCMC 12

2.4.2 GREEDY APPROXIMATION ALGORITHM FOR MCMC 13

2.5 BACKGROUND OF LP ROUNDING AND OVERVIEW OF PRO-
POSED LP ROUNDING ALGORITHMS 17

2.5.1 LP ROUNDING . 17

2.5.2 OVERVIEW OF PROPOSED LP ROUNDING ALGORITHMS 18

2.6 PROBABILISTIC ROUNDING ALGORITHM 20

2.7 DETERMINISTIC ROUNDING ALGORITHM 27

2.8 COMPLEXITY ANALYSIS . 36

v

Page

2.9 SIMULATION RESULTS . 38

2.10 CONCLUSIONS . 45

3 DISTRIBUTED ONLINE CHANNEL ASSIGNMENT TOWARD OPTI-
MAL MONITORING IN MULTI-CHANNEL WIRELESS NETWORKS 47

3.1 INTRODUCTION . 47

3.2 PROBLEM FORMULATION . 49

3.2.1 OPTIMAL SNIFFER-CHANNEL ASSIGNMENT (OSCA) PROB-
LEM . 49

3.2.2 HARDNESS OF OSCA . 50

3.3 THE DISTRIBUTED ALGORITHM FOR OSCA 51

3.3.1 DISTRIBUTED ALGORITHM FOR SOLVING LP RELAX-
ATION OF OSCA . 51

3.3.2 OPPORTUNISTIC CHANNEL ASSIGNMENT ALGORITHM 58

3.4 ONLINE IMPLEMENTATION OF DA-OSCA 61

3.4.1 BASIC INFORMATION UPDATE 61

3.4.2 MODE-I: DA-OSCA FOR FAST-VARYING NETWORKS . 62

3.4.3 MODE-II: DA-OSCA FOR SLOW-VARYING NETWORKS 62

3.5 NOTES . 65

3.6 SIMULATION . 66

3.7 CONCLUSION . 70

4 OPTIMAL SNIFFER-CHANNEL ASSIGNMENT FOR RELIABLE MON-
ITORING IN MULTI-CHANNEL WIRELESS NETWORKS 71

4.1 INTRODUCTION . 71

4.2 PROBLEM FORMULATION . 73

4.2.1 FULL-COVERAGE RELIABLE MONITORING 74

4.2.2 MAXIMUM-COVERAGE RELIABLE MONITORING . . . 75

4.3 LOOK-AHEAD GREEDY ALGORITHMS 77

4.4 RELAXATION-AND-ROUNDING ALGORITHMS 81

4.4.1 LP-BASED AND SDP-BASED RELAXATIONS 82

vi

Page

4.4.2 ROUNDING ALGORITHMS 85

4.5 TIME COMPLEXITY ANALYSIS 86

4.5.1 LOOK-AHEAD GREEDY ALGORITHMS 87

4.5.2 RELAXATION-AND-ROUNDING ALGORITHMS 88

4.6 NUMERICAL EXPERIMENTS . 89

4.7 CONCLUSION . 94

5 RELATED WORK . 96

5.1 OPTIMAL PLACEMENT OF MONITORING NODES IN SINGLE-
CHANNEL WIRELESS NETWORKS 96

5.2 CHANNEL ASSIGNMENT OF SNIFFERS IN MULTI-CHANNEL
WIRELESS NETWORKS . 97

A SUPPORTING RESULTS FOR CHAPTER 3 98

A.1 PROOF OF THE CLAIM IN SECTION 3.3.1 98

A.2 DERIVATION OF ALGORITHM 16 98

A.3 PROOF OF THEOREM 3.3.1 . 101

A.4 PROOF OF THEOREM 3.3.2 . 103

A.5 PROOF OF THE CORRECTNESS OF ALG. 10 105

LIST OF REFERENCES . 108

VITA . 112

vii

LIST OF TABLES

Table Page

2.1 Performance comparison of the three proposed algorithms in this chapter. 8

2.2 Summary of notation . 10

4.1 Time complexity of proposed algorithms 89

viii

LIST OF FIGURES

Figure Page

2.1 Example where GR-MCMC achieves a half of the maximum coverage. There
are two monitoring nodes v1 and v2, each with one radio, and k = 2.
White and black circles denote normal nodes tuned to channels 1 and 2,
respectively. 16

2.2 Overall procedure of our two proposed LP rounding algorithms: 1) Prob-
abilistic Rounding Algorithm with Probabilistic Rounding Scheme; 2) De-
terministic Rounding Algorithm with Deterministic Rounding Scheme. 20

2.3 Two bipartite graphs . 30

2.4 Random networks for different values of k, where n = 200, m = 50, and
every normal radio has the identical weight. 40

2.5 Random networks for different values of k, where n = 200, m = 50, and
the weight of each normal radio is randomly assigned to 1, 2, or 3. . . . 40

2.6 Scale-free networks for different values of k, where n = 200, m = 50, and
every normal radio has the identical weight. 41

2.7 Scale-free networks for different values of k, where n = 200, m = 50, and
the weight of each normal radio is randomly assigned to 1, 2, or 3. . . . 41

2.8 Random networks for different values of m, where n = 200, k = 60%, and
every normal radio has the identical weight. 43

2.9 Scale-free networks for different values of m, where n = 200, k = 60%,
and every normal radio has the identical weight. 43

2.10 Random networks for different values of n, where m = 50, k = 60%, and
every normal radio has the identical weight. 44

2.11 Scale-free networks for different values of n, where m = 50, k = 60%, and
every normal radio has the identical weight. 44

3.1 Distributed Algorithm for OSCA (DA-OSCA). 51

3.2 Mode-I: DA-OSCA for fast-varying networks where the LP rounding exe-
cutes continuously with updated coverage information. 68

3.3 Mode-II: DA-OSCA for slow-varying networks where the algorithm is ex-
ecuted on demand when a change is detected in the network. 69

ix

Figure Page

4.1 Random networks for varying number of sniffers 90

4.2 Scale-free networks for varying number of sniffers 92

4.3 Random networks for varying the number of available wireless channels 93

4.4 Scale-free networks for varying the number of available wireless channels 93

x

ABSTRACT

Shin, Donghoon. Ph.D., Purdue University, August 2012. Algorithms for Distributed
Monitoring in Multi-Channel Ad Hoc Wireless Networks. Major Professor: Saurabh
Bagchi.

Ad hoc wireless networks are vulnerable to a wide range of security attacks, due to

the ease of the nodes being compromised and the cooperative nature of these networks.

A solution approach widely used for defending these networks is behavior-based de-

tection. In this, nodes overhear communications in their neighborhood exploiting the

open nature of the wireless medium, and determine if the behaviors of their neigh-

bors are legitimate. An important issue with behavior-based detection that arises in

multi-channel ad hoc wireless networks is on which channels monitoring nodes should

overhear their neighbors’ communications.

In this dissertation, we develop a framework for behavior-based detection in multi-

channel ad hoc wireless networks. We are interested in the issue of how to optimally

place monitoring nodes and to select channels to tune their radios to. We show that

the problem is NP-hard, then develop approximation algorithms. We show that one of

our algorithms attains the best approximation ratio achievable among all polynomial-

time algorithms. Also, we develop distributed channel assignment algorithms for

large-scale and dynamic networks. The distributed nature of the algorithm allows it to

scale to large networks. Further, we allow for imperfect detection, where monitoring

nodes may probabilistically fail to detect malicious behaviors. For this scenario,

we consider providing multiple covers to each node, thereby still maintaining the

detection accuracy above a certain level. We evaluate our algorithms for random and

scale-free networks and consider optimizations for practical deployment scenarios,

xi

such as when the network configuration is changing fast versus a relatively static

network.

1

1. INTRODUCTION

Ad hoc wireless networks are vulnerable to a wide range of security attacks. An

adversary can physically capture ad hoc nodes and tamper with them [1, 2]. This is

because ad hoc nodes are often deployed in insecure locations, as the case for mesh

routers deployed on rooftops or attached to streetlights [2], and for nodes deployed

in a hostile environment (e.g., a battlefield) [3]. Further, the nodes often lack strong

hardware protection. Once nodes are compromised, the adversary can launch a variety

of attacks exploiting the cooperative nature of these networks. For example, the

adversary can disrupt the network services by letting compromised nodes deny the

network protocol such as the back-off rule at the MAC layer or the packet-relaying

duty at the Network layer. Also, the compromised nodes can inject malicious traffic

into the network (e.g., worm traffic into a sensor network [4]).

An approach widely used to detect this class of attacks is behavior-based detection.

In this, nodes overhear communications in their neighborhood exploiting the open

nature of wireless medium, and determine if the behaviors of their neighbors are

legitimate. For instance, to detect the MAC-layer misbehavior, a node can verify

if the back-off times of its neighbors follow a legitimate pattern. Also, to detect

malicious traffic, a node can analyze the overheard packets to check if they contain

any malicious data. In general, the behavior being monitored can be other than

communication behavior, e.g., sensing behavior to see if sensed data is accurate.

Upon detection, a remediation action can be taken, such as instructing intermediate

nodes to drop malicious traffic by the detector nodes or isolating the misbehaving

node by neighboring nodes.

Over the past few years, it has been extensively studied to use multiple channels in

wireless networks, especially in wireless mesh networks (WMNs) [5–22]. It has been

shown that equipping nodes with multiple radios tuned to different non-overlapping

2

channels can significantly increase the capacity of the network. In these multi-channel

wireless networks, a key and challenging issue for accurate and timely behavior-based

detection is to capture as large an amount of traffic or large a number of nodes as

possible, ideally the entire, by judiciously placing a set of monitoring nodes in the

network and also choosing channels to tune their radio(s) to.

In this dissertation, we develop a framework for behavior-based detection in multi-

channel ad hoc wireless networks. This dissertation consists of three pieces of work

on the optimal placement and channel assignment of monitoring nodes. We introduce

them in the rest of this chapter.

1.1 OPTIMAL PLACEMENT AND CHANNEL SELECTION OF MON-

ITORING NODES

In this first work, we study how to strategically deploy a given number of moni-

toring nodes in the network, and also which channels to tune their radios to. Here,

we assume that a finite set of possible places (e.g., grid points) where the monitor-

ing nodes will be deployed is given. Our goal is to maximize the number of nodes

(or more generally, the amount of traffic) to be monitored by judiciously placing the

monitoring nodes and assigning channels to them. We mathematically formulate this

problem, and show that the problem is NP-hard with the computational complex-

ity growing exponentially with the number of monitoring nodes. We then propose

approximate solutions to solve the problem. In this work, our major contribution is

to develop the best approximation algorithm that one can achieve for our problem.

That is, our algorithm always achieves a factor of the optimal performance, i.e., the

maximum detection coverage, and the approximation ratio is the best achievable for

our problem among all polynomial-time algorithms. Also, we evaluate the proposed

algorithm, in terms of the coverage and the execution time, through simulations in

practical networks—random networks and scale-free networks.

3

1.2 DISTRIBUTED ONLINE CHANNEL ASSIGNMENT FOR MONI-

TORING LARGE-SCALE NETWORKS

In this second work, we study an optimal channel assignment problem for passive

monitoring in multi-channel wireless networks, where a set of sniffers capture and

analyze the network traffic to monitor the network. The objective of this problem is

to maximize the total amount of traffic captured by sniffers by judiciously assigning

the radios of sniffers to a set of channels. This problem is NP-hard, with the compu-

tational complexity growing exponentially with the number of sniffers. We develop

distributed and online solutions for large-scale and dynamic networks. Our algorithm

preserves the same ratio while providing a distributed solution that is amenable to

online implementation. Also, our algorithm is cost-effective, in terms of communica-

tion and computational overheads, due to the use of only local communication and

the adaptation to incremental network changes. We present two operational modes of

our algorithm for two types of networks that have different rates of network changes.

One is a proactive mode for fast varying networks, while the other is a reactive mode

for slowly varying networks. Simulation results demonstrate the effectiveness of the

two modes of our algorithm.

1.3 OPTIMAL SNIFFER-CHANNEL ASSIGNMENT FOR RELIABLE

MONITORING

In this third work, we study an optimal channel assignment problem for reliable

monitoring in multi-channel wireless networks, where we allow for imperfect sniffers

that may probabilistically generate errors on monitoring. In this scenario, we wish

to still maintain the accuracy of the passive monitoring above a certain level. Our

approach to this end is to provide multiple covers (i.e., sniffer redundancy) to each

node. That is, each node is assigned a coverage requirement that is the minimum

number of sniffers required for reliably monitoring the node. First, we are inter-

ested in a problem of how to assign a set of channels to sniffers’ radios such that

4

the coverage requirements of all nodes are satisfied. We refer to this problem as the

Full-Coverage Reliable Monitoring (FCRM). We, however, show that it is NP-hard

to find any feasible solution to FCRM (i.e., any sniffer-channel assignment that sat-

isfies all of the coverage requirements). Alternatively, we turn our attention to the

corresponding optimization problem to FCRM, i.e., how to find a sniffer-channel as-

signment that maximizes the number (or the total weight) of nodes being reliably

monitored. We refer to this problem as the Maximum-Coverage Reliable Monitoring

(MCRM). However, MCRM is also NP-hard.

MCRM can be viewed as a generalization of the problems in the second work

that assume perfect sniffers and thus do not need to consider the sniffer redundancy.

However, we show that the generalized problem for reliable monitoring is different in

nature from those of the previous works. As a results, in the generalized problem, the

prior approximation algorithms no longer hold their performance guarantees. In this

paper, we propose a variety of approximation algorithms based on two basic approach-

esgreedy approach and relaxation-and-rounding approach. We present a comparative

analysis of the proposed algorithms through simulations. We evaluate the proposed

algorithms in practical networks—random networks and scale-free networks—in terms

of two metrics—detection coverage and running time.

5

2. OPTIMAL MONITORING IN MULTI-CHANNEL

MULTI-RADIO WIRELESS MESH NETWORKS

2.1 INTRODUCTION

Wireless mesh networks (WMNs) are finding increasing usage in municipalities.

Many cities (e.g., New Orleans, San Mateo, and Chaska) have already deployed

WMNs for public service and safety personnel, and other cities, such as Philadel-

phia, Houston, and San Francisco, have planned city-wide WMN deployments for

providing public broadband Internet access [23]. In WMNs, mobile devices connect

to mesh routers, which are typically stationary devices, and mesh routers forward

packets en route to the internet-conneted gateways.

WMNs are vulnerable to a wide range of security attacks that are more severe and

easier to launch in these networks than in their wireline counterparts. An adversary

can physically capture mesh routers and tamper with them. This is because mesh

routers are often deployed in insecure locations (e.g., rooftops or streetlights), or

even in a hostile environment (e.g., a battlefield). Also, they are typically low-cost

devices, which lack strong hardware security protection [2]. Once mesh routers are

compromised, the adversary can launch a variety of attacks with them exploiting the

cooperative nature of WMNs among mesh routers. For example, the adversary can

disrupt the network services by letting compromised mesh routers disobey the network

protocols, such as the back-off rule for accessing channel at the MAC layer [24] and

the packet-relaying duty at the Network layer.

An approach used to detect such attacks is behavior-based detection. In this,

nodes overhear communications in their neighborhood via the open nature of wire-

less medium, and determine if the behaviors of their neighbors are legitimate. For

instance, to detect the MAC-layer misbehavior, a node can verify if the back-off times

6

of its neighbors follow a legitimate pattern. Upon detection, a remediation action can

be taken, such as isolation of the misbehaving node by neighboring nodes. A strat-

egy proposed in the literature [25–27] to perform the behavior-based detection is to

have specialized monitoring nodes deployed throughout the network. This takes the

place of the more appealing architecture of every node participating in monitoring,

because the latter is susceptible to framing of legitimate nodes due to erroneous re-

ports by malicious nodes. Also, the quorum-based solution [28] only works well under

relatively high network densities, which are unlikely in most WMN deployments.

Recently, the issue of use of multiple channels and also multiple radios in WMNs

has been studied extensively (e.g., [6, 14, 17, 19, 29]). It has been shown that equip-

ping nodes with multiple radios tuned to different non-overlapping channels can sig-

nificantly increase the capacity of WMNs. An important issue that arises to defend

these networks using behavior-based detection is how to strategically place a given

number of monitoring nodes in the network and also which channels to tune their

radios to, such that as large a fraction of normal nodes (i.e., the nodes that are not

participating in monitoring) as possible are covered. One could have considered that,

instead of tuning the radios of monitoring nodes to a fixed channel, we allow mon-

itoring nodes to scan multiple channels by sensing multiple frequencies over time.

However, the delay of switching the radio channel is non-negligible1, and hence with

this approach, monitoring nodes would waste their time switching channels.

Alternatively and also equivalently to the first problem formulation, one might be

interested in a problem where, given a number of monitoring nodes deployed in the

network, which monitoring nodes should be activated on which channels, in order to

maximize the number of normal nodes covered. The latter problem is motivated by

a desire to keep the resource consumption due to monitoring nodes at a low level.

This is because the security analysis for behavior-based detection is computationally

expensive and energy-intensive. Note that the former problem can be mapped to the

1Current estimate for switching delay between channels in the same frequency band with commodity
IEEE 802.11 hardware is in the range of a few hundred microseconds [30] to a few milliseconds [31].

7

latter. To elaborate on this, assume that the network is arranged as a grid with a

given number, say k, of monitoring nodes available for placement on any of m possible

grid points. The former problem then becomes the following problem: how to choose

k grid points on which to place the monitoring nodes and also the channels to which

the radios of the monitoring nodes should be tuned, in order to attain the maximum

coverage.

In this chapter, we first show that the maximum coverage problem in multi-channel

networks, termed MCMC, is NP-hard with the computational cost growing exponen-

tially with the number of monitoring radios in the network. We then present three

approximation algorithms to solve MCMC. The first is a greedy algorithm, referred

to as GReedy Algorithm for MCMC (GR-MCMC), and attains an approximation ra-

tio of 1
2
. Here, the approximation ratio is defined as the minimum among all ratios

of the number of normal nodes covered by an algorithm to the optimum, where the

minimum is taken over all possible network instances. It is known that that the

best possible approximation ratio achievable by any polynomial-time algorithm is

1− 1
e
≈ 0.632 (unless P = NP) [32]. Since the greedy algorithm cannot achieve the

best approximation ratio, we explore further. The other two algorithms are based on

Linear Program (LP) rounding technique (refer to Section 2.5). One called Probabilis-

tic Rounding Algorithm (PRA) is a randomized algorithm, and achieves an expected

approximation ratio of 1 − 1
e
. Here, the expectation is taken over internal random

coins of the algorithm. The other called Deterministic Rounding Algorithm (DRA)

attains the best approximation ratio 1− 1
e

in a deterministic manner, i.e., each time it

runs, regardless of the network topology and the channel assignment of normal nodes.

We conduct simulations in two kinds of networks—random networks and scale-free

networks—and evaluate how the three algorithms—GR-MCMC, PRA, DRA—fare in

these networks, in terms of detection coverage and execution time of the algorithms.

A comparison of the three proposed algorithms is shown in Table 2.1.

The rest of the chapter is organized as follows. Section 2.2 describes the problem

formulation. Section 2.3 discusses applications of the proposed algorithm. Section 2.4

8

Table 2.1: Performance comparison of the three proposed algorithms in this chapter.

GR-MCMC PRA DRA

Approximation ratio 1
2

1− 1
e

(in expectation) 1− 1
e

Complexity GR-MCMC < PRA < DRA

shows NP hardness of our problem, and presents GR-MCMC. Section 2.5 introduces

the LP rounding technique, and presents an overview of two LP rounding-based algo-

rithms that we develop. The two LP rounding-based algorithms, PRA and DRA, are

presented in Sections 2.6 and 2.7, respectively. Section 2.8 presents complexity anal-

ysis of the proposed algorithms. Section 2.9 presents performance evaluations of the

proposed algorithms through simulation. Finally, Section 2.10 discusses conclusion.

2.2 PROBLEM FORMULATION

We are given a set of n normal nodes u1, . . . , un. Node ui has ai radios called

normal radios. We define U = {u11, . . . , u
a1
1 , . . . , u

1
n, . . . , u

an
n }, where uji denotes the

radio j of normal node ui. This set U defines the set of normal radios to be verified

by monitoring nodes. Each normal radio is tuned to a specific wireless channel. Each

normal radio uji has a non-negative weight wij. These weights of normal radios can

be used to capture various application-specific objectives of monitoring. For example,

one can use the weights to capture transmission rates of normal radios, which can

be estimated from historical data. In this scenario, we would assign higher weights

to the nodes that transmit larger volumes of data, thereby biasing our algorithm to

monitor such nodes more. Or, one can assign a weight to each normal node instead

of each normal radio, taking into account their trustworthiness computed based on

previous monitoring results. In this case, all radios of a given normal node will have

the same weight, i.e., wi1 = · · · = wiai for all i. A normal node that has been

found to be compromised before (and repaired thereafter) will be assigned a higher

9

weight thereby indicating to our algorithm that it is more important such a node be

monitored. This may be because the node is placed in a location where it is more apt

to be compromised. We are given a set of m monitoring nodes v1, . . . , vm. Monitoring

node vi has ti radios called monitoring radios. Each monitoring radio can be tuned

to a channel j ∈ [c], where [c] = {1, . . . , c} and c is the number of available wireless

channels. We say that a normal radio is covered by a monitoring radio if the latter

can overhear the former’s communication when it is tuned on the same channel. We

are given a collection of subsets of U , S = {Sij : i ∈ [m], j ∈ [c]}, where a coverage-set

Sij ⊆ U contains the normal radios that can be covered by any radio of monitoring

node vi tuned on channel j. We will use the term “set” as a shorthand for “coverage-

set” whenever we can do so without loss of clarity. We denote Si = {Sij : j ∈ [c]} as

a group, which is the set of normal nodes that can be covered by a monitoring node

vi if it had as many radios as the number of channels.

Our objective is to maximize the total weight of the normal radios covered by

judiciously choosing at most k sets from S with at most ti sets from group Si. The

former constraint of at most k sets means that we can choose at most k monitoring

radios for verifying normal radios. We call this constraint the total budget constraint

(TBC). TBC is motivated by a desire to keep the resource consumption for verifying

normal nodes at an appropriate level. The latter constraint of at most ti sets from

group Si is due to the fact that monitoring node vi has ti radios and therefore ti is

the maximum number of sets that can be selected from the group Si. We call this

constraint the group budget constraint (GBC). If ki (≤ ti) sets Sij1 , . . . , Sijki in group

Si are selected for a solution by any one of the algorithms presented by us here, then

ki radios of vi will be tuned to the channels j1, . . . , jki , respectively. We refer to this

problem as the Maximum Coverage problem with Multiple Channels (MCMC). We

refer to a special case of MCMC where all nodes (normal and monitoring nodes) have

a single channel and a single radio (i.e., MCMC with c = 1, al = 1 for all l ∈ [n],

and ti = 1 for all i ∈ [m]) as the Maximum Coverage problem with Single Channel

10

Table 2.2: Summary of notation

Notation Definition

U Set of radios of normal nodes

n Number of normal nodes

ai Number of radios that normal node ui has

wij Weight assigned to normal radio uji (i.e., normal node

ui’s radio j). A higher weight implies that it is more

important for a monitoring node to cover this radio.

m Number of monitoring nodes

ti Number of radios that monitoring node vi has

c Number of wireless channels

Sij Coverage-set of normal radios that can be covered by a

radio of monitoring node vi tuned to channel j

k Maximum number of monitoring nodes that can be ac-

tivated

xld Indicator variable assigned to normal radio udl . A value

of one indicates that this normal radio is covered by at

least one monitoring radio.

yij Indicator variable assigned to coverage-set Sij. A value

of one indicates that monitoring node vi has a radio

tuned to channel j.

(MCSC). For convenience, the definitions of frequently used symbols are presented in

Table 2.2.

We would like to point out that one could consider an alternative TBC on the

number of monitoring nodes, i.e., we can choose at most k monitoring nodes. This al-

ternative problem can, in fact, be formulated into MCMC by redefining the coverage-

sets with each containing normal nodes covered by all radios of a monitoring node

11

tuned to a set of channels. Specifically, we redefine coverage-set Sij as the set of

normal nodes that can be covered by all of the ti radios of monitoring node vi with

channel assignment j. Then, each vi has
(
c
ti

)
coverage-sets, where

(
n
c

)
denotes the

number of ways in disregarding order that c objects can be chosen from among n

objects, for all possible reasonable channel assignments for its radios, since it is inef-

ficient to tune two radios of a monitoring node to the same channel. Although
(
c
ti

)
grows exponentially with ti, in practice, it will not be large since ti (the number of

ratios that vi has) is a small number, typically 2 or 3. With these redefined coverage-

sets, we can formulate the alternative problem into the following problem: how to

choose at most k coverage-sets from S with at most one from each group, which is

an instance of MCMC.

2.3 APPLICATIONS

Although the mathematical problem that this chapter studies (i.e., MCMC in Sec-

tion 2.2) is motivated by the issue of the deployment of security monitoring nodes in

multi-channel multi-radio WMNs, it also captures the issue of the channel assignment

for generic passive monitoring in multi-channel wireless networks. Passive monitor-

ing is a widely-used and effective technique to monitor wireless networks, where a

set of sniffers (i.e., software or hardware devices that intercept and log packets) are

used to capture and analyze network traffic between other nodes to estimate net-

work conditions and performance. Such estimates are utilized for efficient network

operation, such as network resource management, network configuration, fault de-

tection/diagnosis and network intrusion detection. A major challenge with passive

monitoring in multi-channel wireless network is how to assign a set of channels to

each sniffer’s radios such that as large an amount of traffic, or large a number of

nodes, as possible are captured. This sniffer-channel assignment problem is a special

case of MCMC with all monitoring nodes being activated.

