
Slide 1/50

Secure Control Protocols for
Resource-Constrained Embedded Systems

Jinkyu Koo
kooj@purdue.edu

School of Electrical and Computer Engineering
Purdue University

West Lafayette, Indiana

June 14, 2012

Slide 2/50

Ph.D. Topics
• Three issues regarding security (defined in a broad sense): reliability, timely 

reporting, and privacy
– Situation-tailored solutions for given problems in resource-constrained systems with 

security in mind.

• Reliable and fast synchronization protocol with a good synchronization 
accuracy.

– Clock synchronization in a large-scale sensor network,  called CSOnet, which is 
deployed in the city of South Bend, Indiana for monitoring combined sewer overflow 
events.

• Timely event reporting in sensor networks.
– In a multi-hop network scenario where all sensor nodes except the base-station node 

can be compromised, we attempt to secure the event reporting process, while reducing 
the operational overhead.

• Privacy-preserving data transmission in smart grids.
– In smart grids, users' specific activity or behavior patterns─whether you are home or 

not─can be deduced from the fine-granular meter readings. To resolve this issue, we 
design a mechanism, by which a meter reading reported to the utility is 
probabilistically independent of the actual usage at any given time instant.
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Reliable and Fast Clock Synchronization
• A wide-area Wireless Sensor Actuator 

Network (WSAN), called CSOnet is in 
operation in South Bend, IN for 
detecting and controlling wastewater 
flow to the treatment plant.
– 150 wireless nodes monitoring 111 

locations
– CSOnet nodes, called Chasqui, have low 

duty cycle (2%): awake 6 seconds in a 5 
minute period

• The synchronization has to be fast and 
reliable
– Ideally entire network should be 

synchronized within the awake period of 6 
seconds 

– The projected scale of the network is large, 
of the order of a few hundred nodes high 
probability that at least one link is in failure

• Made a fast and reliable clock 
synchronization protocol.

awake (6 sec)

can communicate
time

time

awake (6 sec)

cannot communicate
time

time
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Timely Event Reporting

• Event monitoring: wireless sensor nodes are deployed over a region where some phenomenon is to 
be monitored.

– E.g., a number of sensor nodes could be deployed over a battlefield to detect enemy intrusion.
• If an event occurs at a sensor node, the BS gets informed of it as soon as possible in order for the 

network operator to take action in time.
• However, if a node in the middle of the routing path is compromised, the compromised node may 

drop/modify the event report, or delay it for a very long time.
• We devise a protocol that provides the following provable security guarantees.

– As long as the compromised nodes want to stay undetected, a legitimate node can report an 
event to the BS within P time units.

– If the compromised nodes launch an attack that causes the event report from a legitimate node 
not to reach the BS within P time units, the BS can identify a small set of nodes that is 
guaranteed to contain at least one compromised node.

• We reduce the operational overhead, compared to straw-man solutions.
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Privacy Protection in Smart Grids
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Problem Statement
• A smart grid is a type of the electrical grid in which 

electricity delivery systems are equipped with computer-
based remote control and automation
– The smart grid can revolutionize the way that energy is generated and 

consumed: demand prediction;  load balancing by time-of-use pricing

• A key component of the smart grid is the use of the smart 
meters, which measure energy usage at a fine granularity.
– e.g., once in a few minutes

• However, by gathering hundreds of data points even in a day 
via the smart meter, the utility companies and third parties 
may learn a lot about our daily lives,
– e.g., when we wake up, when we go out for work, and when we come 

back after work.
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Threat Model
• The collection, retention, and use of detailed usage data put individual privacy at 

risk. 
• Fact: we do need to report our energy usage profile to the utility company for 

billing purpose.
• An important privacy threat.

– The metering data may be unwittingly disclosed from the utility company to 
third-party vendors.

• Privacy concern has led to lawsuits filed to stop installation of smart meters 
(NapervilleSun, Dec. 30, 2011).

Would you sign up for a discount with your power company in 
exchange for surrendering control of your thermostat? What if 
it means that, one day, your auto insurance company will know 
that you regularly arrive home on weekends at 2:15 a.m., just 

after the bars close? (MSNBC Red Tape Chronicles 2009)
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Example

You sure drink a lot of tea: Smart
meter data can show what's going on in
a home, because tea kettles, toasters,
and other appliances have identifiable
load signatures.
Source: Ariel Bleicher, “Privacy on the
Smart Grid,” IEEE spectrum magazine,
Oct. 2010.
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Contribution

– In PRIVATUS, the meter reading reported to the 
utility is probabilistically independent of the actual 
usage at any given time instant.

