
PROBABILISTIC ERROR DETECTION AND DIAGNOSIS IN LARGE-SCALE

DISTRIBUTED APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ignacio Laguna Peralta

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2012

Purdue University

West Lafayette, Indiana

ii

To my parents, Marisela and Ignacio, who sacrificed themselves to provide the best

education for me, and thought me the value of hard work and persistence.

To my wife, Sonia Ivonne, whose love has been unconditional throughout this

journey; this work has only been possible because of her support.

iii

ACKNOWLEDGMENTS

Many people contributed to this dissertation in countless ways, and I am grateful

to all of them.

First, I would like to thank my advisor, Prof. Saurabh Bagchi, for his patience

and encouragement during my graduate studies. He gave me constructive criticisms

as well as enough freedom to pursue my own ideas. He always motivated me and

trained me to improve the quality of my research. I am grateful for all the doors and

windows of opportunity that he opened to me along this journey.

I would like to thank my committee members, Martin Schulz, Prof. Samuel Mid-

kiff and Prof. Charlie Hu, for their encouragement, insightful comments, and hard

questions.

I also want to acknowledge the great advice that I received from my mentors at

the Lawrence Livermore National Laboratory (LLNL): Bronis de Supinski, Martin

Schulz, Todd Gamblin, Greg Bronevetsky and Dong H. Ahn. They introduced me

to the world of high-performance computing, taught me how to frame research ideas,

helped me in writing this dissertation, and provided professional advice to grow as an

independent researcher. I was privileged to work with so many talented individuals

at LLNL.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Summary of Contributions . 3

1.3 Published Work . 4

1.4 Outline . 6

2 Background . 8

2.1 Fault Model . 8

2.2 Summary of Related Work . 9

2.2.1 Debugging Parallel Applications 9

2.2.2 Error Detection via Metrics Analysis 11

2.2.3 Model Checking . 11

2.2.4 Problem Localization . 12

2.2.5 Failure Prediction . 13

2.3 General Design Goals . 14

3 Error Detection in Scientific Applications 16

3.1 Introduction . 16

3.2 Approach . 18

3.2.1 Semi-Markov Models . 19

3.2.2 Overview of Analysis . 20

3.3 SMM Mechanisms . 22

v

Page

3.3.1 Creating Time Distributions 22

3.3.2 Comparing Task SMMs . 23

3.3.3 Normalized SMM Comparison 24

3.3.4 Clustering Tasks’ Models . 25

3.4 Error Detection Procedure . 26

3.4.1 Phases and Epochs . 26

3.4.2 Faulty Phase Detection . 27

3.4.3 Pinpointing Faulty Task(s) and Error Sites Using SMM Analysis 28

3.4.4 Detection Using Transition Analysis 29

3.4.5 Visualization of Results . 30

3.5 Experimental Evaluation . 31

3.5.1 Fault Injection Types . 31

3.5.2 Results of Debugging Faults 32

3.5.3 Case Study: MVAPICH Bug 39

3.6 Discussion . 40

4 Scalable Error Detection in Scientific Applications 42

4.1 Introduction . 42

4.2 Redesign of AutomaDeD . 45

4.2.1 Efficient Edge Comparison 45

4.2.2 Graph Compression . 48

4.2.3 Scalable Outlier Detection 53

4.3 Experiments and Results . 58

4.3.1 Fault Injection . 58

4.3.2 Fault Injection Results . 59

4.3.3 Performance Results . 62

4.4 Discussion . 65

5 Problem Localization in Scientific Applications 67

5.1 Introduction . 67

vi

Page

5.2 Overview of the Approach . 68

5.2.1 Progress Dependence Graph 68

5.2.2 Workflow of Our Approach 71

5.3 Design . 73

5.3.1 Summarizing Execution History 73

5.3.2 Progress Dependence Inference 73

5.4 Scalable PDG-Based Analysis . 80

5.4.1 Error Detection . 80

5.4.2 Distributed Inference of the PDG 80

5.4.3 Determination of LP Task 81

5.4.4 Guided Application of Program Slicing 82

5.5 Evaluation . 84

5.5.1 Case Study . 84

5.5.2 Fault injections . 88

5.5.3 Performance . 91

5.6 Limitations . 94

5.7 Discussion . 95

6 Problem Localization in Commercial Applications 97

6.1 Introduction . 97

6.2 Overview . 100

6.2.1 Measurement Gathering . 100

6.2.2 Metrics . 101

6.2.3 Profiling . 101

6.2.4 Workflow of our Approach 103

6.3 Design . 104

6.3.1 Modeling Sequential Data 104

6.3.2 Detection of Suspicious Metrics 106

6.3.3 Detection of Anomalous Code Regions 109

vii

Page

6.4 Evaluation . 111

6.4.1 Case 1: Hadoop DFS . 112

6.4.2 Case 2: HBase . 115

6.4.3 Case 3: StationsStat . 117

6.4.4 Case 4: Mambo Health Monitor 119

6.4.5 Overhead . 122

6.5 Practical Implications . 123

6.6 Discussion . 124

7 Failure Prediction in Commercial Applications 125

7.1 Introduction . 125

7.2 Overview . 130

7.3 Augury: Building Blocks . 132

7.3.1 Sequential-Data Models . 132

7.3.2 Correlation-Coefficient Vectors 134

7.3.3 Classification of Anomalous Behavior 135

7.3.4 Metrics . 137

7.4 Design of Augury . 138

7.4.1 Data Gathering . 138

7.4.2 Training Time Series Models 140

7.4.3 Online Failure Prediction . 141

7.5 Testbed . 146

7.5.1 Testbed Application . 146

7.5.2 Workload Generation . 146

7.5.3 Baseline Approach: Polynomial Regression 147

7.6 Experiments and Results . 147

7.6.1 Fault Injection . 147

7.6.2 Fault Injection Results . 148

7.6.3 Performance Results . 151

viii

Page

7.6.4 Android Case 1: File Descriptor Leak 152

7.6.5 Android Case 2: HTTPS Request Hang 155

7.6.6 StationsStat Case Study . 158

7.7 Discussion . 163

8 Conclusion . 165

9 Future Work . 168

LIST OF REFERENCES . 171

VITA . 179

PUBLICATIONS . 180

ix

LIST OF TABLES

Table Page

4.1 Edge counts for fault injection experiments. 61

5.1 Dependence based on path probabilities. 77

5.2 Some examples of dependence unions. 81

5.3 LPT detection performance for AMG2006. 89

5.4 LPT detection performance for LAMMPS. 90

5.5 Slowdown and proportional increase in memory usage. 93

6.1 Metric descriptions. 102

6.2 Summary of case studies in Orion’s evaluation. 111

6.3 Average use of file descriptors per class in HDFS bug. 114

6.4 Summary of overhead (in seconds) per application. 123

7.1 Injected faults in RUBiS. 148

7.2 Failure look-ahead time results for faults where Augury can predict a
failure. 151

7.3 Times for the initialization and detection steps in Augury. 152

7.4 Literature survey of NSDI, OSDI, SOSP, DSN, ICDCS, Usenix ATC,
WASL, SLAML, SysML from 2004-2011. 164

x

LIST OF FIGURES

Figure Page

3.1 Design of AutomaDeD . 18

3.2 Example of a Semi-Markov Model . 19

3.3 Problem-size reduction with AutomaDeD 20

3.4 Example of histogram construction . 22

3.5 Output format of AutomaDeD after the debugging process is completed. 31

3.6 Average faulty phase detection accuracy 34

3.7 Faulty phase accuracy per application 35

3.8 Cluster isolation accuracy per application 37

3.9 Isolation of a singleton cluster . 38

3.10 Transition isolation accuracy per application 39

3.11 Phase deviation scores of MVAPICH bug use-case 41

4.1 Percent overlap of two normal distributions. 48

4.2 Compression approach. 49

4.3 Global reduction of edges support. 51

4.4 Depth-first-search compression algorithm. 52

4.5 Clustering and Nearest-Neighbor methods to isolate abnormal tasks. . 54

4.6 Task-isolation results for NN and clustering. 60

4.7 Edge-isolation with NN and clustering. 62

4.8 Lk-norm computation times. 63

4.9 Time to isolate tasks and edges for the AMG2006 benchmark. 64

4.10 Trend lines for the total analysis time. 66

5.1 Progress dependence graph example. 69

5.2 Overview of the diagnosis work flow. 71

5.3 Markov model creation. 74

xi

Figure Page

5.4 Example of a collective operation executed by two tasks. 75

5.5 Sample Markov model with five blocked tasks. 76

5.6 Algorithm to create the PDG. 79

5.7 Output for ddcMD bug. 85

5.8 Examples of PDGs indicating LP tasks (highlighted)—errors are injected
in task 3. 87

5.9 Time of distributed analysis (steps 2–4 in workflow) on BlueGene/P. . 92

5.10 Fault occurring in a code with multiple paths. 94

6.1 Overview of problem determination workflow in Orion. 103

6.2 Steps in the creation of the normal-behavior hyper-sphere. 106

6.3 Algorithm to select the suspicious metrics from traces of a failed run. . 108

6.4 Example of the steps in detecting the abnormal code region. 109

6.5 Algorithm to select the suspicious code regions from traces of the failed
run. 110

6.6 Sample section of the pacth to fix the HDFS bug. 112

6.7 Results from Orion for the HDFS bug. 113

6.8 Results from Orion for the HBase bug. 116

6.9 Results from Orion for the StationsStat case. 118

6.10 Mambo Health Monitoring system. 119

6.11 Results from Orion for the Mambo Health Monitor problem. 121

7.1 Example of a correlation that is broken and a correlation that is main-
tained. 128

7.2 Overview of Augury’s approach. 132

7.3 Hyper-sphere example for a 3-metrics system. 136

7.4 Monitored metrics per layer. 139

7.5 Windows that are used in the selection of the best model. 142

7.6 Recall and precision results for non-forecasting and forecasting operational
modes of Augury, and for regression. 150

7.7 Sample code that triggers bug 4825 in Android. 153

xii

Figure Page

7.8 Number of file descriptors for the three workloads used in Android case
study 1. 154

7.9 CCV distances for the the applied workloads. 156

7.10 Examples of correlation-coefficients (CC) that are broken by the Android’s bug. 156

7.11 CCV distances for the the tested workloads in the second case study. . 157

7.12 CCV distance for a segment of known failures. 160

7.13 (a) CCV distance for unknown failures of StationsStat; (b) Zoomed-in
plot of one of the failures. 162

xiii

ABBREVIATIONS

CC Correlation coefficient

CCV Correlation coefficient vector

HPC High-performance computing

LP Least progress

LPT Least-progress task

MM Markov model

MPI Message passing interface

NN Nearest neighbor

SMM Semi-Markov model

PDG Progress-dependence graph

xiv

ABSTRACT

Laguna, Ignacio Ph.D., Purdue University, December 2012. Probabilistic Error De-
tection and Diagnosis in Large-Scale Distributed Applications. Major Professor:
Saurabh Bagchi.

As today’s distributed applications increase in complexity, it becomes increasingly

difficult to detect errors and performance anomalies in these applications. In addition,

some faults only manifest when the application is deployed at large scale. Most of

the existing debugging tools scale poorly and do not automate the process of finding

the origin of failures. Although it is desirable to automatically predict impending

failures, most of the existing error detection approaches do not predict failures.

This dissertation proposes scalable techniques for error detection, problem local-

ization, and failure prediction for distributed applications. First, an error detection

and diagnosis technique for scientific applications is presented. The technique sum-

marizes historic control-flow and timing information of MPI tasks using semi-Markov

models. When a failure occurs, it leverages the models to determine the parallel

task(s) and code region(s) where a fault is first manifested. The isolation of a difficult-

to-catch bug in a large scale molecular dynamics simulation code and fault injections

demonstrate the effectiveness of the technique. Second, frameworks for problem-

localization and failure-prediction for commercial distributed applications are pro-

posed. The frameworks learn application’s normal behavior by monitoring multiple

performance metrics. They then infer normal correlations between the metrics to pin-

point the suspicious metric(s) and code region(s) where faults are manifested. Using

time-series models, the frameworks can predict impending failures with up to 15–51

minutes in advance. The frameworks are demonstrated with bug cases in Apache

Hadoop, HBase, Android OS, and a campus-wide Java EE application.

1

1. INTRODUCTION

1.1 Motivation

Distributed systems and applications are becoming increasingly pervasive in to-

day’s world providing the core infrastructures for the largest commercial and scientific

applications. The complexity and scale of these applications increase continuously as

they span a larger number of software components, parallel tasks1 and computing

nodes. For example, large-scale applications running in today’s data centers and su-

percomputers span thousands of computing nodes with multiple cores per node. With

this increasing trend in complexity and scale, it also becomes increasingly difficult to

detect errors, performance anomalies, and unexpected behavior in these applications.

System administrators need efficient techniques and practical tools for error detection

without significantly slowing down the main applications and that scale to the size

of the largest systems. Error-detection techniques need to operate online—as the

application runs—and to detect errors and anomalies with a small delay—the time

between the error manifestation and its detection has to be short.

Debugging, an important step in the software developing process, also becomes

increasingly challenging as the number of concurrent tasks increases in large-scale

distributed applications. With millions of cores in the largest supercomputers, fixing

bugs in high-performance computing (HPC) applications is a non-trivial task. Most of

the existing debugging techniques, as implemented in tools like gdb [1], TotalView [2]

and DDT [3], do not automate the debugging process—developers must manually lo-

cate the root-case of problems by backtracking through interactions across processes.

Also the majority of the debugging tools perform poorly at large scale—the over-head

1In this work we refer to a “task” and a “process” interchangeably.

2

of collecting large amounts of runtime information and an absence of scalable error

detection algorithms generally cause poor scalability.

Many of the large-scale distributed applications require continuous availability to

ensure business continuity. To reduce the application downtime, it is desirable to

automatically localize the origin of failures, and, whenever it is possible, to predict

impending failures based on observed symptoms in the system. Problem localization

(or failure diagnosis) is a critical aspect of a fault-tolerant distributed application—

to recover from a failure, one has to first localize the application component that

originated the failure so it can be replaced. The granularity of the problem localization

step can be a compute node, a set of abnormal tasks, a code region or even a line of

code. The finer the granularity the faster the recovery phase.

When failures can be anticipated with sufficient time, mitigation techniques can

be triggered in advance, such as software rejuvenation [4], microrebooting [5], redi-

rection of further requests to a healthy server, or simply starting a backup service

for the data. Many software bugs and performance anomalies develop at runtime a

temporal pattern that ends up in end-user failures such as unresponsiveness, resource

exhaustion or crashes. Metrics of the operating system, middleware and application

can be measured to detect errors as previous research has demonstrated [4, 6–10].

Unfortunately, the majority of the existing approaches only consider a restricted set

of metrics, do not analyze measurements (and relations between them) in a temporal

manner, and most importantly, do not do any failure prediction.

The number of hardware and software architectures that are used today for dis-

tributed computing, along with multiple programming models, also increases the

difficulty of building error-detection and diagnosis tools because of the diversity of

features that need to be considered. As a consequence, it is challenging to build

tools that work in general for all types of distributed architectures and programming

models—features that are useful in detecting problems in a particular architecture

or programming model may not necessarily be the best features to analyze to detect

problems in another one.

3

1.2 Summary of Contributions

In this dissertation we make the following contributions:

• We design scalable techniques for error detection and problem localization in

large-scale distributed applications. We evaluate my techniques in distributed

applications with two common architectures:

Commercial applications: (i) client-server multi-tier applications in which

the presentation, the application processing, and the data management are logi-

cally separate processes. Example of these architectures are the Java Enterprise

Edition (Java EE) standard [11]; (ii) MapReduce programming model [12] for

processing large data sets. MapReduce is typically used to do distributed com-

puting on clusters of computers.

HPC applications: scientific and engineering applications that run in large

clusters of machines with parallel tasks that communicate with the message-

passing interface (MPI) [13].

In multi-tier applications the features that we analyze are metrics from the

system-to-application stack, whereas in the HPC applications we analyze per-

parallel-process information (about their control-flow and execution time of code

blocks).

• We introduce an error-detection and problem-localization technique, called Au-

tomaDeD, that helps application developers find the period of time, parallel task

and code region where a fault is first manifested in a HPC application. Parallel

tasks’ behavior is modeled statistically using semi-Markov models which are an-

alyzed using scalable clustering and nearest-neighbor methods to pinpoint the

location of errors. AutomaDeD builds a model that captures the control-flow

and timing characteristics of MPI parallel tasks in an efficient way by gath-

ering stateful information at MPI calls. AutomaDeD is able to pinpoint the

origin of correctness problems, such as an application’s hang, by creating a

4

progress-dependence graph of all the MPI tasks and by finding probabilistically

the least-progress task (that often originates the hang).

• We introduce a failure-prediction and error-detection technique, called Augury,

that keeps track of temporal and spatial correlations between metrics in com-

mercial applications. Metrics are gathered from different levels of the applica-

tion stack—the OS-, middleware- and application-level—and a statistical model

of “normal” behavior is built up in an offline phase. Examples of the metrics

that are monitored are CPU- and memory-utilization, number of threads, and

user-request counts. At runtime, Augury looks for deviations of “normal” rela-

tions between the metrics to predict impending failures.

• We introduce a problem-localization technique, called Orion, that uses the same

statistical models of Augury to pinpoint regions of code where software bugs are

manifested on. Orion uses metric-correlation deviations to find the abnormal

window of time, abnormal metrics and abnormal code regions when a fault is

manifested.

• All my techniques are evaluated with real-world bug cases and with fault-

injection methods at large scale. We show the efficacy of AutomaDeD in iso-

lating the origin of a bug—an application’s hang at 8,000 MPI tasks or more—

that occurred in the development of a molecular-dynamics simulation code at

the Lawrence Livermore National Laboratory. We evaluate Augury and Orion

with real-world bug cases from a multi-tier application that runs on Purdue’s

campus, with the Android OS, and with bug cases of BigData applications such

as Hadoop and HBase.

1.3 Published Work

Individual parts of the work presented in this dissertation have appeared in the

following publications:

5

• Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, Todd

Gamblin: Probabilistic Diagnosis of Performance Faults in Large-Scale Parallel

Applications, International Conference on Parallel Architectures and Compila-

tion Techniques (PACT), Minneapolis, MN, Sep, 2012.

• Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi, Greg

Bronevetsky, Dong H. Ahn, Martin Schulz, Barry Rountree: Large Scale De-

bugging of Parallel Tasks with AutomaDeD, ACM/IEEE Conference on Super-

computing 2011 (SC), Seattle, WA, Nov, 2011.

• Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski,

Dong H. Ahn, and Martin Schulz: Statistical Fault Detection for Parallel Ap-

plications with AutomaDeD, 6th IEEE Workshop on Silicon Errors in Logic -

System Effects (SELSE), Stanford, CA, Mar 23-24, 2010.

• Greg Bronevetsky*, Ignacio Laguna*, Surabh Bagchi, Bronis R. de Supinski,

Dong H. Ahn, Martin Schulz: AutomaDeD: Automata-Based Debugging for

Dissimilar Parallel Tasks, IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Chicago Illinois, Jun-Jul, 2010. (* co-first au-

thors).

During my work on this dissertation, I have contributed to other published work

that is closely related to error detection and diagnosis of large-scale distributed ap-

plications but that is somewhat outside scope for inclusion:

• Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski:

Automatic Fault Characterization via Abnormality-Enhanced Classification,

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), Boston, Massachusetts, Jun, 2012.

• Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Greg L. Lee, Ben Liblit,

Barton P. Miller, and Martin Schulz: Scalable Temporal Order Analysis for

6

Large Scale Debugging, ACM/IEEE Conference on Supercomputing 2009 (SC

2009), Portland, OR, Nov 2009.

• Ignacio Laguna, Fahad A. Arshad, David M. Grothe, Saurabh Bagchi: How To

Keep Your Head Above Water While Detecting Errors, ACM/IFIP/USENIX

10th International Middleware Conference (Middleware 2009), UIUC Illinois,

Nov-Dec 2009.

My work on large-scale debugging of HPC applications presented in this disser-

tation has been recognized with the ACM & IEEE George Michael Memorial HPC

Fellowship for 2011, which was announced in the Supercomputing (SC) conference in

November, 2011. This award honors exceptional PhD students throughout the world

whose research focus area is HPC.

1.4 Outline

This dissertation is structured as follows. We begin by surveying the related work

in error detection, problem localization and failure prediction in Chapter 2. We also

present in this chapter the assumed fault model for the techniques that we propose

and a general view of their design goals. In Chapter 3, we present an error detection

technique for scientific applications named AutomaDeD (Automata-based debugging

for dissimilar parallel tasks). In Chapter 4, we focus on extending AutomaDeD’s

framework to large-scale systems by using scalable machine-learning methods and

efficient compression algorithms. In Chapter 5, we present a diagnosis technique

for scientific applications based on AutomaDeD’s statistical models. We present a

failure diagnosis technique, named Orion, for commercial applications in Chapter 6.

In Chapter 7, we present Augury, a failure prediction and error detection framework

for commercial applications. Finally, I conclude in Chapter 8 and present future work

in Chapter 9.

Notice that, as described by Chapters 3, 4 and 5, AutomaDeD is a framework

that is composed of multiple techniques for error detection and diagnosis in HPC

7

applications. Although the design choices for each technique are different (as it is

explained in each chapter), we term each technique as AutomaDeD throughout these

chapters.

8

2. BACKGROUND

In this chapter, first, we give an overview of the fault model that is used in the

dissertation. Second, we summarize related work in debugging, error detection and

failure prediction in distributed applications in the past years. Finally, we describe

the design goals for the techniques that are presented in the following chapters.

2.1 Fault Model

We follow the following definitions for failure, error and fault:

• Fault: is a defect, incorrect step, process or data definition in a computer

program. Faults are the hypothesized cause of an error. In most cases, faults

remain dormant for some time and once they become active, they cause an

incorrect system state, which is an error. An example of a fault is a software

bug (i.e., a programmer’s mistake).

• Error: is the situation when “things go wrong” in the system because a fault is

manifested. Formally, an error happens when the system’s states deviates from

the correct state. As a consequence, an error is the part of the system’s state

that may lead to its subsequent service failure. An example of an error is when

a software bug is activated when the buggy code is executed.

• Failure: is defined as “an event that occurs when the delivered service deviates

from correct service”. The key idea is that it can be observed by the application

user. An example of a failure is when an application hangs because of an error.

Some of the techniques presented in this dissertation are executed online—when

the application runs—to detect and diagnose problems in the application. To differ-

entiate from related work where problem detection is performed offline—for example

9

when software bugs are found using static source-code analysis—we use the term er-

ror detection instead of fault detection. We consider that the errors that are detected

could be caused due to multiple reasons such as incorrect system configurations or

deployments, software bugs, or unexpected performance problems.

We term the process of identifying the nature and cause of a failure (or error) as

“diagnosis”. We use the terms “diagnosis”, “problem localization” and “root-cause

analysis” interchangeably. We consider “debugging” as a diagnosis process that is

done offline by a human being rather than online by a computer program.

2.2 Summary of Related Work

2.2.1 Debugging Parallel Applications

Traditional debugging techniques, including sequential debuggers such as gdb [1]

and “printf debugging,” require that users manually trace the origins of their coding

error. Traditional parallel debuggers, such as DDT [3] and TotalView [2], extend

these techniques to allow tracing of multiple processes. They provide convenient

interfaces to the state of these processes, but the main procedure of identifying errors

remains manual. Overall, the traditional techniques require a significant amount of

user experience, intuition and time, and are ultimately unreliable for debugging of

large, complex parallel applications.

Several debugging tools detect bugs in large-scale applications without relying on

much manual effort. These typically focus on detecting violations of deterministic

and statistical properties of the applications. Deterministic tools can validate certain

properties at runtime; any violation of these properties during an execution is reported

as an anomaly. For example, FlowChecker [14] focuses on communication-related bugs

in MPI libraries. It extracts information on the application’s intentions of message

passing (e.g., by matching MPI Sends with MPI Receives) and at runtime checks

whether the data movement conforms to these intentions. Bug localization follows

10

directly: the data movement function that caused a discrepancy is the location of the

bug.

Statistical tools [15,16] detect bugs by deriving the application’s normal behavior

and looking for deviations from it. For example, if the behavior of a process is similar

to the aggregate behavior of a large number of other processes, then it is considered

correct and different behaviors are considered incorrect. Mirgorodskiy et al. [16]

monitors the application’s timing behaviors and focus the developer on tasks and

code regions that exhibit unusual behaviors. This focuses on function call traces to

identify the trace that is most different from other traces. DMTracker [15] uses data

movement related invariants, tracking the frequency of data movement and the chain

of processes through which data moves.

While the above tools are effective in their own domains, their primary weakness

is that their designs do not consider scalability. Typically, these tools collect trace

data during the application’s execution and write it to a central location. They then

process the data to detect potential problems. In contrast, the techniques presented

in this dissertation,analyzes the application’s behavior online, without any central

bottlenecks. In this respect, the closest prior work to ours is STAT [17–19], which

provides scalable detection of task equivalence classes based on the functions that

the processes execute. STAT uses MRNet [20], a tree-based overlay network, to

gather and to merge stack traces across tasks and presents the traces in a call-graph

prefix tree that identifies task equivalence classes. STAT removes problems associated

with a central bottleneck by reducing the trace data as part of a computation being

performed within the overlay network through a custom reduction plug-in. STAT

focuses primarily on the state of the application once an error manifests itself, whereas

we focus on scalable analysis of the entire application execution.

11

2.2.2 Error Detection via Metrics Analysis

In troubleshooting computer systems, a conventional approach widely used in

practice, is to measure values of various metrics and compare these values to (man-

ually set or automatically deduced) thresholds. More subtle techniques compare not

instantaneous values, but trends in values to thresholds.

In the research literature, there is a volume of work in identifying errors (latent

or already manifested) through analysis of metric values, typically through variants

of machine learning algorithms [7–10,21]. The canonical structure for this work is to

create models of expected behavior based on labeled (typically) or unlabeled measure-

ments of metrics, and then during runtime collect measurements of the same metrics,

use the same algorithm to generate a model and identify if the generated model is sig-

nificantly different from the prior-learned models, which would indicate an anomaly.

Most of these approaches go further in trying to localize the identified problem to

a small part of the source code, where the localization is predicated on identifying

which parts of the code cause the model generated through runtime observations to

differ from the prior models. There is a specific line of work within localization, which

seeks to automatically generate signatures of problems that have been observed in the

system and fixed through manual means [10,22]. These signatures comprise values of

multiple metrics over time. Later when a problem arises and its signature is deduced,

if the signature matches that of a prior problem, then the fix from the prior problem

can be applied, possibly with some modification.

2.2.3 Model Checking

Model checkers are useful for checking small applications against specifications [23–

26]. Due to the exhaustive nature of model checking, it is not feasible for most real-

world applications. In addition, it is more appropriate for checking against specifica-

tions. Liu et al [27] proposes a technique that does live model checking and provides

execution replay. The programmer writes a predicate that is invariant throughout the

12

execution, and this predicate is checked as the application runs. When the predicate

is violated, the system states leading to the violating state are given as output. While

this approach works well for specifications, as the instruction that changes the system

state from conforming to violation is usually the root cause of the problem, for other

types of problems such as performance problems, the errors may have accumulated

from different regions of the code before the specification is violated. My techniques

do not assume that the instruction that causes the system state to be a violation

is the root cause of the problem, and are thus more applicable to a wider range of

problems.

2.2.4 Problem Localization

There is a volume of recent work that utilizes statistical methods to detect and

localize problems. Some of the work analyzes application logs [28–31]. However, there

is often a one-to-many mapping between the log record corresponding to the problem

and the actual code regions that could be the source of the problem. [32–34] analyze

request flows to diagnose problems in request-processing applications. Other work

analyzes metric values, typically using machine learning algorithms [35–38]. In [35]

and [36], the signature of the current problem is compared to a database of known

problems. If there is a match, the diagnosis and fixes used previously can be reused

again. This approach is suitable for problems that are not easy to fix even if the

root cause is known (e.g., overloaded servers), problems due to the environment, or

hardware problems. In other situations, once a problem is diagnosed and fixed, it

will not occur again, limiting the usability of the tool. The overall approach of [37]

and [38] is similar to the approaches presented here in that machine learning models

are trained based on training data, and the models are then used to classify current

state of the system. If the system is in an abnormal state, the metrics that are most

abnormal are reported to help localize the failure’s origin. In addition to this, when

this is not enough to pinpoint the location of the fault, my techniques go a step further

13

and provide a ranking of most suspicious code regions to reduce the programmer’s

effort needed to fix the problem.

2.2.5 Failure Prediction

Failure prediction methods have been proposed for hardware [39–42] and soft-

ware [9,43,44] failures. The majority of the proposed techniques keep track of events

in the monitored system to build up symptoms that correlate to previously observed

failures. Examples of events that are monitored are hard drives features and system

logs for hardware failures, and system performance metrics such as cpu- and memory-

usage for software failures. The main objective of failure prediction is to anticipate a

failure so that mitigation actions can be taken. A common approach—used in both

hardware and software failures—is to keep track of sequences of errors, i.e., fault man-

ifestations that have not been resulted in an end-user failure, to anticipate failures

when a particular sequence is found in a fixed period of time [40, 43], for example

when five errors occur in a short time window. Another approach, when metrics of

the system are monitored, is to model measurements of metrics with regression and

time-series models and to forecast future values of the metrics [4]. If forecasted values

go beyond a threshold, a problem is said to be anticipated.

The existing approaches for failure prediction suffer from one or more of the follow-

ing problems: (a) a limited number of metrics or events of the system are considered—

if a fault is manifested in a metric or event that is discarded a priori, this fault will not

be detected which reduces the possibility of predicting a failure; (b) because of the

complexity of the statistical models that are used, many techniques do not scale to a

large number of metrics and computing nodes in large-scale distributed application.

Therefore these techniques cannot be used online to anticipate failures because they

cannot keep up with the distributed application demands [9]; (c) the failure predic-

tion technique does not do any failure detection, or vice versa, often because the two

types of techniques are decoupled. This limits their usability in real-world scenarios

14

where, if a failure cannot be predicted, at least it could have been detected with a

short delay so that system administrators can take recovery actions in a short time

from the problem manifestation.

2.3 General Design Goals

Here we describe the set of desired characteristics or goals for the techniques that

are presented in this dissertation:

• Online operation: we want our techniques to operate in an online manner,

i.e., to be executed as the application runs. Many faults are only manifested

at runtime, so online techniques are needed to detect these classes of faults.

Online operation also permits to detect errors close to the manifestation time

so that recovery actions can be taken before they become failures and visible to

end users.

• Minimum performance degradation of the monitored application: I

aim at designing techniques that degrade minimally the performance of the mon-

itored applications, or to avoid affecting them at all if it is possible. Examples

of mechanisms that can affect the performance of the monitored applications

are (i) software instrumentation (e.g., by using library wrappers or binary in-

strumentation), and (ii) system-to-application-stack metrics collection. We aim

at using instrumentation that gives sufficient granularity for the error-detection

and problem-localization but that does not slow down the execution time of the

application substantially. The typical slowdown for our techniques is between

1.01x and 1.67x.

• Scalability: we want our techniques to be scalable to the size of the largest

distributed applications and machines of today. Our techniques should handle

growing amounts of work in a graceful manner, where the amount of work can

15

grow by various ways such as a large number of computing nodes, parallel tasks

or software components.

• Problem localization: We aim at techniques that can help developers and

system administrators locate the source of a problem quickly. This could be in

the form of pinpointing the source code block where an error is first manifested

or propagated to, or by finding metrics from the system-to-application stack

that are highly related to a problem. The idea is that, after an error or a

failure is detected, the detection report should also provide useful information

for developers and system administrators that facilitate locating and fixing the

original fault.

• Low detection delay and look-ahead time: Two type of time-based mea-

sures are important when designing our techniques: (i) error-detection delay :

the elapsed time between a fault manifestation (i.e., an error) and its detection;

(ii) look-ahead time: the time between a failure is anticipated and its actual

occurrence (if it occurs). We aim at reducing these times as much as possible.

The first one helps in reducing the downtime of a system while the second one

allows the activation of mitigation techniques in advance.

16

3. ERROR DETECTION IN SCIENTIFIC

APPLICATIONS

In this chapter we present AutomaDeD (Automata-Based Debugging for Dissimilar

Parallel Tasks), a framework for detecting errors in HPC applications. We first give

background information about debugging and error-detection in clusters of MPI ap-

plications. Next, we describe the methodology that we use to model the behavior of

MPI tasks and that we use to isolate problems. Finally, we show an experimental

evaluation of the framework with fault injections and a bug in the MVAPICH library

(a portable implementation of the message-passing interface).