12

In practical applications, the algorithms proposed in this chapter can be utilized

by employing a centralized network entity to determine the configuration of the moni-

toring nodes, i.e., the activation and the channel assignment of the monitoring nodes’

radios. The centralized network entity first obtains the global knowledge by gathering

from each sniffer the information of the channel usage of normal nodes, then runs the

algorithm to determine the configuration, and distributes the configuration to each

monitoring node. This mode of operation is particularly feasible for networks where

the network configuration changes slowly with time.

2.4 NP-HARDNESS OF MCMC AND GREEDY APPROXIMATION

ALGORITHM

2.4.1 NP-HARDNESS OF MCMC

Lemma 2.4.1 MCMC is an NP-hard problem.

Proof MCMC can be reduced to the maximum coverage problem2 by setting c = 1,

ti = 1 for all i ∈ [m]. Hence, if the optimal solution to MCMC can be determined in

polynomial time, then the maximum coverage problem can also be solved in polyno-

mial time, which is a contradiction unless P = NP .

Hence, we will alternatively find an approximate solution that can be obtained in

polynomial time.

Definition 2.4.1 For a maximization problem, we say a polynomial-time algorithm

to be a δ-approximation algorithm if for any instance of the problem, the algorithm

yields a solution whose quality is at least δ times the optimum. Here, δ is referred to

as the approximation ratio.

2Given a set U = {1, . . . , n} with associated non-negative weights {w1, . . . , wn} and a collection of
subsets of U , C = {C1, . . . , Cm}, the maximum coverage problem is to select k of these subsets such
that the total weight of the elements in the union of the selected subsets is maximized. This problem
is known to be NP-hard [33].

13

Naturally, δ < 1, and the closer δ is to 1, the better.

In the rest of this chapter, we seek to find answers to the following questions for

MCMC:

1) What is the best approximation ratio attainable?

2) How can it be achieved through a realizable algorithm?

2.4.2 GREEDY APPROXIMATION ALGORITHM FOR MCMC

We first consider MCSC, which is a special case of MCMC but still an NP-hard

problem since it is exactly the maximum coverage problem. It is known that a simple

greedy algorithm solves MCSC within a factor of 1− (1− 1/k)k of the optimum [33],

where k is the maximum number of monitoring radios that can be selected. We

term this greedy algorithm as GR-MCSC. GR-MCSC selects k sets from S iteratively

by picking the set of the maximum total weight of uncovered normal nodes at each

iteration. It has been proven that no polynomial-time algorithm can achieve a higher

approximation ratio than 1 − 1
e

(≈ 0.632) provided that P 6= NP [32]. Thus, the

following lemma holds.

Lemma 2.4.2 GR-MCSC is the best approximation algorithm for MCSC unless P =

NP .

Proof It follows from that 1−(1−1/k)k > 1− 1
e

since limk→∞[1−(1−1/k)k] = 1− 1
e

and 1− (1− 1/k)k is a decreasing function of k [33].

We generalize the greedy approach of GR-MCSC to MCMC, and propose our

first algorithm, GReedy algorithm for MCMC (GR-MCMC)3. GR-MCMC operates

similarly to GR-MCSC, except that once ti sets are selected from group Si, no other

sets in Si will be considered for further selection. We formally present GR-MCMC

3For the cardinality version of MCMC (i.e., MCMC with all weights being one), GR-MCMC and its
performance results have previously appeared in [34]. Our results of GR-MCMC can be viewed as
a generalization of those in [34].

14

Algorithm 1 GR-MCMC
(
S, k, {ai}ni=1, {wij}

n, ai
i=1, j=1, {ti}mi=1

)
1: I ′ ← {1, . . . ,m}, t′i ← 0 for all i ∈ [m], S ′ij ← Sij for all i ∈ [m], j ∈ [c], and

G ← Ø

2: for l← 1 to k do

3: Find i∗, j∗ such that w(S ′i∗j∗) = max∀i∈I′,∀j∈[c]w(S ′ij), where w(Sij) denotes the

total weight of normal nodes in Sij

4: Gl ← Si∗j∗ , where Gl denotes the l-th element of G

5: t′i∗ ← t′i∗ + 1

6: if t′i∗ = ti∗ then

7: I ′ ← I ′\{i∗}

8: end if

9: for each i ∈ I ′ do

10: for j ← 1 to c do

11: S ′ij ← S ′ij\S ′i∗j∗

12: end for

13: end for

14: end for

15: return G

in Alg. 1. GR-MCMC has k iterations, and at each iteration (i.e., for loop in line 2),

GR-MCMC selects the set of the maximum total weight of uncovered normal nodes. Once

the number of sets selected from a group reaches the budget assigned to the group,

all the other sets in that group will be excluded for further selection, by removing the

group index from the set I ′ of available group indices (lines 6–8). The normal nodes

that are covered are removed from the available sets (lines 9–13).

We now show the performance of GR-MCMC.

Lemma 2.4.3 GR-MCMC is a 1
2
-approximation algorithm.

15

Proof Here, we reuse some notations in Alg. 1. LetH = {H1, . . . , Hk} be an optimal

selection, where Hi is a coverage-set. Denote w(Gi) as the total weight of the normal

nodes in Gi (which is a coverage-set). To prove the lemma, we only need to show

that
k∑
i=1

w
(
Gi − ∪i−1l=1Gl

)
≥

k∑
i=1

w
(
Hi − ∪kl=1Gl

)
. (2.1)

This is because, provided that Eq. (2.1) is true, it will follow that

w
(
∪ki=1Gi

)
=

k∑
i=1

w
(
Gi − ∪i−1l=1Gl

)
≥

k∑
i=1

w
(
Hi − ∪kl=1Gl

)
(due to Eq. (2.1))

≥ w
(
∪ki=1(Hi − ∪kl=1Gl)

)
(since

∑
i

w(Ai) ≥ w(∪iAi))

= w
(
∪ki=1Hi − ∪kl=1Gl

)
≥ w

(
∪ki=1Hi

)
− w

(
∪kl=1Gl

)
.

This means that w
(
∪ki=1Gi

)
≥ 1

2
w
(
∪ki=1Hi

)
, i.e., the lemma follows.

We now show Eq. (2.1). Let {I1, I2} be a partition of I = {1, . . . ,m} defined as:

if all sets in group Si are included in G, then i ∈ I1; otherwise, i ∈ I2. Denote g(Gi)

as the group index of a coverage set Gi. Let {H1,H2} be a partition of H defined as:

if g(Hi) ∈ I1, then Hi ∈ H1, and otherwise Hi ∈ H2. Observe that I2 ⊆ I ′ at every

iteration of GR-MCMC. Hence, due to the greedy property of GR-MCMC, it follows that

for all Gi ∈ G and Hj ∈ H2,

w
(
Gi − ∪i−1l=1Gl

)
≥ w

(
Hj − ∪i−1l=1Gl

)
≥ w

(
Hj − ∪kl=1Gl

)
. (2.2)

For H1, there are two possible cases as follows.

Case 1: H1 = Ø. In this case, H = H2. Hence, Eq. (2.2) holds for all Gi ∈ G and

Hj ∈ H. By summing Eq. (2.2) over all i ∈ [k], we can obtain Eq. (2.1).

Case 2: H1 6= Ø. Let H1 = {Hj1 , . . . , Hj|H1|
}. We pick Gi1 , . . . , Gi|H1|

∈ G so that

we can define a set P =
{

(Gil , Hjl) : g(Gil) = g(Hjl) for all l ∈ [|H1|], and Gix 6=

16

Fig. 2.1.: Example where GR-MCMC achieves a half of the maximum coverage. There

are two monitoring nodes v1 and v2, each with one radio, and k = 2. White and black

circles denote normal nodes tuned to channels 1 and 2, respectively.

Giy if x 6= y
}

. This is possible since for any Hjl ∈ H1, there must exist tg(Hjl
) sets in

G whose group indices are g(Hjl). Due to the greedy property of GR-MCMC, it follows

that for any (Gil , Hjl) ∈ P ,

w
(
Gil − ∪

il−1
d=1Gd

)
≥ w

(
Hjl − ∪

il−1
d=1Gd

)
≥ w

(
Hjl − ∪kd=1Gd

)
. (2.3)

Let G1 = {Gil : l ∈ [|H1|]}. By summing Eq. (2.3), we can get the following:∑
i:Gi∈G1

w
(
Gi − ∪i−1l=1Gl

)
≥

∑
j:Hj∈H1

w
(
Hj − ∪kl=1Gl

)
. (2.4)

Let G2 = G − G1. Due to Eq. (2.2), we have the following:∑
i:Gi∈G2

w
(
Gi − ∪i−1l=1Gl

)
≥

∑
j:Hj∈H2

w
(
Hj − ∪kl=1Gl

)
. (2.5)

By summing Eqs. (2.4) and (2.5), we obtain Eq. (2.1).

Hence, Eq. (2.1) holds in both of the cases. Therefore, Eq. (2.1) is true, and thus the

lemma follows.

Lemma 2.4.4 The approximation ratio of 1
2

of GR-MCMC is tight.

Proof Without loss of generality, we assume that GR-MCMC breaks a tie that occurs

when choosing the maximum-improvement set by choosing the set of the smallest

index. We show the lemma by constructing an instance of MCMC where GR-MCMC

achieves 1
2

of the maximum coverage. We construct such an instance as follows (see

Fig. 2.1): there are 20 normal nodes, each with a single ratio and weight one (i.e.,

U = {u1, . . . , u20}, ai = 1 and wi = 1 for all i ∈ [20]); there are two monitoring nodes,

each with a single radio (i.e., m = 2, ti = 1 for all i ∈ [2]), and two wireless channels

17

(i.e., c = 2); Coverage-sets are given by S11 = {u1, . . . , u10}, S12 = {u11, . . . , u20},

S21 = {u1, . . . , u10}, S22 = Ø, and k = 2. In this instance, GR-MCMC chooses S11 and

S21 while the optimal solution is S12 and S21. Consequently, GR-MCMC achieves 1
2

of

the maximum coverage. Thus, the lemma follows.

Lemmas 2.4.3 and 2.4.4 lead to the following proposition.

Proposition 2.4.1 GR-MCMC is a 1
2
-approximation algorithm, and this approximation

ratio is tight.

2.5 BACKGROUND OF LP ROUNDING AND OVERVIEW OF PRO-

POSED LP ROUNDING ALGORITHMS

In the previous section, we showed that GR-MCMC achieves an approximation ratio

of 1
2
. From MCSC, we know that the best possible approximation ratio for MCMC

is 1− 1
e

since MCSC is a special case of MCMC and the best possible approximation

ratio for MCSC is 1− 1
e

[32]. Therefore, we have the remaining question: does there

exist an approximation algorithm that can achieve the best possible approximation

ratio 1− 1
e
? Towards answering this question, we develop two algorithms based on a

technique called linear program (LP) rounding in the next two sections. For this, in

this section, we introduce the LP rounding technique in Subsection 2.5.1 and present

an overview of our LP rounding algorithms in Subsection 2.5.2.

2.5.1 LP ROUNDING

We often face optimization problems that can be formulated as integer linear

programs (ILP). ILPs in many practical situations are NP-hard. Hence, instead of

exact solutions, we seek to find approximate solutions achievable in polynomial time.

There is a technique called LP rounding, which is a highly effective technique to design

approximation algorithms with proven performance guarantees [35]. The typical steps

of LP rounding are as follows:

18

1) Formulate a given optimization problem as an ILP

2) Transform the ILP to an LP by relaxing the integer constraints

3) Solve the LP relaxation exactly (using one of many existing polynomial-time

LP solvers)

4) Round the optimal solution of the LP relaxation, i.e., convert any fractional

values to integers to obtain a feasible solution to the original ILP.

In the fourth step, called rounding, there are two distinct approaches—randomized

and deterministic.

2.5.2 OVERVIEW OF PROPOSED LP ROUNDING ALGORITHMS

In this subsection, we present an overview of the LP rounding algorithms that we

will develop in the next two sections.

We first formulate MCMC into an ILP. We assign an indicator variable xld ∈ {0, 1}

to normal radio udl ∈ U , and xld = 1 denotes that udl is verified by at least one

monitoring radio in the given solution. We assign an indicator variable yij ∈ {0, 1}

19

to coverage-set Sij ∈ S, and yij = 1 denotes that Sij is chosen for a solution. An ILP

formulation of MCMC, denoted by ILP-MC, is given by

ILP-MC: maximize
n∑
l=1

al∑
d=1

wldxld (2.6)

subject to xld ≤
∑

i,j:udl ∈Sij

yij for all l ∈ [n], d ∈ [al], (2.7)

m∑
i=1

c∑
j=1

yij ≤ k, (2.8)

c∑
j=1

yij ≤ ti for all i ∈ [m], (2.9)

0 ≤ yij ≤ 1 for all i ∈ [m], j ∈ [c], (2.10)

0 ≤ xld ≤ 1 for all l ∈ [n], d ∈ [al], (2.11)

yij ∈ {0, 1} for all i ∈ [m], j ∈ [c], (2.12)

xld ∈ {0, 1} for all l ∈ [n], d ∈ [al]. (2.13)

The constraint (2.7) together with (2.12) makes xld = 1 if at least one coverage-sets

that include udl are chosen for a solution, and xld = 0 otherwise. The constraint (2.8)

is due to TBC and says that the total number of monitoring radios to be chosen must

be at most k. The constraint (2.9) is due to GBC and says that each monitoring

node vi can choose at most ti channels for tuning its radios (since vi has ti radios).

Although the constraints (2.10) and (2.11) are redundant due to the constraints (2.12)

and (2.13), we keep them for LP relaxation since we need to still maintain (2.10) and

(2.11) after relaxing the integer constraints. As expected due to the NP-hardness of

MCMC (Lemma 2.4.1), ILP-MC cannot be solved in polynomial time.

We next transform ILP-MC into an LP relaxation (given as (2.6)–(2.11)), denoted

by LP-MC, by relaxing the integer constraints (2.12) and (2.13). In LP-MC, the

variables xld’s and yij’s can now take any value in [0, 1], including fractional values.

Consequently, the variables lose the physical significance that they originally have

in ILP-MC. We can solve LP-MC exactly using one of existing polynomial-time LP

solvers.

20

Fig. 2.2.: Overall procedure of our two proposed LP rounding algorithms: 1) Prob-

abilistic Rounding Algorithm with Probabilistic Rounding Scheme; 2) Deterministic

Rounding Algorithm with Deterministic Rounding Scheme.

The optimal solution of LP-MC may have fractional values since the integer con-

straints of ILP-MC are relaxed in LP-MC. Hence, in order to obtain a feasible solution

to ILP-MC, we need to round the optimal solution of LP-MC to an integer solution.

While rounding, a challenge is that we should keep TBC and GBC satisfied, and

at the same time we should not degrade the solution quality too much so that the

resulting integer solution has a good performance guarantee. In the next two sections

(Sections 2.6 and 2.7), we develop two rounding schemes corresponding to the two

distinct approaches, and thereby present two LP rounding algorithms. In the both

rounding schemes, we first round fractional values of yij’s to an integer 0 or 1, and

then determine xld’s as xld = min
{

1,
∑

i,j:udl ∈Sij
y#ij

}
, where y#ij ’s are the rounded

integer values.

Figure 2.2 summarizes the overall procedure of our two LP rounding algorithms.

2.6 PROBABILISTIC ROUNDING ALGORITHM

In this section, we present our second algorithm, referred to as Probabilistic Round-

ing Algorithm (PRA), that uses Probabilistic Rounding Scheme (PRS) to round the

optimal solution of LP-MC. We develop PRS by generalizing an existing algorithm

called SAMPLING [36]. SAMPLING is a randomized rounding scheme and can be used

to solve MCSC. However, SAMPLING does not apply to MCMC since it may violate

GBC. We thus develop PRS by adapting SAMPLING to also satisfy GBC.

PRS takes the optimal solution of LP-MC as the input, and uses the optimal

solution as the probability of rounding yij to 1. Let ~̃y = (ỹij : i ∈ [m], j ∈ [c]) be

an optimal solution of LP-MC and define a binary random variable Yij ∈ {0, 1} to

21

denote the resulting integer value of ỹij after rounding by PRS. As we will show later

(Lemma 2.6.1), Yij’s satisfy the following properties:

(P1) Pr[Yij = 1] = ỹij for all i ∈ [m], j ∈ [c],

(P2)
∑m

i=1

∑c
j=1 Yij ≤ k,

(P3)
∑c

j=1 Yij ≤ ti for all i ∈ [m],

(P4) Pr
[
∩(i,j)∈H{Yij = 0}

]
≤
∏

(i,j)∈H Pr [Yij = 0] for all H ⊆
{

(i, j) : i ∈ [m], j ∈

[c]
}

.

The properties (P2) and (P3) are TBC and GBC, respectively, which are necessary

for the output of PRS to be a feasible solution to ILP-MC. The other two properties

(P1) and (P4) enable PRS to have a good performance guarantee.

PRS has a basic ingredient called SIMPLIFY [36]. PRS rounds the optimal solution

of LP-MC by invoking SIMPLIFY iteratively. SIMPLIFY takes two inputs α, β ∈ [0, 1],

and yields two outputs pα, pβ ∈ [0, 1] that are determined probabilistically as shown

in Alg. 2. SIMPLIFY has two properties: 1) at least one of pα and pβ take an integer

value 0 or 1; 2) the sum of the input values is preserved, i.e., pα + pβ = α + β.

PRS uses pα and pβ to round α and β in a probabilistic manner. Define two binary

random variables Xα, Xβ ∈ {0, 1} to denote the resulting integer values of α and β,

respectively, after rounding. For i ∈ {α, β}, if pi is 0 or 1, then we fix Xi to pi, i.e.,

let Xi take a value of pi. Otherwise, i.e., if pi is not an integer, then we do not fix

Xi at this iteration, but uses this pi in the next invocation of SIMPLIFY to fix Xi by

feeding pi as the input. Note that, due to the first property of SIMPLIFY, PRS can

fix at least one of Xα or Xβ to either 0 or 1 at each invocation of SIMPLIFY.

We now describe how PRS rounds the optimal solution of LP-MC using SIMPLIFY.

A formal description of PRS is presented in Alg. 3. PRS operates in two phases. In

the first phase (lines 2–11), PRS has m iterations. At the i-th iteration (i.e., for a

single monitoring node vi), PRS rounds ỹi1, . . . , ỹic by invoking SIMPLIFY repeatedly,

until all of Yi1, . . . , Yic except at most one are fixed, i.e., take an integer value 0 or 1.

22

Algorithm 2 SIMPLIFY(α, β) // α, β ∈ [0, 1]

1: // On termination, the following two invariants hold: 1) at least one of pα and

pβ has an integer value of either 0 or 1; 2) pα + pβ = α + β

2: if α = 0 & β = 0 then

3: pα ← 0, pβ ← 0

4: else if α = 1 & β = 1 then

5: pα ← 1, pβ ← 1

6: else if 0 < α + β < 1 then

7: Toss a biased coin with probability of showing head being α/(α + β)

8: if the tossed coin shows head then

9: pα ← α + β, pβ ← 0

10: else

11: pα ← 0, pβ ← α + β

12: end if

13: else if α + β = 1 then

14: Toss a biased coin with probability of showing head being α

15: if the tossed coin shows head then

16: pα ← 1, pβ ← 0

17: else

18: pα ← 0, pβ ← 1

19: end if

20: else {1 < α + β < 2}

21: Toss a biased coin with probability of showing head being (1− β)/(2− α− β)

22: if the tossed coin shows head then

23: pα ← 1, pβ ← α + β − 1

24: else

25: pα ← α + β − 1, pβ ← 1

26: end if

27: end if

28: return (pα, pβ)

23

Algorithm 3 Probabilistic Rounding Scheme: PRS
(
~̃y
)

// ~̃y has a dimension

1×mc
1: H ← {(i, j) : i ∈ [m], j ∈ [c]}, pij ← ỹij for all (i, j) ∈ H

2: for i← 1 to m do

3: while
∣∣∣{(i, j) : (i, j) ∈ H

}∣∣∣ > 1 do

4: (pij1 , pij2)← SIMPLIFY(pij1 , pij2) for (i, j1), (i, j2(6= j1)) ∈ H

5: for l← 1 to 2 do

6: if pijl = 0 or 1 then

7: Yijl ← pijl , H ← H \
{

(i, jl)
}

8: end if

9: end for

10: end while

11: end for

12: if H 6= Ø and
∑

(i,j)∈H pij is not an integer then

13: p00 ←
⌈∑

(i,j)∈H pij
⌉
−
∑

(i,j)∈H pij, H ← H ∪
{

(0, 0)
}

14: end if

15: while H 6= Ø do

16: (pi1j1 , pi2j2)← SIMPLIFY(pi1j1 , pi2j2) for (i1, j1), (i2, j2(6= j1)) ∈ H

17: for l← 1 to 2 do

18: if piljl = 0 or 1 then

19: Yiljl ← piljl , H ← H \
{

(il, jl)
}

20: end if

21: end for

22: end while

23: return ~Y = (Yij : i ∈ [m], j ∈ [c])

This is achieved since PRS fixes Yij to pij when pij is an integer (lines 5–9) and thus

at least one of Yij1 and Yij2 get fixed at each invocation of SIMPLIFY. Consequently,

after the first phase, all of Yi1, . . . , Yic except at most one are fixed for all monitoring

24

Algorithm 4 Probabilistic Rounding Algorithm (PRA)

1: Formulate ILP-MC from a given MCMC

2: Transform ILP-MC into LP-MC by relaxing the integer constraints

3: Obtain an optimal solution ~̃y = (ỹij : i ∈ [m], j ∈ [c]) of LP-MC (using an

existing LP solver)

4: if ~̃y is an integer vector then

5: ~Y ← ~̃y

6: else

7: ~Y ← PRS(~̃y)

8: end if

9: return ~Y

nodes. In the second phase (lines 15–22), the remaining unfixed variables get fixed

so that all Yij’s have an integer value 0 or 1. Note that, due to introducing the

dummy variable Y00 into H (lines 12–14), even if the sum of the optimal solution

of LP-MC, i.e.
∑m

i=1

∑c
j=1 ỹij, is not an integer, all Yij’s would still get fixed. This

is because
∑m

i=1

∑c
j=1 pij =

∑m
i=1

∑c
j=1 ỹij due to the sum-preservation property of

SIMPLIFY, and thus
∑m

i=1

∑c
j=1 pij + p00 is an integer. Once all Yij’s are fixed, the

dummy variable Y00 is thrown away, leaving m · c integers in the output.

We also present PRA formally in Alg. 4.

We now show the feasibility of the solution of PRA and the performance of PRA.

For this, we first show the following lemma.

Lemma 2.6.1 The output vector ~Y of PRA satisfies the properties (P1)–(P4).

Proof The properties (P1), (P2), and (P4) follow from Theorem 2.1 in [36] since

PRS can be viewed as a specific way of implementing SAMPLING [36]. Therefore, we

only need to show that (P3) is true, i.e.,
∑c

j=1 Yij ≤ ti for all i. During the first phase

of PRS, it is true that
∑c

j=1 pij =
∑c

j=1 ỹij for i ∈ [m]. This is because, in the first

phase of PRS, SIMPLIFY always picks two fractional values from the same group and

25

preserves the sum of the input values after its execution. After the first phase of PRS,

there are two possible cases for each group, depending on whether the group has an

unfixed variable or not.

Case 1: All Yij’s of group Si are fixed. In this case, it must be true that∑c
j=1 Yij =

∑c
j=1 pij =

∑c
j=1 ỹij ≤ ti, where the last inequality holds since {ỹij} is

the optimal solution of LP-MC and hence must satisfy GBC. Thus, the property (P3)

holds.

Case 2: Group Si has only one unfixed variable. With loss of generality, we

assume that the unfixed variable is Yij1 . Then, it must be true that 0 < pij1 < 1,

and pij = 0 or 1 for all j (6= j1) ∈ [c]. This implies that
∑c

j=1 ỹij < ti, and thus∑
∀j(6=j1) Yij =

∑
∀j(6=j1) pij =

⌊∑c
j=1 ỹij

⌋
, where bxc denotes the largest integer that

does not exceeds x. After the second phase of PRS, all Yij’s of group Si are fixed by

Yij1 being fixed to 0 or 1. Hence, it follows that

c∑
j=1

Yij =
∑
∀j(6=j1)

Yij + Yij1 ≤

⌊
c∑
j=1

ỹij

⌋
+ 1 ≤ ti.

Thus, the property (P3) holds, which concludes the proof.

We now show the feasibility of the solution of PRA.

Lemma 2.6.2 PRA yields a feasible solution ~Y to ILP-MC.

Proof If the condition in line 4 of PRA is true, then it is obvious that ~Y is a feasible

solution to ILP-MC. Hence, it suffices to show that the output ~Y of PRS satisfies the

constraints (2.8), (2.9), and (2.12). The constraints (2.8) and (2.9) are satisfied due

to the properties (P2) and (P3), respectively. Also, the constraint (2.12) is satisfied

since Yij ∈ {0, 1} for all i ∈ [m] and j ∈ [c]. Thus, the lemma follows.