– PRIVATUS also considerably reduces the 
correlation between the meter readings and the actual 
usage pattern over time windows. 

– Further, using stochastic dynamic programming, 
PRIVATUS charges/discharges the battery in the 
optimal way to maximize savings in the energy cost, 
given prior knowledge of time periods for the various 
price zones.

– PRIVATUS can flatten per-day usage.

• We propose a privacy-protection mechanism, called 
PRIVATUS, that uses a rechargeable battery.
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Part 1: short-term window (within a day)
What are you doing?
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System Model (1/2)
• Meter reading is measured once every 

measurement interval (e.g., 15 minutes).
• X(n): the amount of energy consumed by home 

appliances for the n-th measurement interval.
• Y(n): the amount of energy that we draw from the 

power grid and charge the battery for the n-th
measurement interval.

• X(n) and Y(n) are both represented as one of the 
M different symbols.

– The i-th symbol is defined as (i-1)u, where u is the unit 
amount of energy. 

– e.g., when M=4, X(n) and Y(n) is 0,u,2u, or 3u.
• Electricity price per unit amount of energy varies 

from time to time: there exist two time zones 
within a day

• Low-price zone: has a low rate RL ($/u)
– The measurement intervals from n = 1 to n = nL

• High-price zone: has a high rate RH ($/u)
– The measurement intervals from n = nL+1 to n = nH

• Can be extended to multiple price zones.

low-price
zone

high-price 
zone

intervals 1 to nL (nL+1) to nH

price rate RL RH
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System Model (2/2)
• Denote by B(n) the energy level remaining in the battery at the end of the n-th

measurement interval.
– Assume for simplicity that there is no energy loss when charging and discharging the battery.

• The probability distributions of X(n) and Y (n)

• We assume that PX(n) is known to the user (i.e., the home owner).
• We also assume that X(n) is independent, but does not need to be identically distributed 

across the measurement interval index n. 
– This means that for instance, X(5) is independent of X(11), and PX(5) can be different from PX(11).
– If the family leaves home for work/school at 8 a.m., then clearly the usage before 8 a.m. and after 8 

a.m. will be different

: the initial energy level of the battery
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Mapping between X(n) and Y(n) (1/2)
• We make Y(n) be independent of X(n).

– This implies that observing Y (n) gives no meaningful information about X(n).
– This is achieved when we map X(n) to Y (n) in such a way that

• Practically, we achieve this by probabilistically choosing the value of Y(n) 
according to PY(n), which is decided before the n-th measurement interval starts, 
without considering what the value of X(n) will be.

• However, selecting Y(n) randomly without being aware of X(n) may cause 
energy shortage or overflow in the battery.

– When B(n-1) = 0 (i.e., there is no energy remaining in the battery before the n-th
measurement interval starts), if Y (n) is chosen to be zero, we cannot feed any non-zero 
value of X(n). This means that sometimes we cannot use the appliances when we want!

– Similarly, when B(n-1) = Ku (i.e., the battery is full), a non-zero value of Y(n) does not 
make sense if X(n) = 0, since we cannot draw the energy from the power grid unless we 
throw it away.

B(n-1)=Ku (full)
Y(n)=3u, X(n)=0
B(n)=Ku+3u overflow

B(n-1)=0 (empty)
Y(n)=0, X(n)=3u
B(n)=B(n-1)+Y(n)-X(n)=-3u shortage
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Mapping between X(n) and Y(n) (2/2)
• We put a restriction on PY(n) in the corner cases, i.e., when the energy left in the 

battery is smaller than (M-1)u (near-empty) or larger than (K-(M-1))u (near-
full).

• An example of the probabilistic symbol mapping between X(n) and Y(n) in the 
corner cases when K=20 and M=4. The symbol '*' in PY(n) represents the 
element that can be non-zero.
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Strategy to Achieve the Maximum Cost Saving
• How can we achieve cost saving by 

exploiting the time-of-use pricing policy in 
smart grid?
– The only way to achieve the cost saving is to 

charge the battery in the low-price zone and 
use the stored energy in the high-price zone.

• If we charge iu amount of energy in the 
low-price zone and use it in the high price 
zone, we can save (RH -RL)i dollars.

• The maximum possible cost saving per 
day is (RH -RL)K dollars, which is 
obtained
– when we charge the battery from empty to 

full in the low-price zone and
– discharge the battery to zero by feeding X(n) 

in the high-price zone.
• We implement this by changing PY(n) for 

every n.