3.1 Introduction

The number of cores used in large scale systems already exceeds a million cores.

As a result, the challenge of developing correct, high performance applications is also

growing. When an application does not complete or completes with incorrect results,

the developer must identify the offending MPI task and then the portion of the code

in that task that caused the error. Traditional parallel debugging tools [2, 45–47]

often perform poorly at large task counts. We focus on developing a detection tool

set that identifies the offending task and, to a customizable granularity, the relevant

portion of code within the task.

We present AutomaDeD , a tool set that achieves this goal of focusing debugging

efforts to improve developer efficiency. It performs runtime monitoring of a parallel

application to build a statistical model of the application’s typical timing and control

flow behavior. The typical use case for AutomaDeD is that a user suspects a run of

an application is erroneous and would like to get some guidance to what parts of the

application code to focus on for debugging. AutomaDeD achieves this by identifying

17

the period in time, the task(s), and the error site, the region of code, where a fault

first manifests itself. Thus, AutomaDeD provides the basis for eventual root cause

diagnosis including identification of the exact erroneous line of source code.

This work makes technical contributions in two broad areas. First, we describe

a model to characterize the behavior of parallel applications. Second, we present

methods that compare the behavior of tasks in a parallel application in time and in

space to identify the error site. AutomaDeD models the the control flow and timing

behavior of application tasks as Semi-Markov Models (SMMs) and detects faults that

affect these behaviors. States of these SMMs represent regions of application code

and edges represent execution progress from one region to another. SMMs capture

the probability of transitioning from one region to another and the distribution of

times spent in each region. We delimit code regions by MPI calls and use MPI calls

(along with call stack information) and the computation interleaved between them as

two different kinds of states in SMMs.

AutomaDeD examines how each task’s SMM changes over time and relates to the

SMMs of other tasks to identify the task and code region where a given fault is first

manifested. First, AutomaDeD detects which time period in the execution of the

application is likely erroneous. AutomaDeD then clusters task SMMs of that period,

and performs cluster isolation, which uses a novel similarity measure to identify the

task(s) suffering from the fault. Finally, transition isolation detects the transitions

that were affected by the fault more strongly or earlier than others, thus identifying

the code region where the fault is first manifested. In addition to focusing the devel-

oper on the root cause of their bug, AutomaDeD also enables the use of traditional

debuggers, such as gdb [1], at previously infeasible scales by focusing them on the

time period, tasks and code regions that are most likely to have a bug.

Our evaluation injects synthetic errors into six applications from the NAS Parallel

Benchmark (NPB) suite [48] at random time points and in randomly chosen tasks.

The errors include delays, hangs in application tasks, interference due to execution

of an extra CPU- or memory-intensive thread on an application compute node and

18

Offline User: Phases Annotation

Application
Task1 Task2 Taskn. . .

PNMPI Profiler

SMM1 SMM2 SMMn. . .

Online

Offline
Clustering

Abnormal Tasks
Abnormal Phases

Characteristic Transitions

Fig. 3.1.: Design of AutomaDeD

message drops and duplication. Our results demonstrate that AutomaDeD correctly

identifies the time period that is likely erroneous in 90% of our trials for delays, hangs

and message faults and in 70% of our trials for interference faults. Given the correct

time period, AutomaDeD ’s cluster isolation achieves over 80% accuracy for delays

and hangs, 40% for message faults and 70% accuracy for interference faults. Given

the correct cluster, it isolates the injected transition with 90% accuracy for delays

and hangs and 50% accuracy for interference faults.

3.2 Approach

As Figure 3.1 shows, this version of AutomaDeD consists of both on-line and off-

line mechanisms. An on-line mechanism gathers data about executions into an SMM

19

Fig. 3.2.: Example of a Semi-Markov Model

database. AutomaDeD ’s off-line mechanisms then use this data to derive a deeper

understanding of the application behavior, particularly when bugs are manifested.

3.2.1 Semi-Markov Models

We model the control flow and timing properties of application tasks in order to

debug common anomalies. We track control flow as a sequence of application states,

defined as MPI calls (including their arguments and call stack) or the computation

interleaved between them. We maintain the amount of time each task spends in each

state to capture temporal aspects of the states. Given the expense of maintaining full

traces, we model task behavior as a Semi-Markov Model (SMM), a finite automaton

of task states and transitions where the task spends a random amount of time in each

state and randomly selects its next transition with no dependence on its history.

Figure 3.2 shows a sample SMM with edges labeled by the probability of transition-

ing from one state to another and the probability distribution of the time preceding

the transition. In the above SMM, tasks in state S3 transition to state S1 40% of the

20

time and to S2 the other 60%, with the times that precede the transitions sampled

from distributions F3,1 and F3,2, respectively. Probability distribution Fi,j explains

the amount of time the application spends in state i before transitioning to state j.

We compute the SMM states, transitions and probability distributions from program

traces captured on-line by a PnMPI-based wrapper library [49] that intercepts all

calls to MPI functions. We use the observed normalized frequency of each transition

as its transition probability. Section 3.3.1 explains how we derive time distributions.

3.2.2 Overview of Analysis

Fig. 3.3.: Problem-size reduction with AutomaDeD

The SMM abstraction couples the dynamic execution of an application with dis-

tinct regions of its code. Thus, we can focus the developer’s attention on the tasks and

regions of code that are behaving anomalously. Figure 3.3 shows the several stages

in which we accomplish this goal. First, we divide the application’s execution into

a series of time periods called phases. Naturally, applications behave according to a

repetitive pattern for periods of time and then their behavior changes, to a different

repetitive pattern or some random pattern. We divide the period of time of repetitive

behavior into smaller time periods, which we call phases. Thus, across the phases

within one repetitive pattern boundary, we expect the application behavior to be

statistically identical. AutomaDeD then computes an SMM for each task within each

21

phase and then clusters similar SMMs for each phase. This clustering may partition

the tasks based on correct differences between them, such as with master-slave ap-

plications that have two correct partitions. Alternatively, it may identify behavioral

differences due to a bug. AutomaDeD either compares a task’s SMMs from different

phases or the task clustering from different phases to determine the phase during

which a bug is first manifested. It can also compare SMMs or their clusterings to

those from prior, correct executions. If no sample runs are available, AutomaDeD

calibrates its bug detection algorithms based on the first phase, which works well in

practice because we target rare, hard to find bugs, which manifest themselves after a

few iterations of the main processing loop.

Once AutomaDeD identifies a faulty phase, it proceeds to identify the task cluster

or individual task in which the bug is first manifested. AutomaDeD compares SMMs

or clusters across phases to identify the SMM or cluster that has changed the most

from the normal phases. AutomaDeD can again use SMMs or clusters from prior,

correct executions or earlier phases of the same execution. AutomaDeD also com-

pares the individual state transitions within the faulty phase to find the first unusual

transition, which may identify the error site. Alternatively, the most unusual SMM

transition of the faulty task may identify it.

Thus, AutomaDeD focuses the developer’s debugging efforts through multiple

steps. First, it identifies the faulty execution phase. Then it finds the faulty task or

group of tasks. Finally, it locates the error site. The granularity of this identification

is a state in the SMM. Thus, AutomaDeDdoes not identify the root cause of the

error and cannot identify the manifestation to a very fine granularity, such as line of

code. However, it does significantly reduce the amount of information that must be

considered when performing a root cause analysis.

22

Time Values

Time Values

Histogram
Bucket
Counts

Data
Samples

Gaussian Tail

Line Connectors

Fig. 3.4.: Example of histogram construction

3.3 SMM Mechanisms

3.3.1 Creating Time Distributions

We consider two methods for deriving the time probability distributions that ex-

plain the time spent by a task in the SMM states. In one, we assume that the time

values follow a Gaussian distribution. In the other, we compute a histogram of ranges

of the observed time values, instead of assuming a particular distribution.

Assuming Gaussian distribution has several advantages. First, we can easily cal-

culate the parameters of a Gaussian distribution given enough sample points. By

using maximum-likelihood estimation, we only need to calculate the mean and stan-

dard deviation of the data points. Second, it is a well-known distribution with a rich

theory. However, a Gaussian distribution is not appropriate for state transitions that

have multi-modal or asymmetric behavior. The former can occur when different code

within a compute region is executed at different times and the latter occurs when

the time that precedes a transition is consistent except for spikes due to system or

network interference.

Histograms provide a more detailed fit to the observed data. The basic approach,

which Figure 3.4 shows, divides the observed data points into a number of equal-

sized buckets. The probability of a particular bucket is the fraction of data points

23

within it. Since timing data may have outliers orders or magnitude above the median,

equal-sized buckets can aggregate most data points into a single bucket, providing

poor resolution. We therefore used variable-sized buckets via an online clustering

algorithm. We assign each new data point to its own bucket. If the resulting number of

buckets rises above a threshold, we merge the two buckets with the closest means. We

derive a continuous probability distribution from the discrete histogram by linearly

connecting adjoining bucket counts and modeling the regions beyond the smallest

and largest buckets using the lower and upper halves of Gaussian distributions, which

models the probability of observing new extreme values.

The basic tradeoff between these two distributions is that Gaussians are cheaper

(in terms of computation and memory cost to create and to query) and more con-

strained, while histograms are more expensive but very flexible. Evaluating both

options provides significant information about the basic tradeoffs of this design pa-

rameter, thus illuminating the potential of other statistical models such as mixed-

Gaussian distributions and Kernel Density Methods [50].

3.3.2 Comparing Task SMMs

AutomaDeD detects faulty phases and tasks and performs task clustering by com-

paring SMMs to each other. We define an SMM distance metric that reflects the

differences between the control flow and timing behaviors of their respective tasks.

The difference between two SMMs is the sum of the differences in their transition

probabilities and transition time distributions.

Given two SMMs A and B, let SA and SB be their sets of states, and TA and

TB be their sets of transitions. A transition between two models are the same only

if their source and destination states are the same. Also let ds,i be the state tran-

24

sition probability distribution for state s ∈ Si, and let dt,i be the time probability

distribution for transition t ∈ Ti. The difference between A and B is:

Diff(A, B) =
∑

s∈S

D(ds,A, ds,B) +
1

ν

∑

t∈T

D(dt,A, dt,B) (3.1)

where S = SA ∪ SB, T = TA ∪ TB, D(dr,A, dr,B) is the difference between a pair of

probability distributions dr,A and dr,B, where r is a state or transition. ν corresponds

to a weighting factor defined in Section 3.3.3 that weighs differences on transitions

with consistent timing behavior above those with poor information content. We define

the metric D(dr,A, dr,B) as:

D(dr,A, dr,B) =

L2(dr,A, dr,B) ∗ α if r ∈ A and r ∈ B

10 otherwise
(3.2)

L2(dr,A, dr,B) is the L2 norm between the probability distributions [51], L2(dr,A, dr,B) =
∫∞

−∞
|dr,A(j)− dr,B(j)|2dj. The integral is over the space of possible events (state tran-

sitions or transition times).The parameter α gives greater weight to differences in time

distribution with distant means, µd and µd′ . For time distributions it is equal to

α = 1 +
|µdr,A

− µdr,B
|2

(µdr,A
+ µdr,B

)/2
(3.3)

and α = 1 for state transition distributions.

In most cases D(dr,A, dr,B) is below 10 for transitions and states r that appear in

both A and B. As such, if r appears in one but not the other, D(dr,A, dr,B) was set

to 10 to make differences in application control flow more significant than differences

in its timing behavior.

3.3.3 Normalized SMM Comparison

Different SMM transitions will have very different timing properties, with a variety

of means, standard deviations and distribution shapes. Differences between SMMs

on a transition that has consistent timing and a tightly focused distribution can be

very informative. In contrast, if the transition is noisy, the differences are most likely

25

due to system interference. AutomaDeD focuses on the critical differences between

two SMMs by looking at the “normal” difference between the SSMs of a sample set

and weighting D(dt,A, dt,B) accordingly. Thus, given a transition t and a set M of

sample SMMs, we define the weighting factor ν as the root-mean-square of D on this

transition among the members of M :

ν =

√

∑

A,B∈M,A 6=B D(dt,A, dt,B)2

|pairs(t, M)|
(3.4)

where |pairs(t, M)| is the number of SMM pairs in M that both have transition t. In

the absence of sample runs, ν for a given transition in a given phase of the faulty run

is computed by summing over SMMs in the run’s other phases.

This weighting scheme overcomes a commonly observed effect where certain transi-

tions have multi-modal timing characteristics—very consistent timing behavior within

each mode and sudden shifts to a different mode either within a given run or across

multiple runs. This may be caused for example by a computation that executes the

same set of instructions but takes very different times depending on whether the data

is cached or not. For such behavior, the value of ν will be high, thereby weighing

down the difference metric D.

3.3.4 Clustering Tasks’ Models

AutomaDeD detects behavioral clusters by using Hierarchical Agglomerative Clus-

tering (HAC) [52] on the SMMs of all application tasks. HAC initially sets each task

to be in its own cluster. During each iteration, HAC merges the two most similar

clusters into a single cluster, so that it has one cluster less after that iteration. Clus-

ter difference is defined as the smallest difference between any member of one cluster

to any member of the other cluster. These steps are repeated until the minimum

difference between any pair of clusters is above a given threshold (i.e., no two clusters

are similar enough to merge).

HAC requires a threshold that defines the normal difference of similar tasks. Au-

tomaDeD chooses this threshold by having the developer provide the number of clus-

26

ters that accurately describe the application’s expected behavior. For example, a

relaxation algorithm with non-periodic boundaries operating on a 2-dimensional grid

is best described by a 9 clusters (one for the interior, and one for each side and each

corner region). However, it should have a single cluster if the boundaries are periodic.

AutomaDeD applies HAC on SMMs of a set of training phases (assumed to have few

bugs), identifying the average threshold that produces the desired number of clusters.

We use this threshold for subsequent clustering. If sample runs of the application

are provided, AutomaDeD trains on phases in these runs. Otherwise, it trains on the

given run’s first phase, which we assumed is fault-free.

The resulting clustering organizes tasks into behavioral groups that reflect the

effect of the bug on the application’s normal behavior. This helps to identify the time

and the location when the fault was first manifested.

3.4 Error Detection Procedure

We describe the procedure that a user employs to isolate a bug using AutomaDeD .

Figure 3.1 shows the complete sequence of steps. On-line steps occur when the pro-

gram executes, while off-line steps occur after execution. The next sections describe

each step.

3.4.1 Phases and Epochs

AutomaDeD models the behavior of discrete regions of application execution that

the developer identifies via source code markers. The term phase denotes a region

of execution, such as a time step, that repeats multiple times. Phases are grouped

into phase sets, where all phases in a set are assumed to behave similarly to each

other. For example, adaptive mesh refinement applications periodically re-partition

their work and meshes. Thus, individual iterations may be identified as phases while

iterations between adjacent re-partitionings may be grouped into a set. Developers

27

annotate phases and phase sets in their code by adding calls to MPI Pcontrol, a

special function call that is intercepted by our wrapper library.

3.4.2 Faulty Phase Detection

AutomaDeD detects the phase during which a fault was first manifested using

one of two algorithms, depending on how it effects application behavior. Currently

the user of AutomaDeD must try both faulty phase selection mechanisms. We leave

automation of this selection to future work.

If the effects are temporary (e.g., temporary delay due to unusual erroneous con-

trol flow), AutomaDeD searches for the phase that differs from all other phases. If

AutomaDeD has a set of sample runs, it compares each phase to its counterparts in

those runs. It can either compare each task’s SMM directly to its sample counterpart

or it may compare each phase’s clustering to the clustering of its counterpart phase.

For the former we use the SMM difference metric from Section 3.3.2, with the differ-

ence between two phases defined as the squared sum of the differences between their

respective task SMMs. For the latter we use the Mirkin difference metric [53], which

is the fraction of task pairs that are grouped differently in the two clusterings, (i.e.,

tasks T1 and T2 are in the same cluster in one clustering and not in the same cluster

in the second, or vice-versa). Then for each phase we compute a “deviation score”,

which is the sum of the squared distances from this phase in the faulty run to the

same phase in the sample runs. We identify the phase with the highest deviation score

as faulty. If no sample runs are provided, AutomaDeD compares each phase to all

others within the faulty run using either of the above metrics to compute each phase’s

deviation score. We identify the phase that differs most from the others as faulty.

When sample runs are provided, ν weighting terms are computed from the SMMs of

these runs. When they are not provided, the ν used for each phase’s comparisons is

computed from the other phases in the faulty run.

28

If the effects are permanent (e.g., a runaway thread that interferes with the ap-

plication), AutomaDeD identifies the phase when application behavior shifted. If

AutomaDeD has sample runs, it computes deviation scores as above but then uses

k-Means Clustering [52] to divide the phases into two clusters: those that are similar

to the sample runs (low deviation) and those that are different (high deviation). We

identify the earliest phase in the high deviation cluster as faulty. Without sample

runs, AutomaDeD identifies the pair of adjacent phases that are most different ac-

cording the SMM or clustering difference metrics. The later phase in this pair is

judged to be faulty.

3.4.3 Pinpointing Faulty Task(s) and Error Sites Using SMM Analysis

AutomaDeD provides two complementary mechanisms to identify the faulty task(s)

and the error site. We describe the first mechanism, which compares SMMs and clus-

terings, here. We discuss the second, which is based on individual transitions, in

Section 3.4.4. Successful identification of the faulty cluster greatly simplifies deter-

mining the root cause. Cluster isolation is particularly helpful when the manifestation

of a bug results in a cluster with a single task.

AutomaDeD clusters the tasks of the faulty phase and then identifies the most

unusual cluster by computing its deviation from the other clusters. If we have a set of

sample runs, we compare each cluster to them using the SMM or clustering difference

metric (comparison is focused on the phase identified as faulty). The SMM cluster

difference is simply the sum of the squared SMM differences between the SMMs of

member tasks in the faulty phase and their SMMs in the same phase of a given

sample run, divided by the number of tasks. The clustering difference metric is a

variant of the Mirkin difference where the deviation from sample phase clustering

C ′ = {c′1, ...c
′
n} of test cluster c is the fraction of its member task pairs that appear

in different clusters in C ′. Each cluster’s overall deviation score is then the squared

sum of its differences with respect all the sample runs. If no sample runs are provided

29

each cluster is compared as above but to the other phases of the faulty run instead

of the same phase of the sample runs.

We also locate the error site based on task clustering when we identify the char-

acteristic transition (CT), the transition that most distinguishes the faulty cluster

from the other clusters. Since bugs can cause these behavioral differences, CTs direct

developers to the root cause.

For SMMs A and B, we define CT (A, B) as (t, χ) where t is transition that most

contributes to the dissimilarity metric Diff(A, B) and χ is the magnitude of this

contribution. Given a cluster c = {M1, M2, ..., Mn}, we compute the cluster’s CT

by evaluating CT (Mi, M
′
j) for each pair (Mi ∈ c, M ′

j /∈ c). The CT of c is then

the transition that is the CT of the most SMM pairs. If this selects more than

one transition, the CT is transition with the largest average contribution magnitude.

Since this method does not always produce the correct faulty transition as the top

CT, AutomaDeD can also present the top several choices to the developer for closer

examination.

3.4.4 Detection Using Transition Analysis

Our SMM-based cluster and transition isolation methods are too coarse if the

effects of the bug propagate to the entire application and will fail to identify the

first task(s) and transitions that the bug impacted. We can overcome this difficulty

by observing individual state transitions, looking for the first that takes an unusual

amount of time compared to the transition behavior seen in sample runs or earlier

phases.

If the faulty effects are temporary, AutomaDeD computes the typical behavior

of each SMM transition as a probability distribution (Gaussian or Histogram) of its

observed times in the sample runs or first phase, after discarding the top and bottom

1% of the times. AutomaDeD uses these distributions to compute the probability of

observing the time preceding each transition of the faulty phase. We then identify

30

low probability transitions through K-Means clustering with K = 2, using the log

of the probability to improve sensitivity to low values. We select the earliest low

probability transition as the CT, which also identifies the faulty task. AutomaDeD

can also present later low probability transitions on other tasks in case the starting

times of the transitions do not correctly identify the CT.

If the faulty effects are permanent, AutomaDeD looks for a sudden change from

one type of application behavior to another. Specifically, it scans each transition t in

each task SMM M to locate the largest increase in θ = stdDev(t)∗ν, where stdDev(t)

is the standard deviation in the observed times preceding t. When sample runs are

provided, ν = 1
ν
, where ν is the noise weighting factor discussed in Section 3.3.3.

Otherwise, ν = stdDev(t), which is another way to reduce the algorithm’s sensitivity

to outliers.

θ measures the variation of the transition, which increases significantly when its

behavior changes, as its prior behavior does not predict its new behavior well. Au-

tomaDeD selects the transition that provides the best balance between occurring

before other transitions and having a high θ. This is done by comparing transitions

t and t′ using to the following relation:

(tts, θ) ≻ (t′ts, θ) ≡

θ ∗ (1 + t′ts − tts) > θ′ if tts < t′ts

θ′ ∗ (1 + tts − t′ts) > θ if t′ts < tts
(3.5)

where tts and t′ts are the timestamps of t and t′. Thus, we consider t a better choice

(ordered larger) than t′ if either it has an earlier timestamp and θ is larger than θ′

after being adjusted by a factor that proportionally compensates for the difference in

their timestamps or it has a later timestamp and θ is larger despite θ′ being inflated

by the same factor.

3.4.5 Visualization of Results

AutomaDeD presents the cluster and transition isolation results through the clus-

tered SMMs of the faulty phase, focusing on the faulty cluster and the CT. Figure 3.5

31

Buggy

Fig. 3.5.: Output format of AutomaDeD after the debugging process is completed.

shows an example of the output for a 9 task NAS benchmark BT when a 10 second

delay was injected into task 6 before execution of the selected MPI Isend (we show

only a portion of the SMM). Bold edges indicate the CTs; the clusters appear as

their labels. The cluster associated with the edge (Computation, Isend-DOUBLE)

corresponds to the faulty cluster.

3.5 Experimental Evaluation

3.5.1 Fault Injection Types

We empirically evaluate the effectiveness of AutomaDeD by injecting synthetic

faults into six applications in the NAS Parallel Benchmark suite: BT, CG, FT, MG,

LU and SP [48]. We omitted EP because it performs almost no MPI communication

and IS because it uses MPI in only a few locations in the code, making MPI-based

state demarcation inappropriate. Our fault injector, built on top of PNMPI, dy-

32

namically injects a wide array of software faults at random MPI calls during MPI

application runs. It supports three main classes of faults:

• Local livelock/deadlock or transient stall; emulated via a finite loop of 1, 5 or

10 seconds (FIN LOOP) or an infinite loop (INF LOOP)

• MPI message loss and duplication; emulated by dropping (DROP MESG) or re-

peating (REP MESG) a single MPI message,

• Extra CPU- or Memory-intensive thread; emulated by starting up a thread with

a perpetual-increment loop (CPU THR) or a loop that randomly reads from/writes

to a 1GB region of memory (MEM THR), that interfere with the remainder of the

application’s execution.

Our experiments ran each benchmark with input size A and 16 tasks. We ex-

ecuted all tasks on four-socket, quad-core nodes (the Hera cluster at LLNL), with

2.3Ghz Opteron processors, 32GB RAM per node and InfiniBand interconnect. We

injected each fault type into a random task and MPI operation type (Blocking and

Non-Blocking Sends and Receives, All-to-Alls, etc.), ensuring that over the entire ex-

periment, each task and MPI operation type was injected with each fault type. For

each case, we performed at least 10 random injection runs, totaling approximately

2,000 injection experiments per application. In each run we injected a single fault

into a random instance of the target operation type on a random task. The execution

of each application was partitioned into approximately 5 phases; the exact number

depended on the application’s original iteration count.

3.5.2 Results of Debugging Faults

We evaluate the accuracy of AutomaDeD in identifying the following aspects of

the injected fault:

• The phase with the injected fault (faulty phase)

33

• The cluster that contains the task with the injected fault (cluster isolation)

• The error site of the injected fault (transition isolation)

We evaluate AutomaDeD with and without sample runs. Using sample runs cor-

responds to when the developer can execute an application multiple times to establish

its normal behavior before analyzing a given faulty run. We evaluate two types of

sample runs. For each application A the FaultFree(A) set consists of 20 runs with

no injected faults, which models an ideal set of sample runs. The Fault10(A, F) set

includes FaultFree(A) as well as 2 additional runs of A in which fault F was injected.

This set models the more common case where application runs are affected by an

infrequent non-deterministic bug that affects a certain fraction of runs (in this case

∼10%). Our experiments that do not use sample runs, denoted NoSample, omit any

runs in which faults were injected during the first phase in order to ensure a more

informative evaluation. We also omit such runs when analyzing CPU THR and MEM THR

faults, regardless of whether or not sample runs are provided, since they provide no

information about the application’s behavior before the fault.

Detection of the Faulty Phase

We begin by evaluating AutomaDeD ’s ability to detect the phase in which the fault

was injected. If AutomaDeD does not have sample runs, the algorithm identifies the

phase that is most different from the others using either the cluster-based metric or

the individual task SMM-based metric. If it has sample runs, AutomaDeD uses one

of these metrics to determine the phase that is most different from its counterpart in

those sample runs.

Figure 3.6 shows the average accuracy over all applications of faulty phase detec-

tion. All of our graphs show the runs on the Y-axis in which AutomaDeD identifies

the phase, cluster or transition relevant to the injected fault. The data series cor-

respond to using the two metrics with each sample run configuration (FaultFree,

34

Fault10 and NoSample) and the different distribution methods used for the times

preceding transitions (Gaussian and Histogram).

We observe that the SMM-based metric detects faulty phases more accurately than

the cluster-based one, with detection accuracy over 90% for most fault types. How-

ever, the cluster-based metric better detects CPU THR and MEM THR when sample runs

are available. In general, sample runs significantly improve faulty phase detection ac-

curacy, with FaultFree and Fault10 generally exceeding NoSample by 20%-30%. The

difference is even larger for CPU THR and MEM THR. Further, FaultFree and Fault10

sample runs provide similar accuracy, which suggests that moderate noise levels do

not impact the SMM representation and AutomaDeD ’s analyses significantly. Finally,

SMMs based on Histograms produce consistently more accurate (by several percent)

phase detection results than those based on Gaussian probability distributions be-

cause they are less sensitive to noise such as outliers. We observe similar trends for

cluster and transition isolation.

0%

20%

40%

60%

80%

100%

SMM Difference

0%

20%

40%

60%

80%

100%

Clustering Difference

Fault10 - Gauss

Fault10 - Histogram

NoFault -Gauss

NoFault -Histogram

NoSample -Gauss

NoSample -Histogram

Fig. 3.6.: Average faulty phase detection accuracy

Figure 3.7 shows faulty phase detection accuracy on a per-application basis, focus-

ing on SMMs that use Histogram. The data shows that detection accuracy depends

strongly on the application. Further, the SMM-based metric has poorer accuracy with

CPU THR and MEM THR primarily due to its poor results on MG, BT and SP, while it

provides higher accuracy for FT than does the cluster-based metric. The SMM-based

metric is more accurate for other faults because it performs more consistently across

35

the applications. Finally, sample runs are essential for the cluster-based metric while

the SMM-based metric still provides reasonable accuracy on the other fault types

without them.

0%

20%

40%

60%

80%

100%

SMM Difference, Fault10

0%

20%

40%

60%

80%

100%
SMM Difference, NoSample

0%

20%

40%

60%

80%

100%

Clustering Difference, Fault10

0%

20%

40%

60%

80%

100%

Clustering Difference, NoSample

BT

CG

FT

LU

MG

SP

Fig. 3.7.: Faulty phase accuracy per application

36

Cluster Isolation

Once AutomaDeD identifies the faulty phase, its cluster isolation can help locate

the root cause of the bug by showing the cluster that contains the task where the

bug was injected. AutomaDeD again uses the SMM-based and cluster-based metrics

to perform cluster isolation. Alternatively, it can examine the individual transitions

within the faulty phase to identify those that are unlikely given the probability dis-

tribution on the transition. Our evaluation measures the accuracy of AutomaDeD ’s

cluster isolation separately from that of its faulty phase detection by always apply-

ing the techniques to the faulty phase, that is we assume the phase detection was

accurate.

Figure 3.8 shows the accuracy of AutomaDeD ’s cluster isolation on a per-application

basis, focusing on SMMs that use Histogram. Cluster isolation using the cluster-based

metric has poor accuracy for nearly all applications and fault types. The other op-

tions produce significantly better results. The abnormal transition method without

sample runs and the SMM-based metric with sample runs provide the best accuracy

for CPU THR and MEM THR, with near perfect results on half the applications. The

abnormal transition method achieves high accuracy for the FIN LOOP and INF LOOP

using sample runs.

In general, the accuracy of cluster isolation varies widely across the applications

for the same fault type since the faults can propagate themselves quickly from one task

to another. Thus, some task(s) other than the faulty task may exhibit behavior the

most divergent from its normal activity, which can cause the cluster-based and SMM-

based metrics to mis-identify them as the source of the fault. While task behavior

does not confuse the abnormal transition method, it can perform poorly due to the

relatively coarse granularity of SMM transitions. As such, a fault may propagate

from a transition with a later starting timestamp to one that began earlier, causing

the wrong transition to be identified as the fault’s first manifestation. We could

37

reduce this effect by breaking long states into smaller ones, which will improve their

precision.

0%

20%

40%

60%

80%

100%

SMM Difference, Fault10

0%

20%

40%

60%

80%

100%
Abnormal Transition - NoSample

0%

20%

40%

60%

80%

100%

Clustering Difference, Fault10

0%

20%

40%

60%

80%

100%

Abnormal Transition - Fault10

BT

CG

FT

LU

MG

SP

Fig. 3.8.: Cluster isolation accuracy per application

38

Figure 3.9 shows the percentage of runs (using the Fault10 sample run config-

uration) in which the faulty task cluster consists of only one faulty task. Precisely

identifying the faulty makes significantly easier for developer to identify the bug since

narrows it down to a single task’s control and data flow. AutomaDeD fully isolates

the faulty task in more than 90% of the cases for CPU THR, MEM THR, DROP MESG and

REP MESG and 70% for FIN LOOP and INF LOOP. In contrast to prior results, using

Gaussian distributions for the times preceding transitions provides greater accuracy

because they are more sensitive to outliers, which suggests that both probability

distributions should be used in practice.

0%

20%

40%

60%

80%

100%

Gaussian

Histogram

Fig. 3.9.: Isolation of a singleton cluster

Transition Isolation

AutomaDeD uses two algorithms for transition isolation. First, it compares the

SMMs of the faulty cluster to those of other clusters and selects the transitions most

responsible for the differences. Alternatively, it selects the earliest abnormal transition

within the faulty cluster. Since our goal is to focus debugging efforts, we consider

how frequently the faulty transition is the top choice or one of the top five choices of

39

these methods. Figure 3.10 shows the results, with the clustering-based algorithm on

the left and the transition-based algorithm on the right.

The clustering-based algorithm consistently (≥ 90% of the time) includes the

faulty transition in its top five choices for FIN LOOP and INF LOOP. The transition-

based algorithm is less consistent across applications but when it succeeds, it usually

does so with its first selection. Both methods exhibit low accuracy for DROP MESG and

REP MESG faults because their effects manifest long after the fault is injected. They

also perform relatively poorly with CPU THR and MEM THR because these faults cause

sudden behavioral changes that resemble ordinary outlier transitions.

0%

20%

40%

60%

80%

100%

Clustering

0%

20%

40%

60%

80%

100%

Abnormal Transition BT - top 1

BT - top 5

CG - top 1

CG - top 5

FT - top 1

FT - top 5

LU - top 1

LU - top 5

MG - top 1

MG - top 5

SP - top 1

SP - top 5

Fig. 3.10.: Transition isolation accuracy per application

3.5.3 Case Study: MVAPICH Bug

We illustrate the utility of AutomaDeD via a case study of applying it to a real

bug in the MVAPICH-0.9.9 MPI implementation [54]. The bug occurs in its MPI

task launcher, mpirun, which sometimes fails to clean up after an application, leaving

processes to run concurrently with subsequent jobs. We evaluated AutomaDeD on

this bug, which is similar in effect to our CPU- and Memory-intensive thread faults,

by executing a 16- or 64-task run of as the application being debugged while simul-

taneously executing a 16-task run of either LU, MG or SP on the same set of nodes

40

as the previous runaway tasks). These experiments cover the cases where runaway

tasks interfere with either all or a subset of the application’s tasks.