We next show the performance of PRA. We first introduce the following lemma

from [35]. As we will see later (in the proof of Lemma 2.6.4), this lemma plays

an important role in obtaining the expected approximation ratio of PRA, i.e., the

approximation ratio of the expected performance of PRA.

26

Lemma 2.6.3 Let p =
∣∣{(i, j) : udl ∈ Sij}

∣∣. For any udl , it follows that for 0 ≤ yij ≤

1,

1−
∏

i,j:udl ∈Sij

(1− yij) ≥ (1− (1− 1/p)p) ·min

1,
∑

i,j:udl ∈Sij

yij

 .

Here, p means the number of monitoring radios that cover a given normal radio udl .

Note that each normal radio will be covered by at most one radio per monitoring node

since it is inefficient to tune two radios of a monitoring node to the same channel.

Hence, p is upper bounded by the number of monitoring nodes, i.e., p ≤ m.

In the following lemma, we show the performance of PRA.

Lemma 2.6.4 The solution ~Y of PRA achieves, in expectation, at least 1−(1−1/m)m

of the optimum of ILP-MC, where m is the number of monitoring nodes.

Proof Let Xld = min
{

1,
∑

i,j:udl ∈Sij
Yij

}
and denote the optimal solution of LP-MC

by {x̃ld, ỹij}. Then, it follows that

E[Xld] = Pr[Xld = 1]

= 1− Pr
[
∩i,j:udl ∈Sij

{Yij = 0}
]

≥ 1−
∏

i,j:udl ∈Sij

Pr[Yij = 0] (due to (P4))

= 1−
∏

i,j:udl ∈Sij

(1− ỹij) (due to (P1))

≥
(
1− (1− 1/m)m

)
·min

1,
∑

i,j:udl ∈Sij

ỹij


(due to Lemma 2.6.3 and p ≤ m)

=
(
1− (1− 1/m)m

)
· x̃ld.

The last equality holds due to the following reason. Since {x̃ld, ỹij} satisfies the

constraints (2.7) and (2.11), it follows that x̃ld ≤ min{1,
∑

i,j: udl ∈Sij
ỹij}. Also, since

27

we would like to maximize x̃ld, we have x̃ld = min{1,
∑

i,j: udl ∈Sij
ỹij}. Due to the

linearity of expectation, it follows that

E
[n∑
l=1

al∑
d=1

wldXld

]
≥
(
1− (1− 1/m)m

)
·

n∑
l=1

al∑
d=1

wldx̃ld.

Then, the lemma follows since the optimal value of LP-MC is an upper bound on the

optimal value of ILP-MC.

Due to Lemmas 2.6.2 and 2.6.4, we have the following proposition.

Proposition 2.6.1 The expected approximation ratio of PRA is 1 − 1
e
, which is the

best possible approximation ratio unless P = NP .

Proof The proposition follows since 1− (1− 1/m)m > 1− 1
e
, which has been shown

in the proof of Lemma 2.4.2.

Note that the ratio 1 − 1
e

is reached asymptotically when m (i.e., the number of

monitoring nodes) tends to infinity. Practically with a finite number of monitoring

nodes, the expected ratio 1− (1−1/m)m of PRA would be higher than the asymptotic

ratio 1 − 1
e
. Also, for reasonable geographical spread of the network, the number

of monitoring radios that cover a normal radio will be much smaller than the total

number of monitoring nodes. This also contribute to the practical performance of

PRA being better than 1− 1
e

times the optimum. Our simulation results (Figures 2.4–

2.11(a) in Section 2.9) bear this reasoning out.

2.7 DETERMINISTIC ROUNDING ALGORITHM

In this section, we present our third algorithm, referred to as Deterministic Round-

ing Algorithm (DRA), that uses Deterministic Rounding Scheme (DRS) to round the

optimal solution of LP-MC. We develop DRS based on an existing algorithm called

PIPAGE [35]. PIPAGE is a deterministic rounding scheme and can be used to solve

MCSC. However, PIPAGE does not apply to MCMC because it may violate GBC.

Thus, we develop DRS by carefully employing PIPAGE in two phases.

28

We first introduce the PIPAGE algorithm. PIPAGE takes a binary program of a

certain form, denoted by BP, and a vector ~x associated with the BP as the input. BP

has the following form:

(BP) maximize f(~x) (2.14)

subject to
∑
e∈E(v)

xe ≤ p(v) for all v ∈ V, (2.15)

0 ≤ xe ≤ 1 for all e ∈ E, (2.16)

xe ∈ {0, 1} for all e ∈ E. (2.17)

Here, G = (V,E) is a bipartite graph, ~x = (xe ∈ [0, 1] : e ∈ E) is a vector in

|E|-dimensional cube [0, 1]|E|, and the function f : [0, 1]|E| → R+ maps a vector

~x ∈ [0, 1]|E| to a non-negative real number. E(v) denotes the set of edges that are

connected to a vertex v ∈ V , and the function p : V → Z+ maps a vertex v ∈ V to

a positive integer. PIPAGE takes a fractional vector ~x that satisfies the constraints

(2.15) and (2.16), and yields as the output a fractional solution ~x′ to BP that has at

least one more integer components than ~x unless all components of ~x are integers.

Due to the properties of PIPAGE, one can convert a fractional solution that does not

satisfy the constraint (2.17) to an feasible solution to the BP (that also satisfies the

constraint (2.17)) within |E| iterations of PIPAGE.

PIPAGE proceeds as follows. If ~x is an integer vector, then PIPAGE terminates and

yields an output vector ~x′ = ~x. Suppose now that ~x is a fractional solution to BP

that does not satisfy the integer constraint (2.17). PIPAGE constructs a subgraph H~x

of G with the same vertex set and the edge set E~x defined by the condition that

e ∈ E~x if and only if xe is fractional. If H~x contains cycles, then PIPAGE chooses

one of the cycles and denotes it by R. Otherwise, i.e., if H~x is a forest, then PIPAGE

chooses a path of H~x that has endpoints of degree one and denotes it by R. Since

H~x is a bipartite graph, in both cases, R can be uniquely represented as the union

of two matchings4. Let M1 and M2 denote those two matchings. Define ~x(ε, R) as

follows: if e ∈ E − R, xe(ε, R) = xe; otherwise, xe(ε, R) = xe + ε for e ∈ M1 and

4In a graph, a matching is a set of edges without common vertices.

29

xe(ε, R) = xe − ε for e ∈ M2. Set ε1 = min
{

mine∈M1 xe, mine∈M2(1 − xe)
}

and

ε2 = min
{

mine∈M1(1 − xe), mine∈M2 xe
}

, and let ~x1 = ~x(−ε1, R) and ~x2 = ~x(ε2, R).

Then, PIPAGE yields the output vector ~x′ as follows: if f(~x1) > f(~x2), ~x
′ = ~x1;

otherwise, ~x′ = ~x2.

We now describe how DRS rounds the optimal solution of LP-MC by employing

PIPAGE. We define f(~y) as

f(~y) =
n∑
l=1

al∑
d=1

wld

1−
∏

i,j:udl ∈Sij

(1− yij)

 . (2.18)

Note that the problem of maximizing f(~y) under the constraints (2.8), (2.9), and

(2.12) is equivalent to the problem of maximizing
∑n

l=1

∑al
d=1wldxld, where xld =

min{1,
∑

i,j:udl ∈Sij
yij}, under the same constraints, and the latter problem is ILP-

MC. MCSC can be solved by formulating MCSC into BP with f(~y) as defined in

(2.18) and the constraint (2.15) formulated as GBC. However, it is impossible to

formulate MCMC into the form of BP due to the two constraints of MCMC, i.e.,

TBC and GBC. To address this issue, we create two different forms of BP, denoted

by BP1 and BP2, that capture GBC and TBC respectively, and employ PIPAGE in

two phases with BP1 and BP2.

An important goal in rounding in both phases is not to destroy TBC and GBC that

are satisfied by the optimal solution of LP-MC. If the sum of the components in group

Si, i.e.
∑c

j=1 ỹij, is an integer, then all of ỹi1, . . . , ỹic can be rounded to either 0 or 1

by running PIPAGE repeatedly. After this process, the sum
∑c

j=1 ỹij will be preserved,

and consequently both TBC and GBC will be satisfied. However, a subtlety arises

because, in general,
∑c

j=1 ỹij is not an integer. To address this issue, we develop DRS,

which in its first phase, invokes a modified version of PIPAGE. Due to this modification,

after the first phase, every group has at most one fractional components, and both

TBC and GBC are satisfied. In the second phase, DRS invokes the original PIPAGE

iteratively until all the remaining fractional components are rounded to 0 or 1. Due

to the properties of PIPAGE, both TBC and GBC are still satisfied after the second

phase.

30

(a)

Bi-

par-

tite

graph

G1

(b)

Bi-

par-

tite

graph

G2

Fig. 2.3.: Two bipartite graphs

We now present a detailed description of DRS. As previously, we let ~̃y = (ỹij : i ∈

[m], j ∈ [c]) be an optimal solution of LP-MC.

DRS-Phase 1. Define a bipartite graph G1 = (V1, E1) as shown in Fig. 2.3(a),

where V1 is partitioned into P1 = {p1, . . . , pm} and Q1 = {q1, . . . , qmc}, and E1 =

{ei = (pdi/ce, qi) : pdi/ce ∈ P1, qi ∈ Q1, i ∈ [mc]}. Assign variables yij’s to edges in

E1 such that yij is assigned to the edge e(i−1)∗c+j =
(
pi, q(i−1)c+j

)
. With G1 and ~y,

formulate the following binary program:

(BP1) maximize f(~y) (2.19)

subject to
c∑
j=1

yij ≤ ti for all i ∈ [m], (2.20)

0 ≤ yij ≤ 1 for all i ∈ [m] and j ∈ [c], (2.21)

yij ∈ {0, 1} for all i ∈ [m] and j ∈ [c]. (2.22)

In this phase, DRS invokes a modified version of PIPAGE, denoted by MOD-PIPAGE,

with BP1 (which includes G1) and ~̃y as the input. MOD-PIPAGE operates similarly as

PIPAGE. MOD-PIPAGE creates a subgraph H~̃y from G1 as in PIPAGE. Since there is no

cycle in G1, R can be chosen as only a path in H~̃y that has endpoints of degree one.

Consequently, R is constrained to be a path of length one or two. But, differently

from PIPAGE, MOD-PIPAGE only chooses a path of length exactly two for R, and exits

when no such a path exists. This modification enables DRS to keep both TBC and

GBC satisfied. Hence, if there exists a path of length two in H~̃y, MOD-PIPAGE will

31

produce an output vector that has at least one more integer components. In this first

phase, DRS iteratively invokes MOD-PIPAGE and terminates when MOD-PIPAGE exits

without making any change. At the end of this phase, each vertex in P1 has at most

one edges that have fractional values. We denote the resulting vector after the first

phase by ~y′.

To make this clear, we give an illustrative example. In this example, m = 4,

c = 3, ti = 2 for all i ∈ [4], and k = 5. We are given an optimal solution of LP-MC as

~̃y = (ỹ11, ỹ12, ỹ13, . . . , ỹ41, ỹ42, ỹ43), where (ỹ11, ỹ12, ỹ13) = (0.5, 0.8, 0.7), (ỹ21, ỹ22, ỹ23) =

(0.3, 0.6, 0), (ỹ31, ỹ32, ỹ33) = (0.1, 0.2, 0.4), and (ỹ41, ỹ42, ỹ43) = (0.5, 0.7, 0.2). We now

show what can happen after the first phase of DRS. The resulting vector ~y′ is given

as (y′11, y
′
12, y

′
13) = (0, 1, 1), (y′21, y

′
22, y

′
23) = (0.9, 0, 0), (y′31, y

′
32, y

′
33) = (0, 0, 0.7), and

(y′41, y
′
42, y

′
43) = (0.4, 1, 0). Each group now has at most one fractional components.

Note that the sum of the components in each group is preserved (which we will show

in Lemma 2.7.1), and consequently both TBC and GBC are satisfied.

DRS-Phase 2. Define a bipartite graph G2 = (V2, E2) as shown in Fig. 2.3(b), where

V2 is partitioned into P2 = {p1} and Q2 = {q1, . . . , qmc}, and E2 = {ei = (p1, qi) : p1 ∈

P2, qi ∈ Q2, i ∈ [mc]}. Assign variables yij’s to edges in G2 such that yij is assigned

to the edge e(i−1)∗c+j =
(
p1, q(i−1)c+j

)
. With G2 and ~y, formulate the following binary

program:

(BP2) maximize f(~y) (2.23)

subject to
m∑
i=1

c∑
j=1

yij ≤ k, (2.24)

0 ≤ yij ≤ 1 for all i ∈ [m] and j ∈ [c], (2.25)

yij ∈ {0, 1} for all i ∈ [m] and j ∈ [c]. (2.26)

In this phase, DRS invokes the original PIPAGE iteratively with BP2 and ~y′ as the

input, until an integer vector is obtained. We denote the resulting integer vector by

~y#, which is a feasible solution to ILP-MC (which we will show in Lemma 2.7.3)—

thereby if y#ij = 1, monitoring node vi verifies on channel j by tuning one of its radios

to channel j.

32

Algorithm 5 Deterministic Rounding Scheme: DRS
(
~̃y
)

// ~̃y has a dimension

1×mc
1: while (1) do

2: ~y′ ← MOD-PIPAGE(BP1, ~̃y)

3: if ~y′ = ~̃y then

4: break;

5: else

6: ~̃y ← ~y′

7: end if

8: end while

9: ~y# ← ~y′

10: while ~y# is not an integer vector do

11: ~y# ← PIPAGE(BP2, ~y#)

12: end while

13: return ~y#

We continue the previous example. In this phase, the remaining fractional com-

ponents in ~y′, i.e. y′21, y
′
33, and y′41, are rounded to 0 or 1. Suppose that they are

rounded to 1, 1, and 0, respectively. This results in the integer solution ~y# given

as (y#11, y
#
12, y

#
13) = (0, 1, 1), (y#21, y

#
22, y

#
23) = (1, 0, 0), (y#31, y

#
32, y

#
33) = (0, 0, 1), and

(y#41, y
#
42, y

#
43) = (0, 1, 0). With this y#, DRS assigns the channels to monitoring ra-

dios as follows: v1 tunes its two radios to channels 2 and 3, respectively; v2, v3, and

v4 tune one of their radios to channels 1, 3, and 2, respectively.

To summarize, we present a formal description of DRS in Alg. 5, and also present

DRA in Alg. 6.

We now show the feasibility of the solution of DRA and the performance of DRA.

We first prove the following two lemmas.

Lemma 2.7.1 For all i ∈ [m], it follows that
∑c

j=1 y
′
ij =

∑c
j=1 ỹij.

33

Algorithm 6 Deterministic Rounding Algorithm (DRA)

1: Formulate ILP-MC from a given MCMC

2: Transform ILP-MC into LP-MC by relaxing the integer constraints

3: Obtain an optimal solution ~̃y = (ỹij : i ∈ [m], j ∈ [c]) of LP-MC (using an

existing LP solver)

4: ~y# = DRS(~̃y)

5: return ~y#

Proof MOD-PIPAGE chooses a path of two edges for R, and the two edges have a

common vertex in P1. If the value assigned to one edge is increased by ε, then the

value assigned to the other edge is decreased by ε. Hence, for every vertex i ∈ P1,

the sum
∑c

j=1 ỹij would remain the same after a single execution of MOD-PIPAGE.

Consequently, at the end of the first phase of DRS, which is after multiple iterations

of MOD-PIPAGE, we have
∑c

j=1 y
′
ij =

∑c
j=1 ỹij for all i ∈ [m].

Lemma 2.7.2 ~y′ is a fractional solution to BP2.

Proof Since ~̃y is an optimal solution of LP-MC, ~̃y must satisfy TBC (i.e.,
∑m

i=1

∑c
j=1 ỹij

≤ k). Hence, due to Lemma 2.7.1, it follows that
∑m

i=1

∑c
j=1 y

′
ij =

∑m
i=1

∑c
j=1 ỹij ≤ k,

which satisfies the constraint (2.24). Recall that PIPAGE yields a fractional solution to

BP if the input vector is fractional. This also holds for MOD-PIPAGE since MOD-PIPAGE

uses the same method to increment or decrement edge weights. Hence, 0 ≤ y′ij ≤ 1

for all i ∈ [m] and j ∈ [c], which satisfies the constraint (2.25). Since ~y′ satisfies both

the constraints (2.24) and (2.25), ~y′ is a fractional solution to BP2.

In the following lemma, we show the feasibility of the solution of DRA.

Lemma 2.7.3 The output ~y# of DRA is a feasible solution to ILP-MC.

Proof Due to Lemma 2.7.2 and the property that PIPAGE gives a fractional solution

to BP if the input vector is fractional, ~y# satisfies the constraint (2.24), thus TBC.

Obviously, ~y# is an integer vector. Hence, to prove the lemma, we only need to show

34

that ~y# satisfies GBC, i.e.
∑c

j=1 y
#
ij ≤ ti for all i ∈ [m]. Recall that, for each i ∈ [m],

there are at most one j ∈ [c] such that y′ij is fractional. Hence, for each i, there are

two possible cases depending whether all y′ij’s are integers or not.

Case 1: All y′ij’s are integers. In this case, y#ij = y′ij for all j ∈ [c] since integer

components do not change. Hence, it follows that
∑c

j=1 y
#
ij =

∑c
j=1 y

′
ij. Due to

Lemma 2.7.1, it follows that
∑c

j=1 y
′
ij =

∑c
j=1 ỹij ≤ ti for all i ∈ [m]. Thus, we have∑c

j=1 y
#
ij ≤ ti for all i ∈ [m].

Case 2: Only one of y′ij’s is fractional. With loss of generality, we assume that

y′ij1 is fractional. Then, since 0 < y′ij1 < 1, it follows that
∑
∀j(6=j1) y

#
ij =

∑
∀j(6=j1) y

′
ij =⌊∑c

j=1 y
′
ij

⌋
. Also, y#ij1 = 0 or 1. Hence, due to Lemma 2.7.1, it holds that

c∑
j=1

y#ij =
∑
∀j(6=j1)

y#ij + y#ij1 ≤

⌊
c∑
j=1

y′ij

⌋
+ 1 =

⌈
c∑
j=1

y′ij

⌉
=

⌈
c∑
j=1

ỹij

⌉
≤ dtie = ti.

For both cases, it is true that
∑c

j=1 y
#
ij ≤ ti for all i ∈ [m]. Thus, ~y# satisfies GBC,

which concludes the proof.

In order to show the performance of DRA, we first show the following lemma.

Lemma 2.7.4 Let ~yi and ~yo be the input and the output vectors of PIPAGE (or

MOD-PIPAGE), respectively. Then, the following holds: f(~yo) ≥ f(~yi).

Proof Observe that for any fractional solution and any chosen path R, the function

f
(
~yi(ε, R)

)
is of the form a2ε

2 + a1ε+ a0, where a2 ≥ 0. Hence, f
(
~yi(ε, R)

)
a convex

function of ε and thus achieves the maximum at an endpoint of the interval [−ε1, ε2].

Since ~yo = max{~yi(−ε1, R), ~yi(ε2, R)}, f(~yo) ≥ f(~yi). This proof holds for both BP1

(MOD-PIPAGE) and BP2 (PIPAGE) since PIPAGE and MOD-PIPAGE differ only in the way

that a path is chosen for R; they are identical in how the edge weights are updated.

In the following lemma, we show the performance of DRA.

Lemma 2.7.5 The solution ~y# of DRA achieves at least 1−(1−1/m)m of the optimum

of ILP-MC.

35

Proof Let x#ld = min
{

1,
∑

i,j:udl ∈Sij
y#ij

}
and denote the optimal solution of LP-MC

by {x̃ld, ỹij}. Then, it follows that

n∑
l=1

al∑
d=1

wldx
#
ld =

n∑
l=1

al∑
d=1

wld

1−
∏

i,j:udl ∈Sij

(1− y#ij)


≥

n∑
l=1

al∑
d=1

wld

1−
∏

i,j:udl ∈Sij

(1− y′ij)

 (due to Lemma 2.7.4)

≥
n∑
l=1

al∑
d=1

wld

1−
∏

i,j:udl ∈Sij

(1− ỹij)

 (due to Lemma 2.7.4)

≥
(
1− (1− 1/m)m

) n∑
l=1

al∑
d=1

wld ·min

1,
∑

i,j:udl ∈Sij

ỹij


(due to Lemma 2.6.3 and p ≤ m)

=
(
1− (1− 1/m)m

) n∑
l=1

al∑
d=1

wldx̃ld.

The last equality holds since x̃ld = min{1,
∑

i,j:udl ∈Sij
ỹij}, which has been shown in

the proof of Lemma 2.6.4. Then, the lemma follows since the optimal value of LP-MC

is an upper bound on the optimal value of ILP-MC.

Due to Lemmas 2.7.3 and 2.7.5, we have the following proposition.

Proposition 2.7.1 DRA deterministically achieves the best approximation ratio 1− 1
e

unless P = NP .

Proof It follows since 1− (1− 1/m)m > 1− 1
e
.

As in PRA, this ratio 1− 1
e

of DRA is reached asymptotically when m (i.e., the number of

monitoring nodes) tends to infinity. For practical deployments with a finite number of

monitoring nodes, the worst-performance guarantee of DRA will be higher than 1− 1
e
.

2.8 COMPLEXITY ANALYSIS

We first compute time complexities of the three algorithms: GR-MCMC, PRA, and

DRA.

36

Time complexity of GR-MCMC. GR-MCMC has k iterations, and at each iteration,

selects the set that gives the maximum improvement. In each iteration, GR-MCMC needs

to search O(mc) number of sets to find the maximum-improvement set. The number

of elements in a single coverage-set is upper bounded by the number of normal nodes

since it is inefficient for a normal node to tune its two radios to the same channel.

Hence, each iteration takes O(nmc). Thus, GR-MCMC has time complexity of O(knmc).

Time complexity of PRA. Recall that PRA comprises three steps: 1) formulate

LP-MC; 2) solve LP-MC using an LP solver; 3) invoke PRS. At the first step, PRA

formulates a given MCMC into an LP-MC of the matrix form: max(~c′~z) subject to

A~z = ~b and ~z ≥ 0, where ~z is a vector of the variables xld’s and yij’s. Building

matrix A from the constraints (2.7)–(2.11) dominates the time complexity of the first

step. Hence, we focus on the construction of A. We have
∑n

l=1 al + mc variables

in ~z. The constraint (2.7) has
∑n

l=1 al inequalities and thus it takes O
((∑n

l=1 al
)
·(∑n

l=1 al + mc
))

to implement (2.7). Since it is not efficient for a normal node to

tune its multiple radios to the same channel, the number of actively used radios

for each node is upper bounded by the number of channels, i.e., al ≤ c for all l ∈

[n]. Therefore, implementing (2.7) takes O(n(n + m)c2). Similarly, we can calculate

the time complexities for the other constraints (2.8)–(2.11), and they are given by

O
(
(n + m)c

)
, O
(
m(n + m)c

)
, O
(
m(n + m)c2

)
, and O

(
n(n + m)c2

)
, respectively.

The number of normal nodes is most likely larger than that of monitoring nodes.

Therefore, at the first step, setting up LP-MC takes O(n2c2). At the second step,

solving LP-MC takes O
(
(n3c6)/ log(n3c6)

)
, which is obtained by using the complexity

of LP solver in [37]. At the third step, PRA invokes PRS, which in turn invokes

SIMPLIFY multiple times. SIMPLIFY takes O(1), a constant time. In the first phase

of PRS (lines 2–11 in Alg. 3), SIMPLIFY is invoked at most mc times. This follows

since SIMPLIFY fixes at least one variables at each iteration and therefore SIMPLIFY

is invoked at most c times in one iteration of the for loop in line 2. In the second

phase of PRS (lines 15–22 in Alg. 3), SIMPLIFY is invoked at most m times since each

37

group has at most one unfixed variables. Thus, PRS takes O(mc). Overall, the second

step, i.e., solving LP-MC, dominates the time complexity of PRA. Thus, PRA has time

complexity of O
(
(n3c6)/ log(n3c6)

)
.

Time complexity of DRA. Since DRA and PRA have the first two steps in common,

we can use the results that we have obtained for PRA for the first two steps of DRA.

Then, we only need to compute the time complexity of DRS. In the first phase (lines

1–8 in Alg. 5), DRS invokes MOD-PIPAGE at most mc times since MOD-PIPAGE reduces

the number of fractional components in the input vector by at least one. In the

second phase (lines 10–12 in Alg. 5), DRS invokes PIPAGE at most m times since

there are at most m unfixed variables at the end of the first phase and PIPAGE also

decreases the number of fractional components in the input vector by at least one.

For both MOD-PIPAGE and PIPAGE, evaluating the function value f(~y) (Eq. (2.18)) is

dominant in time complexity, and thus MOD-PIPAGE and PIPAGE have the same time

complexity of O(nmc). Therefore, DRS has time complexity of O(nm2c2). Also, in

DRA, solving LP-MC is dominant in time complexity and hence has time complexity

of O
(
(n3c6)/ log(n3c6)

)
, which is same as PRA.