We provided AutomaDeD with a set of five sample runs of BT with no interference.

Figure 3.11 presents average the SMM-based metric that AutomaDeD determines for

each phase of three runs where BT ran concurrently with either LU, MG and SP

(one set for 16-task and another for 64-task BT runs) as well as the average score

for the five no-interference runs. The sets of sample runs used to compute each no-

interference run’s deviation scores excluded the run itself. The deviation scores of

all no-interference phases were consistently low. In contrast, the scores of the initial

phases of the three interference runs show high deviation scores, identifying the exact

region of time when the shorter runs of LU, MG and SP overlapped with the execution

of BT. Further, AutomaDeD clearly shows that the interference run of MG in one

16-task experiment began after the first phase of BT, since the deviation score starts

at the baseline level, rises for three phases and then drops to the baseline.

AutomaDeD significantly aids debugging. First, it clearly identifies the perfor-

mance anomaly, which might not have been noticed for a long time or blamed on

extraneous factors such as network load or choice of input. Second, AutomaDeD de-

termines when the interference occurs, which facilitates detection of the interference

tasks from system logs or other methods. Although AutomaDeD can often identify

the tasks most affected by the fault, it did not isolate those tasks in this case since BT

is tightly coupled, which leads to the interference tasks impacting all of BT’s tasks

even with 64-task runs.

3.6 Discussion

Large-scale application debugging is very challenging because of the vast amount

of information developers must consider to identify a bug’s root cause. AutomaDeD

focuses debugging efforts on the time period, tasks and code region where the bug is

first manifested. Thus, it significantly improves developer debugging productivity by

41

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 2 3 4 5 6 7 8 9 10

S
M

M
 D

e
v

ia
ti

o
n

 S
co

re

Phase

16-process BT

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 2 3 4 5 6 7 8 9 10

S
M

M
 D

e
v

ia
ti

o
n

 S
co

re

Phase

64-task BT

Average

No-Interference

Concurrent SP

Concurrent LU

Concurrent MG

Fig. 3.11.: Phase deviation scores of MVAPICH bug use-case

reducing the amount of information that must be considered even as the application is

scaled to large task counts. This work describes the fundamental approach and design

of AutomaDeD and establishes it as a valuable addition to the developer’s toolkit.

Our results demonstrate that AutomaDeD is very accurate for key debugging tasks.

In particular, it correctly identifies the faulty phase in 90% of our trials for delays,

hangs and message faults and in 70% of our trials for interference faults. Given the

faulty phase, AutomaDeD ’s accurately identifies a small task set (often a single task)

in which the bug occurred for over 80% of delays and hangs, over 40% for message

faults and over 70% for interference faults. Given the faulty cluster, AutomaDeD

identifies the error site with 90% accuracy for delays and hangs and 50% accuracy for

interference faults.

42

4. SCALABLE ERROR DETECTION IN SCIENTIFIC

APPLICATIONS

In this chapter we present novel techniques to perform error-detection in HPC applica-

tions in a scalable manner. We extent our previous work by using scalable clustering

and sampling-based nearest-neighbor methods to isolate abnormal tasks. We also

present a scalable graph compression technique that reduces the dimensionality of

the problem—by reducing the number of edges in the SMM graph that is built up

for each task—which increases accuracy of isolating an abnormal task. We present

an evaluation of the techniques with thousands of processes in a Linux cluster at the

Lawrence Livermore National Laboratory. The technique is shown to isolate faults in

less than 5 seconds.

4.1 Introduction

As today’s High Performance Computing (HPC) applications increase in com-

plexity, debugging errors, performance anomalies, and unexpected behavior in these

applications becomes excessively difficult. A single bug in an HPC application often

affects multiple processes, so growing application scales leads to an effect on many

processes. Most existing debugging techniques as implemented in tools like gdb [1],

TotalView [2], or DDT [3] do not automate the debugging process: developers must

manually locate errors and backtrack through interactions across processes to locate

the root cause. Clearly, this approach is infeasible for large-scale parallel applications.

We previously presented AutomaDeD in Chapter 3, a tool that detects errors

based on runtime information of control paths that the parallel application follows and

the times spent in each control block. AutomaDeD suggests possible root causes of

detected errors by pinpointing, in a probabilistic rank-ordered manner, the erroneous

43

process and the code region in which the error arose. Intuitively, the erroneous tasks

often form a small minority of the full set of tasks. Hence, they are outliers when we

cluster the tasks, based on their features related to control flow and timing. Further,

in the time dimension, the executions in the first few iterations are more likely to

be correct than in later iterations, which we also leverage to determine correct or

erroneous labels.

Almost all existing parallel debugging tools fail to scale to the process counts of

today’s state-of-the-art systems. For example, at the time of writing this dissertation,

the largest number of processes in which TotalView has been tested is 786,432 [55]—a

test performed at the Lawrence Livermore National Laboratory’s Sequoia supercom-

puter with 1.5 million cores available. Although some tools, such as TotalView, are

able to reach hundreds of thousands of processes today (and possibly a million pro-

cesses soon), major designed changes are expected before they are able to run with

the amount of parallelism of exascale supercomputers, i.e., in the order of hundred

million processes or more. Three main factors impede scalability. First, the tools

include a centralized component that performs the data analysis. Thus, tools must

stream behavioral information from all the processes to this central component so

that it can process the information to determine the error and, possibly, its loca-

tion. Second, the tools require huge amounts of data. While many tools optimize

the monitoring part quite well, the cost of shipping all information to the analysis

engine and the cost of analyzing the full volume of data remains. While tools such as

STAT [18] reduce the data volume that the central component must handle, they still

must process the full data in their communication structure (in parallel). Third, the

data structures used to maintain the information are not completely optimized for

the operations that need to be performed for error detection and localization, such as

comparison of information from processes that belong to the same equivalence class.

Small differences in the cost of one operation, though insignificant for hundreds of

processes, become significant at larger scales.

44

Due to scaling limitations, many existing techniques [14, 15, 56] collect informa-

tion at runtime and perform analysis offline, decoupled from the main application

execution. This approach may allow bug diagnosis only after a long execution in

the erroneous mode. This reduces application throughput and wastes computational

resources.

We aim to change the debugging scenario fundamentally. In this section we pro-

pose techniques to perform error detection and diagnosis online. In this work, we

introduce novel scalable mechanisms that allow AutomaDeD to execute online in

large-scale systems. To achieve this goal, we introduce three major design and imple-

mentation innovations:

Efficient edge comparison allows AutomaDeD to compare per-process graph ele-

ments efficiently. Following the model of our baseline implementation, AutomaDeD

represents each process as a graph in which nodes are MPI calls or computation

blocks between such calls. Edges in the graph have a transition probability and a

time distribution. We compare edges by representing state information in the graphs

using pointers instead of character strings, so that AutomaDeD can perform state

comparisons with a few machine instructions (distinct from the baseline, which used

character strings to represent application states). We perform optimal comparison

of per-edge probability distributions using a lookup table instead of computing an

integral.

Graph compression reduces the time to compare the behaviors of processes by

merging edge chains, since the difference between two graphs is the sum of the dif-

ferences between their edges. This mechanism reduces data dimensionality so that

AutomaDeD can focus first on finding outliers (i.e, abnormal processes) using fewer

dimensions, and later focus on the dimensions that a fault most affects (e.g., by using

just that graph region). Our compression preserves the basic control structure of the

program so that the analysis provides actionable results.

Scalable outlier detection uses distributed sampling techniques to find the er-

45

roneous processes among many parallel ones with low overhead. We use scalable

clustering [57] and a novel nearest neighbor technique to find outliers efficiently.

Careful integration of the three techniques eliminates any centralized element in

our solution (except for the computer where the output is presented to the user), thus

making AutomaDeD scalable to larger and larger system sizes. This benefit requires

that we must carefully sample AutomaDeD ’s data so our input is representative of

all processes and we do not miss sharp discontinuities in process behavior.

Our experiments on a Linux cluster with thousands of cores show that AutomaDeD

scales to thousands of processes and that it can isolate erroneous tasks in a few sec-

onds. We demonstrate its error-detection capabilities through fault injections in the

NAS Parallel Benchmarks and its scalability on up to 5,000 AMG2006 [58] processes.

AutomaDeD performs the entire error-detection analysis (i.e., abnormal process and

erroneous code region isolation) in under 5 seconds.

4.2 Redesign of AutomaDeD

In this section, we detail the design of the three novel aspects of AutomaDeD ,

which improves on the operational flow of the baseline that we have just described.

In the improvements, we first show how edges in two graphs corresponding to two

different tasks can be efficiently compared. Next, we show how the graphs correspond-

ing to the SMMs can be compressed to improve the accuracy of identifying erroneous

tasks and to reduce the computational cost of this process. Finally, we describe how

identification of abnormal tasks is done in a scalable manner through two alternate

methods of clustering and nearest-neighbor calculation.

4.2.1 Efficient Edge Comparison

In the error detection part, AutomaDeD performs pair-wise comparisons of SMMs.

In Chapter 3 we presented a formula to compute the dissimilarity (or difference)

between a pair of SMMs. Its main idea was to find and add up the differences

46

between corresponding edges in the two SMMs (that are being compared). An edge

(statei, statej) that is present in two different SMMs, SMM1 and SMM2, implies

that both tasks performed a state transition of the form statei → statej at some

point in the program execution and we can compute edge differences. If an edge is

present in one SMM but is not present in the other, the difference is assigned a high

weight to highlight control flow differences that cause this behavior. Computing edge

differences requires two steps to be computed efficiently:

(i) Finding matching edges in two SMMs. In order to compare an edge from an SMM,

we must first determine whether a corresponding edge exists in the other SMM.

(ii) Computing differences of edge attributes. Once we have found corresponding

edges, we compute the difference between their attributes, i.e., the differences between

their transition probabilities and time probability distributions.

We efficiently perform the first step by representing SMMs using data structures

that allow efficient edge searching. We use a sorted map of unique keys (a C++ map)

to represent SMMs. The keys are edges and mapped data are edge attributes. This

structure supports edge lookups with complexity O(log n), where n is the number of

edges.

We represent SMM states by call stack paths collected when the program calls

MPI routines. A call stack path is the list of function calls that are currently active,

which includes the called functions and the offset into the functions. In previous ver-

sions of AutomaDeD , we used character strings to represent paths, which incurred a

large overhead when we compared two states. Our current implementation supports

a compact representation that uses unique references and, thus, supports direct com-

parison of the references. Further, since references from different tasks may point to

the same path, we exchange the map between the two tasks to determine a consis-

tent view of the paths before we compare their SMMs. This permits comparisons of

edges through a few machine instructions (by reference comparisons) instead of by

comparing character strings.

47

The second step is the edge-comparison computation. For this task we must

calculate the difference between two time distributions—calculating the difference of

the transition probabilities is trivial since it only involves a subtraction of two double-

type values. We use the Lk-norm method (Chapter 3) with k = 2 to compute the

difference of two probability distributions, which is based on the following formula:
∫ ∞

−∞

|P (x)−Q(x)|kdx, (4.1)

where P (x) and Q(x) are two continuous probability distributions of the random

variable x (representing time) in the two edges. We estimate probability distributions

with parametric and non-parametric methods. AutomaDeD uses normal distributions

and histograms as the base models respectively. While histograms provide a better

fit for the observed data than normal distributions, they have significantly higher

memory and computational complexity. We therefore in the following use a normal

distribution since we emphasize low overhead at scale.

Previous work in statistics [59] has shown that the overlap percentage of any two

normal distributions can be estimated from their parameters, i.e., mean and standard

deviation. A table (or nomogram) as shown in Figure 4.1 can be computed a priori

so that we can obtain the overlap of two new distributions by inspecting the table,

where the y-axis is the ratio of the largest standard deviation SD2 to the smallest

standard deviation SD1, and the x-axis is the distance between the means M1 and

M2 normalized by SD1. The key observation is that the Lk-norm of two normal

distributions equals the area that does not overlap between the distributions. There-

fore, AutomaDeD uses a similar table to estimate the value of an Lk-norm calculation

without incurring in the high overhead of numerically estimating the integral in equa-

tion (4.1). The points in the table that AutomaDeD uses are calculated using the

Lk-norm formula with parameters of two (randomly selected) normal distributions.

Since we must quantize the parameters’ values for which we store the results in the

table, we only build a table of 500 × 500 values and approximate overlapping per-

cents by interpolation. Our experiments show that a table of this size is sufficiently

accurate to distinguish two normal distributions.

48

Fig. 4.1.: Percent overlap of two normal distributions.

4.2.2 Graph Compression

Motivation . Parallel programs with complex control flow result in SMM graphs

with many edges. For example, in our experiments with the NAS Parallel bench-

marks, graph sizes are often on the order of hundreds of edges. Large edge counts

impact the accuracy of isolation of abnormal tasks in AutomaDeD since the problem

directly corresponds to the problem of detecting outliers (i.e., abnormal tasks) in a

high dimensional space. High dimensional mathematical spaces create difficulties for

unsupervised machine learning techniques such as clustering and k-nearest-neighbor

due to the curse of dimensionality [60]. Distances between all pairs of points in high

dimensional data tend to become almost equal—with too many dimensions, devia-

tions from normality in a few dimensions are not as significant. Thus, AutomaDeD

cannot find the abnormal task. An additional problem associated with SMM graphs

of large sizes is that the overhead of the task isolation phase increases because the

complexity of distance calculations of SMM pairs is proportional to the number of

edges. Therefore, we implement an algorithm that allows AutomaDeD to compress

large SMMs before we perform task isolation.

Which edges can be compressed . We observe that we can merge a linear

chain of states and still retain the general control flow structure of the program, i.e.,

the states and edges that represent the main program loops are maintained in the

49

Fig. 4.2.: Compression approach.

compressed graph. Figure 4.2 illustrates this idea. The SMM represents the sample

MPI code in the left part of the figure. We omit the transition probabilities associated

with the edges (and only present the time distributions) for simplicity. The right part

of the figure shows the compressed SMM after we apply our compression algorithm

to the original SMM. We define a sequence of states as a linear chain of states with

out-degree of one, in which the transition probabilities associated with their outgoing

edges are 1.0. The compression algorithm merges sequences of states keeping the main

control flow structure in the resulting compressed graph. The sequence of states after

Init up until Send are summarized as only Send, and their edges are all merged into

a single compressed edge.

50

A compressed edge contains two distributions P and Q that represent the time

spent in the MPI calls and in the computation blocks of the original graph. Keep-

ing time distributions separate in the compressed edge helps developers differentiate

the parts of the code that are affected by MPI operations from parts in which the

computation code in between them is the source of the problem.

How to assign attributes to compressed edges . We merge the time dis-

tributions in sequences of edges under the assumption that the underlying random

variables are independent, and that normal distributions are used to fit the observed

data. Given two independent random variables T1 and T2 that are normally dis-

tributed with parameters µ1, σ1 and µ2, σ2, the new random variable T1 + T2 is also

normally distributed with parameters (µ1 + µ2), (σ1 + σ2). Therefore, when com-

pressing a sequence of edges, the compression algorithm simply sums the parameters

of the distributions in those edges, keeping distributions for communication (i.e., for

MPI routines) and for computation blocks separate. As can be observed in Fig-

ure 4.2, a compressed edge has a tuple (P, Q), where P is the added distributions of

communication states and Q is the added distributions of computation states.

Distributed nature of the merge process . The compression algorithm in-

volves two steps; we now discuss our completely distributed implementation of both

steps. First, AutomaDeD must determine the set of edges that are present in all the

tasks or, if we have determined task equivalence classes, the set present within all

tasks within an equivalence class. Our edge compression algorithm only targets such

edges for compression. AutomaDeD does not compress edges that are not common

in all SMMs to avoid eliminating abnormal transitions that may be present in only

a few tasks. Second, the compression happens locally and concurrently at each task

using the above set of edges.

Figure 4.3 illustrates this idea. We define an edge’s support as the number of

tasks in which it appears. We first apply a reduction operation that collects local

information from all tasks and applies an aggregation operation on that information.

The operation that the reduction performs sums the edge support of local graphs.

51

At the end of the reduction, the edges of states 1–4 have a support of four (because

they are present in all graphs), while edges of states 4–7 only have support of three.

After we perform the reduction, the root process (i.e., the one that initiates the

reduction) broadcasts the reduced graph to all tasks so that every task has the set of

edges to compress, i.e., those with support of four for this example. We implement

the reduction with a binomial tree, which has logarithmic complexity in terms of

the number of tasks. We cannot use MPI Allreduce since the tasks can contribute

different numbers of edges.

Fig. 4.3.: Global reduction of edges support.

The second step compresses the local graph for edges that are globally supported.

We use a modified version of the depth-first-search algorithm to traverse the graph.

The algorithm’s main idea is that sequences of states can be merged until the be-

ginning or the end of a loop is found. The algorithm assumes an adjacency-list

representation so it can find state neighbors for each state as the graph is traversed.

Figure 4.4 shows the compression algorithm’s pseudocode. We define a loop-head

state as the first state in a loop, and loop-tail state as the last state in a loop. As we

traverse the graph, we store edges in a queue until the mergeEdgesInQueue() function

is called in loop-heads, loop-tails or in the last state. This function merges edges as

described previously in Figure 4.2 keeping probability distributions for communication

52

DFSCompress (State s t a t e) {

i f (i sNotF ina lS tate (s t a t e)) {

neighbors = getNeighbors (s t a t e)

for each n in ne ighbors {

Edge edge (s tate , n)

i f (edgeHasNotBeenVisited (edge)) {

addEdgetoQueue(edge)

i f (isHeadOrTail (n)) {

mergeEdgesInQueue ()

DFSCompress (n)

}

}

}

} else {

mergeEdgesInQueue ()

}

}

Fig. 4.4.: Depth-first-search compression algorithm.

and computation code regions separate. The complexity of the algorithm is O(number

of edges).

Need for iterative drill-down due to graph compression . Due to graph

compression, when AutomaDeD initially provides the characteristic edge(s) that likely

caused the task to become anomalous, the granularity can be more coarse than in the

baseline. The granularity can be a compressed edge, which includes multiple edges

from the original graph. However, AutomaDeD keeps the original graph and the com-

pressed graph in memory. For the task that we determine is anomalous, we perform

edge isolation locally using the fragment of the original graph that corresponds to

the part of the compressed graph that we determined is anomalous. For example, if

53

edges {e1, e2, e3} were compressed into an edge e(c) and the initial iteration of the edge

isolation flagged e(c) as the anomalous edge, the next iteration can work on {e1, e2, e3}

and diagnose at the same granularity as baseline. We preserve the advantage of edge

compression—AutomaDeD does not perform any communication of the potentially

large original graph (except for the reduction to infer edges’ support) to other pro-

cesses and does not have to perform task isolation on the original graph. The minor

disadvantage is that edge isolation requires two iterations.

4.2.3 Scalable Outlier Detection

The typical use case of AutomaDeD isolates abnormal tasks in the time period

the application fails. This can be challenging since AutomaDeD must extract a few

abnormal tasks from many normal tasks. Naive techniques such as comparing each

task against each other to find the most dissimilar task do not scale well since the

complexity of these methods is quadratic with respect to the number of tasks.

We implement two scalable approaches to isolate abnormal tasks: (1) clustering,

using CAPEK’s algorithm, which first finds clusters and then determines abnormal

tasks as indicated by the largest distances from their cluster centers; and (2) nearest-

neighbor, which determines abnormal tasks based on the largest distances from their

nearest neighbors. In both approaches, we sample a constant number of data points

(i.e., tasks) and perform the analysis treating the sample set as representative of

the entire set of points. Thus, we avoid having an unmanageable linear algorithmic

complexity with respect to the number of points; both approaches scale with a com-

plexity of the log of the number of tasks. Figure 4.5 illustrates the idea behind the

two algorithms, which the next sections describe in detail.

Clustering

We have developed a novel outlier-detection technique based on CAPEK, a scal-

able clustering algorithm designed for large-scale, distributed data sets like those

54

Fig. 4.5.: Clustering and Nearest-Neighbor methods to isolate abnormal tasks.

generated by parallel performance tools [57]. CAPEK finds groups, or clusters within

distributed data sets, which gives us information about the structure of our data.

For each cluster, CAPEK also determines a representative, or medoid mi, and we can

find outliers by finding the objects (SMM) in the data set that are furthest from their

representative medoids.

Formally, CAPEK is a K-Medoids method. K-Medoids methods take a set of ob-

jects X, a dissimilarity function d : X × X → R and a number of clusters k ∈ N

as input. They produce a clustering, a set of disjoint clusters C = C1, . . . , Ck ⊆ X

such that
⋃k

i=1 Ci = X and a set of medoids M = m1, . . . , mk such that mi ∈ Ci.

Each mi is the representative element for cluster Ci. These methods attempt to

55

minimize
∑k

i=1

∑

xj∈Ci
d(xj , mi), the total distance from each object to its represen-

tative medoid. The basic version of CAPEK requires the user to specify the number

of clusters, k. It also allows the user to search for an ideal k using the Bayesian

Information Criterion (BIC) [61]. The intuition behind this algorithm is that the

medoids, mi, will be approximately centered within their clusters, and they are thus

good representatives for the clusters as a whole.

CAPEK has several advantages that make it well-suited for clustering SMM data.

First, CAPEK is sampled, from which it derives its massive scalability. Traditional

sequential clustering algorithms have quadratic or linear runtime, but CAPEK uses

all processors for analysis to achieve logarithmic runtime, which makes our analysis

feasible at scale. Other algorithms, such as the hierarchical clustering that baseline

uses 3, do not readily support sampling, and thus do not scale to the system sizes

that CAPEK supports.

Second, unlike K-Means methods [62–64], K-Medoids does not require that we

can define algebraic operations, such as addition and scalar division, on the data.

K-Means methods discover the synthetic means, or centroids, of their clusters using

these operations, but we cannot directly calculate a “mean” SMM.

Finally, K-Medoids methods produce flat partitions of the data, which simplifies

outlier detection. With hierarchical clustering, for example, we must choose the level

in a clustering tree to describe clusters and outliers best. However, this complicated

process does not scale. With a flat partition, we can detect outliers using standard

deviation, which is straightforward and fast to compute. Our clustering-based outlier

detection algorithm is:

(1) Perform clustering: We obtain a clustering C using CAPEK, which provides

copies of the medoids mi for all clusters to each process.

(2) Find distances from each task to its medoid: Each task computes the dis-

tance dji from its local SMM xj to its representative, mi. As CAPEK guarantees,

this medoid will be the representative nearest to xj .

(3) Normalize distances using standard deviation: Using parallel reductions

56

within each cluster, we compute the standard deviation σi for each cluster in logarith-

mic time. We then normalize each process’s dji to obtain d′ji = dji/σi, which allows

us to find outliers in data sets that may exhibit several different “normal” behaviors.

(4) Find top-k outliers: d′ji is a measure of how far each SMM is from its repre-

sentative; we now find the top k values of d′ji in parallel. The corresponding SMMs

are the “most different” from their representatives. We gather these SMMs, which

we report as outliers. We can trivially find the top k SMMs in logarithmic time by

computing k parallel reductions in sequence.

Nearest Neighbor

Our nearest-neighbor (NN) method classifies outlier tasks based on dissimilarities

between tasks and their nearest neighbors. The main idea is that an abnormal task

will be far from its nearest neighbor, while normal tasks will be close to each other so

their pair-wise NN distances are small. To make NN scalable, we only perform NN

distance calculations against a constant number of sample tasks, rather than against

all tasks. When we calculate NN distances, a sample task removes itself from the

sample tasks to avoid picking itself as its nearest neighbor. Our NN outlier detection

algorithm is:

(1) Sampling: We locally generate a set of random indices that represent task ranks

using a deterministic pseudorandom number generator with the same seed. After this

step, each process can determine if it is a sample task.

(2) Broadcasting of samples: Each sample task broadcasts its SMM. After this

step, each task can compare its SMM to the sample SMMs in order to find its NN

distance.

(3) Find NN distance: Each task compare its SMM to those of the sample tasks.

The SMM of the smallest distance corresponds to the NN task. Finally, we perform

a global reduction at the root task to find the k most abnormal tasks.

57

NN may not isolate abnormal tasks if a fault affects multiple tasks simultaneously.

To illustrate this problem, suppose that the normal clustering of the tasks in an

application is two clusters, but a fault creates a third cluster with a few similar

abnormal tasks. Suppose also that we sample two tasks t1 and t2 from this abnormal

cluster. We will determine that t1 and t2 are each other’s nearest neighbor. The

distance values for each case will be low values and these tasks will not appear in

the top-k rank of outliers (or abnormal tasks), which will prevent AutomaDeD from

isolating them. The clustering approach avoids this problem because the abnormal

tasks will belong to one of the normal clusters (because of the BIC methodology to

select cluster configurations) and have high distances to the cluster medoid.

Abnormal Edge Isolation

Our previous work [65] presented mechanisms to detect the code region in which a

fault is first manifested after task isolation. The characteristic transition is the edge

that contributes most to the distance of the abnormal task. We easily extend this

concept to multiple rank-ordered transitions ordered by their contributions to the

difference. In this work we implement a modified version of one of these techniques.

We perform the two outlier detection methods as follows:

(1) Clustering : After clustering, each task has the medoid of its cluster. We compare

the abnormal task’s SMM to the medoid’s SMM and sort the edges in ascending order

of their dissimilarities. We flag the top-k edges as abnormal.

(2) NN : After the task isolation phase, we compare the abnormal task SMM to all

sample SMMs. As in the clustering method, we sort edges by their dissimilarities and

flag the top-k edges as abnormal.

After we perform graph compression on the SMM (and have isolated the abnormal

task), AutomaDeD keeps a copy of the original SMM in memory and performs edge

isolation using that SMM. Since we must compare edges between graphs of the same

nature—always between uncompressed graphs for this case—the abnormal task must

58

have the original SMM of the other tasks. We fulfill this requirement by sending the

original graph from the compared task(s) to the abnormal task. This additional step

incurs a small overhead; for example, for the clustering method we only send one

graph (from the medoid task) to the abnormal task.

4.3 Experiments and Results

4.3.1 Fault Injection

We empirically evaluate the effectiveness of AutomaDeD ’s techniques by injecting

faults that commonly occur in parallel applications. We inject faults into six appli-

cations of the NAS Parallel benchmark suite: BT, SP, CG, FT, LU and MG [48].

We omit EP because it performs almost no MPI communication and IS because it

uses MPI only in a few code locations. Since their MPI profiles produce small SMMs,

monitoring at the granularity of MPI calls does not suit these applications. Our injec-

tor [65] uses PNMPI to inject a wide range of software faults into random MPI calls

during MPI application runs. We focus our fault injection campaign on the following

performance faults:

• CPU INTENSIVE: CPU-intensive code region, emulated by a triply nested loop.

• MEM INTENSIVE: Memory-intensive code region, emulated by filling a 1GB buffer

with data at random locations.

• HANG: Local deadlock, emulated by making a process indefinitely suspend execution.

• TRANS STALL: Transient stall, emulated by making a process suspend execution for

5 seconds.

In these experiments, we ran the benchmarks at a moderate scale: 512 processes

for CG, FT, LU and MG, and 529 processes for BT and SP, with input size B. We

use six-core nodes (the LLNL Sierra cluster), with 2.8 GHz Intel Xeon processors, 24

GB of RAM per node and InfiniBand interconnect. Each experiment injects a single

fault into a single random task during MPI communication operations (e.g., blocking

and non-blocking sends and receives, all-to-all, broadcasts and barriers). For each

59

benchmark, fault type, and detection technique, we perform 10 runs, for a total of

960 experiments.

4.3.2 Fault Injection Results

When we inject a fault, AutomaDeD performs the error-detection analysis by

default at the end of the run during MPI Finalize. For some benchmarks, the SMM

created at the end of the run can be quite large, even after compression. For example,

in LU and MG, the compression algorithm can only compress the graph to around 120

edges (from originally around 250 edges), which is still a large number of edges for the

outlier detection techniques to work accurately. In these cases, AutomaDeD divides

the run into user-defined phases to reduce the size of per-phase SMMs to a manageable

size and performs the analysis in the faulty phase. In Section 3.4.2, we presented a

technique to detect the abnormal phase in a run. For these experiments, we assume

that AutomaDeD is provided with the faulty phase, which the user can pinpoint

or our prior algorithm can detect. In cases where a fault causes the application to

suspend execution and it does not allow the creation of a new SMM at the end of

a phase or during MPI Finalize, such as in the HANG fault, the analysis is executed

when AutomaDeD does not observe any state transitions for a “long” period of time;

a parameter that can be configured by the user or estimated by AutomaDeD from

previous runs (by taking the maximum transition time). In our experiments, we use

60 seconds for this parameter.

We use two metrics to evaluate error-detection and localization quality: task-

isolation recall—the fraction of runs in which the task in which we inject the fault is in

the top-5 abnormal processes that the task-isolation method (separately clustering or

NN) outputs; edge-isolation recall—for cases in which AutomaDeD correctly isolates

the abnormal processes, the fraction of runs in which the code region in which we

inject the fault is in the top-5 abnormal edges.

60

Fig. 4.6.: Task-isolation results for NN and clustering.

Figure 4.6 shows the task isolation results for the baseline (without compression)

and the compression approach, for the two outlier detection methods. Table 4.1 shows

graph sizes for the baseline and the compression method for faults that do not suspend

the execution of the program. When the program’s execution is suspended due to a

61

Benchmark Original Compressed Comp. Ratio

BT 207 55 3.76

SP 179 55 3.25

CG 129 66 1.95

FT 21 4 5.25

LU 46 29 1.59

MG 81 33 2.45

Table 4.1: Edge counts for fault injection experiments.

hang or segmentation fault, the size of the graph can vary depending on the number

of transitions observed in the last snapshot time and is therefore not meaningful.

As we observe from Figure 4.6, compressing the SMM improves the accuracy of

detecting the anomalous process in both the NN and the clustering methods. For ex-

ample, in the NN method when we inject the CPU INTENSIVE fault in BT, recall in the

baseline approach is about 85% whereas with compression it is 100%. In the clustering

method, for the same benchmark and fault, recall is improved from 60% in baseline

to 90% with compression. Compression improves process-isolation recall because the

dimensionality reduction that results from merging contiguous edges eliminates noisy

(unimportant) dimensions from the outlier-detection analysis and allows AutomaDeD

to focus its power on the significant dimensions.

These results also suggest that the NN method detects errors better than the

clustering method for half of the tested benchmarks, while both perform equally well

for the other half. However, we expect clustering to have better accuracy than NN

for cases in which a fault manifestation affects more than one process, as previously

discussed.

Figure 4.7 shows the edge isolation results. AutomaDeD provides a high overall

edge-isolation recall for most injected faults. If AutomaDeD correctly detects the

faulty task in the previous step, it can guide the developer, with a high accuracy, to

62

the code region in which the fault first manifests itself as a timing abnormality. This

positive result demonstrates that the compression of the graph does not affect this

step, nor does the sampling approach that we used to make NN or clustering scal-

able. Thus, our sampling strategy is probably unbiased and provides representative

samples.

Fig. 4.7.: Edge-isolation with NN and clustering.

4.3.3 Performance Results

We evaluate the performance improvement achieved by calculating Lk-norm values

using a pre-computed table. Figure 4.8 shows times for the baseline case (estimating

integral (4.1)) and the pre-computed case. We measure the time to calculate the

dissimilarity between two SMMs while we vary the number of edges in the SMMs.

The use of a pre-computed table improves performance significantly. For example, for

two large SMMs of 1000 edges, the dissimilarity calculation takes 0.45 seconds when

computing Lk-norms online, while it takes 10 milliseconds in the pre-computed case.

63

Fig. 4.8.: Lk-norm computation times.

We evaluate AutomaDeD at larger scales and measure the time to perform the en-

tire error-detection analysis ending in the edge isolation. We measure the individual

times for each part of the analysis: compression, edge- and task-isolation, as we vary

the number of tasks to more than 5,000. For this experiment we use the Algebraic

MultiGrid (AMG) 2006 benchmark from the Sequoia benchmark suite [66], a scal-

able iterative solver and preconditioner for solving large unstructured sparse linear

systems. We run experiments in the same cluster as our fault injection experiments.

The analysis uses the SMM that corresponds to the entire execution of AMG. Fig-

ure 4.9 shows the results of these experiments. The graph size without compression

is (on average) 192 edges, and with compression is 158, with a compression ratio of

192/158 = 1.22.

As we observe from Figure 4.9, we can apply AutomaDeD at increasingly large

scales with relatively little overhead for the error-detection analysis. For example, for

runs of 5,832 tasks, the analysis takes less than 5 seconds for both the NN and the

clustering methods. Graph compression only incurs a small overhead, on the order of

170 milliseconds for the largest runs. However it substantially improves the accuracy

64

Fig. 4.9.: Time to isolate tasks and edges for the AMG2006 benchmark.

of error detection, as shown in the fault injection results (Figure 4.6). Compression

requires little time because the core of the computation is performed locally in each

process with a relatively small number of edges, (e.g., less than 250 edges for the AMG

benchmark and the NAS Parallel Benchmarks). Despite compression decreasing edge

support, this collective operation communicates little data since pairs of states in

edges are represented as pointers (instead of strings as in our baseline).

65

The edge isolation step in NN (around 440 milliseconds) is larger than in the

clustering method (around 4.5 milliseconds) because it compares edges of the abnor-

mal processes to multiple sample SMMs, while the clustering method only compares

edges of the abnormal process to one sample SMM, i.e., the medoid SMM. However,

as the edge isolation results show, comparing edges to only one sample SMM suffices

to produce a similar edge-isolation recall. These results demonstrate that the scal-

able techniques implemented in AutomaDeD make it suitable for online analysis in

production runs. That is, AutomaDeD could be applied at multiple points in time as

the application executes (possibly for several days) to find erroneous tasks and code

regions.

To see the trend of the analysis time, we compute trend curves of the total time as

Figure 4.10 shows—the total time corresponds to the sum of the three steps that are

shown in Figure 4.9. Logarithmic curves accurately model the observed data, which

matches our expectation that the cost of our analysis scales logarithmically with

system size. The algorithmic complexity of the techniques in the outlier detection

step, which has an O(log n) scaling, dominate this cost. Evaluating the equations

of the trend curves, the analysis would take 8.67 seconds for 10,000 tasks, and 11.29

seconds for 100,000 tasks, for the clustering method. While we realize that such

extrapolations are problematic and not always accurate, they do show that there

should be no inherent limits to scaling our approach and that AutomaDeD has the

potential to be appropriate as an online tool at our target large scales.

4.4 Discussion

We have implemented novel techniques in AutomaDeD that enables it to achieve

scalability by optimizing it at different levels of its procedures. First, we minimize

the time to compare elements of task models by using efficient data structures and

approximation methods. Second, we reduce the sizes of the models to an appropriate

magnitude, which eliminates noisy dimensions when finding the task affected by a

66

Fig. 4.10.: Trend lines for the total analysis time.

fault. Finally, we use sampling-based techniques such as CAPEK’s clustering and

scalable nearest neighbor to deal with the increasing number of parallel tasks that

are present in today’s largest systems. Our implementation scales easily to thousands

of tasks and it can identify erroneous tasks and code regions in a few seconds. With

this performance, AutomaDeD can be used not only in debugging runs, but also

in production runs in an online manner in which AutomaDeD ’s analysis would be

applied periodically as the application runs (e.g., at boundaries of application phases)

to detect problems automatically.

67

5. PROBLEM LOCALIZATION IN SCIENTIFIC

APPLICATIONS

In this chapter we present novel techniques to perform problem localization in HPC

applications. We extent our previous work, AutomaDeD , to help developers under-

stand and fix performance failures at scale. The proposed technique probabilistically

infers the least progressed task in MPI programs using Markov models of execution

history and dependence analysis. This analysis guides program slicing to find code

that may have caused a failure. In a blind study, we demonstrate that our tool can

isolate the root cause of a particularly perplexing bug encountered at scale in a molec-

ular dynamics simulation. Further, we perform fault injections into two benchmark

codes and measure the scalability of the tool. Our results show that it accurately

detects the least progressed task in most cases and can perform the diagnosis in a

fraction of a second with thousands of tasks.

5.1 Introduction

We present a framework that provides insight into performance faults in large-

scale parallel applications. Our framework identifies the least progressed (LP) task

(or tasks) probabilistically in parallel code by using a Markov Model (MM) as a

lightweight, statistical summary of each task’s control-flow history. MM states repre-

sent MPI calls and computation, and edges represent state transitions (i.e., transfer

of control between two code regions). This model lets us associate faults with code lo-

cations. However, in parallel applications, faults may lie on separate tasks from their

root causes, so we introduce progress dependence to diagnose performance faults in

parallel applications. We create a progress dependence graph (PDG) to capture wait

chains of non-faulty tasks that depend on the faulty task to progress. We use these

68

chains to find the LP task in parallel. Once we find the LP task, we apply program

slicing [67] on the task’s state to identify code that may have caused it to fail. We im-

plement this framework as an extension to the AutomaDeD tool (which was described

in Chapters 3 and 4).

To ensure scalability, we use a novel, fully distributed algorithm to create the PDG.

Our algorithm uses minimal per-task information, and it incurs only slight runtime

overhead for the applications we tested. Our implementation is non-intrusive, using

the MPI profiling interface to intercept communication calls, and it does not require

separate daemons to trace the application as other tools do (e.g., TotalView [2],

STAT [17]).

We evaluate AutomaDeD by performing fault injections on AMG2006 and LAMMPS,

two of the ASC Sequoia benchmarks. AutomaDeD finds a faulty task in a fraction

of a second on up to 32,768 tasks. AutomaDeD accurately identifies the LP task

88% of the time, with perfect precision 86% of the time. We show that AutomaDeD

can diagnose a difficult bug in a molecular dynamics code [68] that manifested only

with 7,996 or more processes. AutomaDeD quickly found the fault—a sophisticated

deadlock condition.

5.2 Overview of the Approach

5.2.1 Progress Dependence Graph

A progress-dependence graph (PDG) represents dependencies that prevent tasks

from making further execution progress at any given time. It facilitates pinpointing

performance faults that cause failures such as program stalls, deadlocks and slow code

regions, and in performance tuning the application (e.g., by highlighting tasks with

the least progress).

A PDG starts with the observation that two or more tasks must execute an MPI

collective in order for (all of) them to move forward in the execution flow. For

example, MPI Reduce is often implemented in MPI using a binomial tree for short

69

messages [69]. Since the MPI standard does not require collectives to be synchronized,

some tasks could enter and leave this state — the MPI Reduce function call — while

others remain in it. Tasks that only send messages in the binomial tree enter and

leave this state, while tasks that receive (and later send) messages block in this state

until the corresponding sender arrives. These blocked tasks are progress dependent

on other (possibly delayed) tasks.

This definition formalizes progress dependence (for collective operations): Let the

set of tasks that participate in a collective operation be X. If a task subset Y ⊆ X has

reached the collective operation while another task subsets Z ⊆ X, where X = Y ∪ Z

has not yet reached it at time t such that the tasks in Y blocked at t waiting for tasks

in Z then Y is progress-dependent on Z, which we denote as Y
pd
−→ Z.

Fig. 5.1.: Progress dependence graph example.

Figure 5.1 shows an example PDG in which task a blocks in (computation code)

line 10. Task a could block for many reasons, such as a deadlock due to incorrect

thread-level synchronization. As a consequence, a group of tasks B block in MPI -

Bcast in line 11 while other tasks proceed to other code regions — tasks group C,

D and E block in code lines 15, 17, and 20. No progress-dependence exists between

groups C and E because they are in different execution branches.

70

Point-to-Point Operations: In blocking point-to-point operations such as

MPI Send and MPI Recv, the dependence is only on the peer task, which we for-

malize as: If task x blocks when sending (receiving) a message to (from) task y at

time t then x is progress dependent on y, i.e., x
pd
−→ y. This definition also applies

to nonblocking operations such as MPI Isend and MPI Irecv. The main difference is

that the dependence does not apply directly to the send (or receive) operation, but

to the associated completion (e.g., a wait operation or a user-level test loop). If a

task x blocks on MPI Wait, for example, we infer the task y, on which x is progress

dependent, from the request on which x waits. Similarly, if x spins on a user test

loop, for example by calling MPI Test within a loop, we infer the peer task on which

x is progress dependent from the associated request (within the user loop). On the

receiving end, we can also infer the dependence from other test operations such as

MPI Probe or MPI Iprobe. In any case, we denote the progress dependence as x
pd
−→ y.

PDG-Based Diagnosis: A PDG can intuitively pinpoint the task (or task

group) that originates a performance failure. In Figure 5.1, task a can be blamed for

originating the program’s stall since it has no progress dependence on any other task

(or group of tasks) in the PDG. It is also the least progressed (LP) task.

From the programmer’s perspective, the PDG provides useful information in de-

bugging and performance tuning. First, given a performance failure such as the one

in Figure 5.1, the PDG shows where to focus attention, i.e., the LP task(s). Thus, de-

bugging time is substantially reduced, as the programmer can focus on the execution

context of one (or a few) task(s) rather than on possibly thousands of tasks. Second,

we can efficiently apply static or dynamic bug-detection methods based on the LP

task(s) state. AutomaDeD applies slicing [67] using the state of the LP task as initial

criterion, which substantially reduces the search space of slicing when compared to

slicing the execution context of each task (or representative task group) separately

and then combining this information to find the fault.

PDG Versus Other Dependency Graphs: A PDG is similar to the de-

pendency graph used in MPI deadlock detection [70–72] since both graphs express

71

dependencies between groups of processes; however, a PDG hierarchically describes

the execution progress of MPI tasks. A PDG addresses questions—that cannot be

answered directly from deadlock-detection dependency graphs—such as: Which task

has made the least progress? Which tasks does the LP task prevent from making

progress? In contrast, knots in traditional dependency graphs can detect real and

potential deadlocks. We do not detect deadlocks by checking for knots in a PDG.

However, since a PDG combines dependencies arising from MPI operations, it can

indicate that a deadlock caused a hang. Performance failures are a superset of hangs;

deadlocks or other causes can lead to hangs. Our case study with a real-world bug in

Section 5.5.1 shows an example in which we use a PDG to identify that a deadlock

was the root-cause of a hang.

5.2.2 Workflow of Our Approach

Fig. 5.2.: Overview of the diagnosis work flow.

72

Figure 5.2 shows the steps in AutomaDeD to diagnose performance problems.

Steps 1–3 are distributed while steps 4–6 are performed in a single task.

(1) Model creation. AutomaDeD captures per-MPI-task control-flow behavior

in a Markov model (MM). These models are similar to the semi-Markov models

(SMM) that AutomaDeD creates as described in Chapters 3 and 4, except that we

do not compute a time distribution for each edge. MM states correspond to two code

region types: communication regions, i.e., code executed within an MPI function;

and computation regions, i.e., code executed between two MPI functions.

(2) Distributed PDG creation. When a system detects a performance fault

(either AutomaDeD or a third-party system), AutomaDeD uses a distributed al-

gorithm to create a PDG in each task. First, we use an all-reduce over the MM

state of each task, which provides each task with the state of all other tasks. For-

mally, if a task’s local state is slocal, this operation provides each task with the set

Sothers = s1, . . . , sj, . . . , sN , where sj 6= slocal. Next, each task probabilistically infers

its own local PDG based on slocal and Sothers.

(3) PDG reduction. Our next distributed step reduces the PDGs from step (2)

to a single PDG. The reduction operation is the union of edges in two PDGs, i.e., the

union (in each step of the reduction) of progress dependencies.

(4) LP task detection. Based on the reduced PDG, we determine the LP task

and its state (i.e., call stack and program counter), which we use in the next step.

(5) Backward slicing. We then perform backward slicing using Dyninst [73].

This step finds code that could have led the LP task to reach its current state.

(6) Visualization. Finally, AutomaDeD presents the program slice, the reduced

PDG and its associated information. The user can attach a serial or parallel debugger

to the LP task based on the PDG. The PDG also provides other task groups and their

dependencies. The slice brings the programmer’s attention to code that affected the

LP task, and allows them to find the fault.

73

5.3 Design

5.3.1 Summarizing Execution History

A simple approach to save the control-flow execution history directly might build

a control-flow graph (CFG) based on executed statements [74]. Since large-scale MPI

applications can have very large CFGs, AutomaDeD instead captures a compressed

version of the control-flow behavior using our MM with communication and compu-

tation states. The edge weights capture the frequency of transitions between two

states.

Figure 5.3 shows how AutomaDeD creates MMs at runtime in each task. We

use the MPI profiling interface to intercept MPI routines. Before and after calling

the corresponding PMPI routine, AutomaDeD captures information such as the call

stack, offset address within each active function and return address. We assume that

the MPI program is compiled using debugging information so that we can resolve

function names. Our modeling assumes that if two MM states are the same, i.e., they

correspond to the same beginning or end of an MPI function call with the same call

stack and addresses, then the two corresponding MPI calls are the same, i.e., they

are in the same file and line of code of the monitored application. This assumption

applies for both point-to-point and collective operations.

5.3.2 Progress Dependence Inference

In this section, we discuss how we infer progress dependence probabilistically

from our MMs. We restrict the discussion to dependencies that arise from collec-

tive operations, since dependencies from point-to-point operations do not require our

probabilistic analysis. For example, if task ti is waiting for another task in MPI Recv,

AutomaDeD uses the parameters of the MPI call to determine on which task ti is

progress-dependent. In cases when a task blocks in MPI Wait, for example when using

non-blocking operations, AutomaDeD uses request handlers to identify the matching

74

Fig. 5.3.: Markov model creation.

progress-dependence task. We cannot infer progress dependence for MPI ANY SOURCE,

in which case AutomaDeD omits this progress-dependence edge, which reflects the

probabilistic nature of our approach.

In contrast to dependencies from point-to-point operations, collective operations

do not allow us to infer progress dependencies from the parameters of the MPI call.

The parameters in a collective operation are buffers, data types, root process and

communicators. We can infer the tasks that have to execute a collective operation

from the communicator, i.e., the tasks that have to reach this (communication) state,

but we cannot infer progress dependencies (assuming that we know the current states

of all tasks). As an example consider the collective operation in Figure 5.4 in which

two tasks, x and y, are members of the comm communicator. Suppose that task

x is blocked in the collective operation itself and that task y is blocked in another

state. Within task x, we can obtain the members of the communicator and infer that

75

task y also has to reach this state but we do not know whether it has already visited

this state (i.e., it is in a state after the collective operation) or it has not yet visited

this state (i.e., it is in a state before the collective operation). Effectively we cannot

determine x
pd
−→ y or y

pd
−→ x.

Fig. 5.4.: Example of a collective operation executed by two tasks.

AutomaDeD probabilistically infers progress dependence between a task’s local

state and the states of other tasks. Intuitively, our MM models the probability of

going from state x to state y via some path x ; y. If a task tx in x must eventually

reach y with high probability then we can determine that a task ty in state y could be

waiting for tx in which case we infer that y
pd
−→ x (for simplicity, we represent progress

dependencies in terms of task states).

Figure 5.5 illustrates how we infer progress dependence from our MMs. Five

tasks (a, b, c, d and e) are blocked in different states (1, 3, 5, 8, and 10 respectively).

To estimate the progress dependence between task b and task c, we calculate that

the path probability P (3, 5), the probability of going from state 3 to state 5 over

all possible paths, which is 1.0. Thus, task c is likely to be waiting for task b, since

according to the observed execution, if a task is in state 3 it always must reach state 5.

To estimate progress dependence more accurately, we consider the possibility of loops

and evaluate the backward path probability P (5, 3), which in this case is zero. Thus,

task c cannot reach task b, so we can consider it to have progressed further than task

b so c
pd
−→ b.

76

Fig. 5.5.: Sample Markov model with five blocked tasks.

Notice that the the Markov model in Figure 5.5 is a global view of all the Markov

models (within all tasks) but it is not created at any time our PDG-construction

algorithm. Different tasks could have different Markov models. As we explain later

in the description of Figure 5.6, our PDG-construction algorithm only uses the local

Markov model and the state of all the tasks to infer progress dependencies. The reason

behind this design choice—rather than creating a global model as in Figure 5.5—is to

reduce the cost of exchanging local models between all the tasks. Markov models could

be large (in the order of thousands of states) and performing an all-to-all reduction

of them can impact the scalability of our design.

Resolving conflicting probability values. When a backward path probability

P (j, i) is zero, a task in state j has made more progress than a task in state i. However,

if the forward path probability P (i, j) is 1.0 and the backward path probability is

nonzero then the task in state j might return to i. For example, for tasks d and c in

Figure 5.5, P (8, 5) = 1.0 but P (5, 8) = 0.9. In this case, task d must eventually reach

state 5 to exit the loop so we estimate that c
pd
−→ d; our results demonstrate that this

heuristic works well in practice.

77

The dependence between task b and task e is null, i.e., no progress dependence

exists between them. They are in different execution branches so the forward and

backward path probabilities between their states, i.e., P (3, 10) and P (10, 3), are both

zero. The same holds for the dependencies between task e and task c or d.

Table 5.1: Dependence based on path probabilities.

P (i, j) P (j, i)

0 0 < P < 1 1 0 0 < P < 1 1 Dependence? Type

X X No

X X Yes ti
pd
−→ tj

X X Yes ti
pd
−→ tj

X X Yes ti
pd
←− tj

X X ?

X X Yes ti
pd
−→ tj

X X Yes ti
pd
←− tj

X X Yes ti
pd
←− tj

X X ?

General progress dependence estimation. To estimate the progress depen-

dence between tasks ti and tj in states i and j, we calculate two path probabilities:

(i) a forward path probability P (i, j); and (ii) a backward path probability P (j, i). A

path probability is the likelihood of going from one state to another over all possible

paths. We use Table 6.2 to estimate progress dependencies. If both probabilities are

zero (i.e., the tasks are in different execution branches), no dependence exists between

the tasks. When one probability is 1.0 and the other is less than 1.0, the first predom-

inates the second. Therefore, the second probability determines the dependence. For

example, if the second is P (j, i) we determine tj
pd
−→ ti since execution goes from i to

j. If one probability is zero and the second is nonzero, then the second predominates

the first. Therefore, the first probability determines the dependence. For example, if

the first is P (i, j) we determine ti
pd
−→ tj because execution could go from j to i but

not from i to j.

78

We cannot determine progress dependence for two cases: when both probabilities

are 1.0; and when both probabilities are in the range 0.0 < P < 1.0. The first case

could happen when two tasks are inside a loop and, due to an error, they do not leave

the loop and block inside it. In this case both backward and forward path probabilities

are 1.0, so it is an undefined situation. The probabilities in the second case simply

do not provide enough information to decide. For these cases, AutomaDeD marks

the edges in the PDG as undefined so that the user knows that the relationship could

not be determined. These cases occur infrequently in our experimental evaluation.

When they do, the user can usually determine the LP task by looking at tasks that

are in one group or cluster. Section 5.5 gives examples of how the user can resolve

these cases visually.

Algorithm. Figure 5.6 shows our local PDG construction algorithm, which takes

an MM and statesSet, the states of all other tasks as input. We compute the depen-

dency between the local state and statesSet. We represent dependencies as integers

(0: no dependence; 1: forward dependence; 2: backward dependence; 3: undefined).

We save the PDG in an adjacency matrix. The function dependence determines de-

pendencies based on all-path probabilities (calculated in probability) and Table 6.2

(captured in dependenceBasedOnTable).

The overall complexity of the algorithm is O(s×(|V |+|E|)), where s is the number

of states in statesSet, and |V | and |E| are the numbers of states and edges of the

MM. In practice, the MMs are sparse graphs in which |E| ≈ |V |, so the complexity

is approximately O(s× |E|).

Comparison to postdominance. Our definition of progress dependence is sim-

ilar to the concept of postdominance [75] in which a node j of a CFG postdominates

a node i if every path from i to the exit node includes j. However, our definition does

not require the exit node to be in the MM (postdominance algorithms require it to

create a postdominator tree). Since a fault could cause the program to stop in any

state, we are not guaranteed to have an exit node within a loop. Techniques such as

assigning a dummy exit node to a loop do not work in general for fault diagnosis be-

79

1 Input: mm (Markov model), closure (transitive closure

2 of the mm), statesSet (set of states)

3 Output:depMatrix (PDG adjacency-matrix representation)

4

5 progressDependenceGraph () { /∗ Bui lds PDG ∗/

6 State l o c a l S t a t e ← getLoca lState (mm)

7 f o r each State s in s t a t e s S e t

8 i f s i s not l o c a l S t a t e {

9 d ← dependence (l o ca l S ta t e , s)

10 depMatrix [l o ca l S ta t e , s] ← d

11 }

12 }

13

14 /∗ Ca l cu l a t e s dependence between two s t a t e s ∗/

15 dependence(State src , State dst) {

16 p ← p r obab i l i t y (src , dst)

17 d ← dependenceBasedOnTable (p)

18 r eturn d

19 }

20

21 /∗ Ca l cu l a t e s r e a ch ab i l i t y p r ob ab i l i t y ∗/

22 probability (State src , State dst) {

23 p ← 0

24 i f s r c can reach dst in c l o s u r e {

25 f o r each Path p between s r c and dst

26 p ← p + pathProbab i l i ty (src , dst)

27 }

28 r eturn p

29 }

Fig. 5.6.: Algorithm to create the PDG.

cause a faulty execution makes it difficult (or impossible) to determine the right exit

node. In order to use postdominance theory, we could use static analysis to find the

exit node and map it to a state in the MM. However, our dynamic analysis approach

is more robust and should provide greater scalability and performance.

80

5.4 Scalable PDG-Based Analysis

This framework is implemented in AutomaDeD in C++ and uses the Boost Graph

Library [76] for graph-related algorithms such as depth-first search. In this section,

we focus on the implementation details that ensure scalability.

5.4.1 Error Detection

We assume that a performance problem has been detected, for example, because

the application is not producing the expected output in a timely manner. The user

can then use AutomaDeD to find the tasks and the associated code region that caused

the problem. AutomaDeD includes a timeout detection mechanism that can trigger

the diagnosis analysis, and it can infer a reasonable timeout threshold (based on the

mean time and standard deviation of state transitions). The user can also supply the

timeout as an input parameter. Our experiments with large-scale HPC applications

found that a 60 second threshold is sufficient.

5.4.2 Distributed Inference of the PDG

Helper thread. AutomaDeD uses a helper thread to analyze the MM (that

is built in the main thread). The core of the dependence inference, Steps 2–3 in

Figure 5.2, is distributed while only one task (MPI rank 0 by default) performs

the inexpensive operations in Steps 4–6. AutomaDeD uses MPI THREAD MULTIPLE to

initialize MPI so that multiple threads can call MPI. On machines that do not support

threads, such as BlueGene/L, we save all MMs to the parallel file system when we

detect an error. AutomaDeD then reads these MMs for analysis in a separate MPI

program.

Distributed algorithm. The following steps provide more detail of Steps 2–3

in the workflow:

(1) We first perform a reduction over the current state of all tasks to compute the

81

Table 5.2: Some examples of dependence unions.

No Task x Task y Union Reasoning OR operation

1 i→ j null i→ j first dependence domi-

nates

1 + 0 = 1

2 i→ j i→ j i→ j same dependence 1 + 1 = 1

3 i← j i← j i← j same dependence 2 + 2 = 2

4 i→ j i← j i?j undefined 1 + 2 = 3

5 null null null no dependence 0 + 0 = 0

statesSet of all tasks.

(2) We next broadcast statesSet to all tasks.

(3) Each task uses the algorithm in Figure 5.6 to compute its local PDG from its

local state and statesSet.

(4) Finally, a reduction of the local PDGs calculates the union of the edges (forward or

backward). Table 5.2 shows examples of some union results. In case 1, a dependence

is present in only one task so the dependence predominates. In cases 2 and 3, the

dependencies are similar so we retain it. In case 4, they conflict so the resulting

dependence is undefined. We efficiently implement this operator using bitwise OR

since we represent dependencies as integers.

We cannot use MPI Reduce for our reduction steps (for example, tasks can con-

tribute states of different sizes) so we implement custom reductions that use binomial

trees. These operations have O(log p) complexity where p is the number of tasks. As-

suming a scalable broadcast implementation, the overall complexity is also O(log p).

Our algorithm can therefore scale to the task counts found on even the largest HPC

systems.

5.4.3 Determination of LP Task

We compute the LP task (or task group) from the reduced PDG. AutomaDeD

first finds nodes with no outgoing edges based on dependencies from collectives and

82

marked them as LP. If more than one node is found, AutomaDeD discards nodes that

have point-to-point dependencies on other non-LP tasks in different branches. Since

AutomaDeD operates on a probabilistic framework (rather than on deterministic

methods [17]), it can incorrectly pinpoint the LP task, although such errors are rare

according to our evaluation. However, in most of these cases, the user can still

determine the LP task by visually examining the PDG (by looking for nodes with

only one task).

5.4.4 Guided Application of Program Slicing

Background. Program slicing transforms a large program into a smaller one

that contains only statements that are relevant to a particular variable or statement.

For debugging, we only care about statements that could have led to the failure.

However, message-passing programs complicate program slicing since we must reflect

dependencies related to message operations.

We can compute a program slice statically or dynamically. We can use static data

and control flow analysis to compute a static slice [67], which is valid for all possible

executions. Dynamic slicing [77] only considers a particular execution so it produces

smaller and more accurate slices for debugging.

Most slicing techniques that have been proposed for debugging message-passing

programs are based on dynamic slicing [78–80]. However, dynamically slicing of a

message-passing program usually does not scale well. Most proposed techniques have

complexity at least O(p). Further, the dynamic approach suffers high costs to generate

traces of each task (typically by code instrumentation) and to aggregate those traces

centrally to construct the slice. Some approaches reduce the size of dynamic slices

by using a global predicate rather than a variable [79, 80]. However, the violation

of the global predicate may not provide sufficient information to diagnose failures in

complex MPI programs.

83

We can use static slicing if we allow some inaccuracy. However, we cannot naively

apply data-flow analysis (which slicing uses) in message-passing programs [81]. For

example, consider the following code fragment:

1 program () {

2 . . .

3 i f (rank == 0) {

4 x = 10 ;

5 MPI Send (. . . , & x , . . .) ;

6 } e l s e {

7 MPI Recv (. . . , & y , . . .) ;

8 r e s u l t = y ∗ z ;

9 p r i n t f (r e s u l t) ;

10 . . .

Traditional slicing on result in line 9 identifies statements 7, 8, and 9 as the only

statements in the slice, but statements 3–9 should be in the slice. Statements 4-

5 should be in the slice because the value x sent is received as y which obviously

influences z. Thus, we must consider the SPMD nature of the program in order to

capture communication dependencies. The major problem with this communication-

aware slicing is the high cost of analyzing a large dependence graph [81] to construct

a slice based on a particular statement or variable. Further, the MPI developer must

decide on which tasks to apply communication-aware static slicing since applying it

to every task is infeasible at large scales.

Approach. AutomaDeD progressively applies slicing to the execution context

of tasks that are representative of behavioral groups, starting with the groups that

are most relevant to the failure based on the PDG. AutomaDeD uses the following

algorithm:

(1) Initialize an empty slice S.

(2) Iterate over PDG nodes from the node corresponding to the LP task to nodes

that depend on it, and so on to the leaf nodes (i.e., the most progressed tasks).

(3) In each iteration i, S = S
⋃

si where si is the statement set produced from the

state of a task in node i.

84

This slicing method reduces the complexity of manually applying static slicing to

diagnose a failure. The user can simply start with the most important slice (i.e., the

one associated with the LP task) and progressively augment it by clicking the “next”

button in a graphical interface, until the fault is found.

5.5 Evaluation

We demonstrate how AutomaDeD diagnose a difficult bug in a molecular dynamics

program that manifested only at large scale. We also perform 280 experiments to

evaluate AutomaDeD in a controlled setting: 50 fault injection experiments; 160

slowdown and memory usage experiments; and 70 scalability experiments. The next

sections provide the experimental settings and main results.

5.5.1 Case Study

An application scientist challenged us to locate an elusive error in ddcMD, a paral-

lel classical molecular-dynamic code [68]. The bug manifested as a hang that emerged

intermittently only when run on Blue Gene/L with 7,996 MPI tasks. Although he had

already identified and fixed the error after significant time and effort, he hoped that

we could provide a technique that would not require tens of hours. In this section,

we present a blind case study, in which we were supplied no details of the error, that

demonstrates AutomaDeD can efficiently locate the origin of faults.

Figure 5.7 shows the result of our analysis. Our tool first detects the hang condi-

tion when the code stops making progress, which triggers the PDG analysis to identify

MPI task 3,136 as the LP task — AutomaDeD first detects tasks 3,136 and 6,840 as

LP tasks and then eliminates 6,840 since it is point-to-point dependent on task 0, a

non-LP task, in the left branch. The LP task in the a state, causes tasks in the b state

that immediately depend on its progress to block, ultimately leading to a global stall

through the chain of progress dependencies. This analysis step reveals that task 3,136

stops progressing as it waits on an MPI Recv within the Pclose forWrite function.

85

Fig. 5.7.: Output for ddcMD bug.

Once it identifies the LP task, AutomaDeD applies backward slicing starting from

the a state, which identifies dataWritten as the data variable that most immediately

pertains to the current point of execution. Slicing then highlights all statements that

could directly or indirectly have affected its state.

86

The application scientist verified that our analysis precisely identified the location

of the fault. ddcMD implements a user-level, buffered file I/O layer called pio. MPI

tasks call various pio functions to move their output to local per-task buffers and later

call Pclose forWrite to flush them out to the parallel file system. Further, in order

to avoid an I/O storm at large scales, pio organizes tasks into I/O groups. Within

each group, one writer task performs the actual file I/O on behalf of all other group

members. A race condition in the complex writer nomination algorithm — optimized

for a platform-specific I/O forwarding constraint — and overlapping consecutive I/O

operations causes the intermittent hang. The application scientist stated that the LP

task identification and highlighted statements would have provided him with critical

insight about the error. He further verified that a highlighted statement was the bug

site.

More specifically, on Blue Gene/L, a number of compute nodes perform their file

I/O through a dedicated I/O node (ION) so pio nominates only one writer task

per ION. Thus, depending on how MPI tasks map to the underlying IONs, an I/O

group does not always contain its writer task. In this case, pio instead nominates

a non-member task that belongs to a different I/O group. This mechanism led to a

condition in which a task plays dual roles: a non-writer for its own I/O group and

the writer for a different group.

Figure 5.7 shows the main loop of a writer. To receive the file buffer from a non-

writer, the group writer first sends a request to each of its group members to send the

file buffer via the MPI Send at line 317. The group member receives that request via

the MPI Recv at line 341 and sends back the buffer size and the buffer. As shown in

the loop, a dual-purpose task has an extra logic: it uses MPI Iprobe to test whether

it must reply to its non-writer duty while it performs its writer duty. The logic is

introduced in part to improve performance. However, completing that non-writer

duty frees its associated writer task to move on from MPI blocking communications.

The hang arises when two independent instances of pio are simultaneously processing

two separate sets of buffers. This pattern occurs in the application when a small data

87

set is written immediately after a large data set. Some tasks can still be performing

communication for a large data set while others work on a small set. Because the

MPI send/recv operations use tags that are fixed at compile time, messages from a

small set could be confused for those for a large set of pio and vice-versa, leading to

a condition in which a task could hang waiting for a message that was intercepted by

a wrong instance.

(a) hypre ParVectorCopy (b) hypre CSRMatrixMatvec

(c) MPI Irecv

Fig. 5.8.: Examples of PDGs indicating LP tasks (highlighted)—errors are injected

in task 3.

This error only arose on this particular platform because the dual-purpose condi-

tion only occurs under Blue Gene’s unique I/O forwarding structure. We also theorize

that the error emerges only at large scales because this scale increases the probability

that the dual-purpose assignments and simultaneous pio instances occur. The appli-

cation scientist had corrected the error through unique MPI tags in order to isolate

one pio instance from another.

88

5.5.2 Fault injections

Applications. To evaluate AutomaDeD , we inject faults into two Sequoia bench-

marks: AMG2006 and LAMMPS [82]. These codes are representative of large-scale

HPC production workloads. AMG2006 is a scalable iterative solver for large struc-

tured sparse linear systems. LAMMPS is a classical molecular dynamics code. For

AMG-2006, we use the default 3D problem (test 1) with the same size in each dimen-

sion. For LAMMPS, we use “crack”, a crack propagation example in a 2D solid.

Injections. We inject a local application hang by making a randomly selected

process suspend execution for a long period to activate the timeout error detection

mechanism in AutomaDeD . We use Dyninst [73] to inject the fault into the application

binaries as a sleep call at the beginning of randomly selected function calls (20 user,

5 MPI). Our injector first profiles a run of the application so that we randomly

choose from functions that are used during the run. This ensured that all injections

resulted in errors. We use a higher proportion of user function calls because more

user functions than MPI functions are used at runtime. These function calls capture

a wide range of program behaviors including calls inside complex loops as well as ones

at the beginning or end of the program. We perform all fault-injection experiments

on a Linux cluster with nodes that have six 2.8 GHz Intel Xeon processors, 24 GB of

RAM and InfiniBand interconnect. We use 1,000 tasks in each experiment.