We next discuss communication costs of the three algorithms. All of the three

algorithms must know the collection of coverage-sets S, which is global information.

A central entity first broadcasts a query to all monitoring nodes, then each monitor-

ing node replies with its coverage-sets to the central entity, and finally the central

entity distributes in a single broadcast to all monitoring nodes the determination of

which monitoring nodes and channels were selected. Therefore, m + 2 network-wide

communications are required in total. However, for GR-MCMC, we can lower the com-

munication cost to three network-wide communications and local communications by

employing the approach used in MUNEN-MC [25]. This approach has two phases—

node-selection and node-retention phases. In the node-selection phase, through mul-

tiple iterations, monitoring nodes that can provide high coverage improvement are

chosen as candidates for a solution, using only local communications. In the node-

38

retention phase, k candidates with highest coverage improvement are finally selected

for a solution, which requires three broadcasts.

2.9 SIMULATION RESULTS

We evaluate the performance of the proposed algorithms through simulations in

two kinds of networks: random networks and scale-free networks. In random net-

works, we randomly place normal nodes and monitoring nodes on an 1 × 1 square

area, and set the receiving range of monitoring radios to 0.15. In scale-free networks,

the distribution f(d) of nodes with degree d follows a power law of the form d−r, where

2 < r < 3. That is, the number of nodes with high degree decreases exponentially.

Many empirically observed networks, such as the world wide web and the Internet,

appear to be scale-free. In scale-free networks, we pick m nodes with highest degrees

as monitoring nodes so that we can have a higher detection coverage than picking

them randomly.

In the first set of simulations (Figures 2.4–2.7), we set n, m, and c to 200, 50, and

4, respectively. Half the normal nodes have two radios, and the other half have three

radios, leading to 500 normal radios in total. Each normal node’s radios are tuned to

different channels and these channels are chosen randomly. Every monitoring node

has two radios, and thus the total number of monitoring radios is 100. As an input

parameter, we vary k (i.e., the maximum number of monitoring radios that can be

used to verify normal radios). This is expressed as a percentage of the total number

of monitoring radios in the network. In the second and the third sets of simulations

(Figures 2.8 and 2.9, and Figures 2.10 and 2.11), we fix k to 60%, and vary m and n,

respectively, to see how the proposed algorithms perform as the network size grows,

while using the same setting of the other parameters as in the first set of simulations.

In all simulations, we evaluate the proposed algorithms in two metrics: coverage and

execution time. Here, the coverage is defined as the sum of weights of normal radios

39

covered by a solution divided by the total weight. All the results are the averages

over 30 iterations.

Figures 2.4(a) and (b) show the coverage and execution time, respectively, in the

random networks for the case when the weights of normal radios are all identical.

In Fig. 2.4(a), LP-OPT denotes the optimal value of LP-MC, which is used as an

upper bound on the optimal value of ILP-MC. Figure 2.4(a) shows that DRA achieves

the highest coverage, GR-MCMC follows DRA with only a small gap, and PRA shows an

inferior performance. DRA, GR-MCMC, and PRA have coverage at least 99.1%, 97.4%,

and 91.4% of LP-OPT, respectively. Figure 2.4(b) shows the execution times of the

three algorithms, with two y axes. The y axis on the left denotes the execution times

of GR-MCMC and PRA while the y axis on the right denotes the execution time of DRA.

We observe that the execution time of GR-MCMC increases almost linearly with k, as

expected from the asymptotic analysis in Section 2.8. On the other hand, the results

of PRA and DRA are surprising since Fig. 2.4(b) (and Figures 2.5–2.11(b), also) shows

quite a different result from their asymptotic time complexities. Recall that PRA and

DRA have in common their first two steps, which are formulating and solving LP-MC,

and that both algorithms have the same asymptotic time complexity since the second

step dominates their time complexities. However, in Fig. 2.4(b), we observe that PRA

runs much faster than DRA. This result implies that, in practice, solving LP-MC takes

a small amount of time, and the time complexities of PRA and DRA are determined by

their rounding schemes, PRS and DRS (whose asymptotic time complexities are O(mc)

and O(nm2c2), respectively). Also, note that the execution time of DRA increases with

k, even though the asymptotic time complexity of DRA does not depend on k. This

can be explained as follows. As k increases, the number of fractional components in

the input of DRS is likely to increase. Consequently, DRS needs more invocations of

PIPAGE/MOD-PIPAGE, and this makes the execution time of DRA increase.

Figure 2.5(a) and (b) show the results in random networks for the case when each

normal radio’s weight is randomly assigned to 1, 2, or 3. Comparing Fig. 2.5(a) with

Fig. 2.4(a), we observe that they have little difference. DRA, GR-MCMC, and PRA have

40

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.4.: Random networks for different values of k, where n = 200, m = 50, and

every normal radio has the identical weight.

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.5.: Random networks for different values of k, where n = 200, m = 50, and the

weight of each normal radio is randomly assigned to 1, 2, or 3.

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.6.: Scale-free networks for different values of k, where n = 200, m = 50, and

every normal radio has the identical weight.

41

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.7.: Scale-free networks for different values of k, where n = 200, m = 50, and

the weight of each normal radio is randomly assigned to 1, 2, or 3.

coverage at least 99.3%, 97.6%, and 92.2% of LP-OPT, respectively, which is slightly

better than the coverage results for the identical-weight case. On the other hand,

comparing Fig. 2.5(b) (Fig. 2.7(b)) with Fig. 2.4(b) (Fig. 2.6(b)), we observe that

the execution times of all the three algorithms for the different-weight case are less

than those for the identical-weight case. This result suggests that, in terms of time

complexity, the networks with different weights are more favorable inputs to all of the

three algorithms, especially DRA, than networks with the identical weight. For both

cases of the weight assignment, the achievable coverage levels off at around 90%. This

is due to a few unfortunately placed normal nodes whose radios cannot be covered

by any monitoring node, since these nodes are not within the receiving range of any

monitoring node.

We next see the performance of the three algorithms in scale-free networks. Fig-

ures 2.6(a) and (b) show the coverage and execution time, respectively, for the

identical-weight case, and Fig. 2.7(a) and (b) show the results for the different-weight

case. We observe similar results to those for random networks. DRA, GR-MCMC, and

PRA have coverage at least 98.2%, 97.3%, and 90.6% of LP-OPT, respectively, for the

identical-weight case, and at least 98.9%, 97.8%, and 92.8% of LP-OPT, respectively,

for the different-weight case. A notable result is that DRA runs much faster in scale-free

networks than in random networks, for both cases of weight assignment. This result

42

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.8.: Random networks for different values of m, where n = 200, k = 60%, and

every normal radio has the identical weight.

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.9.: Scale-free networks for different values of m, where n = 200, k = 60%, and

every normal radio has the identical weight.

implies that, in terms of time complexity, scale-free networks provide more favorable

inputs to DRA than random networks.

We now see how the proposed algorithms perform as the network size grows. We

present only the results for the identical-weight case since those for the different-

weight case show similar trends. Figures 2.8 and 2.9 show the results in the random

and the scale-free networks, respectively, for different values of m. For the coverage,

DRA achieves the highest coverage very close to LP-OPT, GR-MCMC attains coverage

comparable to that of DRA, and PRA has an inferior coverage, similar to the results

for the different values of k (i.e., Fig. 2.4–2.7(a)). For execution time, we also see

similar trends—GR-MCMC, PRA, DRA in increasing order of execution time. We observe

43

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.10.: Random networks for different values of n, where m = 50, k = 60%, and

every normal radio has the identical weight.

(a)

Cov-

er-

age

(b)

Ex-

e-

cu-

tion

time

Fig. 2.11.: Scale-free networks for different values of n, where m = 50, k = 60%, and

every normal radio has the identical weight.

that the execution times of GR-MCMC and PRA increase almost linearly with m. The

result for GR-MCMC is expected from its asymptotic time complexity, i.e., O(knmc).

The result for PRA is explained by the aforementioned reasoning that, in practice, the

time complexity of PRA is determined by its rounding scheme, PRS, whose asymptotic

time complexity is O(mc). For DRA, the execution times for the random and the scale-

free networks seem to increase quadratically (as the asymptotic time complexity of

DRS, i.e., O(nm2c2)) and linearly, respectively, with m. We again observe that the

scale-free networks give more favorable inputs to all of the three algorithms than the

random networks, in terms of time complexity.

44

Figures 2.10 and 2.11 show the results in the random and the scale-free networks,

respectively, for different values of n. We also see similar trends in the performance

comparison of the proposed algorithms. We observe that the coverages of the three

algorithms decrease as n grows. This is due to the decreasing ratio of the number of

monitoring nodes to the number of normal nodes. A notable observation is that the

execution time of GR-MCMC increases slowly with n whereas the execution time of PRA

and DRA grow much faster.

We also observe similar results for other values of c, and therefore they are not

included here. In addition, we would like to point out that it is not fair to compare the

coverage results in random networks with those in scale-free networks, even for the

same settings. This is because, in these two kinds of networks, different parameters are

used to determine the coverage-sets, which are receiving range for random networks

and the parameter r (in the distribution d−r) for scale-free networks.

Summarizing our results, DRA shows the highest coverage close to the maximum

coverage but has high time complexity, PRA shows an inferior coverage but has rea-

sonable time complexity, and GR-MCMC shows a good coverage comparable to DRA and

has low time complexity. Hence, GR-MCMC can be a good compromise between cov-

erage and time complexity. However, for critical security deployments, the network

administrator needs to guarantee the worst-case performance, in which DRA and PRA

would be favored.

2.10 CONCLUSIONS

In this chapter, we study the problem of the optimal selection of monitoring

nodes and channels in multi-channel multi-radio WMNs for verifying the behavior of

normal network nodes. We mathematically formulate this problem, and show that

obtaining the exact optimal solution is NP-hard. We then present three algorithms

to approximate the optimal solution—GR-MCMC, PRA, and DRA. GR-MCMC is

an intuitive extension from an existing greedy algorithm for single-channel networks,

45

and achieves an approximation ratio of 1
2
, which is inferior to the best possible ap-

proximation ratio 1− 1
e

for our problem. The other two algorithms are based on the

LP rounding technique, and achieve the best approximation ratio 1− 1
e
. PRA attains

this ratio probabilistically while DRA achieves it deterministically. Our simulations

results show that GR-MCMC is a good compromise between coverage and execution

time. However, for critical security deployments, PRA and DRA are favored since

they provide a superior performance guarantee in the worst case.

46

3. DISTRIBUTED ONLINE CHANNEL ASSIGNMENT

TOWARD OPTIMAL MONITORING IN

MULTI-CHANNEL WIRELESS NETWORKS

3.1 INTRODUCTION

We consider a channel assignment problem for passive monitoring in multi-channel

wireless networks. Passive monitoring is a widely-used and effective technique to mon-

itor wireless networks, where a set of sniffers (i.e., software or hardware devices that

intercept and log packets) are used to capture and analyze network traffic between

other nodes to estimate network conditions and performance. Such estimates are uti-

lized for efficient network operation, such as network resource management, network

configuration, fault detection/diagnosis and network intrusion detection. Recently,

it has been extensively studied to use multiple channels in wireless networks, espe-

cially in wireless mesh networks (WMNs) [6, 14, 17, 19, 29]. It has been shown that

equipping nodes with multiple radios tuned to different non-overlapping channels can

significantly increase the capacity of the network. In multi-channel wireless networks,

a major challenge with passive monitoring is how to assign a set of channels to each

sniffer’s radios such that as large an amount of traffic or large a number of nodes as

possible are captured. We call this the optimal sniffer-channel assignment (OSCA)

problem.

We can employ the algorithms proposed in Chapter 2 to solve OSCA, since OSCA

is a special case of MCMC with all monitoring nodes being activated (refer to Sec-

tion 2.2). But, they are centralized and offline algorithms. That is, the algorithms

requires a central authority that first gathers, from all sniffers, either a prior knowl-

edge of the network topology and the channel usages of all nodes to be monitored, or

47

primitive information to estimate the prior knowledge, then runs the algorithm and

distributes the solution to all sniffers.

These centralized algorithms are not suitable for large-scale and dynamic net-

works, due to several reasons. The centralized algorithms require an efficient and

cost-effective two-way global communication mechanism between the central author-

ity and all sniffers, i.e., the communications from all sniffers to the central authority

for the delivery of the prior knowledge, and also the communication from the central

authority to all sniffers for the distribution of the solution. However, this is difficult

to achieve in large-scale networks, especially in multi-hop wireless networks. Also,

such a two-way global communication needs to be achieved without too much delay,

otherwise the centralized algorithms are not agile to frequent network changes, such

as channel-usage changes of nodes and network topology changes due to mobility of

nodes and arrivals/departures of sniffers. In addition, the centralized algorithms are

difficult to deploy in ad hoc wireless networks, which lack the central authority or a

powerful node that has a high computational power, a large memory, and no signif-

icant energy constraint. Moreover, the powerful node needs to be fault-tolerant or

easily replaceable when it fails, since otherwise the entire monitoring system may fail

due to a single-point failure.

In this chapter, we develop distributed and online solutions to OSCA for large-

scale and dynamic networks. The distributed algorithm, called DA-OSCA, achieves

a provably good performance. DA-OSCA can always achieve at least 1− 1
e

(≈ 0.632)

of the maximum monitoring coverage, regardless of the network topology and the

channel assignment of nodes to be monitored. Thus, DA-OSCA preserves the ap-

proximation ratio that the centralized algorithm DRA achieves, while providing a

distributed solution that is amenable to online implementation. Also, DA-OSCA is

cost-effective, in terms of communication and computational overheads, since DA-

OSCA requires only local communication among neighboring nodes and also adapts

incrementally to network changes. DA-OSCA solves OSCA in two steps. At the first

step, DA-OSCA solves distributedly an LP relaxation of OSCA, which is obtained

48

by removing the integer constraints from integer linear program (ILP) formulation

of OSCA. At the second step, DA-OSCA rounds distributedly the fractional solution

of the LP relaxation to an integer solution, while obtaining a feasible solution to the

original ILP. Moreover, the decentralized and adaptive structure of DA-OSCA allows

us to operate DA-OSCA in two different modes that are suitable for fast-varying and

slow-varying networks, respectively. Specifically, one is a proactive mode for fast-

varying network, while the other is a reactive mode for slow-varying networks. With

these two operational modes, DA-OSCA can adapt to two different rates of network

changes in a cost-effective manner. To demonstrate the effectiveness of DA-OSCA in

these modes, we conduct simulations in two kinds of network—random networks and

scale-free networks.

The rest of the chapter is organized as follows. Section 3.2 presents the problem

formulation and existing results. Section 3.3 presents the distributed algorithm. Sec-

tion 3.4 describes the online implementation of the distributed algorithm. Section 3.5

discusss notes. Section 3.6 presents simulation results. Section 3.7 concludes this

chapter and discusses future works.

3.2 PROBLEM FORMULATION

3.2.1 OPTIMAL SNIFFER-CHANNEL ASSIGNMENT (OSCA) PROB-

LEM

We are given a set N of nodes to be monitored, and each node n ∈ N is tuned to a

wireless channel chosen from a set C of available wireless channels, where |C| ≥ 2. The

channels are chosen according to one of many available channel assignment algorithms

(e.g., [15, 17, 19]). Each node n is given a non-negative weight wn. These weights of

nodes can be used to capture various application-specific objectives of monitoring.

For example, one can use the weights to capture transmission rates of nodes. In this

scenario, we would assign higher weights to the nodes that transmit larger volumes

of data, thereby biasing our algorithm to monitor such nodes more. Or, for security

49

monitoring, one can assign the weights by taking into account nodes’ trustworthiness

computed based on previous monitoring results. Here, a node that has been found to

be compromised before (and repaired thereafter) will be assigned a higher weight.

We are given a set S of sniffers, each of which needs to determine a wireless channel

from C to tune its radio to. We say that a sniffer and a node are neighbors if the

sniffer can overhear the node, and also that two sniffers are neighbors if there exists a

node that can be overheard by both the sniffers. We say that a node is covered if the

node is overheard by at least one sniffer being tuned to the same channel as the node.

We are given a collection of coverage-sets, K = {Ks,c ⊆ N : s ∈ S, c ∈ C}, where

a coverage-set Ks,c contains the nodes that can be covered by sniffer s being tuned

to channel c. We define a group as a collection of coverage-sets of a sniffer over all

channels, i.e. Ks = {Ks,c : c ∈ C}. Our objective is to maximize the total weight of

the nodes covered by judiciously choosing one coverage-set from each group. Here, the

constraint that only one coverage-set can be chosen from each group arises since each

sniffer can tune its radio to only one channel at a time, since it has a single radio. We

call this constraint the group budget constraint, and refer to the optimization problem

as the optimal sniffer-channel assignment (OSCA) problem.

For ease of exposition, we assume that all of the nodes and the sniffers have only

one radio. However, the multi-radio case, where nodes and sniffers are equipped with

multiple radios, can be easily mapped to this single-radio case (refer to Section 3.5).

3.2.2 HARDNESS OF OSCA

We present existing results on the hardness of OSCA.

Theorem 3.2.1 (Theorem 1 [38]) OSCA is NP-hard.

This means that the computational complexity to solve OSCA grows exponentially

with the number of sniffers, unless P = NP .

Also, we have an inapproximability result for OSCA.

50

Fig. 3.1.: Distributed Algorithm for OSCA (DA-OSCA).

Theorem 3.2.2 (Corollary 2 [38]) For any ε > 0, it is NP-hard to approximate

OSCA within a factor of 7
8

+ ε of the optimum.

Thus, the best achievable approximation ratio for OSCA is at most 7
8
.

3.3 THE DISTRIBUTED ALGORITHM FOR OSCA

We develop a distributed algorithm to solve OSCA, referred to as DA-OSCA. The

basic structure of DA-OSCA is based on the Linear Program (LP) rounding technique,

where we first solve the LP relaxation of OSCA and then round the (fractional) solu-

tion of the LP relaxation to an feasible integer solution to the original OSCA problem.

Figure 3.1 shows an overview of how DA-OSCA yields an approximate solution to

OSCA. DA-OSCA consists of two components: 1) the Distributed Algorithm to solve

the LP relaxation of OSCA (DA-LPOSCA); 2) Opportunistic Channel Assignment Al-

gorithm (OCAA) to perform distributed rounding of the fractional solution yielded

by DA-LPOSCA.

3.3.1 DISTRIBUTED ALGORITHM FOR SOLVING LP RELAXATION

OF OSCA

LP relaxation of OSCA. We first formulate an integer linear program (ILP)

of OSCA. We assign an indicator variable xn ∈ {0, 1} to each node n ∈ N , where

xn = 1 indicates that node n is covered by the given solution. We assign an indicator

51

variable ys,c ∈ {0, 1} to a coverage-set Ks,c ∈ K, and ys,c = 1 indicates that sniffer s

will be tuned to channel c. The ILP of OSCA, denoted by ILPOSCA, is given by:

maximize
∑
n∈N

wnxn (3.1)

subject to xn ≤
∑

s,c:n∈Ks,c

ys,c ∀n ∈ N, (3.2)

∑
c∈C

ys,c ≤ 1 ∀s ∈ S, (3.3)

0 ≤ xn, ys,c ≤ 1 ∀n ∈ N, s ∈ S, c ∈ C, (3.4)

xn, ys,c ∈ {0, 1} ∀n ∈ N, s ∈ S, c ∈ C. (3.5)

The objective function (3.1) together with the constraints (3.2) and (3.5) makes xn =

1 if at least one coverage-set that includes the node n is chosen for a solution, and

xn = 0 otherwise. Eq. (3.3) is due to the group budget constraint.

Since ILPOSCA cannot be solved in polynomial time, we relax the integer constraint

(3.5) to obtain the LP relaxation of OSCA, i.e., Eqs. (3.1)–(3.4), denoted by LPOSCA.

In LPOSCA, the variables xl’s and yij’s can now take any value in [0, 1], including

fractional values.

Solving LPOSCA. We use the Proximal Optimization Algorithm (POA) [39, Ch.

3.4.3] combined with a dual approach to solve LPOSCA. POA introduces a set of

auxiliary variables and adds quadratic terms to the objective function (3.1) of LPOSCA

to transform LPOSCA into a quadratic program (QP) (as given in Eq. (3.6)), and then

solves the QP by sequentially updating the values of the two kinds of variables, i.e.

first the original variables and then the auxiliary variables. The rationale behind the

transformation is to resolve a difficulty due to the linearity of the objective function

(3.1) when we solve the dual problem of LPOSCA. Specifically, the objective function

(3.1) of LPOSCA is linear, and hence it is not strictly concave. As a result, the dual

problem of LPOSCA may not be differentiable at every point. This leads to a difficulty

when we use the Gradient Projection Algorithm [39, Ch. 3.3.2] to solve the dual

problem. However, such a difficulty will be resolved with the QP, since the objective

52

function of the QPOSCA is strictly concave due to the added quadratic terms and thus

is differentiable.

We now apply POA to LPOSCA. We introduce a set of auxiliary variables {xauxn , yauxs,c :

n ∈ N, s ∈ S, c ∈ C}, and transform LPOSCA into the following equivalent quadratic

program, denoted by QPOSCA:

maximize
∑
n∈N

wnxn −
1

2d

(∑
n∈N

(xn − xauxn)2

+
∑
∀(s,c)

(
ys,c − yauxs,c

)2)
(3.6)

subject to Eqs. (3.2)–(3.4).

Here, d is a positive constant. It can be shown that solving QPOSCA is equivalent to

solving LPOSCA (refer to Appendix A.1 for the proof of this claim). For notational

simplicity, we define ~x = (xn : n ∈ N) and ~y = (ys,c : s ∈ S, c ∈ C), and define

~xaux and ~yaux similarly as ~x and ~y. The POA to solve QPOSCA, referred to as POA-

QPOSCA, proceeds as follows. At t-th iteration, t = 1, 2, 3, . . . , POA-QPOSCA executes

the following two steps:

S1: Fixing ~xaux = ~xaux(t) and ~yaux = ~yaux(t), solve QPOSCA with respect to ~x and

~y. Let the solution obtained be ~x(t), ~y(t).

S2: Let ~xaux(t+ 1) = ~x(t) and ~yaux(t+ 1) = ~y(t).

POA-QPOSCA can start with any initial values, i.e. any ~xaux(1) and ~yaux(1). As the

number t of iterations tends to infinity, a sequence of vectors generated by POA-

QPOSCA converges to the optimal solution of QPOSCA [39, Ch. 3.4.3].

Note that, at Step S1 in each iteration of POA-QPOSCA, we still have an optimiza-

tion problem to be solved. We solve the optimization problem given at Step S1 by

solving its dual problem instead. The reason why we solve the dual problem instead

of the primal problem is that the dual problem has a simple form of constraints and

is easily decomposable, and these features enable us to design a distributed algorithm

to solve the problem.

53

We derive the dual problem of the optimization problem given by Step S1 of POA-

QPOSCA, i.e., the QPOSCA with ~xaux and ~yaux being fixed. For notational simplicity,

we let ~z = (~x, ~y) and ~zaux = (~xaux, ~yaux). We define a set Z that contains all of (~x, ~y)’s

satisfying Eqs. (3.3) and (3.4). We define a set of Lagrange Multipliers ~p = (pn : n ∈

N) for the |N | constraints in Eq. (3.2). We define the Lagrangian function of the

QPOSCA with fixed ~xaux and ~yaux as

L(~z, ~p; ~zaux) =
∑
n∈N

wnxn +
∑
n∈N

pn

 ∑
(s,c):n∈Ks,c

ys,c − xn


− 1

2d

∑
n∈N

(xn − xauxn)2 +
∑
∀(s,c)

(
ys,c − yauxs,c

)2 . (3.7)

The dual problem is then given by

minimize D(~p; ~zaux) , max
~z∈Z

L(~z, ~p; ~zaux)

subject to ~p ≥ 0. (3.8)

Since the dual objective function D in (3.8) is now differentiable due to the

quadratic terms in Eq. (3.7), we can use the Gradient Projection Algorithm (GPA)

(refer to [39, Ch. 3.3.2]) to solve the dual problem. The GPA to solve the dual

problem has the following iterations: for i = 0, 1, 2, . . . ,

pn(i+ 1) = [pn(i) + β · gn(i)]+[0,+∞) , (3.9)

where gn(i) ,
∂D

∂pn

∣∣∣∣
pn=pn(i)

= x∗n(i)−
∑

(s,c):n∈Ks,c

y∗s,c(i).