Coverage results. We use three metrics to evaluate diagnosis quality: LPT

detection recall, the fraction of cases in which the set of LP tasks that AutomaDeD

finds includes the faulty task; isolation, the fraction of cases in which the faulty task

is not detected but it is the only task in a PDG node (i.e., a singleton task); and

imprecision: the percentage of the total number of tasks in the LP task set that

AutomaDeD finds that are not LP tasks; we should have only one task in the set

since we inject in a single task. Figure 5.8(a)-(b) shows two cases of correct LPT

detections, which should have only the one task into which we inject the error for

these experiments. A singleton task appears suspicious to a user so we consider

89

isolation as semi-successful. Figure 5.8(c) shows an example of isolation — the PDG

isolates faulty task {3} (although AutomaDeD failed to select it as the LP task).

Table 5.3: LPT detection performance for AMG2006.

No Function L
P
T

d
et

ec
te

d

Is
o
la

te
d

Im
p
re

ci
si
o
n

1 hypre BoxGetSize X 0

2 HYPRE SStructMatrixSetObjectType X 0

3 hypre PCGSetup X 0

4 hypre BoomerAMGSetOverlap X 0

5 MapProblemIndex X 0

6 GetVariableBox X 0

7 hypre ParVectorCopy X 0

8 hypr CommPkgDestroy X 0

9 hypre CSRMatrixMatvec X 0

10 hypre Rand X 0

11 HYPRE IJVectorCreate X 0

12 DistributeData X 0

13 hypre ParKrylovMatvec X 0

14 hypre BigQsort0 X 0

15 hypre ParKrylovFree X 0

16 HYPRE SStructGridSetExtents X 0

17 SetCosineVector X 0

18 HYPRE SStructGridDestroy X 0

19 enter on lists X 0

20 IntersectBoxes X 0

21 MPI Allgather × X 0.99

22 MPI Iprobe X 0

23 MPI Irecv × X 0.05

24 MPI Test X 0

25 MPI Waitall × X 0.03

90

Table 5.4: LPT detection performance for LAMMPS.

No Function L
P
T

d
et

ec
te

d

Is
o
la

te
d

Im
p
re

ci
si
o
n

1 Neighbor::decide X 0

2 FixNVE::final integrate × X 0.65

3 RanPark::uniform X 0

4 Atom::check mass X 0

5 Neighbor::init X 0

6 Output::write X 0

7 Verlet::setup X 0

8 FixSetForce::post force X 0

9 PairLJCut::compute X 0

10 Atom::memory usage X 0

11 AtomVecAtomic::create atom X 0

12 Domain::set local box X 0

13 Thermo::compute vol X 0

14 DumpAtom::pack X 0

15 Region::options X 0.35

16 Input::lattice X 0

17 Thermo::init X 0

18 Comm::reverse communicate X 0

19 Neighbor::decide X 0

20 Modify::initial integrate X 0

21 MPI Cart get × X 0.31

22 MPI Allreduce X 0

23 MPI Recv X 0

24 MPI Scan X 0

25 MPI Wait × X 0.01

Tables 5.3 and 5.4 show the results of the fault-injection experiments. AutomaDeD

detects the LP task accurately most of the time (for AMG2006, all 20 user calls and

91

2 MPI calls; for LAMMPS, 19 user calls and 3 MPI calls). AutomaDeD isolates the

LP task in all cases that it is not detected.

AutomaDeD has low imprecision: 43 (out of 50) injections resulted in no incorrect

tasks in the LP set, i.e., AutomaDeD incorrectly flagged the LP task only 7 times.

In these 7 cases, AutomaDeD can detect the faulty task by finding the isolated task

in the PDG. Only one AMG2006 case gives high imprecision (0.99) since progress

dependencies are undetermined (and the PDG had only one node). Three remaining

cases had low imprecision of 0.01 to 0.05. LPT detection recall is higher for user calls

than MPI calls because if a task blocks in a computation region, the remaining tasks

are likely to block in the next communication region, which follows the computation

region in our MM with probability one and, thus, AutomaDeD is likely to detect the

dependence. Alternatively, if a task blocks in a communication region, the other tasks

likely block in another communication region, which is necessarily not an adjacent

MM state so AutomaDeD has a lower probability of finding the LP task. Nonetheless,

AutomaDeD isolates the faulty task in all cases that it does not correctly detect the

LP task.

5.5.3 Performance

Scalability We run AMG2006 and LAMMPS with up to 32,768 MPI tasks on an

IBM BlueGene/P and measure the time for AutomaDeD to perform the distributed

part of its analysis (i.e., Steps 2–4 in its workflow). In each code, we inject an error

close to its final execution phase in order to have the largest possible MM (to stress

AutomaDeD with the largest input graph). We used BlueGene/P’s SMP mode in

which each node has one MPI task with up to four threads.

Figure 5.9 shows the results of these experiments. In each run, we measure three

main steps: BUILD PDG (Steps 2 and 3); FIND LP TASK (the first part of Step 4 in

which the helper thread identifies the LP task); OUTPUT (the second part of Step 4,

which post-processes the final PDG). In OUTPUT, AutomaDeD eliminates duplicate

92

Fig. 5.9.: Time of distributed analysis (steps 2–4 in workflow) on BlueGene/P.

edges in the PDG that may result from the distributed merge processing of PDGs.

It also groups MPI task ranks into ranges of the form [x–y] and adds these ranges

to the corresponding PDG nodes. Figure 5.9 shows that FIND LP TASK contributes

the least to the analysis overhead. Intuitively, finding the LP task is simple once

we have built the PDG. BUILD PDG is the core of the analysis and, so, accounts for

the most overhead. However, in practice PDGs tend to be small (i.e., usually 2–

10 different states) because our approach builds them probabilistically using Markov

models. Thus, they do not impose intractability problems for AutomaDeD to analyze

them and to find the LP task. Our results demonstrate the scalability of AutomaDeD .

The distributed analysis takes less than a second on up to 32,768 MPI tasks. The

low cost of this analysis suggests that we can trigger it at multiple execution points

with minimal impact on the application run.

Slowdown and memory usage. Table 5.5 shows application slowdown and

AutomaDeD memory usage for AMG-2006, LAMMPS, and six NAS Parallel bench-

marks: BT, SP, CG, FT, LU and MG [48]. We omit EP because it performs almost no

93

MPI communication and IS because it uses MPI only in a few code locations. Since

their MPI profiles produce small MMs, monitoring at the granularity of MPI calls

does not suit these applications. Slowdown is the ratio of the application run time

with AutomaDeD to the run time without it. Memory usage shows the proportional

increase in program heap usage when we use AutomaDeD and it is calculated by the

following formula:

increase =
memory-with-tool

memory-without-tool
(5.1)

Since AutomaDeD operates as a linked library, its memory usage increases the mem-

ory usage of the tasks themselves.

Table 5.5: Slowdown and proportional increase in memory usage.

Benchmark Slowdown Memory-usage Increase

LAMMPS 1.59 6.11

AMG2006 1.46 10.36

BT 1.08 3.75

SP 1.67 5.14

CG 1.14 2.21

FT 1.05 1.01

LU 1.39 5.37

MG 1.04 1.04

Since tasks can have different memory usage (depending on their behavior), we

used the task with the highest memory usage to calculate the increase. AutomaDeD

incurs little slowdown – the worst is 1.67 for SP – because the overhead is primarily the

cost of intercepting MPI calls and updating the MM, steps that we have highly opti-

mized. For example, to optimize MM creation, we use efficient C++ data structures

and algorithms such as associative containers and use pointer comparisons (rather

than string-based comparisons) to compare states. Memory usage is moderate for

most benchmarks; the largest is AMG2006 (10.36), which has many (unique) states

in its execution. The factor that most affects slowdown is the number of MPI calls

94

from different contexts since this increases the number of states that AutomaDeD

creates. Benchmarks with slowdown of 1.3 (or more) call MPI routines from different

contexts more often than the others. Applications with higher slowdown (AMG2006,

LAMMPS, SP and LU) also exhibit higher AutomaDeD memory use due to the num-

ber of states.

5.6 Limitations

Fig. 5.10.: Fault occurring in a code with multiple paths.

A limitation of our technique is the inability to infer progress dependence between

two tasks when no path between their corresponding states has been seen before a

failure. To illustrate this, consider Figure 5.10 in which task x takes path 1 and task

y takes path 2, and they both participate of the MPI Reduce operation at the end

of the figure. Assuming that it is the first time that these paths are taken, if task

x blocks indefinitely before reaching MPI Reduce, task y might block in MPI Reduce

95

(if it depends on x). Since there is no path between the state in which x is and

the state in which y is, the corresponding path probabilities are zero and therefore

the dependence is null at the end of the distributed PDG algorithm. There are two

situations in which this limitation is void:

• Paths are visited within a loop and at least one iteration of the loop has occurred

before task x fails. This ensures that there is at least one path between the states

of tasks x and y and therefore the progress dependence can be inferred using

transition probabilities in the Markov model.

• Path 1 is visited by other task different than x and y. Suppose that task z

visits path 1 at least once and it reaches MPI Reduce before a failure. The

progress-dependence between tasks x and y will be inferred when the PDG

creation algorithm ends. Two cases can occur: (1) like task y, task z blocks

in MPI Reduce—the algorithm infers z
pd
−→ x and y

pd
−→ x since z and y are

in the same state; (2) task z blocks in a state that is after MPI Reduce—the

algorithm infers z
pd
−→ y and z

pd
−→ x. In (2), the PDG shows both tasks x and

y as least-progressed tasks which provides an accurate LP task detection but

without perfect precision (since task y is not a LP task). Case (2) is very likely

to occur because of the single-program-multiple-data (SPMD) nature of MPI

programs.

5.7 Discussion

Our novel debugging approach can diagnose faults in large-scale parallel appli-

cations. By compressing historic control-flow behavior of MPI tasks using Markov

models, our technique can identify the least progressed task of a parallel program by

inferring probabilistically a progress-dependence graph. We use backward slicing to

pinpoint code that could have led to the unsafe state. We design and implement Au-

tomaDeD , which diagnoses the most significant root-cause of a problem. Our analysis

96

of a hard-to-diagnose bug and fault injections in three representative large-scale HPC

applications demonstrate that AutomaDeD identifies these problems with high accu-

racy, where manual analysis and traditional debugging tools have been unsuccessful.

The distributed part of the analysis is performed in a fraction of a second with over 32

thousand tasks. The low analysis cost allows its use multiple times during program

execution.

97

6. PROBLEM LOCALIZATION IN COMMERCIAL

APPLICATIONS

In this section we present a system called Orion to automate the problem-localization

process in commercial distributed applications. Orion models the application’s run-

time behavior through pairwise correlations of multiple metrics in the system, within

multiple non-overlapping time windows. When correlations deviate from those of a

learned correct model due to a bug, our analysis pinpoints the metrics and code re-

gions that are most likely associated with the failure. The framework is demonstrated

with real-world failure cases in four distributed applications: HBase, Hadoop DFS, a

Purdue campus-wide Java application for checking availability of lab machines, and

a regression testing framework from IBM. Our results show that Orion is able to

pinpoint the metrics and code regions that developers need to concentrate on to fix

the failures.

6.1 Introduction

Failures can come from different layers of the system—network, hardware, operat-

ing system, middleware, and application layers. So in the general case, it is necessary

to monitor the behavior of all the layers to understand the origin of a failure. In this

section, we focus on the problem of debugging, or root cause analysis, for failures in

distributed commercial applications.

We focus on bugs that affect the control flow in a general sense, which in turn

affects one or more metrics at the OS, middleware, or application layers. An example

of such a failure would be a resource leak prior to the application hanging. We

treat performance anomalies also as one kind of failure. Among bugs that we do

98

not handle are bugs that lead to data corruption or failures that do not affect a

system-measurable metric.

Debugging for distributed applications . Research on distributed systems

has developed foundational techniques that can help in debugging, such as program

tracing and replay debugging [83–85], model checking [23,24,27], and log analysis [28–

31]. But there remains work to be done to build on these foundational techniques

to create a usable debugging tool specifically for distributed applications. Debugging

in distributed applications brings in the additional aspect that a problem may be

related to a problem either in the software code that is executing on this node or on

a communicating node or network problems. This is precisely the goal that we have

in this research piece — to build a usable debugging tool for distributed applications.

Our goal is that the tool should indicate a region in code where the fault first becomes

active. This point is prior to the fault manifesting itself as a user-visible failure and

is more likely to be close to the region of code where the bug lies. From a definition

standpoint, we have two concepts — first, is a fault becoming activated and the

second, fault becoming an externally visible failure. The fault becomes activated

when say the buggy software code is executed or the unavailable network service is

accessed. The effect of this is not immediately visible externally, say to a user. When

that happens, we say that the fault has metastasized into an externally visible failure.

The tool should also not need much domain knowledge or knowledge of the kind of

fault that can occur. Thus, we would rule out an approach where the region of code

or the metrics to examine would need to be identified manually prior to the tool being

deployed.

Orion: Design approach . We present Orion, a software framework for lo-

calizing the origin of problems in distributed applications and a specific instantiation

of the framework1. Orion works, simply put, by profiling a wide variety of metrics

as the application is executing, either at declared instrumentation points (such as,

method entry or exit) or asynchronously with a fixed periodicity. Then through ma-

1Orion is the Greek God for hunting, albeit not for bugs.

99

chine learning techniques it verifies if the runtime profile is similar enough to profiles

created offline of non-faulty execution of the application. If it is not, then Orion goes

back through the logs in an offline analysis phase to indicate which metrics caused the

divergence of the profiles and from that, to the region of suspect code. The mecha-

nism is probabilistic and ultimately a rank-ordered list is provided to the developer for

inspection and possible fixing. This design approach is shared with a few prior soft-

ware systems [35, 86]. However, unlike these prior systems, which only gather traces

from one or two dimensions of the application, e.g., CPU and memory, Orion per-

forms application profiling along a large number of metrics, which do not have to be

hand-picked by the developer. Further Orion uses correlations between the metrics

to diagnose subtle errors, which would not be caught by the predominant approach of

checking if a metric goes above or below a constant threshold value [87,88]. We term

our approach multi-dimensional profiling. We have found that, in our case studies,

it would be difficult to a priori determine the one or two performance indicators and

specific code points to examine for a bug, as most existing work assumes.

Summary of findings . We deploy Orion and evaluate it with four diverse

applications. The first two are Java-based open source applications that mimic el-

ements of the Google software stack — HBase [89] and Hadoop [90]. The third is

an on-campus Java Enterprise Edition (JEE) application, called StationsStat, that is

used by students to check availability and load of computers throughout the Purdue

campus labs. The fourth is an IBM regression testing application for its full system

simulator called Mambo. In all these applications, we focus on failures that were

difficult to debug manually. In all these cases, we find that the root cause is related

to the top three abnormal metrics or code regions given by Orion.

100

6.2 Overview

6.2.1 Measurement Gathering

System administrators use Orion to detect software bugs, performance anoma-

lies or unexpected runtime condition that affect end users. Orion collects measure-

ments of multiple metrics at different levels in the system, e.g. operating-system-,

middleware- and application-level by means of third-party monitoring tools, such as,

the /proc file system for gathering operating-system process-level metrics. Using

collected measurements, Orion builds models of normal behavior, which allows the

localization of the failures origins.

We gather measurements from multiple layers in the system to have a full knowl-

edge of the application’s behavior. Our approach considers a wide range of metrics

(see Table 6.1 for the full list) and automatically zooms into the metrics that are

relevant to the failure and for the particular window in time where the fault first

becomes manifested. Some examples of the metrics that we gather at the different

levels are:

• End-user Application: per-servlet statistics such as processing time, request

and exception counts.

• Middleware: cache hits and accesses, number of busy and created threads, and

request processing time from the middleware layer (such as Apache Tomcat).

• OS: cpu- and memory-usage, context switches, file descriptors, disk reads/writes

(KB), packets received and transmitted, stack size.

Notice that Orion’s algorithm is not restricted to only these metrics—a user can

use any metrics in the analysis if she thinks a problem could be related to them. Our

algorithm for suspicious metric selection eliminates metrics that provides less insight

in the problem localization process and highlights only the metrics that are most

strongly associated with the problem.

101

6.2.2 Metrics

Table 6.1 shows the list of metric types that we analyzed, grouped by layer. For

the Hadoop, HBase, and Mambo Health Monitor, we use only OS metrics. Notice

that the list is not the number of metrics that we actually analyzed because some

metrics types have multiple instances. For example, the data source numActive is

the number of active connections per database. The StationsStat system has two

databases so it has two instances of this metric. The same occurs for Java servlets,

containers and server metrics—a server can have multiple containers and database

connections while each container can have multiple servlets. The OS metrics are based

on statistics of a Linux process—if a Java server only creates one Linux process, it

would have only one instance of each of the OS metrics.

6.2.3 Profiling

Orion can perform multi-dimensional profiling in two ways: synchronous and

asynchronous. In the asynchronous mode, the metric collection (aka, profiling) hap-

pens asynchronously to the application. The measurement gathering is done by a

process separate from the application process(es). The asynchronous mode does

not interfere directly with the monitored application and therefore is a lightweight

method. In a typical asynchronous profiling session, Orion collects OS metrics val-

ues from the Linux /proc file system and middleware- and application-metrics values

from server containers by querying Java JMX connectors (such as with the Apache

Tomcat JMX connectors) via a separate Linux process. This method requires offline

processing to “line up” the metric collection points with the execution points of the

application and that is simply done by using the common time base, since all the

involved processes execute on the same machine.

Synchronous profiling provides a mechanism for automatically annotating the code

region with a set of measurements corresponding to the code region. Whenever a code

region begins and ends, this method collects metric measurements and labels them

102

Table 6.1: Metric descriptions.

Metric Description
Operating System
minor faults minor page faults
major faults major page faults
utime user-level CPU time
stime system-level CPU time
num threads number of threads
vsize virtual memory size
rss RAM memory
processor CPU number last executed on
stack size size of the stack
rchar read characters from disk
wchar written characters to disk
read bytes read bytes from disk
write bytes written bytes to disk
canceled write bytes canceled written bytes to disk
num file desc open file descriptors
nicRcvBytes received bytes from NIC
nicRcvPckts received packets from NIC
nicSentBytes sent bytes from NIC
nicSentPckts sent packets from NIC
IPInTruncatedPkts truncated IP packets
IPInOctets received IP octets
IPOutOctets sent IP octets
Application
servlet processingTime processing time (per servlet)
servlet maxTime max processing time (per servlet)
servlet requestCount requests (per servlet)
servlet errorCount errors (per servlet)
datasource maxWait max waiting time (per database)
datasource numIdle idle connections (per database)
datasource maxActive max active time (per database)
datasource numActive active connections (per database)
Middleware
request handler bytesSent bytes sent (per container)
request handler bytesReceived bytes received (per container)
request handler requestCount requests(per container)
request handler maxTime max processing time (per container)
request handler processingTime processing time (per container)
request handler errorCount errors (per container)
cache hits cache hits (per server)
cache accesses cache accesses (per server)
number threads active threads (per thread pool)

with the corresponding code region name. For Java applications (such as in the

Hadoop and HBase case studies), we use Javaassist to instrument binary code and

to collect measurements at the beginning and at the end of the classes/methods we

are interested in.

103

6.2.4 Workflow of our Approach

Fig. 6.1.: Overview of problem determination workflow in Orion.

Figure 6.1 shows the steps in Orion to diagnose failures:

1. Trace collection: Orion uses two set of traces to localize the origin of prob-

lems: a normal and an abnormal trace file. The normal trace file is obtained

by collecting metrics of the application when failures are not manifested. This

can be the case of runs of a earlier bug-free application version or, in the case

of intermittent failures, sections of a failed run where the fault did not manifest

itself. The abnormal trace file is obtained when the failure is manifested exter-

nally. Labeling a run as one or the other is a manual process. In practice, we

find that the failure manifestation is quite obviously detectable and therefore

the labeling is not difficult.

2. Normal-behavior modeling: Orion creates a baseline model using the

normal-behavior traces. Given traces of n metrics, the algorithm splits traces

104

into equally sized time windows and calculates pairwise correlations between all

the n metrics. These correlation serve as a summary of the expected behavior

of the application in different time windows. We observed that there is not a

single point for normal behavior, since there are different workload patterns,

and therefore our model captures a region rather than a single point.

3. Suspicious metric selection: The file with abnormal traces is used to select

the metrics that are correlated with a failure. From all the n original metric,

the top 3 most abnormal metrics are presented to the user (ranked by an abnor-

mality measure). The user can then focus on finding the origin of the problem

based on the abnormal metrics. For example, in our case study with the Pur-

due application StationsStat, identifying the suspicious metric as the number

of SQL connections mapped directly (with human intervention) to the part of

the SQL driver that handled SQL connections.

4. Abnormal code-region selection: There are cases when the suspicious met-

ric information in step 3 is not sufficient to infer the origin of a failure. For

example, a metric like CPU utilization may be affected by any region of code,

even when Orion has identified a window in time. Orion selects the code

regions that have a high degree of association with the suspect metric(s). This

is done by adding annotations in the original trace files with the code regions

that are executed for each measurement collection. Orion then highlights sus-

picious code regions so that the user can focus on finding bugs that could have

caused the problems within them.

6.3 Design

6.3.1 Modeling Sequential Data

Many bugs and performance anomalies develop a characteristic temporal pattern

that can only be captured by analyzing measurements of metrics in a sequential

105

manner (rather than by observing instantaneous snapshots of values). Using the set

of normal traces, we build a baseline model that captures temporal patterns between

metrics using correlation coefficients.

Observation window. Traces are split into non-overlapping windows of the

same size. A window can be viewed as a matrix S ×N in which S is the number of

records (or samples) and N is the number of metrics. The set of records comprises one

observation window. Since we do not know a priori the optimal size of observation

windows (S), i.e., the window size that is sufficient to capture the temporal patterns

that a failure shows, our algorithm sweeps through multiple sizes for the windows

within a range. The algorithm then finds the k-most abnormal windows (irrespective

of its size) and, within those abnormal windows, the correlations and metrics that

cause the unusual patterns. For our evaluation, we use a k value of 3. Section 6.3.2

describes our algorithms for the selection of suspicious metrics and code regions.

Correlation coefficients. For each observation window, Orion builds a vector

of (pair-wise) correlation coefficients between all the metrics:

CCV = [cc(1, 2), cc(1, 3), . . . , cc(N − 1, N))], (6.1)

where cc(i, j) is the correlation coefficient of metrics i and j, i 6= j. We denote

this vector as a correlation coefficient vector or CCV . Correlation coefficients are

calculated using the Pearson correlation-coefficient formula:

cc(X, Y) =
1

N − 1

N
∑

k=1

(

Xk − X̄

sX

) (

Yk − Ȳ

sY

)

(6.2)

where N is the number of elements of observations in the window, X̄ and Ȳ are the

mean of variables X and Y respectively, and sX and sY are the standard deviations

of X and Y .

Normal-behavior Model. Using the normal-behavior traces, our framework

creates a baseline model which is used in step 3 (from the main workflow) to select

suspicious metrics. The model is a set of normal-behavior CCVs obtained by splitting

106

Fig. 6.2.: Steps in the creation of the normal-behavior hyper-sphere.

traces into observations windows and computing a CCV for each window. We term

this model as a hyper-sphere. Figure 6.2 shows the process of creating this hyper-

sphere. The number of points in it corresponds to the number of windows that

we obtained from the normal-behavior traces, and the dimensions (or features) are

correlation-coefficients of metric pairs. Notice that, if we have N metrics in the

analysis, the dimension of the hyper-sphere is D = N(N−1)
2

.

The idea of using a hyper-sphere where dimensions are correlation coefficients

is that we can use a nearest-neighbor approach to pinpoint abnormal observation

windows from the faulty traces. Since an observation window is translated to a single

data point (i.e., a CCV), we can treat the problem of finding abnormal windows as

an outlier detection problem via nearest-neighbor, i.e., an abnormal window would

correspond to the CCV point that is the farthest away from the hyper-sphere.

6.3.2 Detection of Suspicious Metrics

Motivation. The main motivation of our technique is that the manifestation

of bugs and performance faults will change the correlations between some (affected)

107

metric(s) and the rest of the metrics, while maintaining the legitimate correlations

in the other metrics. To illustrate this idea, consider a bug where unused database

connections are kept open—metrics such as file descriptors and open sockets will

be affected by the bug and will exhibit a different temporal pattern than during

workloads where the bug is not activated. However, correlations among the other

metrics will not be affected.

Our goal is that, when faults are manifested, Orion finds the metric(s) that is

(are) mostly associated with failures. This is performed by ranking metrics according

to their contributions to correlation breakups and by selecting the top-k metrics in

this ranking. The application developer can subsequently focus on reviewing the code

which affects these suspicious metrics to locate the root cause of the problem.

Algorithm overview. The goal of our metric selection algorithm is to show

to the user the metrics that are most likely associated with the origin of a problem.

The input of the algorithm is a normal-behavior hyper-sphere and traces of a failed

run. The output of the algorithm is a list of metrics that are ranked by abnormality

degree. The algorithm is presented in Figure 6.3.

The algorithm has the following main steps:

Statistics creation per window: We create observation windows of multiple sizes

from the failed-run traces file. For each window, we calculate two statistics: (1) the

nearest-neighbor (NN) distance of the window from the hyper-sphere representing

normality. This distance is calculated by first computing a CCV from the window

and then by finding the euclidean distance between the CCV and the closest point

in the hyper-sphere using the formula d =
√

∑D

i=1(cci − bbi)2, where cci and bbi are

correlation coefficients; (2) the dimensions that have the highest weight in making the

CCV far away from the hyper-sphere. A dimension here corresponds to a correlation

coefficient.

Abnormal window selection: Windows are sorted by their NN distance from high

to low and only the top-k windows in the list are taken for further analysis (k = 3 for

our evaluation). These windows correspond to time periods when abnormal behavior

108

1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗/

2 f o r each s i z e s i n range r :

3 setOfWindows ← c r ea t e windows s e t o f s i z e s

4 f o r each window w i n setOfWindows :

5 d ← f i nd NN d i s tance o f w i n the hyperSphere

6 ccs ← get top abnormal co r r . c o e f f i c i e n t s o f w

7 Append {w , d , ccs} to tuplesList

8

9 /∗ S e l e c t the most abnormal windows ∗/

10 Sort tuplesList based on d i s t ance d (high to low)

11 abnormalWindows ← get top elements in tuplesList

12

13 /∗ Build histogram of most abnormal metr i c s ∗/

14 f o r each window w i n abnormalWindows :

15 f o r each c o r r e l a t i o n cc cor r espond ing to w :

16 From cc add metr i c s X and Y to histogram

17

18 Pr int the most f r equent metr i c s in histogram

Fig. 6.3.: Algorithm to select the suspicious metrics from traces of a failed run.

is manifested.

Select most abnormal metrics: Once the top-k abnormal windows are ranked,

within each window, the correlation coefficients (CCs) are ranked by how much they

contribute to the NN distance of that window. Now the top-k CCs are taken from

each abnormal window, giving a total of k × k CCs. Recall that each CC involves

two metrics. With these short-listed CCs, the metrics that are present in them are

counted up and the top-k most frequently occurring metrics are flagged as the most

abnormal metrics. The careful reader would have noticed that we are using the same

parameter for filtering the top choices (windows, CCs, metrics). In theory, they are

different parameters, but in practice the same value (k = 3) works well and reduces

the search space of parameters, a desirable outcome for any deployable tool.

Window sizes. It is difficult to determine without domain knowledge, what the

optimal size of the observation window should be. Therefore, Orion sweeps through

a range of observation window sizes (between sizes of 100 and 200 samples in our

109

evaluation). It then uses the NN distance of all these windows of various sizes to do

its abnormal window determination as described above.

6.3.3 Detection of Anomalous Code Regions

Motivation. Often for performance and correctness bugs, knowledge of the met-

rics that went awry is not sufficient for fixing the problem—developers still need to

look for the problem origin within the code lines of the program. After the suspicious

metrics are detected, Orion highlights code regions that make this metric abnormal

so that developers can focus on them to fix the problem. Orion first finds suspicious

periods of time in which a metric shows an unusual temporal pattern (i.e., an abnor-

mal window). Then within that period, Orion looks for outlier observations, i.e., an

abnormal code region. Figure 6.4 shows the general idea behind it.

Fig. 6.4.: Example of the steps in detecting the abnormal code region.

Algorithm requirements. The algorithm for detecting abnormal code regions

is similar to the previous algorithm for selecting the abnormal metrics. A major

difference is that only one metric is used from the traces files for the analysis, i.e.,

the abnormal metric. The user can opt to execute this algorithm using the top-two

(and top-three and so on) abnormal metric(s) if the top-one abnormal metric doesn’t

110

help in finding the problem origin. The input of the algorithm are traces files (from

the normal and the failed run) such as in Figure 6.2 but with only one column—this

column corresponds to measurements of the abnormal metric. We assume that each

record in this file is annotated with a code region.

Comparing one-dimensional windows. In the suspicious-metric selection

algorithm, we find the difference between two windows (normality and the failed run

that we are debugging) by calculating the Euclidean distance of their corresponding

CCV s. Here we have a single metric and we summarize the information of the

window by calculating aggregates of its values: average, standard deviation, minimum,

maximum and sum. These aggregates become the features of a window. Orion then

finds the dissimilarity between two windows by computing the euclidean distance

using these aggregates as the features.

1 /∗ Get s t a t i s t i c s o f f a i l e d−run windows ∗/

2 f o r each s i z e s i n range r :

3 normalWins ← get windows from normal t r a c e s

4 failedRunWins ← get windows from abnormal t r a c e s

5 f o r each window w i n failedRunWins :

6 d ← NN di s tance o f w from normalWins

7 Append {w , d} to tuplesList

8

9 /∗ S e l e c t the most abnormal windows ∗/

10 Sort tuplesList based on d i s t ance d (high to low)

11 abnormalWindows ← get top elements in tuplesList

12

13 /∗ Build histogram of abnormal code−r eg i on s ∗/

14 f o r each window w i n abnormalWindows :

15 Add code r eg i on s in w to histogram

16

17 Pr int the most f r equent code r eg i on s in histogram

Fig. 6.5.: Algorithm to select the suspicious code regions from traces of the failed

run.

111

Algorithm overview. The algorithm is shown in Figure 6.5. First, we construct

a set of windows (of different sizes) from traces of the normal run and another set

from traces of the failed run. Second, we find nearest-neighbor distances of the

windows of the failed-run from the normal-behavior windows. Then, to select the

most abnormal windows, we rank the failed-run windows based on the NN distances

(from high to low) and select only the top-k windows. Finally, we build a histogram

of the occurrences of code regions in these abnormal windows. The idea behind

this histogram is that, as we observe from our case studies, the faulty code regions

in performance bugs execute frequently in the most unusual periods of time. The

top-three most frequent code regions are shown to the user.

6.4 Evaluation

We demonstrate Orion in four types of large-scale distributed applications. Our

goal is to show how Orion can be applied to complex code bases to diagnose a variety

of real-world failures. Table 6.2 summarizes the case studies that we considered in

our evaluation. In all of the cases, Orion reduces substantially the time spent in

localizing the problem origin by showing the metric most perturbed by the fault and

if needed further, the code region corresponding to the above metric. The process is

fully automated so users do not need to have full understanding of the application

and its components dependencies.

Table 6.2: Summary of case studies in Orion’s evaluation.

Application Language Fault Problem Manifestation Localization scope Metric collection

Hadoop Java File descriptor leak Application crashes Metric & code region Synchronous

HBase Java Deadlock Application hangs Metric & code region Synchronous

StationsStat Java SQL driver bug Application is unresponsive Metric Asynchronous

IBM MHM Tcl NFS connection is broken Simulation fails Metric & code region Asynchronous

112

6.4.1 Case 1: Hadoop DFS

Hadoop is an open-source framework that supports data-intensive distributed ap-

plications [90]. It enables applications to work with thousands of computational nodes

and a large amount of data. We use Orion to diagnose a file descriptor-leak bug

that occurred in the Hadoop Distributed File System (HDFS) in version 0.17. The

bug report is HADOOP-3067.

For this case study, we collected all the OS level metrics given in Table 6.1. We

used synchronous profiling to obtain the traces. All the Java classes and all the public

methods within each class are instrumented. Since we are debugging the Hadoop DFS,

we only consider the java/org/apache/hadoop/dfs package. A total of 45 different

Java classes and 358 methods within these classes are instrumented.

Fig. 6.6.: Sample section of the pacth to fix the HDFS bug.

This bug is manifested as a failure in one of the HDFS tests (the TestCrcCorruption

test.) The bug origin is that subclasses DFSInputStream and DFSOutputStream of

the main class DFSClient did not handle open sockets correctly by not closing them

when they are not used anymore. Some sections of the patch that developers used

to fix this bug are shown in Figure 6.6. The patch included changes to the following

code: class DFSClient, and subclasses DFSInputStream and BlockReader (which is

used internally by DFSOutputStream). We used the buggy version and revision (0.17)

113

of the code to obtain traces of a failed run, and code from a previous revision where

the TestCrcCorruption test passed to get traces of a normal run.

Fig. 6.7.: Results from Orion for the HDFS bug.

Figure 6.7 shows Orion’s results. The top-three abnormal metrics presented

by Orion are: (1) rss (resident set size–non-swapped physical memory), (2) num -

file desc (number of open file descriptors), (3) minor faults (number of minor

page faults). The 2nd metric is associated with problem origin since an increase in

the number of open sockets caused by the bug affects directly the number of open

file descriptors. Metrics (1) and (3) are both memory related and we believe they are

(erroneously) pinpointed as suspicious because the bug also causes abnormal patterns

of memory consumption. We speculate that this happens because the leaked socket

descriptors are using up memory and some non-linear effect kicks in when the leak

gets large enough. However, we have not confirmed this through detailed targeted

tests.

Orion also presents abnormal code regions, first, based on Java classes and

second, based on subclasses (of the abnormal classes) and methods within them.

Orion correctly pinpoints DFClient as the most abnormal class. Within DFClient,

Orion highlights DFSOutputStream as the main abnormal subclass. This is only

114

partially correct — part of the bug fix is in BlockReader which is used internally by

DFSOutputStream and DFSInputStream; however, DFSOutputStream does not require

changes to fix the bug.

Table 6.3: Average use of file descriptors per class in HDFS bug.

Rank Class Average # File Descriptors

1 NamespaceInfo 6.0

2 INodeDirectory 1.31

3 INode 1.29

4 UnderReplicatedBlocks 1.25

5 DatanodeInfo 1.24

6 DataNode 1.21

7 DatanodeBlockInfo 1.2

8 DFSClient 1.16

9 DataBlockScanner 1.14

10 NameNode 1.13

To see if a simpler, and currently practiced, approach can lead the developer to

the origin of the bug faster, we set up the following hypothetical steps for hunting this

bug. Suppose that a simple profiling tool indicates a high number of file descriptors in

use. The developer then proceeds to examine which classes use file descriptors most.

The answer to this question is shown in Table 6.3. Average number of file descriptors

used within the method is calculated by taking an average across all invocations of

the methods of that class. From this, the developer would be likely to inspect the

classes appearing near the top. It is only when one gets to the 8th ranked class that

one gets to the class where the bug lies, DFSClient. Thus, this will lead to significant

time manually inspecting classes 1–7 and ruling them out as the source of the bug.

115

6.4.2 Case 2: HBase

HBase is an open-source, distributed, column-oriented database that is modeled

after Google’s BigTable [89]. It operates on top of distributed file systems like the

HDFS and is designed with the capability of processing very large scale of data with

MapReduce. We use Orion to collect and analyze the metrics of a deadlock bug

in HBase 0.20.3. The bug report is HBASE-2097. For this case, we collect all the

OS-level metrics shown in Table 6.1. There are 27 java classes that are instrumented

from the hadoop/hbase/regionserver/ package to collect the traces. They include

classes to handle region columns, store data files, logs and many other abstractions.

These classes include 184 methods which are all instrumented.

The bug is the result of two locks being acquired in an incorrect order. The same

bug is there in two methods HRegion.put and HRegion.close. The manifestation

of the bug is an application’s hang. Curiously, the bug is introduced in one of the

previous patches. It is activated by running the HBase PerformanceEvaluation

testing tools in standalone mode. This tool is used to evaluate HBase’s performance

and its scalability as servers are added. The bug manifestation is intermittent—it

manifests on average 75% of the time—making it particularly difficult to localize.

We ran a previous version, where PerformanceEvaluation consistently succeeded,

to generate normal behavior traces and applied Orion against the traces of a failed

run when the deadlock manifests. Figure 6.8 shows the results. The top abnormal

metric, i.e., user time, is the amount of CPU time used by the task while executing

at the user level. This metric per se does not provide much insight into the failure

origin since it is difficult to correlate that to a code region. We observe that, using

user time as our abnormal metric, the most abnormal code region is HRegion class,

which is in fact where the bug lies. Further, considering the 2nd most abnormal

metric wchar, an I/O counter that represents the number of bytes which the program

has caused, or will cause to be written to disk, the flagged code region is also the

116

Fig. 6.8.: Results from Orion for the HBase bug.

HRegion class. This confirms that HRegion is where the developer needs to focus her

attention.

The bug patch shows that in fact the bug resides in the HRegion class. This

class stores data for a certain region of a table and all columns for each row—a given

table consists of one or more HRegions. The patch flips the order of acquiring the

two locks (a write lock and then a read lock) and consequently the order of releasing

them. It puts the change in both the HRegion.put and the HRegion.close methods.

We speculate that spinning on locks in the deadlock situation causes the user time

metric to go awry.

The abnormal methods within HRegion that are flagged by Orion are getRegionName,

isClosed and toString (Figure 6.8). They do not correspond to the methods where

the bug lies (put and close). Through a detailed investigation, we identify the cause

of this error of Orion. The three flagged methods are invoked much more often

within HRegion than are the erroneous methods. However, the three flagged methods

117

and the erroneous methods occur close together in time. The algorithm in Orion,

after it has zoomed into a time window where the fault manifested itself, considers

frequencies of methods within that suspect time window to decide which methods to

flag. This causes it to flag the most frequently invoked getRegionName, isClosed

and toString methods.

6.4.3 Case 3: StationsStat

StationsStat is a Java multi-tier application that is used to check the availability

of workstations on Purdue’s computing labs. Students across the campus use Station-

sStat on a daily basis to check the number of available Windows or Mac workstations

for each lab on campus. StationsStat is managed by Purdue’s IT department (ITaP)

and runs in Apache Tomcat 5.5 on a RedHat Enterprise Linux 5 virtual-machine with

a 2.8GHz CPU and 4GB RAM, with an in memory SQL database.

Due to an unknown bug, periodic failures were observed in which the application

became unresponsive. System administrators received failure reports through alerts

of their monitoring system, Nagios, or from user phone calls reporting the problem.

Since the problem root cause was unknown, the application was restarted and the

problem appeared to go away temporarily.

StationsStat’s administrators tracked 495 metrics from the OS, middleware, and

application layers at 1 minute intervals (using asynchronous profiling) for more than

two months. Table 6.1 shows all the metric types that are collected.

StationsStat was a challenging scenario for Orion, not only because the prob-

lem’s root-cause was unknown, but also because there was no error-free data avail-

able to create the normal-behavior hyper-sphere. Fortunately, Orion can still work

in this scenario by using almost error-free data. The administrators noticed that,

after restarting StationsStat, the next failure was often seen only after a week or

more—symptoms seemed to suggest that the problem, possibly a resource exhaustion

bug, grew progressively from a service restart to a failure. Orion therefore used a

118

data segment collected right after a restart to build the hyper-sphere representing

normality. Orion also filtered out constant metrics in this phase which resulted in

70 non-constant metrics that it used in the rest of the analysis.

Fig. 6.9.: Results from Orion for the StationsStat case.

In contrast with the previous cases, here we conducted a blind experiment in

which Orion gives us the rank ordered suspicious metrics without us knowing the

actual root-cause of the problem. Figure 6.9 shows the abnormal metrics that Orion

finds. We then compared Orion’s answer to the application developers best guess

of the root-cause. The results show that the suspicious metrics given by Orion

matched well with what the developer thought to be the origin of the problem. The

2nd metric flagged by Orion is the number of active SQL connections to one of

the databases. The application had only one localized region where it made calls to

the SQL driver that Tomcat used to handle database connections. The developer

concluded that the SQL driver code was buggy since it was obvious that the few lines

of SQL driver invocation code in his application was not. Sure enough, upgrading

the SQL driver fixed the problem and the application continues to run today (under

the name “AvailableStations”) providing an important function to students all over

campus. Interestingly, the top metric flagged by Orion—the processing time of a

servlet— had nothing to do with the bug. On further investigation, we find that this

is due to large differences in workload between our normal and abnormal data sets.

The normal data set is collected right after the server restart, while the abnormal

data set is collected after the server has been in operation for a while. This negative

result points to the importance of getting the normal and the abnormal data sets

under similar workload conditions.

119

In this case study, there was no need for the additional step of Orion where it

maps the abnormal metric to a code region. This is because only one small localized

region of the application code had anything to do with SQL, which was implicated

by the metric.

6.4.4 Case 4: Mambo Health Monitor

The Mambo Health Monitor is a continuous regression test system for the IBM

Full System Simulator, commonly known as Mambo. Mambo is a computer archi-

tecture simulator for systems based on IBM’s Power(TM) architecture. Mambo has

been used in the development and testing of a wide range of systems, including IBM’s

Power line of server systems (Power5, Power6, Power7), the Cell(TM) processor used

in the Sony Playstation3(TM), and IBM’s BlueGene supercomputing systems. The

Mambo Health Monitor (MHM) executes tests on the simulator to detect regressions

in behavior that may be introduced by new development. The tests are drawn from

a large test suite that covers the key functionality in all the major target systems

supported by Mambo. Test results are stored in an SQL database and are accessed

through a web-based interface that offers numerous summary and detail display for-

mats. The MHM is similar in concept to a number of continuous regression packages,

such as Hudson (http://hudson-ci.org/), but was written from scratch to serve

the specific needs and environment of Mambo development. Figure 6.10 shows the

main elements of the system.

Fig. 6.10.: Mambo Health Monitoring system.

120

Failures. MHM runs test cases and reports results into a common shared

database. There is a farm of servers which serve as Mambo Health Monitor clients.

Each client accesses a database to determine which tests for which version of the

Mambo code, corresponding to its own platform, have not been run. The client then

checks out the code from a CVS repository after authentication and proceeds to run

the regression test. The execution of the regression test sometime requires special-

ized resources from the node on which it is executing, such as, a virtual network port.

Upon completion, the client writes the result in the database, success or failure, along

with some informational items, such as, performance results.

A test-case MHM is running can fail due to a problem in the environment or an

actual problem with the architecture being simulated. It was considered important

to distinguish between the two cases. Examples of environment-related problems

causing a test to fail are many: a flaky NFS connection that fails intermittently, a

cron job fails to get authenticated with the LDAP server, Linux failing to map the

simulator’s network port to the machine’s network port, /tmp filling up. A problem

like this can cause a developer to falsely believe that her architecture code is buggy

when in reality the problem lies in the environment. A key source of difficulty is that

these problems are often transient and the different software elements do not have

error messages that correspond to the actual problem. We choose the problem of

losing NFS mount as it has been a frequent problem for users of MHM over its seven

year lifespan.

Fault injection. We emulate NFS problems by dropping outgoing NFS packets

with a probability of 0.1. The NFS packet dropping functionality is implemented by

adding an iptables rule at the start of the faulty run.

Code annotations. We run Orion in an asynchronous mode on MHM for it

to be less intrusive to the application. The asynchronous profiling process collects

metrics at a 1 sec granularity. MHM was instrumented at 48 instrumentation points

in 1400 lines of Tcl source code, which resulted in 2227 records. The Tcl script

invokes library-like Perl and bash scripts. Since these had been rigorously tested, we

121

were told that they should be kept out of scope of our problem localization effort.

The instrumentation code records a timestamp and an identifier for the code region.

Unlike in the other applications, this code did not have finely granular methods (and

of course no classes). Therefore, the points to insert instrumentation was a subjective

decision and this was done based on the liberal amount of comments in the code.

Our instrumentation covers the starts and the ends of crucial operations, such as,

CVS operations, NFS operations, and database operations. It is in fact finer in its

granularity and also covers other structures, such as if-then-else blocks.

Fig. 6.11.: Results from Orion for the Mambo Health Monitor problem.

Results. We collect traces of a normal and of a failed run. In both runs, we

use the same machine as the MHM client and keep the workload pattern the same.

Figure 6.11 shows the results of applying Orion to the traces. First, notice that

the two top abnormal metrics are metrics related to I/O, i.e., wchar and read bytes

(written characters to disk and read bytes from disk, respectively). Next, we find

abnormal code regions using wchar as our abnormal metric—Orion ranks equally

four different code regions as the figure shows. Notice that none of the pinpointed

122

regions perform any operation that makes use of NFS, the root cause. However,

when we look at the code (Figure 6.11), we notice that these regions are short and

are always executed together inside a loop, so they can be grouped into one region. We

also notice that, right after this grouped region, there is a code region that makes use

of the NFS, i.e., the Checking-the-existence-of-lock-file region. This region

performs I/O to access a file that is mounted using NFS and is affected by the injected

fault.

The reason the NFS-related region is not ranked as an abnormal region (in fact is

ranked top 4 by Orion) is that measurement inaccuracies emerge from asynchronous

profiling. These regions of code (demarcated by our instrumentation points) are small

compared to the frequency of metric collection. Hence, it becomes difficult to accu-

rately map the metric collection points to within an instrumented code region. Hence,

a design decision in Orion from this insight is that when asynchronous profiling is

used and the instrumented code region is “small”, Orion pinpoints to the user not

only the abnormal code region but also one region before and one region after the ab-

normal one. This strategy works well in this case since the code region that is actually

affected by the fault is right after the region that Orion selects as abnormal.

6.4.5 Overhead

Table 6.4 shows the overhead of the profiling, training and the problem localization

steps in seconds. Profiling represents the time it takes to collect a trace record, i.e.,

a sample of all the metrics. The training step involves creating the hyper-sphere of

normal behavior. The problem-localization step involves finding the abnormal metric

and, subsequently, the abnormal code region. Localization takes more time than

testing because our algorithm creates a large number of windows (of multiple sizes)

and it iterates over all the windows to find abnormal behavior.

123

Table 6.4: Summary of overhead (in seconds) per application.

Application Profiling Training Localization

Hadoop 0.00103 31.06 213.06

HBase 0.00103 150.1 769.38

StationsStat 0.00585 217.43 1645.1

JHM 0.00585 12.48 16.66

6.5 Practical Implications

A direction we have not explored is the sensitivity of our methods to a larger

number of metrics because we are using all the metrics that are readily available

through standard instrumentation packages. With a larger number of metrics, first,

the time for profiling and analysis would increase. Second, the accuracy of the results

could suffer due to the abnormality being lost in a sea of normality, what is referred

to in the machine learning literature as the curse of dimensionality [60].

We observe that, as Orion drills down deeper looking for problematic code regions

(class - nested subclasses - method), it provides less accurate results. An example of

this case is the Hadoop bug in which we are able to identify the abnormal code region

at a Java class granularity but not at a method granularity.

Applications that do not provide delimiters for the important code regions would

require manual effort from the developer (like with the JHM system) to indicate what

are good instrumentation points. For most applications however, we expect Orion

will automatically annotate the entry and exit point of methods.

A trade-off of our asynchronous profiling approach is the difficulty of mapping

metric samples to code regions accurately, when the code region is short relative to

the time it takes to sample all the metrics. However, this comes with the advantage

of minimal perturbation of the application. So, for asynchronous profiling, Orion

provides code regions that are adjacent to whatever code region it finds as abnormal.

124

For synchronous profiling, we only instrument a subset of all the code regions that

are executed at runtime to limit the runtime overhead, e.g., by only instrumenting

Java classes of a particular package. To decide on a particular package, we can use

the developer intuition of the origin of the problem. For example, if the bug arises

only when a particular package is updated, she could only instrument that package

to look for the bug.

6.6 Discussion

We propose Orion, a system to perform root cause analysis for failures in dis-

tributed applications. Out of a comprehensive set of monitored metrics, our technique

pinpoints the metric and a window that is most highly affected by a failure and sub-

sequently highlights the code region that is associated with the origin of the problem.

Our algorithm models the application behavior through pairwise correlations of mul-

tiple metrics, and when failure occurs, it finds the correlations (and hence the metrics)

that deviate from normality. Our case studies with four large-scale distributed ap-

plications show the utility of the tool — Orion can localize the origin of real-world

failures at a granularity of metrics and code regions in the matter of minutes.

125

7. FAILURE PREDICTION IN COMMERCIAL

APPLICATIONS

In this chapter we present Augury, a framework for predicting failures and detecting

errors in commercial distributed applications. Augury tracks spatial and temporal

relations in a comprehensive set of metrics from the stack-to-application stack (similar

to Orion as explained in Chapter 6), and thus does not force the system administra-

tor to second guess which metrics to consider in the analysis. The detection algorithms

are computationally inexpensive, accurate, and typically predicts failures 15 minutes

or more before the event. Its efficacy is demonstrated through synthetic injections,

from real-world bug cases in the Android OS and a bug from a Purdue campus-wide

Java application for checking availability of lab machines (StationsStat).

7.1 Introduction

Motivation . Today’s distributed applications are composed of a large number

of hardware and software components. Many of these applications require continuous

availability despite being built out of unreliable components. Therefore, system ad-

ministrators need efficient techniques for error-detection that can operate online—as

the application runs—and that can detect errors and anomalies with small delay—the

time between the error manifestation and its detection should be short. Preventing an

error from becoming a user-visible failure is a desirable characteristic. Automatically

predicting impending failures based on observed patterns of measurements can trigger

mitigation techniques, such as microrebooting [5], redirection of further requests to a

healthy server, or simply starting a backup service for the data.

Today’s enterprise-class distributed systems routinely collect a plethora of met-

rics by monitoring at various layers—system-level, middleware-level, and application-

126

level. Many commercial and open-source tools exist for collecting these metrics, such

as HP OpenView, Sysstat, and Ganglia. Examples of useful metrics are: CPU, mem-

ory, storage, and network bandwidth usage at the system level; resource usages in

a Java EE container (such as Tomcat or JBoss) at the middleware level; number of

requests and number of exceptions in servlets at the application level. A common

class of techniques for error detection works as follows. From values of metrics col-

lected during training runs, a model is built up for how the metrics should behave

during normal operation. The techniques differ in what exactly they model and the

sophistication of the model—models can be built for instantaneous values of the met-

rics (that need to be below or above some threshold), trends in the values of metrics

individually, or correlations in the values of pairs of metrics. At runtime, a compar-

ison is made between what is indicated by the trained model with another model

that is built up with metric values collected at runtime. If there is enough divergence

between what the two models indicates, an error (or anomaly) is flagged.

Current approaches toward building error-detection systems based on statistical

analysis of runtime metrics suffer from one or more of the following problems:

• Their models do not consider multiple metrics simultaneously [7, 91]. Many

software bugs and performance faults are manifested in such a way that the

correlations between measurements of different metrics are broken and these

bugs are then missed. Some approaches do use multiple metrics but do not use

correlations between values of the metrics [43] and therefore are not able to

catch such problems (Figure 7.1 shows an example).

• Some models do not consider observations of a metric as a sequence of measure-

ments [6, 92]. Many software bugs, for example those related to performance

problems, develop a distinctive temporal pattern that can only be captured by

analyzing measurements in a sequential manner rather than through instanta-

neous snapshots of the metric values.

127

• The overwhelming majority of techniques do not perform any prediction. Many

of the current error-detection systems run in a reactive mode by flagging alarms

when a failure occurs rather than in a proactive mode by anticipating a failure.

Failure prediction has been a hot topic in the past years, however, to the best

of our knowledge all the failure-prediction systems [43] suffer from either the

first or the second problem (or both).

• Existing approaches often consider a restricted set of metrics for modeling [7].

A reduction in the number of metrics is done so that the online performance of

the technique can keep pace with the distributed system. These approaches do

not work in general because a fault can be manifested in a metric that is filtered

out initially, making the error-detection system incapable of catching such type

of faults. Therefore the challenge is to consider a broad class of metrics at all

three levels and yet keep the algorithms efficient enough for online operation in

production environment.

Summary of Contributions . In this Chapter we describe Augury, a system

to perform error detection and failure prediction that overcomes the problems that

are present in the existing approaches. Augury addresses the current problems by

combining the following techniques:

1. Sequential Multi-Metric Analysis: We address the first challenge by con-

sidering a large set of metrics from the system, middleware, and application

levels. Augury uses time series models for capturing the evolution of metric

values with time. We use pairwise correlations between the metrics to detect

subtle errors. While simply comparing the values of a single metric with a

threshold is practical and useful in catching many errors (provided appropriate

thresholds can be determined), this approach misses many subtle errors and

also flags false alarms for subtle legitimate interactions between metrics.

To understand this, consider a motivating example observed when a file-descriptor

leak is manifested in the version of Android OS, nicknamed Gingerbread (shown

128

Fig. 7.1.: Example of a correlation that is broken and a correlation that is

maintained.

in Figure 7.1) [93]. Here we run a workload program that performs CPU-

intensive tasks after opening files using a Java class with a bug in it (the buggy

version), and another version of the same program that opens files using the non-

buggy Java class (the normal version, fixed in Gingerbread by August 2010).

The left-hand figures ((a) and (b)) show the normal and buggy versions of a

correlation that is not broken by the bug. The absolute values of the file -

descriptor metric surpasses the maximum values seen in the normal version

(up to 590 file-descriptors compared to 190 in the normal version), but the cor-

129

relation between the two metrics is not destroyed. The right-hand figures ((c)

and (d)) show a correlation that is broken because of the bug—as the number

of file-descriptors that are left open increases but the user-level CPU usage does

not, in the buggy version. Orion and Augury share the same goal of using a

large number of metrics for the analysis.

2. Failure Prediction: Augury has a predictive operational mode that uses

time series models (that have been created offline through training data of typ-

ical workloads) and recent observations of the metric’s values to forecast what

the values will be in a future time window. It then computes the pairwise corre-

lations of the metrics and compares them to the learned legitimate correlation

values. The pairwise correlations for all the metrics are represented as a hyper-

sphere (with a high dimension of n2 where n is the number of metrics) and

the comparison is done through the nearest neighbor distance. Augury can

leverage if certain flagged failures are included in the training data, but does

not depend on such data. Thus, through this mode, Augury is able to predict

impending failures, as long as there is a progressive escalation of some latent

errors into the failure. Such prediction is useful in practice because proactive

recovery can be initiated. A larger look-ahead before the failure is preferable

because of the lag involved in a successful recovery process. For example, with

software rejuvenation, a mechanism for proactive recovery, it is generally agreed

that the time to rejuvenate stateful distributed applications is of the order of

15 minutes (and higher depending on the amount of state) [94].

We develop Augury in C++ and apply it to detect and predict failures in: (1)

StationsStat: a multi-tier application that is used to check the availability of work-

stations on Purdue’s computing labs. The application suffered from an unknown bug

that made it fail periodically by becoming unresponsive to end users. Augury pre-

dicted the majority of the failure cases with 51 minutes of lookahead on average; (2)

RUBiS: a multi-tier application that mimics an auction site by injecting a suite of

130

four classes of errors—programming, performance, configuration and network—and

for each class, quantify the capability of predicting the failure, and failing that, of

detecting the error.

We compare the result from Augury individually to that obtained from a regression-

based technique for prediction of failures. The online performance of Augury appears

to be fast enough to be used in deployed systems—it takes less than 10 ms in per-

forming predictions and it can predict failures 2-33 minutes in advance. In terms of

asymptotic running time, if correlations of n metrics have to be considered, then the

running time of any algorithm will be O(n2), which is the running time of Augury

as well. We reduce the dimensionality n by using a fast shortcut approach for some

metrics whose values are extremely stable through all the workloads. This reduces

the dimensionality for our testbed application from 143 to 50 metrics.

From this study, we gain the following two primary insights. First, it is possible

to predict failures even without forecasting values of metrics. The failure look-ahead

time is significant enough for mitigation actions (typically 15–51 minutes in our exper-

iments). This insight applies particularly to progressive resource exhaustion failures,

which can be due to leaks, runaway processes, or load imbalance among multiple

cores. Second, for many faults, only a few metric correlations break. The total

number of metrics and hence the number of pair-wise correlations is large (we have

10,000 pair-wise correlations in our testbed). Therefore, techniques are needed that

can uncover such crucial needles in the correlation haystack.

7.2 Overview

System administrators use Augury to detect software bugs, performance anoma-

lies or unexpected runtime condition that affect end users. Like Orion (from Chap-

ter 6), Augury collects measurements of multiple metrics at different levels in the

system, e.g. operating-system-, middleware- and application-level. Metrics can be

collected in production environment—while the system experiments regular user-

131

generated workloads—or in profiling environment—when synthetic workloads are ap-

plied to the system in an offline manner. The overhead of collecting the measurements

is not significant. Using collected measurements, Augury builds models of normal-

behavior, which allows prediction of imminent failures, or detection of failures when

prediction is not feasible. The failure prediction steps are performed in an online

manner so that system administrators can take actions proactively to avoid failures.

Figure 7.2 shows an overview of the approach. For a given set of metrics, we

collect observations for each periodically in a fixed-size time window—we call this an

observation window. For each window, we find a mathematical model λ that explains

well the observed temporal pattern and that can perform forecasts k-steps ahead for

each metric. Since it would be computationally expensive to infer sequential-data

models in an online manner, we create a database of normal-behavior models a priori

and find models that best fit the observations in an online manner (Section 7.4.3

explains more how models are selected from the database). Given a sequence of

observations, Augury performs a forecast of the metric’s values for an adjoining

future time window.

Failure prediction is performed by calculating a correlation coefficient for each pair

of metrics and by looking at deviations of these coefficients from normal-behavior coef-

ficients (which are collected offline). The rationale behind this approach is that bugs

and performance faults will change the correlations between the affected metric(s)

and the rest of the metrics, while maintaining the legitimate correlations in the other

metrics. To illustrate this idea, consider a bug where unused database connections

are kept open. In this case, metrics such as file descriptors and open sockets

will be affected by the bug and will exhibit a different temporal pattern than during

workloads where the bug is not activated. However, correlations among the other

metrics will not be affected.

132

Fig. 7.2.: Overview of Augury’s approach.

7.3 Augury: Building Blocks

In this section, we describe the components that form the building blocks in the

design of Augury and provide relevant background material for each.

7.3.1 Sequential-Data Models

Many bugs and performance anomalies develop a characteristic temporal pattern

that can only be captured by analyzing measurements of metrics in a sequential

manner rather than by observing instantaneous snapshots of the metric values. Au-

gury uses time series analysis models to capture the temporal patterns of metric

133

observations. A time series model is a stochastic model that summarizes meaning-

ful statistics of a time series—a sequence of data points, taken at successive times

spaced at uniform time intervals. The model provides the ability to forecast future

observations based on known past observations in a computationally efficient way. In

particular, we use autoregressive integrated moving average (ARIMA) models since

they are powerful and yet computational efficient for forecasting values of metrics (as

long as the forecasted series is short, say between 15 and 20 steps ahead). A model

is referred to as an ARIMA(p, d, q) where p, d, and q are (non-negative) integers that

refer to the order of the autoregressive, integrated, and moving average parts of the

model respectively [95]. The autoregressive part can be seen as a linear regression of

the current value of the series against one or more prior values, whereas the moving

average part is conceptually a linear regression of the current value against white

noise (or error from imperfections in estimating previous values) of one or more prior

values of the series. The integrated part is used to differentiate the series in case it is

non-stationary and so it allows modeling complex temporal patterns.

To explain better how ARIMA models are used in Augury, consider an ARIMA(2,0,2)

model as an example. With this model we can forecast a new observation Xt, given

previous observations Xt−1, Xt−2, using the following equation:

Xt = C + εt +

p=2
∑

i=1

ϕiXt−i +

q=2
∑

i=1

θiεt−i, (7.1)

where ϕ1, . . . , ϕp and θ1, . . . , θq are parameters of the model, C is a constant, and

the εt, εt−1, . . . terms are white noise terms which are assumed to be independent

identically-distributed random variables sampled from a normal distribution with zero

mean. In Section 7.4.2 we explain these parameters are inferred using training data.

A nice property of ARIMA models—that makes them computationally efficient—is

that small values of parameters p, d, and q are usually good enough to model most

of the time series encountered in practice (normally p, q ≤ 2 and d ≤ 1, and in rare

cases p, q = 3 and d = 2 is needed) [95].

134

7.3.2 Correlation-Coefficient Vectors

Once we have forecasts for each metric, we attempt to determine whether a failure

will occur in the near future by finding deviations from normal-behavior given the

observed plus the forecasted information. The steps involved in this part are the

following:

1. Forecast concatenation: Given a sequence of forecasts, Augury concate-

nates the forecasts to the end of the observation window. At this point the

window contains past, present and future information. This step is done indi-

vidually for all the metrics.

2. Correlation coefficients: Augury builds a vector of all (pair-wise) correla-

tion coefficients (cc(1, 2), cc(1, 3), . . . , cc(n− 1, n)), where cc(i, j) is the correla-

tion coefficient of metrics i and j, i 6= j, and n is the number of metrics. We

denote this vector as a correlation coefficient vector or CCV . As in Orion,

correlation coefficients are calculated using the Pearson correlation-coefficient

formula:

cc(X, Y) =
1

N − 1

N
∑

k=1

(

Xk − X̄

sX

) (

Yk − Ȳ

sY

)

, (7.2)

where N is the number of elements of observations in the window, X̄ and Ȳ are

the mean of variables X and Y respectively, and sX and sY are the standard

deviations of X and Y .

3. Anomalous behavior classification: To determine whether a CCV is normal

or abnormal, we determine how different it is from normal-behavior CCV s that

are created previously from the same application through the training phase.

We assume that users of Augury have access to normal-behavior application

traces which allow the creation of the CCV s. The traces can be obtained by

collecting metrics while the application runs in production environment, or by

imposing a set of workloads to the application that are representative of the

workloads that are expected in production environment. CCV is considered as

135

abnormal if the distance to its nearest neighbor in the set of the normal-behavior

CCV s exceeds a threshold.

7.3.3 Classification of Anomalous Behavior

Normal-behavior CCV s will form a hyper-sphere of m =
(

n

2

)

dimension. A CCV

is flagged as abnormal if it is far away from the hyper-sphere. We assume that, in

reality, it would be difficult (if not impossible) to obtain an exhaustive set of error-

free CCV s. Therefore, instead of flagging a CCV as abnormal if it is outside the

hyper-sphere, we only flag it if the distance of the CCV from the hyper-sphere is

far more than a predefined threshold. The use of a threshold allows the possibility

of having imperfections in the metric measurements and in the workloads that are

seen when normal-behavior traces are collected—in practice, it is possible that only

a subset of all possible workloads that are observable in production are used during

the training.

Finding abnormal data points (i.e., CCV s) based on a set of only normal data

points (i.e., a hyper-sphere) can be seen as an outlier or novelty detection problem.

Nearest neighbor (NN) is a powerful and widely-used technique for outlier detection

in machine learning. Given a set of training data points, it simply computes the

distances between a test data point x and all the training examples and uses the

highest similarity score (lowest distance score) and compares it to a threshold to

determine whether x is normal or abnormal. Augury makes use of NN to classify a

CCV as normal or abnormal given training examples of CCV s. Figure 7.3 shows a

sample hyper-sphere for 3 metrics. Points in the space are three-dimensional CCV s

where dimensions are correlation-coefficients cc(1,2), cc(1,3), and cc(2,3). Nearest-

neighbor (NN) is used to determine whether a CCV is normal or abnormal. Note

that even when a CCV is outside the hyper-sphere (e.g. p1), it is considered normal

if its NN distance is less than a threshold.

136

Fig. 7.3.: Hyper-sphere example for a 3-metrics system.

The complexity of classifying a new CCV using NN is O(N ·m), where N is the

number of training points (or normal-behavior CCV s), and m is the dimensionality

of a CCV , which is equal to n2 for n metrics. For a large application, m will dominate

the complexity term because a large number of different metrics have to be used to

detect a wide variety of errors. On the other hand N will be constant in the limit

if the set of application workloads is constant, giving a complexity of O(m). We

believe that the number of distinct workloads for an application either stays constant

or scales slowly as the application adds more functionality or scales to run on a

larger number of nodes. This is because while specific request patterns may differ

with added functionality, the high level of abstraction at which a workload class

is considered will mean that the number of such classes stays relatively constant.