Here, β > 0 is the step size, [~p]+A denotes the projection to a set A, which maps ~p to

the point in A that is closest to ~p, and (~x∗(i), ~y∗(i)) ∈ Z is the optimal solution that

maximizes L(~z, ~p(i); ~zaux) for given ~p(i). To compute the iterations in Eq. (3.9), at

each iteration, we need to solve the following maximization problem : for given ~p(i),

maximize L(~z, ~p(i); ~zaux)

subject to ~z ∈ Z. (3.10)

54

To solve Eq. (3.10), we rearrange the terms in Eq. (3.7) and rewrite Eq. (3.7) as

the following:

L(~z, ~p; ~zaux) =
∑
n∈N

(
− 1

2d
(xn − xauxn)2 + (wn − pn)xn

)

+
∑
∀(s,c)

− 1

2d

(
ys,c − yauxs,c

)2
+ ys,c

∑
n∈Ks,c

pn

 . (3.11)

Using Eq. (3.11), we can decompose the problem in Eq. (3.10) into the following sets

of independent subproblems:

1) for each n ∈ N ,

maximize − 1

2d
(xn − xauxn)2 + (wn − pn(i))xn

subject to 0 ≤ xn ≤ 1 (3.12)

2) for each s ∈ S,

maximize
∑
c∈C

(
− 1

2d

(
ys,c − yauxs,c

)2
+ ys,c

∑
n∈Ks,c

pn(i)

)

subject to
∑
c∈C

ys,c ≤ 1 and ys,c ≥ 0 ∀c ∈ C. (3.13)

Note that each sub-problem can be solved independently at each node and at each

sniffer, using purely local communication. By solving each subproblem independently,

we can obtain the solutions to Eqs. (3.12) and (3.13) as the following:

x∗n(i) = [xauxn + d(wn − pn(i))]+[0,1] (3.14)

~y∗s(i) =

yauxs,c + d
∑
n∈Ks,c

pn(i) : c ∈ C

+

Ys

, where

Ys =

{
~ys , (ys,c : c ∈ C) :

∑
c∈C

ys,c ≤ 1, ys,c ≥ 0 ∀c

}
. (3.15)

Here, the projection [·]+Ys in (3.15) can be easily done, e.g., with Alg. 16 in Ap-

pendix A.2. Thus, we now have the solution to the dual problem (3.8). To solve the

dual problem, we iteratively update the dual variables ~p according to Eq. (3.9). Here,

55

at each iteration, we need to compute gn(i), and this requires to solve the independent

problems in Eqs. (3.12) and (3.13). To solve them, we update the primal variables ~x

and ~y according to Eqs. (3.14) and (3.15).

Consequently, we finally have the solution to the Step S1 of POA-QPOSCA. We

obtain the solution by alternately updating the dual and the primal variables, accord-

ing to Eq. (3.9) and Eqs. (3.14), (3.15), respectively. As the number i of iterations

tends to infinity, a sequence of vectors given by Eq. (3.9) converges to the optimal

solution of the dual problem [39, Proposition 3.4]. Once the optimal solution of the

dual problem is obtained, we can find the optimal solution of the primal problem

(i.e. the optimization problem given by Step S1 of POA-QPOSCA) using (3.14) and

(3.15) [40, Ch. 5.5.3].

To summarize, we present a formal description of the overall procedure to solve

LPOSCA in Alg. 7, which we refer to as the Distributed Algorithm for solving LPOSCA

(DA-LPOSCA). Note that DA-LPOSCA requires only local communications among

neighboring nodes. In many monitoring applications, it would be desirable that DA-

LPOSCA should be run by only sniffers since DA-LPOSCA is for sniffers to determine

their channels. In such cases, we can let one of neighboring sniffers of node n act as a

proxy and take over the node n’s duty of updating values of the variables xn, xauxn and

pn. Hence, each sniffer s needs to update values of its own variables ~ys, ~y
aux
s , and also

variables xn’s, xauxn ’s and pn’s for some of its neighboring nodes. Since now sniffers

update also the variables of nodes, each sniffer only needs to communicate with its

neighboring sniffers to obtain the required values for the update of its variables.

DA-LPOSCA with I = 1. The standard POA [39, Ch. 3.4.3], which is the DA-

LPOSCA when I →∞, requires a two-level convergence structure. That is, the inner-

level iterations (i.e., the for loop in lines 3–8) must converge before the next outer-

level iteration (i.e., the while loop in lines 1–11) begins. However, such a two-level

convergence structure is not suitable for distributed algorithms because it increases

the running time of DA-LPOSCA and also incurs substantial communication overheads,

due to a mechanism required to determine when to stop inner-level iterations. This

56

Algorithm 7 DA-LPOSCA

1: while TRUE do

2: // Step 1 of POA-QPOSCA

3: for i = 0 to I →∞ do

4: Each node n and each sniffer s compute xn(i) and ~ys(i) according to

Eqs. (3.14) and (3.15), respectively. Then, sniffer s sends the updated values

~ys(i) to its neighboring nodes.

5: if i 6= I then

6: Each node n computes pn(i+1) according to Eq. (3.9), then sends pn(i+1)

to its neighboring nodes and sniffers.

7: end if

8: end for

9: // Step 2 of POA-QPOSCA

10: Each node n and each sniffer s set initial values of their variables for the next

iteration as

xauxn ← xn(I) and pn(0)← pn(I) (node n)

~yauxs ← ~ys(I) (sniffer s).

11: end while

intuition is that, as the number of inner-level iterations increases, the improvement

of the solution quality at each iteration would decrease. Hence, such later iterations

that give a small improvement would be wasteful, since solving the problem given by

Step S1 is only an intermediate step to solve the ultimate problem. For these reasons,

we fix the number of inner-level iterations of DA-LPOSCA to 2 (i.e. I = 1), and find

a good approximate solution.

We now show that, even with I = 1, DA-LPOSCA can converge to the optimal

solution. We let ~zaux,t and ~p t be the values of ~zaux(I) and ~p(I), respectively, at the

t-th outer-level iteration. Also, we let ~zaux,∗ and ~p∗ be the primal optimal solution and

57

the dual optimal solution, respectively, of QPOSCA. The following theorem1 provides

a sufficient condition of the step size β (to solve the dual problem Eq. (3.9)) for

DA-LPOSCA with I = 1 to converge.

Theorem 3.3.1 As t → ∞, a sequence of vectors (~zaux,t, ~p t) given by DA-LPOSCA

with I = 1 converges to (~zaux,∗, ~p∗), provided that

β <
1

2dB1B2

, where

B1 = max{1, |Ks,c| : s ∈ S, c ∈ C}+ 1,

B2 = max{|C|,M + 1}, and M = max
n∈N
|{Ks,c : n ∈ Ks,c}| .

The proof is given in Appendix A.3. Here, the upper bound 1
2dB2B2

can be obtained

by computing the two pieces of information: the maximum number of node that can

be covered by any sniffer operating on any channel, and the maximum number of

neighboring sniffers that a normal node has.

3.3.2 OPPORTUNISTIC CHANNEL ASSIGNMENT ALGORITHM

We develop a distributed rounding algorithm that determines the channel assign-

ment of sniffers based on the optimal solution ~y∗ given by DA-LPOSCA. We refer to this

as the Opportunistic Channel Assignment Algorithm (OCAA). OCAA can be viewed

as a distributed generalization of a centralized rounding scheme called PIPAGE [35].

PIPAGE guarantees that, for a given LP-relaxation solution that achieves a constant

factor α of the optimal value of the LP relaxation, the integer solution yielded by

PIPAGE always achieves at least α · (1 − 1
e
) of the optimal value of the original ILP.

However, PIPAGE is not suitable for distributed solutions because PIPAGE rounds the

1Our result in Theorem 3.3.1 can be viewed as a parallel version of the improved POA scheme [41],
which has studied a cross-layer transmission scheduling problem in wireless networks. This work has
previously used the idea of fixing the number of inner-level iterations. But, the results in [41] are
based on the assumption that the coefficients in the constraints of the underlying LP problem must
be non-negative. Hence, the results in [41] cannot be directly applied to our problem, i.e., LPOSCA

that have negative coefficients in the constraints.

58

LP-relaxation solution through a number of iterations and each iteration requires a

global communication to evaluate the quality of the intermediate solution. On the

other hand, our OCAA can achieve the same ratio 1− 1
e

in a distributed manner that

requires only local communications among neighboring sniffers. In this subsection,

we first describe OCAA and then present the guarantee of OCAA.

We first introduce a metric called coverage improvement that guides each sniffer

to make a good decision on selecting its channel. For a given set of values ~y∗N(s) =

{y∗s′,c : s′ ∈ N(s), c ∈ C}, where N(s) denotes the set of neighboring sniffers of sniffer

s, the coverage improvement of coverage-set Ks,c is defined as

I
(
Ks,c; ~y

∗
N(s)

)
=
∑
n∈Ks,c

wn

 ∏
(s′,c):s′ 6=s,n∈Ks′,c

(1− y∗s′,c)

 . (3.16)

Intuitively, by viewing y∗s′,c as the probability that sniffer s′ tunes its radio to channel

c, we can interpret I(Ks,c; ~y
∗
N(s)) as an expected coverage improvement, in terms of the

total weight of the nodes in K(s, c), that can be achieved by sniffer s tuning its ratio

to channel c. Specifically, when y∗s′,c is viewed as such a probability, I(Ks,c; ~y
∗
N(s))

means the expected total weight of the uncovered nodes in K(s, c), provided that

all the neighboring sniffers of s (i.e., all s′) do not tune their channels to c. In

other words, I(Ks,c; ~y
∗
N(s)) is the expected total weight improvement that sniffer s can

achieve by tuning its radio to channel c. Note that sniffer s can compute its coverage

improvements over all the channels by communicating only with its neighbors.

We formally present OCAA in Alg. 8. OCAA determines the channels of sniffers

through several iterations, in the order according P . In each iteration, the sniffers in

Pi determine theirs channels in parallel such that each sniffer s selects the channel that

achieves the maximum coverage improvement in terms of I(Ks,c∗ ; ~y
∗
N(s)) for a fixed set

of values ~y∗N(s) for its neighbors (line 4). Thereafter, the sniffers that have determined

their channels send the determination to their neighbors (line 5), so that, in the next

iteration, some of the neighbors (in Pi+1) can use the determination to compute their

coverage improvements. Here, the sequence P can be determined a priori or through

59

Algorithm 8 Opportunistic Channel Assignment Algorithm

1: // Assume a partition P = {Pi} of the set S of all sniffers such that no two

sniffers in any Pi are neighbors.

2: for i = 1 to |P| do

3: // All sniffers in Pi can choose their channels in parallel.

4: Each sniffer s ∈ Pi tunes its radio to a channel c∗ ∈ C such that

I(Ks,c∗ ; ~y
∗
N(s)) = max

c∈C
I(Ks,c; ~y

∗
N(s)).

5: After determining its channel, the sniffer s sends the determination to its neigh-

boring sniffers.

6: end for

an ad hoc coordination among sniffers, e.g., employing one of existing scheduling

algorithms at the Medium Access Control (MAC) layer.

Theorem 3.3.2 Given an solution to LPOSCA that attains a constant factor α of the

optimal value of LPOSCA, OCAA guarantees to achieve at least α · (1− 1
e
) (≈ 0.632α)

of the maximum monitoring coverage of OSCA.

The proof is given in Appendix A.4. Here, the factor α comes from the approximate

solution of LPOSCA. However, note that we can make the approximate solution arbi-

trarily close to the optimal solution of LPOSCA as we increase the number of outer-level

iterations of DA-LPOSCA. Hence, due to Theorems 3.3.1 and 3.3.2, we finally have

the following theorem.

Theorem 3.3.3 DA-OSCA can always achieve at least 1− 1
e

(≈ 0.632) of the maxi-

mum monitoring coverage of OSCA, regardless of the network topology and the chan-

nel assignment of nodes.

60

3.4 ONLINE IMPLEMENTATION OF DA-OSCA

In this section, we present how to implement DA-OSCA to operate online so that

DA-OSCA is agile and adapts incrementally to network changes, such as, changes

to the channels assigned to nodes, changes in the usage of its channel by a node,

and network topology changes due to mobility of nodes or arrivals/departures of

sniffers. We present two operational modes of DA-OSCA—Mode-I and Mode-II, that

are suitable for fast-varying and slow-varying networks, respectively. By developing

the two operational modes, we enable DA-OSCA to operate in a more cost-effective

manner for the two types of dynamic networks.

We first describe the procedure that sniffers need to perform, commonly for

both operational modes, when they find arrivals/departures of their neighboring

nodes/sniffers. Note that failures and recoveries of nodes/sniffers can be viewed as

their departures and arrivals, respectively.

3.4.1 BASIC INFORMATION UPDATE

When sniffer s finds arrivals or departures of its neighboring nodes, it first updates

its coverage-sets (i.e. Ks). For the arrival of a new neighboring node n, the sniffer

s that acts as a proxy for node n (for updating values of the node n’s variables)

introduces a set of new variables for node n, i.e., xn, xauxn and pn, and sets their initial

values as follows: xn = 1 if node n is covered (by any of its neighboring sniffers), and

otherwise xn = 0; xauxn = xn; pn = 0. For the departure of its neighboring node n,

the sniffer s removes the set of the variables for node n. When new sniffer s arrives,

it first creates its coverage-sets and its variables, i.e., ~ys and ~yauxs , and then sets their

initial values as follows: ys,c∗ = 1 for c∗ ∈ C such that Ks,c∗ achieves the maximum

coverage improvement (according to Eq. (3.16)), and ys,c = 0 for all c 6= c∗ ∈ C;

~yauxs = ~ys. When sniffer s leaves, one of its neighboring sniffers takes over the proxy

duty that sniffer s had been doing.

61

Algorithm 9 DA-OSCA in Mode-I

1: if t = k · T1, ∀k = 1, 2, · · · then

2: Perform one outer-iteration of DA-LPOSCA (i.e., lines 3–11 of Alg. 7)

3: if t = k · (lT1), ∀k = 1, 2, · · · then

4: Invoke OCAA

5: end if

6: end if

3.4.2 MODE-I: DA-OSCA FOR FAST-VARYING NETWORKS

In this mode, DA-OSCA operates proactively to adapt to frequent network changes.

The rationale behind this proactive mode is that, when the network changes fre-

quently, it is cost-effective to run DA-OSCA continuously, rather than running it on

demand. This is because, as we will see in Mode-II, such a reactive operation of

DA-OSCA will require global communications to evaluate the quality of the current

monitoring coverage to determine when to start and also when to terminate. This

process is costly.

The operation of DA-OSCA in Mode-I is presented in Alg 9. DA-OSCA executes

one outer-level iteration of DA-LPOSCA every T1 time (line 2), and invokes OCAA

every lT1, i.e., every l outer-level iterations of DA-LPOSCA (line 4). Intuitively, DA-

OSCA keeps updating the primal and the dual variables (using DA-LPOSCA) and

periodically change the channel assignment of sniffers based on the updated values of

~y.

3.4.3 MODE-II: DA-OSCA FOR SLOW-VARYING NETWORKS

In this mode, DA-OSCA operates on demand, i.e., only when it needs to change the

channel assignment of sniffers to improve the degraded monitoring coverage. For this

reactive operational mode, DA-OSCA needs a mechanism to evaluate the quality of

monitoring coverage to determine whether the invocation of DA-OSCA is needed, and

62

Algorithm 10 An efficient information-aggregation procedure to evaluate the quality

of monitoring coverage

1: // A pre-constructed spanning tree of sniffers is assumed.

2: Aggregation of information. This step is initiated by leaf sniffers and is

executed sequentially along the levels of the spanning tree upwards before the

root sniffer. At a level of the spanning tree, sniffer s computes:

Cs =
∑

s′∈CS(s)

Cs′ +
∑
n∈L(s)

wn ·min

{
1,

∑
(s,c):n∈Ks,c

ys,c

}
Ds =

∑
s′∈CS(s)

Ds′ +
∑

n∈Ks,c∗

pn +
∑
n∈L(s)

[wn − pn]+, (3.17)

where c∗ ∈ argmaxc∈C
∑

n∈Ks,c
pn, [x]+ = max{x, 0}, and CS(s) and L(s) denote

the set of the child sniffers of sniffer s and the set of neighboring nodes of sniffer

s, respectively. Thereafter, sniffer s sends Gs to its parent sniffer.

3: Determination of solution quality. The root sniffer computes Croot and Droot

according to Eq. (3.17), and makes a decision of the termination of DA-LPOSCA as

follows: if Croot ≥ γ ·Droot, then determines that the current channel assignment

achieves the desired monitoring coverage. Thereafter, the root sniffer sends to its

child sniffers a message to inform this determination.

4: Distribution of determination. The determination made by the root sniffer

is delivered to all sniffers along the spanning tree.

also to check whether the iterations of DA-LPOSCA are sufficiently close to the optimal

solution so that DA-OSCA should terminate DA-LPOSCA and round the solution with

OCAA. Hence, in this subsection, we first develop a procedure to evaluate the quality

of monitoring coverage, and then present how DA-OSCA employs the procedure to

operate in the reactive mode.

We present an efficient information-aggregation procedure to evaluate the quality

of monitoring coverage in Alg. 10. Basically, Alg. 10 estimates the gap between

the current monitoring coverage and the maximum monitoring coverage, and then

63

Algorithm 11 DA-OSCA in Mode-II

1: if t = k · T2, ∀k = 1, 2, · · · then

2: if rMC ≤ γ1 (by invoking Alg. 10) then

3: // i.e., when the ratio of the current monitoring coverage to the maximum

possible monitoring coverage is below a desired level γ1

4: while rLP ≤ γ2 (by invoking Alg. 10) do

5: Perform No outer-iterations of DA-LPOSCA (i.e., lines 3–11 of Alg. 7)

6: end while

7: Invoke OCAA

8: end if

9: end if

determines whether the estimate is above a desired level (that is specified by a pre-

determined value of γ). Here, the gap is defined as the ratio of the current monitoring

coverage to the maximum monitoring coverage. To estimate the gap, Alg. 10 computes

the current monitoring coverage (i.e., Croot) and the dual objective function value (i.e.,

Droot) since it follows from the duality theory [40, Ch. 5.1.3] that any dual objective

function is an upper bound on the primal optimal value, which is the optimal value

of LPOSCA, and thus is an upper bound on the maximum monitoring coverage. To

compute them, Alg. 10 efficiently aggregates information through the spanning tree

of sniffers (line 2), and then determines whether the current monitoring coverage is

above the desired level by checking Croot ≥ γ ·Droot (line 3). Thus, this process does

require collection of information in a hierarchical manner from all the sniffer nodes.

Finally, the determination is distributed to all sniffers through the spanning tree. The

proof of the correctness of Alg. 10 is given in Appendix A.5.

We now describe how DA-OSCA operates on demand by employing Alg. 10. We

formally present the Mode-II of DA-OSCA in Alg. 11. In this mode, DA-OSCA

evaluates the quality of the current monitoring coverage periodically, i.e., every T2

time, by employing Alg. 10 (i.e., line 2 in Alg. 11). If the estimate (i.e., rMC) of the gap

64

between the current monitoring coverage and the maximum monitoring coverage is

above a desired level, DA-OSCA terminates doing nothing (i.e., when the condition

line 2 is not met). Otherwise, DA-OSCA starts to solve the new OSCA that has

resulted from the network changes (lines 4–7). To solve the problem, DA-OSCA runs

No outer-level iterations of DA-LPOSCA. Here, No gives a trade-off between the cost

due to checking the stopping criterion and the cost due to running more number

of outer-level iterations of DA-LPOSCA than required to reach the solution quality.

Hence, No needs to be carefully chosen taking into account the convergence speed of

DA-LPOSCA. DA-OSCA checks whether the ratio rLP of the solution of DA-LPOSCA

at the current iteration is sufficiently close to the optimal solution of LPOSCA by

employing Alg. 10 with a pre-specified precision of γ2 (line 4). Once a near-optimal

solution to LPOSCA is obtained, DA-OSCA terminates DA-LPOSCA and then rounds

the solution of LPOSCA with OCAA to obtain an integer solution. Then, DA-OSCA

terminates.

3.5 NOTES

In OSCA, we assume that all of the nodes and the sniffers have only one radio.

However, the case, where nodes and sniffers are equipped with multiple radios, can be

easily mapped to this single-radio case by regarding radios of a node (or a sniffer) as

different nodes (or sniffers) with a single radio. One might think that, the single-radio

case, which is mapped from the multi-radio case, needs an additional constraint that

ensures each sniffer to tune its radios to different channels. However, even without

the additional constraint, our algorithm will automatically determine a set of distinct

channels for each sniffer’s radios. This is because tuning two radios of a sniffer to the

same channel in the multi-radio case implies choosing two coverage-sets that contain

the same nodes, and this always gives a lower coverage than choosing either of the

two coverage-sets and any other coverage-set.

65

For OSCA, one could consider a simple randomized rounding scheme that views a

channel assignment of a sniffer as a random experiment, where a random variable is

assigned to each sniffer, and each random variable is realized to one of the available

channels with a probability of its fractional value obtained by solving LPOSCA (i.e.

the LP relaxation of OSCA). It is easy to show (as in the proof of PRA in Section 2.6)

that this randomized rounding scheme guarantees to achieve at least 1− 1
e

(≈ 0.632)

of the optimum of OSCA, in expectation. However, in order to achieve the expected

guarantee of 1− 1
e
, the randomized rounding scheme requires sniffers to switch their

channels a large number of times by repeatedly realizing their random variables with

the same probability distribution. However, the delay of switching the radio chan-

nel is non-negligible2. Hence, with this randomized rounding scheme, sniffers would

waste their time switching channels. Thus, we use a deterministic rounding scheme,

which does not require sniffers to switch their channels but can achieve the same

approximation ratio 1− 1
e

deterministically.

Theorem 3.3.1 suggests that the value of d (which is the coefficient of the quadratic

term in the objective function (3.6) of QPOSCA) should be small so that the step size β

can be chosen to a large value, thus leading to a larger improvement at each inner-level

iteration. On the other hand, a small value of d will cause the objective function (3.6)

of QPOSCA to be different from the objective function (3.1) of the original problem

LPOSCA, and hence require more outer-level iterations, thus potentially leading to

slow convergence of DA-LPOSCA. Therefore, the value of d should be tuned carefully.

3.6 SIMULATION

We conduct simulations to demonstrate the efficacy of the two modes of DA-OSCA

for two kinds of networks—random networks and scale-free networks. In random

networks, nodes are randomly deployed with a uniform distribution. In scale-free

networks, nodes are deployed such that the distribution f(d) of nodes with degree d

2Current estimate for switching delay between channels in the same frequency band with commodity
IEEE 802.11 hardware is in the range of a few milliseconds [31] to a few hundred microseconds [30].

66

follows a power law in a form of d−r. The performance of DA-OSCA largely depends

on the network topology, and these two kinds of networks have a significant difference

in their topologies. Also, their topologies are observed in many practical networks3.

We choose the settings of the network and the parameters of DA-OSCA as follows.

There are 500 nodes of identical weight and 50 sniffers in the network. The number

of available wireless channels is three (i.e., |C| = 3), same as the number of non-

overlapping wireless channels in IEEE 802.11. For random networks, we randomly

place nodes and sniffers on a 1× 1 square area, and set the receiving range of sniffers

to 0.15. For scale-free networks, the parameter r of the distribution f(d) = O(d−r)

is chosen as 2 < r < 3. In scale-free networks, we pick nodes with highest degrees

as sniffers. This is reasonable because thereby we can achieve a higher monitoring

coverage than picking them randomly. The parameters of DA-OSCA are set as S = 1

(i.e., the number of inner-level iterations is 2), d = 0.5, and β = 1/(B1B2).

We conduct two experiments in each network. In one experiment, we evaluate

the Mode-I of DA-OSCA in fast-varying networks, and in the other experiment, we

evaluate the Mode-II of DA-OSCA in slow-varying networks. In all experiments, we

demonstrate how monitoring coverage evolves as DA-OSCA adapts to the changes

to the channels assigned to nodes. The channel of each node is assigned randomly

to channel 1, 2, or, 3 with probabilities 0.2, 0.3, and 0.5, respectively. The channel

assignment of a fraction of nodes (randomly chosen between 10% and 40%) changes

every 5 time units and every 100 time units in the fast-varying and slow-varying

networks, respectively. Here, we one time unit as the time that DA-OSCA takes

to run one outer-level iteration of DA-LPOSCA. In Mode-I, we set the parameters

as T1 = 1 and l = 3. In Mode-II, we set the parameters as T2 = 30, γ1 = 0.8,

γ2 = 0.8, and No = 1. Here, we set the values of γ1 and γ2 taking into account that

Alg. 10 underestimates the quality of monitoring coverage since its uses an upper

3Wireless networks where mobile users move randomly can be viewed as random networks, and
many empirically observed networks, such as the world wide web and the Internet, have been found
to be scale-free.

67

(a)

Ran-

dom

net-

work

(b)

Scale-

free

net-

work

Fig. 3.2.: Mode-I: DA-OSCA for fast-varying networks where the LP rounding exe-

cutes continuously with updated coverage information.

bound on the maximum coverage. In all experiments, the results are the averages

over 10 different network realizations.

Figure 3.2(a) and (b) show how the monitoring coverage evolves as DA-OSCA in

Mode-I runs in a random networks and in a scale-free network, respectively. Here, the

monitoring coverage is normalized by the optimal value of LPOSCA, which is an upper

bound on the maximum monitoring coverage. In this experiment, DA-OSCA adjusts

the channel assignment of sniffers after 10 time units since the simulation begins. For

both networks, we observe that the fractional monitoring coverage due to the solution

of DA-LPOSCA converges rapidly (within 10 time units) until it reaches about 90% of

the maximum coverage, and it flattens out after it goes above 90% of the maximum

coverage. We also observe that DA-LPOSCA quickly recovers the degraded fractional

monitoring coverage, due to the changes of the channels assigned to nodes. Within

only a few time units, the new channel assignment of sniffers by OCAA attains a high

monitoring coverage, maintained above 95% of the maximum coverage. A notable

difference between these results (also observed in Fig. 3.3(a), (b)) is that, in random

networks, the channel changes of nodes incur less degradation of the monitoring

coverage than in scale-free networks, and DA-OSCA achieves a higher monitoring

coverage in random networks. This is, possibly, because in random networks sniffers

are uniformly distributed and this makes sniffers have a better topological coverage

than in scale-free networks.