Consider as an example that for the database benchmarks, as the database gets more

tables (corresponding to new functionality), the workload classes defined as browse

and browse-plus-buy remain unchanged. If the number of points in the hyper-sphere is

large, one can use clustering techniques to group similar CCV s and to build the hyper-

sphere based on the cluster centroids. In our experiments we did not use clustering

because the NN distance was sufficiently fast to compute (in the order of milliseconds).

In cases where additional speed is required when using NN, its algorithm can be

137

parallelized using data decomposition—the NN distance calculation can be performed

by decomposing it into independent sums (of independent correlation coefficients)

followed by a reduction (sum) operation. Since in our experiments with 143 metrics

we do not find a bottleneck when using NN, and because of its simplicity, we chose

it as the outlier detection method for Augury.

In practice the training runs may have some erroneous executions as well (though

they did not in our experiments). In such cases, the above scheme for classifying

anomalous behavior will suffer from some missed alerts, proportional to the fraction

of erroneous CCV points. In such cases, we can use a k-nearest neighbor metric to

classify anomalous behavior, which will be less susceptible to erroneous points in the

training data.

7.3.4 Metrics

Software systems are composed of multiple layers, each of which has metrics that

can be measured using existing monitoring tools. Application-level metrics are the

most specific to the services the application provides, and can be very useful in de-

tecting and diagnosing errors that affect end users directly. For example, by observing

processing time of web components (e.g., Java servlets or EJBs), monitoring tools can

pinpoint buggy components that cause high response time to end users. Middleware-

level metrics are less fine grained than application-level metrics, and, as a result,

can be used to detect anomalies that affect multiple applications sharing the same

middleware. Examples of metrics obtained at middleware-level are garbage collec-

tion statistics (e.g., in the Java Virtual Machine), thread-related metrics, and web

container metrics. Operating system metrics are in the bottom layer, therefore they

can be used to isolate faults that are related to a particular machine—in distributed

systems, for example, administrators can measure operating system metrics to detect

nodes that experience memory leaks, process deadlocks and packet losses.

138

It is important to monitor metrics from all layers in the system because faults can

be manifested in metrics from any layer. As a consequence, it is difficult to exclude

metrics from the error detection system since a fault that is manifested in one of the

excluded metrics will not be detected. Since the total number of metrics to analyze

is large, error detection algorithms need to scale well with the number of metrics in

the system. As the functionality of applications increases, the number of metrics to

analyze also increases because metrics from more application components and nodes

need to be considered. Augury has a quadratic computational complexity in terms

of the number of metrics, which is simply the complexity of calculating correlations

between all the metrics.

7.4 Design of Augury

In this section, we explain the design of Augury: the practical approach to

collect system metrics, methods to train statistical models, and the steps in the

failure prediction process.

7.4.1 Data Gathering

We gather 143 metrics from different layers in the system—OS, middleware and

end-user application—to have a full knowledge of the application’s behavior. We do

not rely on the system administrator knowing a priori which metrics will be affected

by the bugs or performance faults. Therefore our approach considers a wide range of

metrics and can automatically zoom into the pairwise correlations of metrics that are

relevant to the error. The Table 6.1 in Chapter 6 shows a description of the observed

metrics.

Figure 7.4 shows the number of metrics that we collect in each layer. We monitor

143 metrics in total: 30 OS metrics (15 per process), 15 middleware metrics (Apache

Tomcat), 6 MySQL metrics, and 92 servlet metrics (4 × 23 servlets). To collect

metrics of the Linux OS, we use the sysstat utilities which are a collection of open-

139

Fig. 7.4.: Monitored metrics per layer.

source performance monitoring tools for Linux [96]. In particular we used the pidstat

tool that allows us to collect OS-related metrics on a per-process basis. The tools need

very little CPU to run (they are written in C) so they do not perturb the monitored

application. We collect 15 per-process OS-related metrics such as system- and user-

CPU usage, virtual- and resident-memory usage, (minor and major) page faults, disk

reads and writes, open sockets, file descriptors, and voluntary- and non-voluntary-

context-switches.

To collect measurements in the Java middleware and web application, we use a

JMX connector in the Apache Tomcat server version 5.5. The connector allows to

evaluate metrics (at the middleware level) from the Tomcat server such as cache hits,

ThreadPool usage, requests count and processing time. We also evaluate Java servlet

metrics (at the application level) such as processing time and request counts. In the

MySQL application layer, we use the SHOW STATUS command in MySQL to collect 6

metrics that represent the database status, such as memory usage, read/write hits,

open tables, connections per second, and number of threads.

Augury filters out metrics that remain constant in the training traces. This helps

reducing the dimensionality of the CCV s, allowing Augury detect anomalies faster.

140

Augury also filters metrics that are almost constant, i.e., metrics with a very small

variance. It checks the values of removed metrics at runtime—an inexpensive task—

and if one of these metrics vary, an alarm is flagged. We found that, after filtering

out metrics, Augury only considers 46 metrics in the detection part. This allows

Augury focus its power in the metrics that are more relevant for error detection.

The overhead of collecting the measurements of the 143 metrics is 36.91%, which

is calculated by the increase of the server reply time from the baseline, i.e. when

measurements are not collected. When measuring the overhead, server operates at

90% of its capacity. The choice of measurement tools is orthogonal to Augury, and

Augury can easily accommodate additional metrics as long as the measurement tool

can communicate with Augury through IPC calls.

7.4.2 Training Time Series Models

The training phase in Augury involves finding appropriate ARIMA models for

each metric based on traces obtained when imposing normal-behavior workloads.

Section 7.5.2 explains how workloads are generated. In this section we give details of

time series models that are generated to resemble temporal patterns observed during

training workloads.

We divide traces of each workload into multiple segments of equal size and fit

an ARIMA model for each segment. The size of segments determines the overall

time spent in training ARIMA models because, for each segment, we have to try

several ARIMA models as to select the one that best fits the behavior in the segment.

Therefore, in order to make this task manageable, we used segment sizes that are

large enough that training can be done in a reasonable amount of time and but that

are small enough that are to produce accurate models. In practice we found that

segments of 5,000 observations produce very accurate ARIMA models and allow us

to infer all the models in about 24 hours. For each workload, we have a total of

141

around 27,000 observations, hence 6 ARIMA models are produced. Since we have 3

workloads and 143 metrics, a total number of 6×3×143 = 2, 574 models are created.

Training ARIMA models involves finding the parameters of the model that best fit

the data. The algorithm for training ARIMA models is as follows: (i) for each metric

and workload segment, we build an ARIMA(p,d,q) model, where p, d and q are varied

over {1, 2, 3} (it has been found that a maximum order of 3 is good enough to capture

the majority of the temporal patterns that are encountered in practice [95]); (ii) we

calculate the Akaike information criterion (AIC) for each ARIMA(p,d,q) model; (iii)

the preferred model is the one with the minimum AIC value. This model is saved in

a database to be used when forecasting measurements. The AIC method finds the

model, among a candidate set of models, that best explains the data with the fewest

parameters p, d, and q. The Bayesian information criterion (BIC) method can also

be used and it should provide similar results to the AIC method. We use the GNU R

program [97] to train ARIMA models.

7.4.3 Online Failure Prediction

Next we describe the steps involved in the failure prediction procedure in Augury:

(1) maintaining a multi-metric sliding window of observations, (2) forecasting mea-

surements for each metric, and (3) detecting abnormal deviations using the observed

and forecasted information.

Sliding Observation-Window

Augury keeps a per-metric observation window that is used to forecast future

measurements of that metric using a selected ARIMA model. The size of the ob-

servation window depends on the requirements of the time series models in terms of

the amount of information needed to perform accurate forecasts. For ARIMA models

typically it is required to have moderately long series in order to have reliable fore-

casts; some authors recommend a minimum of 100 observations [98]. In Augury the

142

observation window size is set to N = 100 with observations taken every 5 seconds.

An implication of this requirement is that we are not able to catch problems before

the first 100 samples—or before the first 500 seconds after the application starts–since

Augury needs at least this amount of samples to perform forecasts. However, most

of the bugs and performance problems found in practice manifest themselves after

the service has been running for more than this amount of time.

The observation window is sliding so, for every sample, the window is moved one

step forward. We found that this provides enough time for us to collect measurements

from the metrics at all layers of the system without interfering with the application’s

operation—collecting all the metric values takes about 1.5 seconds on average.

Forecasting of Metric Values

To perform forecasts for each of the monitored metrics, we need to have two

components: a window of past measurements (i.e., the observation window) and

a model that allows us estimate future values (an ARIMA model). To avoid the

overhead of computing forecasting models at runtime, Augury uses pre-computed

ARIMA models to perform forecasts. The models are selected based on data in

the observation window, and out of a database of models that is created offline as

described in Section 7.4.2. The model selection is fast as it only tests a few possible

models and each test takes just a few operations.

Fig. 7.5.: Windows that are used in the selection of the best model.

143

The idea of the model selection algorithm is that the best model to do forecasts

should be the model that best fits the current observation window. The algorithm

selects the best fit based on the model that best forecasts a sub-section of the cur-

rent window. The algorithm first divides the current observation windows into two

subwindows (see Figure 7.5): subWinX and subWinY. The algorithm iterates over all

the possible models, and for each model, subWinX is used to forecasts N − k steps

ahead. The forecasts are stored in the temporal variable testWin. Then the root-

mean-square (RMS) error of the difference between testWin and subWinY (the ground

truth) is calculated. The best model is then the one with the minimum RMS error. A

final check is done to determine whether the RMS error is too large for the best model

which might indicate the possibility of an anomaly (Section 7.4.3 gives the details of

this sanity check). The algorithm’s complexity is O(M ·N), where M is the number

of models, N is the number of samples in the observation window. The term N can

be considered constant since in our case N = 100 because this is enough number of

samples for ARIMA models to capture most of the temporal patterns that are found

in practice. Therefore, over the limit, the overall complexity can be expressed as

O(M).

Once a model has been selected, Augury performs s-step ahead forecasts. This

process is done for each monitored metric. Forecasts using ARIMA models are iter-

ative; i.e. if at time t we want to forecast the value of a variable at time t + n, we

have to forecast the values for times t + 1, t + 2, . . . , t + n− 1 first. Moreover, as we

increase the number of steps ahead, forecast error variance (and the forecast value)

converges to a constant value if the time series is stationary but the variance increases

at each step if the time series is non-stationary. For this reason, a disadvantage of

ARIMA models is that they cannot be used for long-term forecasts. We have found

that in areas such as economics and meteorology, forecasts from 15 to 20 steps ahead

can be performed (with metrics such as stocks and temperature) with reasonable ac-

curacy [95]. For the metrics we are analyzing, we have found that, forecasting more

than 15 steps ahead provides too much variance for the forecast error. For this reason,

144

N − k and s are both set to 15 observations. Note that this does not mean that the

look-ahead for a failure that Augury can achieve is at most 15 × 5 seconds = 75

seconds. The failure prediction can happen with current metric values, i.e., without

needing to forecast any value.

Instantaneous Anomaly Detection

Augury can detect anomalies that manifest suddenly in the system by comparing

the RMS error of the selected model to a specified threshold. If the RMS error is

greater than the threshold, this could be explained by two reasons: either (1) there

is no good model in the database to represent the current observation window, or

(2) an anomaly is being manifested already so that none of the pre-estimated models

could fit the data in the observation window because erroneous values are already

part of it. If an exhaustive set of normal-behavior traces is used to fit ARIMA

models (our assumption as in much previous work [7, 8, 92]), the only possibility is

case (2). However, there exist the possibility that, for a particular application, one

cannot obtain an exhaustive set of normal-behavior traces, for example, because the

application it is not yet in a production environment or because it is infeasible to

mimic the entire set of workloads that the application may receive. In this case, a

threshold-surpassing alarm could be a false positive, for example if we have an abrupt

workload change.

Failure Detection and Failure Prediction

The final step in Augury is to detect or to predict a failure. We say that a failure

is predicted if an alarm is flagged before an error becomes visible to the users. On the

other hand, we say that a failure is detected if Augury flags an alarm after a failure

has been seen. This also has value because there is some bug localization information

implicit in Augury’s detection.

145

Once forecasts are generated for each metric, Augury uses the observation win-

dow plus the forecasted window to calculate a CCV . Next, it determines whether the

CCV is normal or abnormal by calculating its nearest-neighbor distance using the

pre-computed set of normal-behavior CCV s (which conform to the hyper-sphere). If

the distance is larger than a pre-computed threshold, an alarm is flagged. The reason

we use the observation window plus the forecasted window to calculate correlation

coefficients in the CCV , rather than only using the forecasted window, is that the

already observed values are more certain than the forecasted values, therefore the

confidence of the results is increased by using the former window as well, while the

latter window increases Augury’s failure lookahead.

Correlation coefficients are calculated using the Pearson correlation-coefficient

given in Equation (7.2). To evaluate this equation, the mean is calculated from

the observations in the window (i.e., each Xk and Yk) but the standard deviations

(i.e., sX and sY) are pre-calculated from the training runs. This allows the correlation

coefficients to change when a the temporal pattern of a metric changes quickly, say

due to a change in the nature of incoming requests.

Pearson correlation-coefficient, however, assumes a linear dependence between

variables and may not be appropriate for non-linear correlations between variables.

For such cases, the Spearman’s rank correlation-coefficient can be computed which

measures how well the relationship between two variables can be described using a

monotonic function. Spearman’s rank is considered a non-parametric method because

it does not assume any relationship between variables. We have found that for the

temporal patterns that our metrics expose, Pearson correlation-coefficient performs

well enough to capture the majority of them. However, as observed in [8], some

correlations of system-level metrics follow a non-linear pattern.

146

7.5 Testbed

7.5.1 Testbed Application

We use RUBiS, an auction site prototype modeled after eBay, as our application

testbed. RUBiS has been widely used as a testbed for server performance scalabil-

ity studies [99] and for dependability studies [5, 100]. RUBiS implements the core

functionality of an auction site (selling, browsing, and bidding) through 21 applica-

tion components and several servlets—it is composed of more than 25,000 lines of

code. We use the servlets-version of RUBiS which runs under Apache Tomcat, using

MySQL as the back-end database server.

7.5.2 Workload Generation

We implemented our own multi-threaded client emulator for RUBiS. Clients visit

URLs based on a state-transition matrix (where states represent RUBiS URLs) that

comes with the RUBiS package. A client starts in the Home state, and when it reaches

the End of session state, it waits for 10 seconds and transitions back to the Home

state. Clients think-time follow a negative exponential distribution with mean of 7

seconds, truncated at 70 seconds, as specified by TPC-W [101].

We designed workloads that covered a wide range of load levels, but that never

exceeded the server’s maximum capacity. First, we measured the maximum capacity

of the server by varying the number of concurrent users and observing the number

of replies per second. The maximum capacity was set as the point with the lowest

number of concurrent users that caused the number of replies per second to plateau.

Then, we scaled each workload so that the maximum load level was between 90%

and 100% of the maximum capacity. We used three different types of workloads:

RAMP, STEP, and BURSTY. RAMP and STEP were built as described in [9]. The

BURSTY workload was created using the method described in [102] with index of

dispersion of 2,025. All three workloads are 36-hours long.

147

7.5.3 Baseline Approach: Polynomial Regression

We use polynomial regression as a comparison point for Augury. This method

fits an nth order polynomial to each metric independently using time as the predictor

variable. Twenty future samples are forecast for each metric. Using the forecasted

values, an alarm is flagged if these values are not within the threshold interval (µ −

5σ, µ + 5σ), where µ (the mean) and σ (the standard deviation) are computed from

the training data. The detection strategy is to flag an alert if even a single metric

goes beyond the threshold interval. In the implementation, a sliding window of 100

samples is taken (as in Augury) for each metric and an nth order least squares

polynomial is fitted to the sample window. The algorithm begins with a 1st order

polynomial regression (linear model) and iterate through higher order polynomials

until either the coefficient of determination is above a set value or the order of the

polynomial is equal to the maximum order allowed. These upper bounds both limit

the execution time of the program as well as limit the error of the forecasted values.

During experimentation, we found that high order polynomials were less effective

at forcasting future values of a metric (a 2nd order regression worked well for most

metrics). The polynomial-regression baseline program is implemented in Java and

has a runtime of 415 ms (model generation and forecasting) with 143 metrics at every

sample, which are 5 seconds apart in our experiments.

7.6 Experiments and Results

7.6.1 Fault Injection

To evaluate Augury, we inject six types of faults that emulate common real-world

problems. Table 7.1 shows a description of the injected faults and their categories.

Three categories of faults that are typical in production environments were injected:

configuration (CONFIG), performance (PERF) and programming (PROG) faults.

148

Table 7.1: Injected faults in RUBiS.

We run 30 experiments for each fault injection. Every time an experiment begins,

we restart the server and the database to cleanup the environment and to avoid fault

contamination from the previous experiment. The duration of each experiment is

one hour and faults are injected between 18-40 minutes after the experiment begins.

This avoids the burn-in time for the application, which we empirically observed to

be 15 minutes. In addition, we allow Augury to obtain the first 100 samples that

are needed for ARIMA models to be able to perform forecasts; this takes another 500

seconds.

7.6.2 Fault Injection Results

When a fault is injected, it can become an error; an error may then become a

failure. We follow the traditional definition of failures which is that a failure occurs

when the delivered service deviates from the specified service. In our experiments,

the ground truth for failure is when the client emulator observes either: (i) a generic

error report from the server, e.g., HTTP 500 internal server error, or (ii) the response

time of a request exceeds a threshold, where the threshold is set to the mean plus 3

times the standard-deviation of the reply times seen in the collected normal-behavior

traces.

We introduce the metrics that we use to evaluate failure detection quality. Let us

define injection time (IT) as the point in time when a fault is injected, and failure

time (FT) as the point in time when a failure is detected in the client emulator, with

149

IT ≤ FT. Then, when Augury flags an alarm, we count it as one of the following

cases:

• True positive (TP): (i) if the alarm is flagged after IT but before FT. In this

case we say that Augury predicts the failure, and we also measure the failure

look-ahead time as the difference between FT and the alarm time. (ii) if the

alarm is flagged within a short period of time ∆ after FT, where ∆ is set as

half the size of the observation window. In this case, the failure lookahead time

is zero.

• False positive (FP): (1) if the alarm is flagged before IT ; (ii) if the alarm is

flagged after IT but no failure was found by the client emulator.

• False negative (FN): if the alarm is flagged after FT +∆.

Based on these variables, we calculate two metrics:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, (7.3)

where recall (also referred to as accuracy) expresses how well Augury is able to either

predict a failure or detect a failure (a short time after it happens), while precision

has an inverse relation to false alarms.

We evaluate Augury in two operational modes: (1) Non-Forecasting, in which

forecasting values is not performed for any of the metrics and CCV s are calculated

using only the values in the observation window. (2) Forecasting, in which forecasting

values is done for each metric. The second mode has the advantage that a failure

can be predicted with a larger look-ahead and hence a proactive recovery mechanism

(such as rejuvenation) can be initiated earlier. However, this is also expected to be

less accurate than Augury in the first mode because of the imperfection of metric

forecasting.

Figure 7.6 shows the results of the fault injection campaign for non-forecasting

and forecasting modes of Augury (Forecasting is not applicable for regression and

150

Fig. 7.6.: Recall and precision results for non-forecasting and forecasting operational

modes of Augury, and for regression.

hence the same data is plotted for regression in the two sub-figures.). We do not in-

clude results for the db lock fault because this injection causes the RUBiS application

to lock up all the threads of the Tomcat server (waiting for the database operation

to complete) and hence Tomcat becomes unresponsive. For the memory leak, file -

dec leak, busy loop, and cpu hog faults the results for recall and precision are similar

between the two modes. However, in the cpu hog fault, both recall and precision

rates are less in forecasting mode than in non-forecasting mode. This is because in

many cases Augury incorrectly flags an alarm before the injection. For regression,

these results were obtained after manually removing three metrics from the analysis—

MySQL sockets, read hits, and write hits. These were erratic in their behavior and

were therefore throwing too many false alarms with regression. In contrast, with Au-

gury the erratic nature of these individual metrics were not breaking any correlations

and hence were not being flagged, pointing to some resilience in Augury’s detection

mechanism.

151

Table 7.2: Failure look-ahead time results for faults where Augury can predict a

failure.

Figure 7.2 shows results of failure look-ahead time for the fault injections where

Augury was able to predict failures. Expectedly, the forecasting mode improves

Augury’s capacity of anticipating failures compared to the non-forecasting mode.

However, this comes at the cost of decreased accuracy for some kinds of faults. Thus,

if it is a critical fault that needs to be avoided at all cost, the forecasting mode is

suggested. Regression achieved failure look-ahead for two of the six fault classes:

memory leak with 31.33 minutes and file desc leak with 43.89 minutes. Thus, the

look-ahead performance is even better than in Augury. However, it comes at the

cost of much lower accuracy and no look-ahead for the cpu hog case.

7.6.3 Performance Results

We perform experiments to evaluate the time it takes to execute all the steps that

are performed online in Augury. Table 7.3 shows times and contribution percent for

each step. The initialization steps correspond to those executed when Augury starts.

The detection steps are those executed every time a measurement vector is taken from

the application, and therefore every time the observation window is moved one step

forward. Note that, in the initialization phase, the dominant factor is loading the

hyper-sphere (about 9 sec) which is a file that contains 3,183 CCV s. However, this

phase is done only once (when Augury starts). In the detection phase, the dominant

152

factor is finding the distance of a CCV from the hyper-sphere (about 5.2 msec). All

the steps in the detection part take less than 10 ms, which gives us enough time to

perform all of them before the next sample of the measurements vector (which occur

every 5 sec).

Table 7.3: Times for the initialization and detection steps in Augury.

We vary the number of metrics being considered and measure the time for all the

detection steps. We observe that the overall time grows almost quadratically with a

trend line f(n) = (2.19× 10−5)n1.6, where f(n) is the detection time in seconds, and

n is the number of metrics. This is in line with our expectations since the overall

complexity of the pair-wise correlation calculation is O(n2) for n analyzed metrics.

With this complexity, it is possible to perform analysis of more than 800 metrics in

less than a second.

7.6.4 Android Case 1: File Descriptor Leak

We use bug cases in the Android OS to show how Augury detects an anomaly

in a real-world scenario. Android is an open-source software stack for mobile devices

that includes an operating system, middleware and user applications [103]. Android

153

has a large community of developers and has over 200,000 applications available. The

Android emulator lets application developers to develop and test Android applica-

tions without using a physical device.

Our first case is a bug that is described in issue 4825 in Android issues database [93].

The bug manifests itself with a java.lang.NullPointerException error preceded

by this system message: OSNetworkSystem: unclassified errno 24 (Too many open

files). The bug is in the implementation of the Selector.close() method which

does not close a pipe that is created by the Selector.open() method, leading to a

file-descriptor leak in the system. Figure 7.7 shows sample code that triggers the bug.

The bug is in the implementation of Selector.close()

Fig. 7.7.: Sample code that triggers bug 4825 in Android.

To show the possibility of false alarms using a näıve detector (that looks only

at instantaneous values of a single metric), we wrote a multi-threaded application

that generates different workloads (Figure 7.8 shows the patterns of the workloads.):

NORMAL: a random thread opens a file and performs a CPU-intensive task before

closing it. This workload simulates the typical behavior of servers that open a socket,

handle a request, and close the socket. The number of file descriptors that are used

in the workload is controlled by a (range) parameter which is set to 50-100. This

workload is used to train models of normal behavior. NORMAL INCREASED: the same

behavior as in the NORMAL workload, but the range of number of file descriptors is

154

increased to 50-200. BUGGY: the same behavior and number of file descriptors range

than in the NORMAL INCREASED workload but the buggy Selector class is used to open

files. Samples are taken every 5 seconds, and the failure (in the BUGGY workload)

occurs at sample 740. In Figure 7.8, notice how Augury can detect the problem

before the näıve approach.

Fig. 7.8.: Number of file descriptors for the three workloads used in Android case

study 1.

We wrote a program that measures 10 system-level metrics from the Android emu-

lator every 5 seconds. Next we applied NORMAL workload and got metric measurements

for about two hours, and trained models in Augury using the collected observations.

We also trained a baseline näıve technique using this data set. The näıve technique

simply learns a threshold for each of the metrics and it flags an alarm when the value

of a metric goes beyond the threshold envelope of µ ± 3σ of the observed values in

the NORMAL workload.

Next, we applied Augury and the näıve approach to the NORMAL INCREASED work-

load. In BUGGY, a failure happens when users see a java.lang.NullPointerException

155

error, which happens at the 740th sample. The näıve approach correctly detects the

file-descriptor leak in the BUGGY workload but incorrectly flags an alarm in NORMAL -

INCREASED. The reason is that the maximum number of file descriptors according to

the threshold of the näıve approach is around 100, but, in the NORMAL INCREASED

workload, the number of file descriptors goes up to 200. Any threshold-based ap-

proach will have the same false-positive problem because metric thresholds are not

necessarily invariant across different workloads. Augury, however, does not flag an

alarm in the NORMAL INCREASED workload because it notices that correlations between

metrics are not destroyed. As a final experiment, we trained the näıve approach with

the NORMAL INCREASED workload, and tested both techniques with the BUGGY work-

load only. The result is that both techniques are able to detect the bug but Augury

detects it 135 seconds before the näıve approach (see Figure 7.8).

Figure 7.9 shows CCV distances for this experiment. (τ represents the normal-

behavior threshold for CCV distances. The failure point is at the 740-th sample.)

Notice how the CCV distance starts increasing some time after the bug is activated

allowing Augury to detect accurately the problem in BUGGY. Turning on forecast-

ing mode gave us Augury’s best performance in terms of anticipating the failure

with a look-ahead time of 33 minutes. Figure 7.10 shows an example of a corre-

lation that changes when the bug is activated, file descriptors with non-voluntary

context switches, while there is one example of a correlation that is not affected by

the bug, non-voluntary context switches and user-level CPU time. Notice how some

file-descriptor CC’s change after the bug manifests (the first plot) while other corre-

lation coefficients maintain the same temporal behavior.

7.6.5 Android Case 2: HTTPS Request Hang

Our second case study is manifested as an application hang in Android Froyo

2.2. The hang occurs when HTTPS connections are established using the Java

HttpURLConnection class in a very slow GPRS connection on an actual phone. This

156

Fig. 7.9.: CCV distances for the the applied workloads.

Fig. 7.10.: Examples of correlation-coefficients (CC) that are broken by the Android’s bug.

bug has been reported in [104]. According to the bug report, when byte values are

read from the ChunkedInputStream class, the read() method takes too long. The

following code shows how the bug can be activated:

HttpURLConnection httpUrlConn =

(HttpURLConnection)uri.openConnection();

// Set standard headers ...

InputStream input =

httpUrlConn.getInputStream();

157

BufferedInputStream buffInput =

new BufferedInputStream(input);

// this call hangs...

int data = buffInput.read();

This bug can be fixed by careful application development where a timeout is

declared on the read. However, many applications do not do this careful setting.

To show how Augury would detect this bug in a production environment, we

wrote a program that mimics two workloads that represent common behavior in web

applications: NORMAL: HTTPS connections are opened and large files are downloaded

using multiple URLs. The application spawns a separate thread for each connection.

The arrival of these connections follows a Poisson process. BUGGY: Same pattern of

HTTPS connections as in NORMAL but, because of the bug, connections block forever.

Since more connections keep coming but none finish, the number of sockets keeps

increasing till the resource limit is reached when the phone becomes unresponsive.

Fig. 7.11.: CCV distances for the the tested workloads in the second case study.

In BUGGY, a failure is flagged when reading the data from the connection takes more

time than a fixed timeout. We use 300 seconds for this timeout, the default value in

Firefox. We trained Augury with NORMAL and tested it with BUGGY. Figure 7.11

shows distances of CCV s in forecasting and non-forecasting mode. (τ represents the

158

normal-behavior threshold for CCV distances.) The failure point is at sample 445.

The failure look-ahead time is 3.16 minutes for the non-forecasting mode and 4.58

minutes for the forecasting mode. However, Augury produces some false alarms

before the bug is actually activated. This is due to imperfections of the ARIMA

model forecasts for metrics that experience random natural fluctuations before the

bug manifests itself.

7.6.6 StationsStat Case Study

We evaluate Augury’s ability to detect and predict failures in StationsStat, a

multi-tier application that is used on Purdue’s campus to check the availability of

workstations. Students across the campus use StationsStat on a daily basis to check

the number of available workstations for each lab on campus. More details of this

application can be found in section 6.4.3 in Chapter 6. StationsStat’s administrators

tracked 495 metrics of the system-to-application stack at 1 minute intervals for more

than two months from Jun 7 – Aug 19 in 2010 which we analyze in this case study.

Failure Model

The application monitoring system, Nagios, provided three types of alerts: (1)

warning: HTTP GET requests that failed to respond within a timeout; (2) critical:

three consecutive warning alerts; (3) recovery: the service returned to an OK state.

Recovery occurs normally when a service-restart occurs but it could also occur be-

cause the problem simply went away itself. During instability periods (in the prox-

imity of failures), the metric-collection script (which runs in the same application

machine) could not obtain measurements from the middleware- and application-layer.

These events are labeled as missing-data alerts.

For the rest of the study, we say that a failure occurs in StationsStat if a warning,

critical or missing-data alert is seen. The reason we catalog missing-data alerts

as failures is to cover problems that Nagios fails to detect and that are a clear symptom

159

of a failure in the system. HTTP requests from Nagios and JMX requests (from

the metric-collection script) are handled by different threads in Apache Tomcat—a

performance problem can be reflected in only one of the threads (in the case of the

missing-data alerts, the JMX thread).

Phase 1: Training for Metric Selection

StationsStat case is a challenging scenario for Augury, not only because the

problem’s root-cause is unknown, but also because there is no error-free data available

to train and create the normal-behavior hyper-sphere. Fortunately, Augury can still

work in this scenario by using almost error-free data. The administrators noticed

that, after restarting StationsStat servers, the next failure was often seen only after

a week or more—symptoms seemed to suggest that the problem (possibly a resource

exhaustion bug) grew progressively from a service restart to a failure. Augury

therefore used a data segment collected right after a restart to build the hyper-sphere

representing normality. Augury also filtered out constant metrics in this phase which

resulted in 70 non-constant metrics that it used in the rest of the analysis.

Even with 70 non-constant metrics—a significant reduction from 495—Augury

did not provide definitive results when it was applied to the set of failures in the

collected data. The bug in StationsStat seemed to only break a few correlations,

possibly because only a small set of metrics were affected by the bug. As a conse-

quence, our nearest-neighbor approach suffered from the curse of dimensionality [60]

Due to a high dimensional space, deviations from normality in a few dimensions are

not as significant, making distances between all pairs of points in high-dimensional

data tend to become almost equal. We needed to eliminate unimportant metrics from

the analysis and to use only the important metrics. The vexing question to us was

how do we select the important metrics?

A metric set that detects (and predicts) known failures with sufficient accuracy

and few false alarms can tautologically be considered the important metrics. The

160

0 2 4 6

0

5

10

15

20

25

time (days)

C
C

V
 d

is
ta

nc
e

CCV distance
Recovery
Critical
Warning
Restart
Missing Data

Fig. 7.12.: CCV distance for a segment of known failures.

reasoning we follow is that, if a metric set works well with known (already seen)

failures, it should also work well with unknown (not yet seen) failures, if failures are

caused by the same unresolved bug. The following procedure is used by the system

administrators to select a small set of important metrics:

1. Sampling : the administrator randomly selects several sets of a small number of

metrics and applies Augury individually on one set of metrics from the above

combinations to a data segment that contains known failures. For this step

we use 10 metrics since it was a reasonably smaller number compared to 70.

We generated randomly 98 combinations and made sure that all the 70 original

metrics appeared in at least one combination.

2. Labeling : For each combination, the system administrator determines visually

what combinations worked well with the known failures and labels them as

“good”. Here, she looks at combinations that give a high detection accuracy—

failures are proceeded or followed shortly by an increase of the CCV-distance

and a small number of false alarms (i.e., the CCV-distance did not surpass a

threshold when failures were not present). Figure 7.12 shows an example of a

combination of 10 metrics that works well in this step and that is labeled as

161

“good”. (In the figure, Warning, Critical and Missing-data labels correspond

to the failures.) Notice how high CCV distance peaks are observed along with

all the failures.