68

(a)

Ran-

dom

net-

work

(b)

Scale-

free

net-

work

Fig. 3.3.: Mode-II: DA-OSCA for slow-varying networks where the algorithm is exe-

cuted on demand when a change is detected in the network.

Figure 3.3(a) and (b) demonstrate the on-demand operation of DA-OSCA in

Mode-II for slow-varying networks. In both figures, we see observe large intervals

of time where the monitoring coverage is flat. This means that, through Alg. 10, DA-

OSCA determined that the monitoring coverage meets the desired level, and then

terminates without any processing, thereby saving unnecessary cost. We notice that

when the network changes, the monitoring coverage suffers (note the dips) but quickly

recovers (always within 20 time units) as OCAA is executed on demand. Also, we

observe that the improved monitoring coverage after the execution of DA-OSCA is

higher than required (recall that γ2 = 0.8). This can be explained by the follow-

ing two facts. The first is that OCAA often improves the fractional solution while

rounding it, which can be observed from Fig. 3.2(a) and (b). The second is that since

Alg. 10 underestimates the quality of monitoring coverage, DA-OSCA may run the

outer-iterations of DA-LPOSCA more than required.

Both experiments show that DA-OSCA is able to adapt to different kinds of

networks, fast-varying and slow-varying, and is able to operate incrementally with

respect to network changes. By setting the values of γ, the system owner can control

how close she wants the normalized monitoring coverage to get to the value of one.

69

3.7 CONCLUSION

In this chapter, we presented a distributed online algorithm for the optimal chan-

nel assignment problem for passive monitoring in multi-channel wireless networks.

Our algorithm preserves the approximation ratio 1 − 1
e

that the existing centralized

algorithms have previously attained, while providing a distributed solution that is

amenable to online implementation. We present two operational modes of our algo-

rithm for cost-effective operation in two types of networks that have different rates of

network changes. Simulation results demonstrate the effectiveness of the two modes

of our algorithm.

70

4. OPTIMAL SNIFFER-CHANNEL ASSIGNMENT FOR

RELIABLE MONITORING IN MULTI-CHANNEL

WIRELESS NETWORKS

4.1 INTRODUCTION

In the previous chapters, we assumed that sniffers are perfect, i.e., do not fail.

This implies that once a node has at least one sniffer within its transmission range

operating on the same channel, the node’s activity will always be monitored without

any error. However, in practice, sniffers may intermittently/periodically/permanently

stop functioning and/or generate erroneous reports on monitoring results. There are

various reasons for this including operational failure, poor reception due to packet

collisions or poor channel conditions, sleep mode for energy saving, and compromise

by an adversary. The failure and malfunctions of sniffers decrease the quality of

monitoring, and consequently degrade the network performance.

In this chapter, we allow for imperfect sniffers that may probabilistically generate

errors on monitoring. In this scenario, we wish to still maintain the accuracy of the

passive monitoring above a certain level. Our approach to this end is to provide

multiple covers (i.e., sniffer redundancy) to each node. That is, each node is assigned

a coverage requirement that is the minimum number of sniffers required for reliably

monitoring the node. In this approach, a problem that naturally arises is how to

assign a set of channels to sniffers’ radios such that the coverage requirements of all

nodes are satisfied. We refer to this problem as the Full-Coverage Reliable Monitoring

(FCRM). We, however, show that it is NP-hard to find any feasible solution to FCRM

(i.e., any sniffer-channel assignment that satisfies all of the coverage requirements).

Alternatively, we turn our attention to the corresponding optimization problem to

FCRM, i.e., how to find a sniffer-channel assignment that maximizes the number

71

(or the total weight) of nodes being reliably monitored. We call this problem the

Maximum-Coverage Reliable Monitoring (MCRM). Note that, by solving MCRM, we

can determine the maximum coverage achievable by the given set of sniffers, and also

obtain the answer to FCRM by verifying if the maximum coverage obtained meets

the full coverage. However, MCRM is also NP-hard, as implied by the reduction from

FCRM to MCRM.

MCRM can be viewed as a generalization of the maximum-coverage monitor-

ing problem with perfect sniffers studied in the previous chapters. In other words,

the maximum-coverage monitoring problem with perfect sniffers is a special case of

MCRM with every node requiring a single cover, i.e., only one sniffer, to be reliably

monitored. However, we find out that the general MCRM, i.e., the MCRM with at

least one node requiring multiple covers (MCRM-MC), is different in nature from the

MCRM with single cover (MCRM-SC). We show this by proving that the objective

functions generated by MCRM-MC do not preserve the submodular property (refer

to Section 4.2.2) that holds for those generated by MCRM-SC. Due to the loss of

the submodularity in MCRM-MC, the performance guarantees of the approximation

algorithms for solving MCRM-SC no longer hold in MCRM-MC.

In this chapter, we propose a variety of approximation algorithms to solve MCRM-

MC based on two basic approaches—one is greedy approach and the other is relaxation-

and-rounding (RaR) approach. First, we develop two variants of a look-ahead greedy

algorithm, which are different from the naive greedy algorithms in that they make a

greedy decision at each step by considering not only the current step but also future

steps. We next develop two relaxation schemes based on Linear Program (LP) and

SemiDefinite Programing (SDP), and two rounding algorithms—Randomized Round-

ing Algorithm (RRA) and Greedy Rounding Algorithm (GRA), leading to four vari-

ants of an RaR algorithm. We present a comparative study of the proposed algorithms

through simulations. We evaluate the proposed algorithms in two different topologies

of networks—random and scale-free networks—in terms of two metrics—coverage and

running time.

72

The rest of the chapter is organized as follows. Section 4.2 describes the prob-

lem formulation. Section 4.3 presents the two look-ahead greedy algorithms, and

Section 4.4 presents the four variants of the RaR algorithm. Section 4.5 provides

asymptotic time-complexity analysis of the proposed algorithms. Section 4.6 presents

performance evaluation of the proposed algorithms through simulation. Finally, Sec-

tion 4.7 discusses conclusion.

4.2 PROBLEM FORMULATION

We are given a set N of nodes to be monitored, and each node n ∈ N is tuned to

a wireless channel chosen from a set C of available wireless channels, where |C| ≥ 2.

The channels of nodes are chosen according to one of existing channel assignment

algorithms in the literature (e.g., [15, 17, 19]). Each node n is given a coverage re-

quirement rn that is a positive integer and denotes the minimum number of sniffers

required to reliably monitor node n. The value of the coverage requirements will

depend on the failure model of sniffers (e.g., false negatives/positives), the desired

accuracy of monitoring, and monitoring applications. We say that node n is covered if

it is overheard by at least rn sniffers operating on the same channel as the node. Also,

each node n is given a non-negative weight wn. These weights of nodes can be used

to capture various application-specific objectives of monitoring. For example, one

can assign higher weights to the nodes that transmit larger volumes of data, thereby

biasing our algorithm to monitor such nodes more. Or, for security monitoring, one

can assign the weights by taking into account nodes trustworthiness computed based

on previous monitoring results. Here, a node that has been found to be compromised

before (and repaired thereafter) will be assigned a higher weight.

We are given a set S of sniffers, each of which needs to determine a wireless

channel from C to tune its radio to. We are given a collection of coverage-sets

K = {Ks,c ⊆ N : s ∈ S, c ∈ C}, where a coverage-set Ks,c includes the nodes that

can be overheard by sniffer s being tuned to channel c. We define a sniffer-channel

73

assignment as a subset of K that includes only one coverage-set for each sniffer. Here,

the constraint that only one coverage-set for each sniffer can be included in a coverage-

set is due to the fact that each sniffer has only one radio and hence can tune its radio

to only one channel at a time.

4.2.1 FULL-COVERAGE RELIABLE MONITORING

We first consider a decision problem to determine whether or not there exists a

sniffer-channel assignment that achieves the full coverage, i.e., covers all nodes in

N . We refer to this problem as the Full-Coverage Reliable Monitoring (FCRM). We

denote the FCRM with k channels and a set ~r = (rn : n ∈ N) of coverage requirements

of nodes by FCRM(k, ~r).

Theorem 4.2.1 For fixed k ≥ 2 and ~r, FCRM(k, ~r) is NP-hard.

Proof We let [m] = {1, . . . ,m} and ~1 = (1, . . . , 1). To show the theorem, we use

a reduction from FCRM(2,~1), which is an NP-hard problem [38, Theorem 1], to

FCRM(k, ~r) for any fixed k and ~r. Given a collection of coverage-sets K = {Ks,c :

s ∈ [m], c ∈ [2]}, we augment K to Kaug = {Kaug
s,c : s ∈ [m + R]}, c ∈ [k]}, where

R = max{rn : n ∈ N}− 1, as follows: ∀s ∈ [m], Kaug
s,c = Ks,c for c ∈ [2] and Kaug

s,c = ∅

for c ∈ {3, . . . , k}; ∀s ∈ {m + 1, . . . ,m + R}, Kaug
s,1 = {n ∈ N : rn ≥ s − m + 1}

and Kaug
s,c = ∅ for c ∈ {2, . . . , k}. Note that, with the additional sniffers, i.e., the

sniffers m + 1, . . . ,m + R, we can achieve only a partial coverage of at most rn − 1

for every node n, and also that the additional channels give only zero coverage.

The reduction can be done in polynomial time. Given a sniffer-channel assignment

A for an instance of FCRM(2, ~1) with K, we define a sniffer-channel assignment

Aaux = A ∪ {Ks,1 : s ∈ {m + 1, . . . ,m + R}}. It is easy to see that A achieves the

full coverage for an instance of FCRM(2,~1) with K if and only if Aaux attains the full

coverage for the corresponding instance of FCRM(k, ~r) with Kaug. This means that if

FCRM(k, ~r) can be solved in polynomial time, then so can FCRM(2,~1) be. However,

74

since FCRM(2,~1) is NP-hard, this is a contradiction if P 6= NP. Thus, the theorem

follows.

Hence, we cannot find the answer to FCRM in polynomial time.

4.2.2 MAXIMUM-COVERAGE RELIABLE MONITORING

Alternatively, we consider a coverage maximization problem where we wish to

maximize the total weights of nodes being covered by judiciously assigning channels

to sniffers. We refer to this problem as the Maximum-Coverage Reliable Monitoring

(MCRM). We denote the MCRM with k channels and a set ~r = (rn : n ∈ N) of

coverage requirements of nodes by MCRM(k, ~r). Also, we denote MCRM(k,~1) with

k ≥ 2 by MCRM-SC (i.e., MCRM with single cover) and MCRM(k, ~r) with k ≥ 2

and rn ≥ 2 for some nodes n ∈ N by MCRM-MC (i.e., MCRM with multiple covers).

The corollary below follows from Theorem 4.2.1, since we can find the answer to

FCRM by solving MCRM and then verifying whether the full coverage is achieved.

Corollary 4.2.1 For fixed k ≥ 2 and ~r, MCRM(k, ~r) is NP-hard.

This means that the computational complexity to obtain an optimal solution to

MCRM grows exponentially with the number of sniffers, unless P = NP.

Corollary 4.2.2 For fixed k ≥ 2 and ~r, it is NP-hard to approximate MCRM(k, ~r)

within a factor of 7
8

+ ε of the maximum coverage for any ε > 0,

Proof In the proof of Theorem 4.2.1, we have shown that FCRM(2,~1) can be re-

duced to FCRM(k, ~r) for any k ≥ 2 and any ~r. Also, as mentioned above, FCRM(k, ~r)

can be reduced to MCRM(k, ~r). Hence, FCRM(2,~1) can be reduced to MCRM(k, ~r).

On the other hand, it is NP-hard to approximate FCRM(2,~1) within a factor of 7
8

+ ε

for any ε > 0 [38, Corollary 2]. Thus, the corollary follows.

75

This implies that the best approximation ratio attainable for MCRM is at most 7
8
.

Non-submodularity of MCRM-MC. Submodularity is an important property

in discrete optimization which allows to efficiently find provably (near-)optimal solu-

tions, similarly to convexity in continuous optimization [42]. A real-valued function

f : 2S → R, defined on the subsets of a finite set S, is said submodular if the following

inequality holds for any two subsets X and Y of S:

f(X ∩ Y) + f(X ∪ Y) ≤ f(X) + f(Y).

The submodularity is better characterized by the definition: f is submodular if and

only if, for any X ⊆ S − {a}, the derived set function ∆f(a|X) , f(X ∪ {a}) −

f(X) is monotonically increasing, i.e., ∆f(a|X) ≥ ∆f(a|Y) for X ⊆ Y . Intuitively,

submodularity is a diminishing-return property.

On the other hand, non-submodular functions are known to be difficult to deal

with. In the the literature of theoretical computer science, there are little results

on the provable performance guarantees for non-submodular functions. Also, many

greedy heuristics with good performance demonstrated in computational experiments

cannot receive a theoretical analysis due to the difficulty on dealing with non-submodular

functions [43].

For MCRM, we can define the objective function as a (real-valued) weight function

w : 2K → R, defined on collections of coverage-sets in K, which computes the total

weights of the nodes covered by a collection of coverage-sets. In MCRM-SC, a node

is covered if it is monitored by only one sniffer. Hence, adding a coverage-set to a

smaller collection C of coverage-sets earns more increment on the total weight than

adding it to a larger collection C ′ including C. Thus, we have the following theorem.

Theorem 4.2.2 For MCRM(k,~1) where k ≥ 2, the weight function w is submodular.

Due to the submodularity, MCRM-SC can be approximated within a factor of 1− 1
e

(≈ 0.632) of the maximum coverage.

76

On the other hand, in MCRM-MC, the weight function w is no longer submodular.

Theorem 4.2.3 For MCRM(k, ~r) where k ≥ 2 and rn ≥ 2 for some nodes n ∈ N ,

the weight function w is not submodular.

Proof We show the theorem by a counter example. Assume that there exists a

node n ∈ N such that rn ≥ 2. We construct an instance of MCRM(k, ~r) where

wn = 1 (i.e., the weight of node n is 1) and K1,1 = · · · = Krn,1 = {n} (i.e., sniffers

1, . . . , rn can overhear only node n by tuning their radios to channel 1). Consider

two collections of coverage sets, C = ∅ and C ′ = {K1,1, . . . , Krn−1,1}. Then, it is

follow that ∆w(Krn,1| C) = 0 and ∆w(Krn,1| C ′) = 1. Hence, we have ∆w(Krn,1| C) <

∆w(Krn,1| C ′) for C ⊂ C ′. Thus, the theorem holds.

4.3 LOOK-AHEAD GREEDY ALGORITHMS

We first consider a greedy strategy to solve MCRM. We can employ GR-MCMC

in Section 2.4.2 to solve MCRM, which picks at each step the coverage-set that max-

imizes the coverage improvement, i.e., the total weight of uncovered nodes, among

all coverage-sets of the sniffers whose channel assignment is not determined yet. GR-

MCMC can approximate MCRM-SC within a factor of 1
2

of the maximum coverage.

However, due to the non-submodularity of MCRM-MC, the performance guarantee

of the greedy algorithm no longer holds for MCRM-MC.

One may consider a straightforward extension of GR-MCMC to solve MCRM-MC.

In MCRM-MC, two extensions of the greedy algorithm can be considered; at each

step, one picks the coverage-set that achieves the maximum coverage improvement,

while the other picks the coverage-set that maximizes the total weight of uncovered

nodes. Note that these two greedy extensions result in different solutions. To see

this, observe that, in MCRM-MC, uncovered nodes can have a partial coverage of

77

1, . . . , rn−2 or rn−1, other than zero coverage. Hence, when a coverage-set is picked

at a step, only the uncovered nodes of the partial coverage of rn−1 in the coverage-set

can be covered. However, the two greedy extensions both show a poor performance

due to their myopic nature, which is illustrated by the following examples (and is also

shown by the simulation results in Section 4.6).

First, for the former greedy extension, consider the following example: K1,1 =

{1, 2, 3, 4}, K1,2 = {5, 6, 7}, K2,1 = {1}, K2,2 = {5, 6, 7}, K3,1 = {2}, K3,2 = {8, 9, 10}, K4,1 =

{3}, K4,2 = {8, 9, 10}; wn = 1 and rn = 2 for all n ∈ {1, . . . , 10}. Provided that ties

are broken by choosing the coverage-set that maximizes the total weight of uncov-

ered nodes, the former greedy extension will yield a solution {K1,1, K2,1, K3,1, K4,1}

leading to a coverage of 3, while the optimal solution is {K1,2, K2,2, K3,2, K4,2} lead-

ing to a coverage of 6. In this example, the former greedy extension makes my-

opic decisions at the steps 2, 3 and 4 to maximize the coverage improvement at

each step. Next, for the latter greedy extension, consider the following example:

K1,1 = {1, 2, 3, 4}, K1,2 = {5, 6, 7}, K2,1 = {1, 2}, K2,2 = {5, 6}; wn = 1 and rn = 2 for

all n ∈ {1, . . . , 7}. The latter greedy extension will yields a solution {K1,1, K2,1} lead-

ing to zero coverage, while the optimal solution is {K1,2, K2,2} leading to a coverage of

2. In this example, the latter greedy extension chooses at each step the coverage-set

of the maximum total weight of uncovered nodes, without verifying if such uncovered

nodes can be indeed covered at later steps. As shown in these two examples, both of

the naive greedy extensions make poor decisions due to their myopic nature.

Inspired by the observation through the illustrative examples above, we design two

look-ahead greedy algorithms to solve MCRM-MC, shown in Alg. 12 and Alg. 13.

Both of the look-ahead greedy algorithms have a parameter t ∈ {0, . . . , |S| − 1},

which determines how far the algorithm looks ahead. It is reasonable to set t =

maxn∈N rn − 1, because it requires at least rn sniffers to cover node n. If we set

t = |S| − 1, both of the look-ahead greedy algorithms will solve MCRM exactly, i.e.,

always yield an optimal solution to MCRM. However, the computational complexity

will grow exponentially with |S| (i.e., the number of sniffers).

78

Algorithm 12 Look-t-Steps-Ahead Greedy Algorithm

1: G ← ∅, S ′ ← S

2: while |S ′| 6= 0 do

3: t′ ← min{t+ 1, |S ′|}

4: P ←
{
{Ks1,c1 , . . . , Kst′ ,ct′

} : si ∈ S ′, ci ∈ C ∀i, and si 6= sj if i 6= j
}

// i.e., P is the set of all possible channel assignments for any t′ sniffers in S ′

5: Find C∗ ∈ P such that

∆w (C∗|G) = max
∀C∈P

∆w (C|G)

// i.e., C∗ achieves the maximum coverage improvement for any t′ sniffers whose

channels are not yet determined and any channel assignment for them

6: Find Ks∗,c∗ ∈ C∗ such that

∆w ({Ks∗,c∗} |G) = max
∀(s,c)∈P

∆w ({Ks,c} |G)

// i.e., Ks∗,c∗ achieves the maximum coverage improvement for any pair of

sniffer and channel in C∗

// where the ties are broken by choosing a coverage-set that maximizes the

total weight of uncovered nodes

7: G ← G ∪ {Ks∗,c∗}

8: S ′ ← S ′ − {s∗}

9: end while

10: return G

Alg. 12 has a fixed number |S| of steps. At each step, the algorithm looks t′ − 1

steps ahead to find a coverage-set that is best for the current step and the next t′− 1

steps. Here, t′ is the minimum of the parameter t and the number |S ′| of the remaining

steps of the algorithm. To find the best coverage-set, it first finds a collection C∗ of t′

coverage-sets that achieve the maximum coverage improvement for the current step

and the next t′ − 1 steps (line 5). Then, among the coverage-sets in C∗, it chooses a

79

Algorithm 13 t-Sniffers-at-One-Step Greedy Algorithm

1: G ← ∅

2: while |S ′| 6= 0 do

3: Q ←
{
{Ks1,c1 , . . . , Kst′ ,ct′

} : t′ ≤ min{t + 1, |S ′|}, si ∈ S ′, ci ∈ C ∀i, and

si 6= sj if i 6= j
}

// i.e., Q is the set of all possible channel assignments for any t′ (≤ t + 1)

sniffers in S ′

4: Find C∗ ∈ Q such that

∆w (C∗|G)

|C∗|
= max
C∈Q

∆w (C|G)

|C|

// i.e., C∗ achieves the maximum per-sniffer coverage improvement for any

t′ ≤ t + 1 sniffers whose channels are not yet determined and any channel

assignment for them

5: G ← G ∪ C∗

6: S ′ ← S ′ − s(C∗), where s(C∗) denotes the set of the sniffers chosen by C∗

7: end while

8: return G

coverage-set Ks∗,c∗ that achieves the maximum coverage improvement at the current

step (lines 6 and 7).

Alg. 13 has a variable number of steps, depending on the number of coverage-sets

chosen at the steps. At each step, the algorithm chooses the collection C∗ of coverage-

sets with |C∗| ≤ t+ 1 that maximizes the per-sniffer coverage improvement among all

possible channel assignments for any t′ sniffers whose channel assignment is not yet

determined (lines 4 and 5).

80

4.4 RELAXATION-AND-ROUNDING ALGORITHMS

In this section, we design relaxation-and-rounding (RaR) algorithms to solve

MCRM. RaR is a highly effective technique to solve NP-hard optimization problems.

Intuitively, RaR algorithms first solve a relaxed problem to the given optimization

problem that is solvable in polynomial time, thereby gaining information about the

optimal solution, and then finds a good approximate solution based on the informa-

tion gained. The formal steps involved in RaR algorithms are:

• Step 1: Formulate the given optimization problem into an integer program (IP)

• Step 2: Transform the IP into a relaxed program where the integer constraints

are relaxed and that is solvable in polynomial time

• Step 3: Solve the relaxed program and thereby obtain the optimal solution to

the relaxed program

• Step 4: Round the non-integer values of the optimal solution to an integer value

in order to obtain a feasible solution to the original IP

At Step 2, an important issue is to find as strong a relaxed program as possible while

keeping the relaxed program solvable in polynomial time. The benefit of a stronger

relaxed program (i.e., that has a smaller set of constraints including the optimal IP

solution) lie in two folds. First, it often leads to a better approximate solution to

the IP, since a stronger relaxed program will likely yield a non-integer solution closer

to the optimal IP solution. Second, it will possibly provide a better estimate (i.e.,

upper bound) of the maximum achievable coverage. At Step 4, a challenging goal is

to minimize the degradation of the quality of the resulting integer solution so as to

obtain an integer solution that is as close to the optimal IP solution as possible.

81

4.4.1 LP-BASED AND SDP-BASED RELAXATIONS

We present two relaxations. One is linear program (LP) based relaxation, and the

other is semidefinite program (SDP) based relaxation. We define a set of indicator

variables for the formulation of the two relaxations. We assign an indicator variable

xn ∈ {0, 1} to each node n ∈ N , and xn = 1 indicates that node n is covered by

the given solution. We assign an indicator variable ys,c ∈ {0, 1} to a coverage-set

Ks,c ∈ K, and ys,c = 1 indicates that sniffer s will be tuned to channel c.

LP-based relaxation. We first formulate MCRM into the following integer linear

program (ILP), denoted by ILPMCRM:

maximize
∑
n∈N

wnxn (4.1)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (4.2)

xn ≤
1

rn

∑
s,c:n∈Ks,c

ys,c ∀n ∈ N, (4.3)

xn, ys,c ∈ {0, 1} ∀n ∈ N, s ∈ S, c ∈ C. (4.4)

The constraint (4.2) is due to the fact that each sniffer’s radio can be tuned to only

one channel at a time. The objective function (4.1) together with the constraints

(4.3) and (4.4) makes xn = 1 if at least rn coverage-sets that includes the node n are

chosen for a solution, and otherwise makes xn = 0.

We transform ILPMCRM into the following LP relaxation, denoted by LPMCRM:

maximize
∑
n∈N

wnxn (4.5)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (4.6)

xn ≤
1

rn

∑
s,c:n∈Ks,c

ys,c ∀n ∈ N, (4.7)

0 ≤ xn, ys,c ≤ 1 ∀n ∈ N, s ∈ S, c ∈ C, (4.8)

xn (|{(s, c) : n ∈ Ks,c}| − rn) ≥ 0 ∀n ∈ N. (4.9)

82

The integer constraint (4.4) in ILPMCRM is relaxed to the fractional constraint (4.8).

Also, we add the constraint (4.9) to make a stronger LP relaxation. Note that the

objective function (4.1) together with the constraints (4.8) and (4.9) makes xn = 0

if the number of sniffers overhearing node n is smaller than the node n’s coverage

requirement rn. Thus, the constraint (4.9) guides the algorithm that solves LPMCRM

to make a right decision, so that it allocates no monitoring resources to the nodes that

are impossible to cover due to the lack of the sufficient number of sniffers neighboring

to them.

SDP-based relaxation. We first formulate MCRM into the following quadratically

constrained linear program, denoted by QCLPMCRM:

maximize
∑
n∈N

wnxn (4.10)

subject to
∑
c∈C

ys,c = 1 ∀s ∈ S, (4.11)

xn

 1

rn

∑
s,c:n∈Ks,c

ys,c − 1

 ≥ 0 ∀n ∈ N, (4.12)

ys,c(ys,c − 1) = 0 ∀s ∈ S, c ∈ C, (4.13)

xn(xn − 1) = 0 ∀n ∈ N. (4.14)

The constraints (4.13) and (4.14) represent the integer constraints of xn and ys,c. The

objective function (4.10) together with the constraint (4.12) makes xn = 1 if node n

is overheard by at least rn sniffers, and otherwise makes xn = 0.

We now add the constraints (4.7)–(4.9) to QCLPMCRM, and transform the QCLPMCRM

with the additional constraints (4.7)–(4.9) into a SDP relaxation. Although the ad-

ditional constraints (4.7)–(4.9) are redundant in QCLPMCRM, as we will see later, they

are needed in the SDP relaxation to be obtained. We define ~z = (x1, . . . , x|N |, y1,1, . . . , y|S|,|C|) ∈

R|N |+|S|·|C|, and denote the i-th entry of ~z by zi. We define a symmetric square matrix

M of order |N |+ |S| · |C|+ 1 as

M =

 1 ~z

~zT Z

 ,

83

where Z is a symmetric square matrix of order |N |+ |S| · |C| whose entry in the i-th

row and the j-th column is denoted by Zi,j. We can rewrite the QCLPMCRM with the

additional constraints (4.7)–(4.9) into the following form:

maximize W •M (4.15)

subject to Ai •M ≤ bi, i ∈ I (4.16)

Z = ~zT~z. (4.17)

Here, W and Ai are symmetric square matrices of order |N | + |S| · |C|, bi is a real

number, and I is an index set. The notation • denotes the Frobenius inner product,

i.e., W •M =
∑

i,jWi,jMi,j, and (·)T denotes the matrix transpose. Note that, due

to the constraint (4.17), the entry Zi,j of the matrix Z is equal to the quadratic term

zizj.

We transform Eqs. (4.15)–(4.17) into the following SDP relaxation, denoted by

SDPMCRM:

maximize W •M (4.18)

subject to Ai •M ≤ bi, i ∈ I (4.19)

M � 0 (⇔ Z − ~zT~z � 0). (4.20)

Here, M � 0 means that the matrix M must be positive semidefinite, i.e., satisfy

~vM~vT ≥ 0 for any real vector ~v. SDPMCRM is a relaxed program of QCLPMCRM since

a zero matrix is positive semidefinite and hence Z − ~zT~z = 0 implies Z − ~zT~z � 0. In

SDPMCRM, Zi,j is no longer equal to zizj and is now an independent variable. We can

thus view SDPMCRM as an LP, defined over the variables in M , with the non-linear

constraint (4.20). Note that although SDPMCRM is defined in a higher dimensional

space than LPMCRM, the objective function of SDPMCRM is still defined over only the

variables x1, . . . , xn. Also, note that the value that xn can take is constrained by the

constraints of LPMCRM (i.e., Eqs. (4.6)–(4.9)). Hence, SDPMCRM is at least as strong

as LPMCRM. We thus have the following theorem.

84

Theorem 4.4.1 SDPMCRM is a relaxed program of ILPMCRM that is at least as strong

as LPMCRM.

Intuitively, we can interpret SDPMCRM as a polynomial-time complexity emulation of

QCLPMCRM by introducing the auxiliary variables Zi,j’s and aiming Zi,j = zizj with

the constraints (4.12)–(4.14) and (4.20).

4.4.2 ROUNDING ALGORITHMS

We present two distinct rounding algorithms. One is randomized, while the other

is deterministic.

Randomized Rounding Algorithm. We present the Randomized Rounding Al-

gorithm (RRA) in Alg. 14. RRA has |S| iterations. At the s-th iteration, RRA prob-

abilistically selects a channel for sniffer s based on the optimal values y∗s,1, . . . , y
∗
s,|C|

of sniffer s. RRA rounds y∗s,c to 1 such that the probability of rounding y∗s,c to 1 is

equal to y∗s,c. That is, P (y#s,c = 1) = y∗s,c, where y#s,c denotes the resulting integer value

of y∗s,c after rounding by RRA.

Greedy Rounding Algorithm. We present the Greedy Rounding Algorithm (GRA)

in Alg. 15. GRA rounds ~y∗ by choosing at each iteration a sniffer-channel pair whose

value will be rounded to 0. In an iteration (lines 4–16), for each sniffer-channel pair

p = (s, c) whose value is not yet rounded to an integer, GRA adjusts the values of

yps,1, . . . , y
p
s,|C| according to Eq. (4.21). Here, the sniffer s allocates no radio-resource to

the channel c, and distributes the radio-resource yps,c assigned to the channel c to the

other channels proportionally to the radio resources assigned to the other channels.

For the sniffer-channel pair to be rounded to 0 at the iteration, GRA selects the one

85

Algorithm 14 Randomized Rounding Algorithm

1: Let ~y∗ be the optimal solution to LPMCRM/SDPMCRM

2: for s← 1 to |S| do

3: (y#s,1, . . . , y
#
s,|C|)← (0, . . . , 0)

4: for c← 1 to |C| do

5: Toss a biased coin with probability of head being y∗s,c /
∑|C|

i=c y
∗
s,i

6: if the tossed coin shows head then

7: y#s,c ← 1

8: Break (i.e., start the next iteration of the for loop in line 2)

9: end if

10: end for

11: end for

12: return ~y#

that achieves the maximum coverage improvement (or the minimum coverage loss)

(lines 9 and 10). Here, the coverage improvement gained by ~yp is defined as

∆w(~yp, ~y#) =
∑

n∈N(s)

(
wn(~yp)− wn(~y#)

)
, where

wn(~y) =

min

1,
1

rn

∑
(s,c):n∈Ks,c

ys,c


 , (4.22)

N(s) denotes the set of the neighboring nodes of sniffer s, and bxc denotes the largest

integer that is not greater than x. At each iteration, GRA rounds one or two non-

integer values of a sniffer depending on whether the sniffer has at least two non-integer

values or only one (lines 11–15).

4.5 TIME COMPLEXITY ANALYSIS

In this section, we present asymptotic analysis of the time complexities of the

proposed algorithms.

86

Algorithm 15 Greedy Rounding Algorithm

1: Let ~y∗ be the optimal solution to LPMCRM/SDPMCRM

2: ~y# ← ~y∗

3: P ← {p = (s, c) : 0 < y#s,c < 1 ∀s ∈ S, c ∈ C}

4: while P 6= ∅ do

5: for each p = (s, c) ∈ P do

6: ~yp ← ~y#

7: Adjust the values of the entries yps,1, . . . , y
p
s,|C| of ~yp according to:

yps,c ← 0, yps,c′ ←
yps,c′∑
∀c∈C y

p
s,c
∀c′ 6= c (4.21)

8: end for

9: Find p̃ = (s̃, c̃) ∈ P that maximizes the coverage improvement gained by ~yp

(which is defined in Eq. (4.22))

10: ~y# ← ~yp̃

11: if yp̃s̃,c ∈ {0, 1} for all c ∈ C then

12: P ← P − {(s̃, 1), . . . , (s̃, |C|)}

13: else

14: P ← P − {(s̃, c̃)}

15: end if

16: end while

17: return ~y#

4.5.1 LOOK-AHEAD GREEDY ALGORITHMS

The look-ahead greedy algorithms both have at most |S| iterations of the while

loop. At each iteration, they need to consider at most O(|S|t+1|C|t+1) possible channel

assignments in P (or Q). Here, t, i.e., the look-ahead capability, is assumed to be less

than a half of |S|, which is true for almost all cases. Also, any channel assignment has

at most O(|N |) nodes whose coverage needs to be verified to compute the coverage

87

improvement. Thus, both of the look-ahead greedy algorithms have the same time

complexity of O(|S|t+2|C|t+1|N |).

4.5.2 RELAXATION-AND-ROUNDING ALGORITHMS

To compute the time complexities of the RaR algorithms, we first compute the

time complexity to formulate and solve the LP/SDP relaxation, and then the time

complexity to run GRA/RRA.

Formulating and solving LPMCRM. To formulate LPMCRM, we need to build an

LP in the following matrix form: maximize ~c · ~x subject to A~x = ~b and ~x ≥ 0.

In the formulation of LPMCRM, building matrix A with the constraints (4.6)–(4.9)

dominates the complexity, which will take O
(
(|N | + |S| · |C|)2

)
time since we have

|N | + |S| · |C| variables and O(|N | + |S| · |C|) constraints in LPMCRM. To solve

LPMCRM, one can employ one of many existing LP solvers, e.g., the one in [37], which

will take O
(
(|N | + |S| · |C|)3/ log(|N | + |S| · |C|)

)
time. Thus, in total, it takes

O
(
(|N |+ |S| · |C|)3/ log(|N |+ |S| · |C|)

)
time to formulate and solve LPMCRM.

Formulating and solving SDPMCRM. To formulate SDPMCRM, constructing the

matrices Ai’s in the constraint (4.19) dominates the complexity. This will take

O
(
(|N |+ |S| · |C|)3

)
time, since each Ai has (|N |+ |S| · |C|+1)2 entries and SDPMCRM

has O(|N | + |S| · |C|) constraints. To solve SDPMCRM, one can use one of various

SDP solvers available, which will take O
(
(|N |+ |S| · |C|)3

)
time [44]. Thus, in total,

it takes O
(
(|N |+ |S| · |C|)3

)
time to formulate and solve SDPMCRM.

RRA. It has |S| iterations. In each iteration, it performs at most |C| random exper-

iments (i.e., tossing a coin), each of which takes a constant time. Thus, RRA has a

time complexity of O(|S| · |C|).

GRA. It has at most |S| · |C| iterations of the while loop, and in each iteration P has

at most O(|S| · |C|) sniffer-channel pairs. For each pair p = (s, c), there are at most

O(|N |) nodes in N(s) whose coverage improvement need to be computed. For each

88

Table 4.1: Time complexity of proposed algorithms

Algorithm Time complexity

Look-t-Steps-Ahead Greedy O(|S|t+2|C|t+1|N |)

t-Sniffers-at-One-Step Greedy O(|S|t+2|C|t+1|N |)

LPMCRM + RRA/GRA O
(

(|N |+|S|·|C|)3
log(|N |+|S|·|C|)

)
SDPMCRM + RRA/GRA O ((|N |+ |S| · |C|)3)

RRA O(|S| · |C|)

GRA O(|S|2 · |C|2 · |N |)

node, it takes a constant time to compute the coverage improvement because, among

the sniffer-channel pairs that can cover the node, only one has an adjustment in its

value. Hence, it takes at most O(|N |) time to compute the coverage improvement for

a sniffer-channel pair. Thus, GRA has a time complexity of O(|S|2 · |C|2 · |N |).

Based on these results, we summarize the time complexities of the proposed algo-

rithms in Table 4.1.

4.6 NUMERICAL EXPERIMENTS

We evaluate the performance of the proposed algorithms—the two look-ahead

greedy algorithms and the four RaR algorithms (i.e., the four combinations of the two

relaxations and the two rounding algorithms)—through simulations in two kinds of

networks: random networks and scale-free networks. In random networks, nodes are

randomly deployed in a 1×1 square area with a uniform distribution, and the receiving

range is 0.25. In scale-free networks, nodes are deployed such that the distribution

f(d) of the nodes with degree d follows a power law in a form of d−p, i.e., the number of

nodes with high degree decreases exponentially. We set 2 < p < 3, and pick the nodes

with highest degrees as sniffers so that we can achieve a higher monitoring coverage

89

(a)

Cov-

er-

age

(b)

Run-

ning

time

Fig. 4.1.: Random networks for varying number of sniffers

than picking them randomly. We choose these networks, because the performance of

the proposed algorithms will largely depends on the network topology and these two

kinds of networks show significantly different topologies. Also, they are observed in

many practical networks1.

We evaluate the proposed algorithms in two metrics: coverage and running time.

We compare the coverage of the proposed algorithms with the maximum achievable

coverage (i.e., the optimum of ILPMCRM) and also with the coverage of the naive

greedy extensions. In all simulations, we use the same value for |N | (i.e., the number

of nodes), wn (i.e., the weight of node n), rn (i.e., the coverage requirement of node

n), and t (i.e., the look-ahead capability): |N | = 40, wn = 1 and rn = 2 for all n,

and t = max∀ rn − 1 = 1. In the first set of simulations, we fix |C| (i.e., the number

of wireless channels) to 3, and see how the proposed algorithms perform as |S| (i.e.,

the number of sniffers) varies from 10 to 40. In the second set of simulations, we fix

|S| = 30, and see the performance of the proposed algorithms as |C| varies from 2 to

6. All of the results shown below are the averages over more than 30 iterations.

Figure 4.1(a), (b) show the coverage and the running time of the proposed algo-

rithms, respectively, in random networks for varying number of sniffers. In Fig. 4.1(a),

we observe that the coverage of the SDP-and-GRA and the LP-and-GRA are com-

parable to the maximum achievable coverage (i.e., the ILP optimum), followed by

the look-ahead greedy algorithms with a small gap. We can see that, after rounding,

1Wireless networks where mobile users move randomly can be viewed as random networks, and
many empirically observed networks such as the world wide web and the Internet have been found
to be scale-free.

90

GRA maintains the solution quality of the optimal fractional solution closer to the

maximum coverage, while RRA results in the degradation of the solution quality.

In the figure, GRD-Ext1 denotes the first naive greedy extension that chooses the

coverage-set maximizing the coverage improvement, and GRD-Ext2 denotes the sec-

ond naive greedy extension that selects the coverage-set maximizing the total weight

of the uncovered nodes that it contains. We observe that the naive greedy extensions

both show poor performance. LP-UP and SDP-UP denote the optimal values of the

LPMCRM and SDPMCRM, respectively, which are shown as upper bounds on the max-

imum coverage. We can see that the SDP relaxation provides only a slightly tighter

upper bound than the LP relaxation, and accordingly that its corresponding (i.e., the

SDP-based) RaR algorithms perform little better than the LP-based RaR algorithms.

In Fig. 4.1(b), we have two different y axes; the y axis on the right represents the

running time of the look-ahead greedy algorithms, while the y axis on the left repre-

sents the running time of the other proposed algorithms. We observe a (relatively)

large gap between the running times of the LP-based RaR algorithms and the SDP-

based RaR algorithms, not expected from their asymptotic time complexity results.

Also, we observe that the running time of the look-ahead greedy algorithms is much

larger than that of the other algorithms, and they grow rapidly as the number |S| of

sniffers increases, as expected from its asymptotic time complexity of order 3 in |S|. A

notable observation is that the running time of the t-sniffers-at-one-step greedy algo-

rithm is almost half of that of the look-t-steps-ahead greedy algorithm. This implies

that, at each iteration of the while loop, the t-sniffers-at-one-step greedy algorithm

performed channel assignment mostly for two sniffers, while the look-t-steps-ahead

greedy algorithm did for only one sniffer. But, the t-sniffers-at-one-step greedy al-

gorithm still shows the coverage comparable to that of the look-t-steps-ahead greedy

algorithm.

Figure 4.2(a), (b) show the coverage and the running time of the proposed algo-

rithms, respectively, in scale-free networks for varying number of sniffers. We observe

similar results to those in random networks in the both metrics. But, a notable

91

(a)

Cov-

er-

age

(b)

Run-

ning

time

Fig. 4.2.: Scale-free networks for varying number of sniffers

(a)

Cov-

er-

age

(b)

Run-

ning

time

Fig. 4.3.: Random networks for varying the number of available wireless channels

observation in coverage is that, in scale-free networks, the SDP relaxation shows a

substantial improvement on the upper bound on the maximum achievable coverage,

thus implying that it provides a better fractional solution to rounding algorithms.

Accordingly, we can see that the SDP-based RaR algorithms show a noticeable cover-

age improvement, compared to the LP-based RaR algorithms. Also, we observe that,

in scale-free networks, the gap between the running times of the two RaR algorithms

with a different rounding algorithm is smaller than that in random networks. This

implies that scale-free networks are likely to yield the problem instances for which the

fractional optimal solution has less number of fractional values, so that RRA/GRA

runs less number of iterations.

Figures 4.3 and 4.4 show the performance of the proposed algorithms in random

networks and scale-free networks, respectively, for varying number of available wire-

less channels. In the comparison among the proposed algorithms, we observe similar

trends to those for varying number of sniffers. In Figs. 4.3, 4.4(a), as the number of

available wireless channels increases, the coverage decreases because the channel as-

92

(a)

Cov-

er-

age

(b)

Run-

ning

time

Fig. 4.4.: Scale-free networks for varying the number of available wireless channels

signment of nodes is distributed over more number of channels and hence the number

of nodes that each coverage-set of a sniffer contains decreases.

To summarize the simulation results, the SDP-and-GRA achieves the highest cov-

erage close to the maximum coverage, but shows a (relatively) long running time.

Hence, the SDP-and-GRA will be favored, especially, for monitoring applications

where a higher coverage is more emphasized, such as security monitoring. On the

other hand, the LP-and-GRA attains the coverage comparable to that of the SDP-

and-GRA, and also shows a fast running time. Thus, LP-and-GRA can be considered

as a good compromise between the coverage and the running-time, and will be fa-

vored for monitoring applications requiring fast running-time, such as monitoring

in dynamic network environments where the channel assignment of sniffers needs to

changed rapidly.

4.7 CONCLUSION

In this chapter, we studied the optimal sniffer-channel assignment problem for

reliable monitoring in multi-channel wireless networks, where each node is given sniffer

redundancy to maintain a certain level of monitoring accuracy. This problem can be

viewed as a generalization of the problems studied in the previous chapters that

assume perfect sniffers and thus do not need to consider the sniffer redundancy.

However, we showed that the generalized problem no longer holds the submodular

property, unlike the special case studied in the previous chapters. As a results, in

93

the generalized problem, the prior approximation algorithms lose their performance

guarantees. To solve the generalized problem, we proposed a variety of approximation

algorithms based on two basic approaches—greedy approach and the relaxation-and-

rounding approach. We present a comparative analysis of the proposed algorithms

through simulations.

Our conclusion is that SDP-and-GRA (i.e., the combination of the SDP relaxation

and the GRA) achieves the highest coverage close to the maximum achievable cov-

erage, but shows a (relatively) long running time. On the other hand, LP-and-GRA

(i.e., the combination of the LP relaxation and the GRA) attains the coverage com-

parable to the coverage of the SDP-and-GRA, and also shows a fast running time.

Hence, LP-and-GRA can be considered as a good compromise between the cover-

age and the running-time. Thus, the SDP-and-GRA will be favored, especially, for

monitoring applications where a higher coverage is more emphasized (e.g., security

monitoring), while LP-and-GRA will be favored for monitoring applications requiring

fast running-time (e.g., monitoring dynamic network environments).

94

5. RELATED WORK

5.1 OPTIMAL PLACEMENT OF MONITORING NODES IN SINGLE-

CHANNEL WIRELESS NETWORKS

Subhadrabandhu et al. [25–27] have studied the optimal placement of monitoring

nodes in single-channel wireless networks. The work [25] studies a problem of how to

optimally select a subset of monitoring nodes to execute intrusion detection modules

(IDSs), given a budget on the number of monitoring nodes. The goal is to maximize

the number of normal nodes covered by the selected monitoring nodes. The work

presents a greedy approximation algorithm to the coverage maximization problem

(which is NP-hard), which achieves the best possible approximation ratio.

The work [26] allows for IDSs that periodically stop functioning due to operational

failure or compromise by intruders. It develops a framework to counter the failure of

IDSs, and studies a problem of how to find an optimal set of monitoring nodes that

minimize the resource consumption, i.e., the number of monitoring nodes selected to

execute IDSs, while covering all normal nodes in the network. The work presents

a distributed approximation algorithm to the resource minimization problem, which

attains the best possible approximation ratio.

The work [27] allows for IDSs that periodically fail to detect attacks and also

generate false positives, and develops a similar framework to that of [26]. In all of the

works [25–27], it is assumed that the network uses only one channel, and hence there is

no issue of channel assignment of monitoring nodes. On the other hand, the problem

that we study in this dissertation (i.e., MCMC in Section 2.2) deals with the optimal

placement and channel assignment of monitoring nodes, which is a generalization of

the coverage maximization problem in [25].

95

5.2 CHANNEL ASSIGNMENT OF SNIFFERS IN MULTI-CHANNEL

WIRELESS NETWORKS

Some works [38,45,46] have also studied the optimal monitoring problem in multi-

channel wireless networks, but their focus or performance guarantee is different from

that of this dissertation. Chhetri et al. [38] have studied two models of sniffers that

assume different capabilities of sniffers capturing traffic. The first, called user-centric

model, assumes that frame-level information can be captured so that the activities

of different users are distinguishable. The problem in the user-centric model is a

special case of MCMC where all monitoring nodes are activated, and all of monitoring

nodes and normal nodes have a single radio. The second, called sniffer-centric model,

assumes that only binary information is available regarding channel activities, i.e.,

whether some user is active in a specific channel near a sniffer. The authors show

that the sniffer-centric model can be mapped to the user-centric model to solve the

problem in two models.

The work [38] and our works in this dissertation all assume that the global knowl-

edge of the topology and the channel usages of normal nodes is given to, or can be

inferred by, sniffers. On the other hand, Arora et al. [45] have studied a trade-off

between assigning the radios of sniffers to channels known to be busiest based on the

current knowledge, versus exploring channels that are under observed.

Also, the work [46] has proposed a distributed algorithm to solve OSCA (in Sec-

tion 3.2) based on a Gibbs sampler approach. However, unlike our DA-OSCA (in

Chapter 3), the algorithm does not provide a performance guarantee.

APPENDICES

96

A. SUPPORTING RESULTS FOR CHAPTER 3

A.1 PROOF OF THE CLAIM IN SECTION 3.3.1

We show the claim in Section 3.3.1 that solving QPOSCA is equivalent to solving

LPOSCA. Let {x∗n, y∗s,c, xaux,∗n , yaux,∗s,c } be the optimal solution of QPOSCA. Note that

all of the quadratic terms in the objective function (3.6) of QPOSCA are non-positive,

and also that there is no constraint on the variables xaux,∗n ’s and yaux,∗s,c ’s. Hence, in

order to maximize the objective function (3.6), it must be true that xaux,∗n = x∗n and

yaux,∗s,c = y∗s,c. This means that {x∗n, y∗s,c} maximizes
∑

n∈N wnxn subject to Eqs. (3.2)–

(3.4) and thus is an optimal solution to LPOSCA. Therefore, we can find an optimal

solution to LPOSCA by solving QPOSCA. Thus, the claim is true.

A.2 DERIVATION OF ALGORITHM 16

Let ~v+V be the projection of ~v to V . With definition of projection, i.e., ~v+V =

argmin~x∈V d(~v, ~x) where d(~v, ~x) denotes the Euclidean distance between ~v and ~x, it

is easy to verify that if vj ≤ 0, then v+V
j = 0. In order to obtain v+V

j for vj > 0, we

redefine ~v by removing the negative and zero components from ~v. We assume that the

dimension of the redefined vector ~v is d ≤ c. We also redefine V = {~x = (x1, . . . , xd) :

xj ≥ 0 for all j ∈ {1, . . . , d} and
∑d

j=1 xj ≤ 1}. The problem then becomes to find

the projection of the redefined vector ~v > 0 to V .

Obviously, if ~v ∈ V , ~v+V = ~v. Hence, we only need to consider the case when

~v /∈ V . In this case, ~v must be included in the set U = {~x :
∑d

j=1 xj > 1 and xj >

0 for all j ∈ {1, . . . , d}}. We define a bounded hyperplane F = {~x :
∑d

j=1 xj =

1 and xj ≥ 0 for all j ∈ {1, . . . , d}}, and define H = {~x :
∑d

j=1 xj = 1} to be the

97

hyperplane that includes F . Due to the following lemma, we only need to find [~v⊥H]+F

in order to obtain ~v+V .

Lemma A.2.1 For any ~v ∈ U , ~v+V = [~v⊥H]+F , where ~v⊥H denotes the perpendicular

foot of ~v onto the hyperplane H.

Proof To prove the lemma, we first show that ~v+V is a point on the bounded

hyperplane F . To show this claim, we only need to show that the line segment that

connects any ~v ∈ U and any ~x ∈ V , denoted by vx, intersects with F . It is because

if there exists a point at which vx intersects with F , denoted by ~y, the distance

between ~v and ~y would be smaller than or equal to the distance between ~v and ~x,

which implies that ~v+V ∈ F . In order to show the claim, we consider the line that

passes through the points ~v and ~x, denoted by ←→vx. The line ←→vx is a set of points

{~x+ t(~v− ~x) : t is a real number}. This line intersects with the hyperplane H at the

point ~p = ~x + t(~v − ~x), where t =
1−

∑d
j=1 xj∑d

j=1 vj−
∑d

j=1 xj
. Since ~v ∈ U and ~x ∈ V , it is true

that 0 ≤ t < 1. This implies that ~p ∈ vx and also that ~p > 0. Also, due to the facts

that ~p ∈ H and that ~p > 0, it follows that ~p ∈ F . Hence, vx intersects with F at the

point ~p, and thus the claim is true, i.e., ~v+V ∈ F . Then, ~v+V = argmin~x∈F d(~v, ~x). By

Pythagorean theorem, it follows that d(~v, ~x)2 = d(~v,~v⊥H)2+d(~v⊥H , ~x)2 for any ~x ∈ F .

Here, d(~v,~v⊥H) is a constant. Hence, ~v+V = argmin~x∈F d(~v⊥H , ~x), i.e., ~v+V = [~v⊥H]+F .