3. Metric selection: After the administrator has identified the good combinations,

for each metric, Augury calculates the ratio of number of times it appears in a

good combination to the number of times it appears in all the combinations (all

the 98 combinations in our evaluation). The metrics are ranked in decreasing

order according to the above ratio and the top K-metrics are considered for

the next stage (K = 20 for our evaluation). Now, for each of these K metrics,

Augury calculates the contribution of the metric to the high CCV distance

before a failure, the intuition being that a metric that is associated with the

root cause of the problem will break its correlations to a numerically large

degree. Finally, the top 10 metrics are selected for further use in Augury,

i.e., for predicting failures during the production run of the application. Thus,

there is a two-step filtering process which finally leads to the set of metrics to

be considered.

Phase 2: Results with Unknown Failures

Augury is applied to unknown failures using the reduced set of metrics that are

selected from the previous phase. We run Augury in no-forecasting mode to elimi-

nate too many noisy peaks in the CCV distance. The result is shown in Figure 7.13

(a). (Notice how distance peaks occur when failures occur. Thresholds are marked

with dashed lines. Failures are critical, warning alerts, missing-data and no CCV

distance.) Two different thresholds—a low and a high threshold—for the CCV dis-

tance are selected to show the tradeoff between recall and precision. Thresholds are

determined visually by the system administrator in the metric-selection phase. To

measure true- and false-positives, we cluster Augury’s alarms (i.e. CCV distances

that surpass a threshold) in windows of 2 hours. If multiple Augury alarms fit into

162

one window, we consider this as a single positive. A true-positive can be either a

failure prediction, i.e. an Augury alarm before a failure, or a failure detection, i.e.

an Augury alarm at or after the failure point but before a Nagios recovery alert. If

failure prediction occurs, we measure failure look-ahead time based on the first posi-

tive of a window. If a positive is seen after a Nagios recovery alert, this is counted

as a false positive.

Fig. 7.13.: (a) CCV distance for unknown failures of StationsStat; (b) Zoomed-in

plot of one of the failures.

Out of 17 failures, Augury is able to catch 13 with the low threshold and 11 with

the high threshold, giving recalls of 76% and 65% respectively. For all the failures

that are caught, all of them are predicted, i.e. the CCV distance increases before a

failure. Look-ahead time is on average 51.01 minutes for the low threshold, and 30.94

minutes for the high threshold.

Augury throws a moderate number of false positives (when the CCV distance

surpass a threshold when no failures are seen); however they typically occur with a

separation of a day. For the low threshold the number of false positives is 74, and for

the high threshold it is 43. Since our test period is 44 days, this corresponds to 1-2

false alarms per day on average, so the false alarms arguably do not annoy system

administrators to mayhem.

Figure 7.13 (b) shows a zoomed-in plot of the CCV distance in the vicinity of a

failure. Notice that the CCV distance increases before the failure. For this particular

163

failure, the metric-collector script is not able to get any measurements from the system

(from around time 3.5 to time 6.2). When this happens, the failure is detected from

the metric-collector script at around time 3.5. Notice how Augury anticipates the

failure with a look-ahead time of around 30 minutes when the CCV starts increasing

at around time 3. Nagios, however, perceives the failure some time after the metric-

collector script (when the critical alert occurs). If the failure is counted from Nagios’

perspective, Augury has a look-ahead time of more than an hour.

7.7 Discussion

Augury uses nearest neighbor distance for outlier detection. There are other tech-

niques that may be considered, such as Support Vector Domain Description (SVDD),

a variant of Support Vector Machines that tries to find a hyper-sphere in the feature

space which can enclose all the training data (already seen examples of CCV s). Once

the hyper-sphere has been built with SVDD, one can test whether a new point x is

inside or outside the hyper-sphere. An advantage of using a method like SVDD is

that the hyper-sphere can be represented only by the points in the surface, therefore

the decision of classifying a point as normal or abnormal can be made more efficiently.

A disadvantage is that training SVDD can be quite slow in a high dimensional space

(in the order of days for our applications).

Currently Augury performs forecasting of each metric independently, using a

separate model for each metric. It may be possible to speed up the forecasting

process by using multi-variate models through which forecasting of multiple metrics

can be done in one step. The balancing factor will be that the multi-variate model

should not become so complicated that creating the model or obtaining forecasts from

the model is too slow. Thus, we would want to carefully group metrics that we will

forecast using multi-variate methods, if at all.

A desirable use case of Augury is that a developer is creating slightly changing

versions of a system (say, for nightly builds) and realizes that her latest version is

164

buggy. Then, she can run the earlier version to generate the training data points. If

the versions differ significantly (such as, two major releases), then the behavior of the

metrics will likely be so different that one cannot be used as training data in Augury

for detecting the failure point in the other.

Comparison to Related Work . We conducted a literature survey from 2004-

2011 from the following conferences and workshops: NSDI, OSDI, SOSP, DSN,

ICDCS, Usenix ATC, WASL, SLAML, SysML. For each paper we answered the fol-

lowing questions: Are multiple metrics used simultaneously in the analysis? Are

sequences of observations (or temporal patterns) considered? Does it leverage on

correlation of multiple metrics? Is failure prediction performed? Does it consider a

restricted set of metrics? A summary of the survey is shown in Table 7.4.

Table 7.4: Literature survey of NSDI, OSDI, SOSP, DSN, ICDCS, Usenix ATC,

WASL, SLAML, SysML from 2004-2011.

165

8. CONCLUSION

Detection and localization of software bugs and performance anomalies is becoming

increasingly challenging as distributed systems grow increasingly larger and complex.

Most of the steps in the debugging process of large scale applications are performed

manually by the developer, often with tools that do not cope with the massive num-

ber of parallel tasks in these systems. An impediment of problem-localization and

debugging tools that perform poorly at scale is that many faults only manifest (or

manifest more frequently) with a large number of process or with a large amount

of input data, in which case these tools are of no practical use—an example of such

faults is the the bug that we analyzed in section 5.5.1 which only manifested with

around 8,000 MPI tasks or more.

Our statistical modeling of parallel tasks (i.e., Semi-Markov Models), based on

control flow and timing information, describes local and global behavior with a conve-

nient granularity to detect a variety of common faults. Further, it requires very small

amount of memory as compared to traditional debugging techniques that need to

store large traces, e.g., because every program statement is intercepted. AutomaDeD

creates application states based on executed regions of code rather than based on ev-

ery instruction or program statement. AutomaDeD is a first step towards automating

the detection and localization of errors in parallel applications at massive scales.

We have implemented techniques in AutomaDeD that enables it to achieve scal-

ability by optimizing it at different levels of its procedures. First, we minimize the

time to compare elements of task models by using efficient data structures and ap-

proximation methods. Second, we reduce the sizes of the models to an appropriate

magnitude, which eliminates noisy dimensions when finding the task affected by a

fault. Finally, we use sampling-based techniques such as CAPEK’s clustering and

scalable nearest neighbor to deal with the increasing number of parallel tasks that

166

are present in today’s largest systems. Our implementation scales easily to thousands

of tasks and it can identify erroneous tasks and code regions in a few seconds—all the

algorithms and data structures in its design allow us to achieve fault detection and

diagnosis with a logarithmic complexity in terms of the number of parallel tasks.

By compressing historic control-flow behavior of MPI tasks using Markov models,

AutomaDeD can identify the least progressed task of a parallel program by infer-

ring probabilistically a progress-dependence graph (or PDG). The PDG is useful in

identifying the origin of a variety of performance and correctness faults such as an ap-

plication’s hang or a slow code region. AutomaDeD uses backward slicing to pinpoint

code that could have led to the unsafe state. Our analysis of a hard-to-diagnose bug

in a molecular dynamics simulation code (i.e., ddcMD) and fault injections in two

representative large-scale HPC applications demonstrate that AutomaDeD identifies

these problems with high accuracy, where manual analysis and traditional debugging

tools have been unsuccessful. The distributed part of the analysis is performed in

a fraction of a second with over 32 thousand tasks. The low analysis cost allows

its use online, i.e., during program execution, to automatically localize the origin of

performance faults at a granularity of a parallel task and code region.

It has been known, and operationally used, that when problems occur in complex

distributed systems, one or more metrics are affected, either in their instantaneous

values or in their trends. Here we have shown that faults, which may be missed

by mechanisms that analyze individual metrics, affect pair-wise correlations between

metrics and this can be used as a trigger for detection. Further, this can enable a

system to predict failures by observing the trends in the correlations. Our imple-

mentation of Augury shows that it is possible to perform the detection and the

prediction at runtime even while considering a comprehensive set of metrics, from all

layers of the system.

Orion shares some of the design objectives of Augury—to monitor a compre-

hensive set of metrics from all layers of the system—but its purpose is to localize

the origin of failures at a granularity of regions of code, rather than to predict fail-

167

ures. Orion pinpoints the metric and a window that is most highly affected by a

failure and subsequently highlights the code region that is associated with the origin

of the problem. Orion’s algorithm models the application behavior through pair-

wise correlations of multiple metrics (as in Augury), and when failure occurs, it

finds the correlations (and hence the metrics) that deviate from normality. Our case

studies with four large-scale distributed applications show the utility of the tool —

Orion can localize the origin of real-world failures at a granularity of metrics and

code regions in the matter of minutes.

168

9. FUTURE WORK

Our insights from this work open up the possibility of several lines of work:

• Are more complex dependencies between metrics (non-linear corre-

lations) more powerful in detection? In our current work we assumed

linear correlations of metrics, so that, if they are broken, errors or failures can

be detected or predicted. Non-linear correlations could fit better several cases of

pairs of metrics. As a future work, we could evaluate whether or not using more

complex correlation models would improve the accuracy in catching problems.

• How should a detection system deal with changing workload pat-

terns, and corresponding discontinuous, but legitimate, changes in

the correlation patterns? Workload changes could cause our techniques

to flag alarms incorrectly because new patterns could make models to devi-

ate from the normal-behavior models (that are constructed previously observed

workloads). It could be studied, as a future work, how the detection system

can handle changes in the workload by incorporating new “normal” knowledge

into its models.

• When building SMM graphs for parallel processes, what is the opti-

mal level of compression to obtain maximum accuracy in task iso-

lation? We have shown that, as the SMM graph is compressed, accuracy in

detecting an abnormal task is increased due dimensionality reduction. How-

ever, how much compression is optimal? The trade-off is that compressing the

graph too much make us lose the program control-flow structure which can be

useful in debugging, however having a too complex graph make us suffer from

the curse-of-dimensionality problem—to many unimportant dimensions drown

the important dimensions.

169

• Can the strategy in AutomaDeD to create states of the application

be generalized? AutomaDeD creates states that represent regions of code. A

state is created when an MPI routine is called by intercepting the call using MPI

wrappers. However, the application also executes user-level function that could

be used to create these states, and subsequently, to divide the application’s

execution in finer code regions. One could use sampling strategies to select

user-level function calls to instrument. The challenge here is to select the right

sampling strategy so that the generated state sizes do not incur high use of

memory but at the same time provide sufficient granularity to localize faults

accurately.

• Can failure prediction using analysis of system metrics be done for

HPC applications (as we did it for commercial applications)? In

principle, we could apply Augury to HPC applications to predict impending

failures. However, a fundamental difference between commercial and HPC ap-

plications is that it is easier to obtain a large amount of metric samples from a

commercial system since they typically operate in a 24/7 basis—our approach

for failure prediction requires a large number of metric values to train the statis-

tical models that are used for forecasting. In contrast, runs of HPC applications

are shorter than those of commercial systems—in the range of hours (or a few

days). A solution could be to sample multiple jobs in an HPC cluster to collect

sufficient data to train the models and to use these models for future jobs. The

challenge would be to use light weight instrumentation to collect the required

metrics without interfering too much with the application.

• Can AutomaDeD’s approach be applied in large-scale commercial

systems such as MapReduce? In the MapReduce [12] model for parallel

computation, the application workload is divided into several worker tasks by

a master task. Modeling the behavior of tasks would follow as in the HPC

applications case—using SMMs for each task—however other questions remain

170

unanswered: how are application phases denoted? what is the optimal behav-

ioral clustering configuration? what is the optimal instrumentation level?

LIST OF REFERENCES

171

LIST OF REFERENCES

[1] “GDB: The GNU Project Debugger.” http://www.gnu.org/software/gdb/.

[2] Rogue Wave Software, “TotalView Debugger.” http://www.roguewave.com/
products/totalview.aspx.

[3] Allinea Software, “Allinea DDT the Distributed Debugging Tool.” http://www.
allinea.com/products/ddt/.

[4] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of software aging
in a web server,” IEEE Transactions on Reliability, vol. 55, pp. 411 –420, Sep
2006.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot:
A technique for cheap recovery,” in Proceedings of the 6th conference on Sym-
posium on Operating Systems Design & Implementation - Volume 6, OSDI’04,
(Berkeley, CA, USA), pp. 3–3, USENIX Association, 2004.

[6] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, “Tracking probabilistic correlation
of monitoring data for fault detection in complex systems,” in IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 259–268,
2006.

[7] K. Ozonat, “An information-theoretic approach to detecting performance
anomalies and changes for large-scale distributed web services,” in IEEE Inter-
national Conference on Dependable Systems and Networks (DSN), june 2008.

[8] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling probabilistic measurement
correlations for problem determination in large-scale distributed systems,” in
IEEE International Conference on Distributed Computing Systems (ICDCS),
pp. 623 –630, june 2009.

[9] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase, “Correlating
instrumentation data to system states: a building block for automated diagnosis
and control,” in Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation - Volume 6, OSDI’04, pp. 16–16, 2004.

[10] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox, “Captur-
ing, indexing, clustering, and retrieving system history,” in Proceedings of the
twentieth ACM symposium on Operating systems principles, SOSP ’05, pp. 105–
118, 2005.

[11] Java Community Process Program, “Jsr-000316 java (tm) platform, enter-
prise edition (java ee) 6.” http://jcp.org/aboutJava/communityprocess/
pr/jsr316/, Feb 2009.

172

[12] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” in Proceedings of the 6th conference on Symposium on Operating Sys-
tems Design & Implementation (OSDI), USENIX Association, 2004.

[13] Message Passing Interface Forum, “Mpi: A message-passing interface standard,
version 3.0.” http://www.mpi-forum.org/docs/, Sep 2012.

[14] Q. Gao, W. Zhang, and F. Qin, “FlowChecker: Detecting Bugs in MPI Libraries
via Message Flow Checking,” in ACM/IEEE Supercomputing Conference (SC),
2010.

[15] Q. Gao, F. Qin, and D. K. Panda, “DMTracker: Finding Bugs in Large-scale
Parallel Programs by Detecting Anomaly in Data Movements,” in ACM/IEEE
Supercomputing Conference (SC), 2007.

[16] A. Mirgorodskiy, N. Maruyama, and B. Miller, “Problem Diagnosis in Large-
Scale Computing Environments,” in ACM/IEEE Supercomputing Conference
(SC), pp. 11–23, 2006.

[17] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P. Miller,
and M. Schulz, “Scalable temporal order analysis for large scale debugging,”
in Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC ’09, pp. 44:1–44:11, 2009.

[18] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M. Legendre, B. P.
Miller, M. Schulz, and B. Liblit, “Lessons Learned at 208K: Towards Debugging
Millions of Cores,” in ACM/IEEE Supercomputing Conference (SC), pp. 1–9,
IEEE Press, 2008.

[19] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, B. P. Miller, and
M. Schulz, “Benchmarking the Stack Trace Analysis Tool for BlueGene/L,”
in International Conference on Parallel Computing: Architectures, Algorithms
and Applications (ParCo), 2007.

[20] P. C. Roth, D. C. Arnold, and B. P. Miller, “Mrnet: A software-based multicas-
t/reduction network for scalable tools,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC), SC ’03, 2003.

[21] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox, “Ensembles of mod-
els for automated diagnosis of system performance problems,” in International
Conference on Dependable Systems and Networks (DSN), june-1 july 2005.

[22] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen, “Fin-
gerprinting the datacenter: automated classification of performance crises,” in
Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
pp. 111–124, 2010.

[23] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life, death, and the
critical transition: finding liveness bugs in systems code,” in Proceedings of
the 4th USENIX conference on Networked systems design and implementation,
NSDI’07, (Berkeley, CA, USA), pp. 18–18, USENIX Association, 2007.

[24] M. S. Musuvathi, D. Park, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill,
“Cmc: A pragmatic approach to model checking real code,” in In Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation, OSDI
’02, 2002.

173

[25] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang, “Practical software
model checking via dynamic interface reduction,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP ’11, pp. 265–
278, ACM, 2011.

[26] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long, L. Zhang,
and L. Zhou, “Modist: transparent model checking of unmodified distributed
systems,” in Proceedings of the 6th USENIX symposium on Networked systems
design and implementation, NSDI’09, pp. 213–228, 2009.

[27] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang, “D3s: debugging deployed distributed systems,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, (Berkeley, CA, USA), pp. 423–437, USENIX Association, 2008.

[28] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in dis-
tributed systems through unstructured log analysis,” in Proceedings of the 2009
Ninth IEEE International Conference on Data Mining, ICDM ’09, (Washing-
ton, DC, USA), pp. 149–158, IEEE Computer Society, 2009.

[29] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation,
NSDI’12, (Berkeley, CA, USA), pp. 26–26, USENIX Association, 2012.

[30] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset, “Analyzing system logs:
a new view of what’s important,” in Proceedings of the 2nd USENIX work-
shop on Tackling computer systems problems with machine learning techniques,
SYSML’07, (Berkeley, CA, USA), pp. 6:1–6:7, USENIX Association, 2007.

[31] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale
system problems by mining console logs,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, (New York, NY,
USA), pp. 117–132, ACM, 2009.

[32] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for re-
quest extraction and workload modelling,” in Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, (Berkeley, CA, USA), pp. 18–18, USENIX Association, 2004.

[33] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer, “Path-based faliure and evolution management,” in Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implemen-
tation (NSDI), NSDI’04, 2004.

[34] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger, “Diagnosing performance
changes by comparing request flows,” in Proceedings of the 8th USENIX con-
ference on Networked systems design and implementation, NSDI’11, (Berkeley,
CA, USA), pp. 4–4, USENIX Association, 2011.

[35] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen, “Fin-
gerprinting the datacenter: automated classification of performance crises,” in
Proceedings of the 5th European conference on Computer systems, EuroSys ’10,
pp. 111–124, 2010.

174

[36] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox, “Captur-
ing, indexing, clustering, and retrieving system history,” in Proceedings of the
twentieth ACM symposium on Operating systems principles, SOSP ’05, (New
York, NY, USA), pp. 105–118, ACM, 2005.

[37] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling probabilistic measurement
correlations for problem determination in large-scale distributed systems,” in
Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems, ICDCS ’09, (Washington, DC, USA), pp. 623–630, IEEE
Computer Society, 2009.

[38] S. Zhang, I. Cohen, J. Symons, and A. Fox, “Ensembles of models for automated
diagnosis of system performance problems,” in Proceedings of the 2005 Interna-
tional Conference on Dependable Systems and Networks, DSN ’05, (Washington,
DC, USA), pp. 644–653, IEEE Computer Society, 2005.

[39] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure Trends in a Large Disk
Drive Population,” in 5th USENIX Conference on File and Storage Technologies
(FAST ’06), p. 1728, 2007.

[40] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo, “Blue-
gene/l failure analysis and prediction models,” in International Conference on
Dependable Systems and Networks (DSN ’06), pp. 425–434, 2006.

[41] Y. Zhao, X. Liu, S. Gan, and W. Zheng, “Predicting disk failures with hmm-
and hsmm-based approaches,” in Proceedings of the 10th industrial conference
on Advances in data mining: applications and theoretical aspects, ICDM’10,
pp. 390–404, 2010.

[42] R. W. Featherstun and E. W. Fulp, “Using syslog message sequences for pre-
dicting disk failures,” in Proceedings of the 24th USENIX international confer-
ence on Large installation system administration (LISA), LISA’10, pp. 1–10,
USENIX Association, 2010.

[43] A. Williams, S. Pertet, and P. Narasimhan, “Tiresias: Black-box failure pre-
diction in distributed systems,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), march 2007.

[44] N. Laranjeiro, M. Vieira, and H. Madeira, “Database systems for advanced
applications,” ch. Predicting Timing Failures in Web Services, pp. 182–196,
2009.

[45] K. Lindekugel, A. DiGirolamo, and D. Stanzione, “Architecture for an Offline
Parallel Debugger,” in International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pp. 227–235, Dec 2008.

[46] J. Lourenço and J. C. Cunha, “Fiddle: A Flexible Distributed Debugging Archi-
tecture,” in International Conference on Computational Science (ICCS)-Part
II, pp. 821–830, Springer-Verlag, 2001.

[47] MPIPlugin, “MPI Plugin for KDevelop.” http://sourceforge.net/
projects/mpiplugin/.

[48] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS Parallel Bench-
marks,” RNR-91-002, NASA Ames Research Center, Aug. 1991.

175

[49] M. Schulz and B. R. de Supinski, “P NMPI Tools: A Whole Lot Greater than
the Sum of Their Parts,” in SC ’07: Proceedings of the 2007 ACM/IEEE con-
ference on Supercomputing, (New York, NY, USA), pp. 1–10, ACM, 2007.

[50] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Chap-
man & Hall, 1986.

[51] C. D. Manning and H. Schtze, Foundations of Statistical Natural Language
Processing. Cambridge, Mass: MIT Press, 1999.

[52] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[53] B. G. Mirkin, Mathematical Classification and Clustering. Kluwer Academic
Press, 1996.

[54] MVAPICH Project, “MVAPICH Discussion List.” http://mail.cse.
ohio-state.edu/pipermail/mvapich-discuss/2007-July/0009%32.html.

[55] Rogue Wave Software, “Totalview achieves massive milestone towards exascale
debugging - totalview debugs 786,432 processor cores as part of scalability initia-
tive.” http://www.roguewave.com/company/news-events/press-releases/
2012/scalability%-milestone-for-totalview-debugger.aspx, Nov 2012.

[56] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller, “Problem Diagnosis in
Large-Scale Computing Environments,” in Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, (New York, NY, USA), ACM, 2006.

[57] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A. Reed, “Clus-
tering Performance Data Efficiently at Massive Scales,” in Proceedings of the
24th ACM International Conference on Supercomputing, ICS ’10, (New York,
NY, USA), pp. 243–252, ACM, 2010.

[58] V. E. Henson and U. M. Yang, “BoomerAMG: A Parallel Algebraic Multigrid
Solver and Preconditioner,” Appl. Numer. Math., vol. 41, no. 1, pp. 155–177,
2002.

[59] J. M. Linacre, “Overlapping Normal Distributions,” Rasch Measurement Trans-
actions, vol. 10, no. 1, pp. 487–8, 1996.

[60] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[61] D. Pelleg and A. Moore, “X-Means: Extending K-Means with Efficient Estima-
tion of the Number of Clusters,” in Proceedings of the 17th International Conf.
on Machine Learning, pp. 727–734, 2000.

[62] E. W. Forgy, “Cluster Analysis of Multivariate Data: Efficiency vs. Inter-
pretability of Classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[63] S. P. Lloyd, “Least Squares Quantization in PCM. Technical Note, Bell Labora-
tories,” IEEE Transactions on Information Theory, vol. 28, pp. 128–137, 1967,
1982.

176

[64] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate
Observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability (L. M. Le Cam and J. Neyman, eds.), vol. 1, pp. 281–
297, Univeristy of California Press, June 21-July 18 1967.

[65] G. Bronevetsky, I. Laguna, S. Bagchi, B. de Supinski, D. Ahn, and M. Schulz,
“AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks,” in
2010 IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 231 –240, 2010.

[66] “Algebraic MultiGrid (AMG) 2006 Benchmark.” https://asc.llnl.gov/
sequoia/benchmarks.

[67] M. Weiser, “Program slicing,” in Proceedings of the 5th International Confer-
ence on Software Engineering, pp. 439–449, 1981.

[68] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R. de Supin-
ski, J. Sexton, and J. A. Gunnels, “Simulating solidification in metals at high
pressure: The drive to petascale computing,” Journal of Physics: Conference
Series, vol. 46, no. 1, p. 254, 2006.

[69] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective com-
munication operations in mpich,” International Journal of High Performance
Computing Applications, vol. 19, pp. 49–66, 2005.

[70] W. Haque, “Concurrent deadlock detection in parallel programs,” International
Journal of Computers and Applications, vol. 28, pp. 19–25, January 2006.

[71] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller, “A graph based
approach for mpi deadlock detection,” in International conference on Super-
computing (ICS), pp. 296–305, 2009.

[72] J. S. Vetter and B. R. de Supinski, “Dynamic software testing of mpi applica-
tions with umpire,” in ACM/IEEE Supercomputing Conference (SC), 2000.

[73] “DynInst - An Application Program Interface (API) for Runtime Code Gener-
ation.” http://www.dyninst.org/.

[74] M. Kamkar and P. Krajina, “Dynamic slicing of distributed programs,” in In-
ternational Conference on Software Maintenance, pp. 222 –229, oct 1995.

[75] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9,
pp. 319–349, July 1987.

[76] “Boost C++ libraries.” http://www.boost.org/.

[77] B. Korel and J. Laski, “Dynamic slicing of computer programs,” Journal of
Systems and Software, vol. 13, pp. 187–195, Dec. 1990.

[78] M. Kamkar, P. Krajina, and P. Fritzson, “Dynamic slicing of parallel message-
passing programs,” in Proceedings of the Fourth Euromicro Workshop on Par-
allel and Distributed Processing, 1996. PDP ’96., pp. 170 –177, jan 1996.

177

[79] J. Rilling, H. Li, and D. Goswami, “Predicate-based dynamic slicing of message
passing programs,” in Second IEEE International Workshop on Source Code
Analysis and Manipulation, pp. 133 – 142, 2002.

[80] G. Shanmuganathan, K. Zhang, E. Wong, and Y. Qi, “Analyzing message-
passing programs through visual slicing,” in International Conference on Infor-
mation Technology: Coding and Computing (ITCC), vol. 2, pp. 341 – 346 Vol.
2, april 2005.

[81] M. Strout, B. Kreaseck, and P. Hovland, “Data-flow analysis for mpi programs,”
in International Conference on Parallel Processing (ICPP), pp. 175 –184, aug.
2006.

[82] “ASC Sequoia Benchmark Codes.” https://asc.llnl.gov/sequoia/
benchmarks/.

[83] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: a perva-
sive network tracing framework,” in Proceedings of the 4th USENIX conference
on Networked systems design and implementation, NSDI’07, pp. 20–20, 2007.

[84] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday: global
comprehension for distributed replay,” in Proceedings of the 4th USENIX con-
ference on Networked systems design and implementation, NSDI’07, (Berkeley,
CA, USA), pp. 21–21, USENIX Association, 2007.

[85] D. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay debugging for dis-
tributed applications,” in Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, ATEC ’06, (Berkeley, CA, USA), pp. 27–27,
USENIX Association, 2006.

[86] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller, “Problem diagnosis in
large-scale computing environments,” in Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, SC ’06, (New York, NY, USA), ACM, 2006.

[87] J. L. Hellerstein, F. Zhang, and P. Shahabuddin, “A statistical approach to
predictive detection,” Computer Networks, vol. 35, no. 1, pp. 77–95, 2001.

[88] K. Ozonat, “An information-theoretic approach to detecting performance
anomalies and changes for large-scale distributed web services,” in IEEE Inter-
national Conference on Dependable Systems and Networks (DSN), june 2008.

[89] “Apache HBase.” http://hbase.apache.org/.

[90] “Apache Hadoop Project.” http://hadoop.apache.org/.

[91] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly? ap-
plication change? or workload change? towards automated detection of appli-
cation performance anomaly and change,” in IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pp. 452 –461, 2008.

[92] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer, “Path-based failure and evolution management,” in Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implemen-
tation (NSDI), NSDI’04, 2004.

178

[93] “Android issue 4825.” http://code.google.com/p/android/issues/detail?
id=4825.

[94] A. T. Tai and K. S. Tso, “A performability-oriented software rejuvenation
framework for distributed applications,” in Proceedings of the 2005 Interna-
tional Conference on Dependable Systems and Networks, DSN ’05, (Washing-
ton, DC, USA), 2005.

[95] C. Chatfield, The Analysis of Time Series: An Introduction, Sixth Edition.
Chapman and Hall/CRC, 2003.

[96] “Sysstat utilities. http://sebastien.godard.pagesperso-orange.fr/.”

[97] “The gnu r project. http://www.r-project.org.”

[98] “Nist engineering statistics handbook (box-jenkins models).
http://www.itl.nist.gov/div898/handbook/.”

[99] “Rubis auction site prototype . http://rubis.ow2.org/.”

[100] C. Stewart and K. Shen, “Performance modeling and system management for
multi-component online services,” in Proceedings of the 2nd conference on Sym-
posium on Networked Systems Design & Implementation, NSDI’05, pp. 71–84,
2005.

[101] D. A. Menasce, “Tpc-w: a benchmark for e-commerce,” IEEE Internet Com-
puting, vol. 6, no. 3, pp. 83–87, 2002.

[102] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic burstiness
to a traditional client-server benchmark,” in Proceedings of the 6th international
conference on Autonomic computing, ICAC ’09, pp. 149–158, 2009.

[103] “Android emulator. http://developer.android.com.”

[104] “Android issue 15554.” http://code.google.com/p/android/issues/
detail?id=15554.

VITA

179

VITA

Ignacio Laguna received his BSc degree in Electronics and Communication En-

gineering from the Universidad de Panama in August 2002. He obtained his MSc

degree from Purdue University in the School of Electrical and Computer Engineer-

ing on August 2008. He began working on his PhD on September 2008 under the

supervision of Professor Saurabh Bagchi in the same school. His research interests

include fault detection, problem localization and machine learning for anomaly de-

tection. He spent two terms (Spring 2009 and Fall 2010) at the Lawrence Livermore

National Laboratory in California working in fault detection and diagnosis techniques

for high-performance computing (HPC) applications. He received the ACM & IEEE

George Michael Memorial HPC Fellowship in 2011; this award honors exceptional

PhD students throughout the world whose research focus area is HPC.

180

PUBLICATIONS

Conference Papers

1. I. Laguna, D. H. Ahn, B. R. de Supinski, S. Bagchi, T. Gamblin, Probabilis-

tic Diagnosis of Performance Faults in Large-Scale Parallel Applications, In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), Minneapolis, MN, Sep, 2012.

2. G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, Automatic Fault

Characterization via Abnormality-Enhanced Classification, IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN), Boston, Mas-

sachusetts, Jun, 2012.

3. I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky, D. H.

Anh, M. Schulz, Barry Rountree, Large Scale Debugging of Parallel Tasks with

AutomaDeD, ACM/IEEE Conference on Supercomputing 2011 (SC), Seattle,

WA, Nov 2011.

4. G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and M.

Schulz, Statistical Fault Detection for Parallel Applications with AutomaDeD,

6th IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE), Stan-

ford, CA, Mar 23-24, 2010.

5. G. Bronevetsky*, I. Laguna*, S. Bagchi, B. R. de Supinski, D. H. Ahn, M. Schulz,

AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks, IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN),

Chicago Illinois, 2010. (* co-first authors)

6. I. Laguna, F. A. Arshad, D. M. Grothe, S. Bagchi, How To Keep Your Head

Above Water While Detecting Errors, ACM/IFIP/USENIX 10th International

Middleware Conference (Middleware), UIUC Illinois, Nov-Dec 2009.

181

7. D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P. Miller,

and M. Schulz, Scalable Temporal Order Analysis for Large Scale Debugging,

ACM/IEEE Conference on Supercomputing 2009 (SC), Portland, OR, Nov 2009.

8. G. Khanna, I. Laguna, F. A. Arshad, S. Bagchi, Distributed Diagnosis of Fail-

ures in a Three Tier E-Commerce System, 26th IEEE Symposium on Reliable

Distributed Systems (SRDS), Beijing, China, Oct 2007.

9. G. Khanna, I. Laguna, F. A. Arshad, S. Bagchi, Stateful Detection in High

Throughput Distributed Systems, 26th IEEE Symposium on Reliable Distributed

Systems (SRDS), Beijing, China, Oct 2007.

Posters / Short Abstracts

1. Scalable Detection of Anomalous Parallel Tasks with AutomaDeD, Poster ab-

stract at the Conference of Dependable Systems and Networks (DSN), Boston,

Jun, 2012.

2. Scalable Error Detection and Failure Prediction in Large-Scale Applications,

Poster abstract at Postdoc Research Symposium, Argonne National Laboratory,

Chicago, Oct 27, 2011.

3. Stateful error detection in high throughput applications, Poster abstract at the

ACM/IFIP/USENIX 10th International Middleware Conference, UIUC Illinois,

Dec 2, 2009.