We find [~v⊥H]+F in a recursive manner. Let ~v+,(0) = [~v⊥H]+F . A simple calculation

gives ~v⊥H = (v1 + t, . . . , vd + t) where t = 1
d
(1−

∑d
j=1 vj). If ~v⊥H ∈ F , ~v+,(0) = ~v⊥H .

Otherwise, i.e., if ~v⊥H /∈ F , at least one component of ~v⊥H must have a negative

value since ~v⊥H ∈ H. It is easy to verify that the components of ~v+,(0) corresponding

to those of ~v⊥H that have a negative value or zero must be zero. Without loss of

generality, we assume that the positive components of ~v⊥H are v⊥H
1 , . . . , v⊥H

e where

e ≤ d−1. Since
∑d

j=1 v
⊥H
j = 1 and ~v⊥H has at least one negative component, it follows

that
∑e

j=1 v
⊥H
j > 1. Let ~v(1) = (v⊥H

1 , . . . , v⊥H
e) and U (1) = {(x1, . . . , xe) :

∑e
j=1 xj >

98

Algorithm 16 Projection Algorithm

1: // Algorithm projects ~v to V = {(x1, . . . , xc) : xj ≥ 0 for all j ∈

{1, . . . , c} and
∑c

j=1 xj ≤ 1}.

2: J ← {1, . . . , c}

3: while (1) do

4: for j ← 1 to |J | do

5: if vJj ≤ 0 (where Jj denotes the j-th element of J) then

6: vJj ← 0

7: J ← J \{Jj}

8: end if

9: end for

10: // Here, it is invariant that vj > 0 for all j ∈ J , and also that vj = 0 for all

j /∈ J .

11: if |J | = 0 or
∑|J |

j=1 vJj ≤ 1 then

12: Terminate the algorithm

13: else

14: for j ← 1 to |J | do

15: vJj ← vJj + 1
|J |

(
1−

∑|J |
j=1 vJj

)
16: end for

17: // Here, it is invariant that
∑c

i=1 vi = 1.

18: end if

19: end while

20: return ~v

1 and xj > 0 for all j ∈ {1, . . . , e}}, then ~v(1) ∈ U (1). Define F (1) = {(x1, . . . , xe) :∑e
j=1 xj = 1 and xj > 0 for all j ∈ {1, . . . , e}} and H(1) = {(x1, . . . , xe) :

∑e
j=1 xj =

1}. We then have (v
+,(0)
1 , . . . , v

+,(0)
e) = [~v(1)]+

F (1) since v
+,(0)
e+1 , . . . , v

+,(0)
d are all zeros.

Using Pythagorean theorem, we get (v
+,(0)
1 , . . . , v

+,(0)
e) = [~v(1)⊥H(1)]+

F (1) , where ~v(1)⊥H(1)

denotes the perpendicular foot of ~v(1) onto the hyperplane H(1). The problem of

99

finding [~v⊥H]+F then becomes to find [~v(1)⊥H(1)]+
F (1) . Note that both the problems differ

only in the dimension of the vector. Also, the dimension of the vector in the former

problem is at least one less than that in the latter problem. Hence, in order to find

[~v(1)⊥H(1)]+
F (1) , we can repeat the process that we have done to find [~v⊥H]+F . At the n-th

iteration of this process, we would be able to obtain [~v(n−1)⊥H(n−1)]+
F (n−1) , equivalently

[~v⊥H]+F , or reduce the dimension of the vector by at least one. Since we start with the

dimension d ≤ c, the number of these iterations to obtain [~v⊥H]+F is at most c.

Alg. 16 implements this procedure to obtain the projection [~v]+V .

A.3 PROOF OF THEOREM 3.3.1

To show the theorem, we use the proof of Proposition 4 in [41]. For this, we first

formulate the constraints (3.2)–(3.4) of QP-MC into the matrix form: A~z ≤ ~0, ~z ∈ Z,

where the matrix A is defined as

A =

 I|N | Asub1

O|S|,|N | Asub2,

 ∈ R(|N |+|S|)×(|N |+|S|·|C|),

where

Asub1 =


−1KS1,C1

(N1) . . . −1KS|S|,C|C|
(N1)

...
. . .

...

−1KS1,C1
(N|N |) . . . −1KS|S|,C|C|

(N|N |)


∈ R|N |×(|S|·|C|),

Asub2 =


1 . . . 1 . . . 0 . . . 0

...
. . .

...

0 . . . 0 . . . 1 . . . 1

 ∈ R|S|×(|S|·|C|).

Here, I|N | is |N |× |N | identity matrix, O|S|,|N | is |S|× |N | zero matrix, Si denotes the

i-th element of the set S, and 1S(s) is an indicator function defined as: 1S(s) = 1 if

s ∈ S; otherwise, 1S(s) = 0.

100

Using the proof of Proposition 4 in [41], it can be shown that a sufficient condition

for DA-LPOSCA to converge is that 1
β
I|N |+|S| − 2dAAT must be positive definite. The

matrix 1
β
I|N |+|S| − 2dAAT is positive definite if and only if for any non-zero vector ~s,

~sT
(

1

β
I|N |+|S| − 2dAAT

)
~s > 0

⇐⇒ 1

β

|N |+|S|∑
i=1

s2i > 2d
(
AT~s

)2
. (A.1)

It follows that

(
AT~s

)2
=

|N |+|S|·|C|∑
j=1

|N |+|S|∑
i=1

Ai,jsi

2

≤
|N |+|S|·|C|∑

j=1

|N |+|S|∑
i=1

|Ai,j|

|N |+|S|∑
i=1

|Ai,j|s2i


(by Cauchy-Schwartz inequality)

≤ max
∀j


|N |+|S|∑
i=1

|Ai,j|


|N |+|S|∑
i=1

s2i

|N |+|S|·|C|∑
j=1

|Ai,j|

≤ max
∀j


|N |+|S|∑
i=1

|Ai,j|

 ·max
∀i


|N |+|S|·|C|∑

j=1

|Ai,j|


×
|N |+|S|∑
i=1

s2i . (A.2)

Hence, 1
β
I|N |+|S| − 2dAAT is positive definite if the following holds:

β <
1

2dB1B2

,

where

B1 = max


|N |+|S|∑
i=1

|Ai,j| : j ∈ [|N |+ |S| · |C|]

 ,

B2 = max


|N |+|S|·|C|∑

j=1

|Ai,j| : i ∈ [|N |+ |S|]

 ,

101

where [n] denotes an index set {1, . . . , n}. It follows that

B1 = max

1, 1 +

|N |∑
l=1

1KSi,Cj
(Nl) : i ∈ [|S|], j ∈ [|C|]


= max {1, |Ks,c|+ 1 : s ∈ S, c ∈ C} ,

and also that

B2 = max

|C|, 1 +

|S|∑
i=1

|C|∑
j=1

1KSi,Cj
(Nl) : l ∈ [|N |]


= max {|C|,M + 1} ,

where M = maxn∈N |{Ks,c : n ∈ Ks,c}| . Thus, the theorem follows.

A.4 PROOF OF THEOREM 3.3.2

To prove the theorem, we show that OCAA is a distributed generalization of

PIPAGE [35] that achieves the guarantee in the theorem in a centralized manner. For

this, we first explain how PIPAGE solves OSCA. The PIPAGE applied to solve OSCA

rounds a (fractional) solution of LPOSCA to a feasible integer solution to ILPOSCA in

an iterative manner. Since each sniffer can assign only one channel to its radio, each

sniffer has more than two non-integer values if it has non-integer values. At each

iteration, PIPAGE adjusts two non-integer values of a sniffer such that at least one of

them becomes an integer of 0 or 1, and the sum of them are preserved. Hence, when

a sniffer has only two non-integer values, both of them will become an integer value

of 0 or 1 after the adjustment by PIPAGE. At each iteration, PIPAGE adjusts two non-

integer values of a sniffer as follows. Let 0 < ys,c1 , ys,c2 < 1 be the two non-integer

values of a sniffer to be adjusted at an iteration, and define ε1 = min{ys,c1 , 1− ys,c2}

and ε2 = min{1− ys,c1 , ys,c2}. At the iteration, PIPAGE adjusts the fractional solution

~y including ys,c1 and ys,c2 to a new solution of either ~y(1) or ~y(2), which have the

same values for all components except ones whose indices are (s, c1) and (s, c2). In

~y(1), the two components are y
(1)
s,c1 = ys,c1 − ε1 and y

(1)
s,c2 = ys,c2 + ε1, and in ~y(2),

102

they are y
(2)
s,c1 = ys,c1 + ε2 and y

(2)
s,c2 = ys,c2 − ε2 in ~y(2). PIPAGE adjusts ~y to ~y(1) if

F (~y(1)) ≥ F (~y(2)), where F (~y) =
∑

n∈N wn

(
1−

∏
(s,c):n∈Ks,c

(1− ys,c)
)

. Otherwise,

PIPAGE adjusts ~y to ~y(2).

We now show OCAA accomplishes the procedure that the PIPAGE applied to

solve OSCA performs. To show this, we first derive an efficient way of evaluating the

criterion F (~y(1)) ≥ F (~y(2)) that PIPAGE uses to adjust the fractional solution at each

iteration. Since ys,c1 +ys,c2 ≤ 1 due to the group budget constraint, we have ε1 = ys,c1

and ε2 = ys,c2 , and consequently we have

y(1)s,c1
= 0, y(1)s,c2

= ys,c1 + ys,c2 ,

y(2)s,c1
= ys,c1 + ys,c2 , y(2)s,c2

= 0.

It follows that

F (~y) =
∑
n∈N

wn

1−
∏

(s,c):n∈Ks,c

(1− ys,c)


=
∑
n∈N

wn −
∑
n∈N

wn

 ∏
(s,c):n∈Ks,c

(1− ys,c)

 ,

and also that

∑
n∈N

wn

 ∏
(s,c):n∈Ks,c

(1− ys,c)


=

∑
n∈Ks,c1

wn

 ∏
s′ 6=s:n∈Ks′,c1

(1− ys′,c1)

 (1− ys,c1)

+
∑

n∈Ks,c2

wn

 ∏
s′ 6=s:n∈Ks′,c2

(1− ys′,c2)

 (1− ys,c2)

+
∑

n∈N :n/∈Ks,c1 ,n/∈Ks,c2

wn

 ∏
(s,c):n∈Ks,c

(1− ys,c)

 .

103

Since y
(1)
s′,c = y

(2)
s′,c = ys′,c for all (s′, c) 6= (s, c1), (s, c2) and (y

(1)
s,c1−y

(2)
s,c1) = −(y

(1)
s,c2−y

(2)
s,c2),

it follows that

F (~y(1))− F (~y(2))

=
∑

n∈Ks,c1

wn

 ∏
s′ 6=s:n∈Ks′,c1

(1− ys′,c1)

× (y(1)s,c1
− y(2)s,c1

)

+
∑

n∈Ks,c2

wn

 ∏
s′ 6=s:n∈Ks′,c2

(1− ys′,c2)

× (y(1)s,c2
− y(2)s,c2

)
=
(
I(Ks,c1 , ~yN(s))− I(Ks,c2 , ~yN(s))

)
×
(
y(1)s,c1
− y(2)s,c1

)
.

Hence, since y
(1)
s,c1 < y

(2)
s,c1 , F (~y(1)) ≥ F (~y(2)) if I(Ks,c1 , ~yN(s)) ≤ I(Ks,c2 , ~yN(s)). This

means that PIPAGE adjusts ~y to ~y(1) if I(Ks,c1 , ~yN(s)) ≤ I(Ks,c2 , ~yN(s)). Otherwise,

PIPAGE adjusts ~y to ~y(2).

Recall that when PIPAGE rounds non-integer values of the variables ~ys = (ys,c :

c ∈ C) of sniffer s through multiple iterations, the values that are not in ~ys, i.e., ỹs′,c’s

for all (s′, c) such that s′ 6= s, will remain the same. Hence, while the non-integer

values of ~ys are rounded, the values of I(Ks,c, ~yN(s))’s for all c ∈ C will remain the

same. Therefore, after the multiple iterations to round the non-integer values of ~ys,

all of the non-integer values except one that has the maximum coverage improvement

among all non-integer values, say ys,c∗ , will be rounded to 0, and ys,c∗ will be adjusted

to the sum of all the non-integer values, which is equal to 1. This is the rounding

procedure that OCAA performs. Thus, the theorem follows.

A.5 PROOF OF THE CORRECTNESS OF ALG. 10

To show the correctness of Alg. 10, we use the duality theory [40, Ch. 5.1.3],

which states that, for any maximization problem, the maximum of the given primal

problem is upper bounded by the dual objective value of any feasible dual solution.

104

To derive the dual problem of LPOSCA, we define the Lagrangian function of LPOSCA

as

LLP(~z, ~p) =
∑
n∈N

wnxn +
∑
n∈N

pn

 ∑
(s,c):n∈Ks,c

ys,c − xn

 . (A.3)

The dual problem of LPOSCA is then given as

minimize DLP(~p) , max
~z∈Z

LLP(~z, ~p), (A.4)

where Z is the set that contains all of (~x, ~y)’s satisfying Eqs. (3.3) and (3.4). Let

FLP(~z) =
∑

n∈N wnxn, and ~̃z, ~̃p be any feasible primal and dual solutions, respectively.

Due to the duality theory [40, Ch. 5.1.3], it follows that for 0 < γ < 1,

FLP(~̃z) ≥ γ ·DLP(~̃p) =⇒ FLP(~̃z) ≥ γ · F ∗LP, (A.5)

where F ∗LP denotes the maximum of LPOSCA.

We show the correctness of Alg. 10 using Eq. (A.5). For a given channel assignment

of sniffers, which we denote by an integer vector ~yint, the monitoring coverage due to

~yint is given as
∑

n∈N wnx
int
n , where xintn = min

{
1,
∑

(s,c):n∈Ks,c
yints,c

}
, which is equal

to Croot in Alg. 10. It is easy to see that ~zint = (~xint, ~yint) is a feasible solution to

LPOSCA. We next compute DLP(~̃p) for any given ~̃p ≥ 0. We rewrite Eq. (A.3) as

LLP(~z, ~̃p) =
∑
n∈N

(wn − p̃n)xn +
∑
s∈S

∑
c∈C

 ∑
n∈Ks,c

p̃n

 ys,c. (A.6)

For the given ~̃p, we can obtain ~z∗ ∈ Z that maximizes LLP(~z, ~̃p) subject to ~z ∈ Z as

x∗n =

 1 if wn ≥ p̃n,

0 otherwise,

y∗s,c =

 1 for c∗ ∈ argmaxc∈C
∑

n∈Ks,c
p̃n,

0 for all c 6= c∗.
(A.7)

Using Eqs. (A.4), (A.6), and (A.7), we can obtain DLP(~̃p) for the given ~̃p as

DLP(~̃p) =
∑
n∈N

[wn − p̃n]+ +
∑
s∈S

∑
n∈Ks,c∗

p̃n,

105

where c∗ ∈ argmaxc∈C
∑

n∈Ks,c
p̃n. Hence, DLP(~̃p) is equal to Droot in Alg. 10. There-

fore, due to Eq. (A.5), if Croot ≥ γ ·Droot, then Croot ≥ γ · F ∗LP, which concludes the

proof.

LIST OF REFERENCES

106

LIST OF REFERENCES

[1] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in Mobile Ad Hoc
Networks:Challenges and Solutions,” IEEE Wireless Communications, vol. 11,
pp. 34–47, February 2004.

[2] N. B. Salem and J.-P. Hubaux, “Securing Wireless Mesh Networks,” IEEE Wire-
less Communications, vol. 13, no. 2, pp. 50–55, 2006.

[3] L. Zhou and Z. J. Haas, “Securing Ad Hoc Networks,” IEEE Network Magazine,
vol. 13, no. 6, pp. 24–30, 1999.

[4] Y. Yang, S. Zhu, and G. Cao, “Improving Sensor Network Immunity under Worm
Attacks: a Software Diversity Approach,” in Proc. of ACM MobiHoc, pp. 149–
158, May 2008.

[5] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A Multi-Radio Unifica-
tion Protocol for IEEE 802.11 Wireless Networks,” in Proc. of IEEE Broadnets,
San Jose, CA, October 2004.

[6] M. Alicherry, R. Bhatia, and L. Li, “Joint Channel Assignment and Routing for
Throughput Optimization in Multi-radio Wireless Mesh Networks,” in Proc. of
ACM MobiCom, Cologne, Germany, August 2005.

[7] V. Bhandari and N. H. Vaidya, “Capacity of Multi-Channel Wireless Networks
with Random (c, f) Assignment,” in Proc. of ACM MobiHoc, Montreal, QC,
Canada, September 2007.

[8] V. Bhandari and N. H. Vaidya, “Connectivity and Capacity of Multi-Channel
Wireless Networks with Channel Switching Constraints,” in Proc. of IEEE IN-
FOCOM, Anchorage, Alaska, USA, May 2007.

[9] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Design and Implementation of a
Multi-Channel Multi-Interface Network,” in REALMAN, May 2006.

[10] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop Wireless
Mesh Networks,” in Proc. of ACM MobiCom, Philadelphia, Pennsylvania, USA,
September 2004.

[11] C. Kim, Y.-B. Ko, and N. H. Vaidya, “Link-State Routing Protocol for Multi-
Channel Multi-Interface Wireless Networks,” in Proc. of IEEE MILCOM, San
Diego, CA, USA, November 2008.

[12] M. Kodialam and T. Nandagopal, “Characterizing the Capacity Region in Multi-
Radio Multi-Channel Wireless Mesh Networks,” in Proc. of ACM MobiCom,
Cologne, Germany, August 2005.

107

[13] P. Kyasanur and N. H. Vaidya, “Capacity of Multi-Channel Wireless Networks:
Impact of Number of Channels and Interfaces,” in Proc. of ACM MobiCom,
Cologne, Germany, August 2005.

[14] P. Kyasanur, J. So, C. Chereddi, and N. H. Vaidya, “Multi-Channel Mesh Net-
works: Challenges and Protocols,” IEEE Wireless Communications, April 2006.

[15] P. Kyasanur and N. H. Vaidya, “Routing and Link-layer Protocols for Multi-
Channel Multi-Interface Ad Hoc Wireless Networks,” SIGMOBILE Mobile Com-
puting and Communications Review, vol. 10, pp. 31–43, January 2006.

[16] S.-H. Lim, C. Kim, Y.-B. Ko, and N. H. Vaidya, “An Efficient Multicasting
for Multi-Channel Multi-Interface Wireless Mesh Networks,” in Proc. of IEEE
MILCOM, Boston, USA, October 2009.

[17] X. Lin and S. Rasool, “A Distributed Joint Channel-Assignment, Scheduling and
Routing Algorithm for Multi-Channel Ad Hoc Wireless Networks,” in Proc. of
IEEE INFOCOM, Anchorage, Alaska, USA, May 2007.

[18] S. Merlin, N. H. Vaidya, and M. Zorzi, “Resource Allocation in Multi-Radio
Multi-Channel Multi-Hop Wireless Networks,” in Proc. of IEEE INFOCOM,
Phoenix, AZ, USA, April 2008.

[19] A. Raniwala and T. Chiueh, “Architecture and Algorithms for an IEEE 802.11-
Based Multi-Channel Wireless Mesh Network,” in Proc. of IEEE INFOCOM,
Miami, FL, USA, March 2005.

[20] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized Algorithms for Multi-
channel Wireless Mesh Networks,” ACM Mobile Computing and Communica-
tions Review, April 2004.

[21] J. So and N. H. Vaidya, “Multi-Channel MAC for Ad Hoc Networks: Handling
Multi-Channel Hidden Terminals Using A Single Tranceiver,” in Proc. of ACM
International Symposium on Mobile Ad Hoc Networking and Computing (Mobi-
Hoc), May 2004.

[22] J. So and N. H. Vaidya, “Routing and Channel Assignment in Multi-Channel
Multi-Hop Wireless Networks with Single Network Interface,” in Proc. of
The Second International Conference on Quality of Service in Heterogeneous
Wired/Wireless Networks (QShine), August 2005.

[23] J. D. Camp and E. W. Knightly, “The IEEE 802.11s Extended Service Set Mesh
Networking Standard,” IEEE Communications Magazine, vol. 46, pp. 120–126,
August 2008.

[24] P. Kyasanur and N. H. Vaidya, “Detection and Handling of MAC Layer Misbe-
havior in Wireless Networks,” in Proc. of DSN, pp. 173–182, Jun. 2003.

[25] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A Framework for Misuse Detec-
tion in Ad Hoc Networks—Part I,” IEEE Journal on Selected Areas in Commu-
nications, vol. 24, pp. 274–289, February 2006.

[26] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A Framework for Misuse Detec-
tion in Ad Hoc Networks—Part II,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, pp. 290–304, February 2006.

108

[27] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “A Statistical Framework for In-
trusion Detection in Ad Hoc Networks,” in Proc. of the 25th IEEE International
Conference on Computer Communications (INFOCOM’06), Barcelona Spain,
April 2006.

[28] I. Khalil, S. Bagchi, and N. B. Shroff, “A Lightweight Countermeasure for the
Wormhole Attack in Multihop Wireless Networks,” in Proc. of IEEE/IFIP DSN,
pp. 612–621, Jun.-Jul. 2005.

[29] A. Dhananjay, H. Zhang, J. Li, and L. Subramanian, “Practical, Distributed
Channel Assignment and Routing in Dual-radio Mesh Networks,” in Proceedings
of ACM SIGCOMM, pp. 99–110, 2009.

[30] “Maxim 2.4 GHz 802.11b Zero-IF Transceivers,” in http://pdfserv.maxim-
ic.com/en/ds/MAX2820-MAX2821.pdf.

[31] R. Chandra, P. Bahl, and P. Bahl, “MultiNet: Connecting to Multiple IEEE
802.11 Networks Using a Single Wireless Card,” in Proceedings of IEEE INFO-
COM, pp. 882–893, 2004.

[32] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM
(JACM), vol. 45, no. 4, pp. 634–652, 1998.

[33] D. S. Hochbaum, Approximation Algorithm for NP-Hard Problems. PWS Pub-
lishing Company, Massachusetts, 1997.

[34] C. Chekuri and A. Kumar, “Maximum Coverage Problem with Group Budget
Constraints and Applications,” in Proc. of Approximation, Randomization, and
Combinatorial Optimization (APPROX), pp. 72–83, Springer LNCS, 2004.

[35] A. Ageev and M. Sviridenko, “A New Method of Constructing Algorithms with
Proven Performance Guarantee,” Journal of Combinatorial Optimization, vol. 8,
pp. 307–328, 2004.

[36] A. Srinivasan, “Distributions on Level-Sets with Applications to Approximation
Algorithms,” in Proc. of IEEE FOCS, pp. 588–597, Oct. 2001.

[37] K. M. Anstreicher, “Linear Programming in O([n3/ln n]L) Operations,” SIAM
Journal on Optimization, vol. 9, no. 4, pp. 803–812, 1999.

[38] A. Chhetri, H. Nguyen, G. Scalosub, and R. Zheng, “On quality of monitoring
for multi-channel wireless infrastructure networks,” in Proc. of ACM MobiHoc,
September 2010.

[39] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Prentice-Hall, New Jersey, 1989.

[40] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[41] X. Lin and N. B. Shroff, “Utility Maximization for Communication Networks
with Multi-path Routing,” IEEE Transactions on Automatic Control, vol. 51,
no. 5, pp. 766–781, 2006.

[42] “Tutorials, references, activities and tools for submodular optimization.”

109

[43] D.-Z. Du, R. L. Graham, P. M. Pardalos, P.-J. Wan, W. Wu, and W. Zhao,
“Analysis of Greedy Approximations with Nonsubmodular Potential Functions,”
in Proc. of ACM-SIAM SODA, January 2008.

[44] B. Borchers and J. G. Young, “Implementation of a primal-dual method for
SDP on a shared memory parallel architecture,” Computational Optimization
and Applications, vol. 37, pp. 355–369, July 2007.

[45] P. Arora, C. Szepesvari, and R. Zheng, “Sequential Learning for Optimal Moni-
toring of Multi-channel Wireless Networks,” in Proc. of IEEE INFOCOM, April
2011.

[46] P. Arora, N. Xia, and R. Zheng, “A Gibbs Sampler Approach for Optimal Dis-
tributed Monitoring of Multi-Channel Wireless Networks,” in Proc. of IEEE
GLOBECOM, 2011.

VITA

110

VITA

Donghoon Shin was born in Seoul, South Korea. He received his B.E. and M.S.

degrees in Electrical Engineering from Korea University in 2003 and from Korea Ad-

vanced Institute of Science and Technology (KAIST) in 2006, respectively. Donghoon

started to pursue his Ph.D. in the School of Electrical and Computer Engineering at

Purdue University, West Lafayette, Indiana, in fall 2006. He has been conducting re-

search on network security under the guidance of Professor Bagchi, and also has been

working with Professor Ness B. Shroff, Professor Xiaojun Lin, and Professor Chih-

Chun Wang for his dissertation research and other research projects. His research

interests lie broadly in the areas of wireless networks, mobile systems, and smart

grids with emphasis on mathematical modeling, algorithm/protocol design and per-

formance analysis for security of these systems. He has worked as an intern at Intel in

Hillsboro, Oregon, in Standards and Advanced Technology Group from August 2011

to June 2012.