RL dollar per u RH dollar per u

(u: the unit amount of energy)

charge iu in the low-price zone
pay RLi

use the stored iu in the high-price zone
pay 0, instead of paying RHi

save (RH-RL)i
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Basic Approach (1/2)
• Define the distribution vector space

• We limit the value of pi to be a multiple of a constant c 
(0<c<1), in order to make P be a finite set.

• PY(n) is assigned one element in P in the n-th
measurement interval.
– Recall that we force some elements of PY(n) to be zero, 

depending on the battery state.
• Therefore, the possible choice set in the n-th

measurement interval is dependent on B(n-1) and we 
denote it by PB(n-1).

[0,0,0,1]
[0,0,0.5,0.5]
[0.1,0.2,0.3,0.4]
…



Slide 17/50

Basic Approach (2/2)

• Now, what would be the best choice for PY(n) in PB(n-1)
for each n to maximize the cost saving?

• This question is answered by solving the following 
stochastic optimal control problems:

In the low-price zone

In the high-price zone
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Dynamic Programming (1/3)

• Consider a simple example in the low-price zone, where 
nL = 3.

•Note that the calculations can be done 
recursively: Stage 2 calculations are based 
on stage 3, stage 1 only on stage 2.
• Thus, maximizing this can be performed 
by maximizing the stage 3, stage 2, and 
stage 1 in this order.
• In this manner, we first compute the 
optimal value of PY(3) given B(2), then we 
compute the optimal value of PY(2) given 
B(1) until we reach and compute the 
optimal value of PY(1).

B(n-1)                                                         n 1 2 3

0 H D A

1u I E B

2u J F C

Optimal PY(3) given B(2)=2u

…
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Dynamic Programming (2/3)
• In general, this backward (time-wise) directional computation 

procedure can be described by the following recursive equation, 
called the Bellman equation:

• Solving the Bellman equation in the backward direction (from 
n=nL to n=1) results in the optimal decision for PY(n) when the 
value of B(n-1) is given, in the sense that PY(n) will maximize 
E(B(nL)).

•Here, pi,(i+j)(n) denotes the 
probability of the transition from 
B(n-1) = iu to B(n) = (i+j)u, 
resulting from D(n) = ju.
•Simply speaking, pi,(i+j)(n) is a 
function of PX(n) and PY(n).
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Dynamic Programming (3/3)

• In summary, what we have done is to calculate a decision 
table.

• Each entry in the decision table maps the given values of 
n and B(n-1) to the optimal vector PY(n) at the state 
(n,B(n-1)).

• Note that the decision table can be pre-calculated before 
the run-time.

• During the run-time, we just look up the decision table 
for a given state, i.e., (n,B(n-1)), and probabilistically 
choose the value of Y(n) via the distribution specified by 
the decision table entry.
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Simulation Results for the Basic Approach

There exist similar patterns between the sequences of X(n) and Y (n)

The value of X(n) highly likely re-appears as 
the value of Y (n+1) when the battery is at the corner cases.
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Issues with the Basic Approach
• First, we charge/discharge the battery too fast. 

– In the low-price zone, once at the full state, the 
battery stays close to the near-full states, since 
there is no benefit to bring the energy level down 
to a lower one according to our optimization 
objective.

– The near-constant energy level of the battery 
implies that whatever the value of X(n) is, the 
draw process Y(n) should somehow compensate 
for it.

– Since the value of Y(n) is chosen before the value 
of X(n), we see this compensation effect in 
Y(n+1).

• Second, we have too much freedom when 
choosing PY(n).

– As a result, the draw process can take a specific 
symbol with a very high probability to compensate 
the use process.

– In other words, due to the high degree of freedom 
to choose PY(n), Y(n) is chosen to be very similar 
to X(n-1) in the corner cases.

B(n-1)=20u (full)
Y(n)=0 (must), X(n)=3u (random)
B(n)=17u
Y(n+1)=3u (highly likely), X(n+1)=u (random)
…

How likely?
PY(n) = [0, 0, 0, 1]
with 100% probability
deterministic!

probability
of choosing 3u
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Advanced Approach: PRIVATUS (1/3)
• How to control the speed of charging/discharging?

– We modify our optimization objective in such a way that we incur some 
penalty, whenever the battery state B(n) falls into the penalty areas.

– Most of the corner cases are covered by the penalty areas.
• The optimal decision for PY(n) would be changed to the one that still charges or 

discharges the battery according to the trend as before, but does not hit the 
penalty areas in the middle of the zones.
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Advanced Approach: PRIVATUS (2/3)
• Maximize the effective battery state Be(n) in the optimization objective function, 

instead of the actual battery state B(n).
– Be(n) is designed to increase as the actual battery state B(n) increases in the 

low-price zone.
– However, every time B(n) goes into a penalty area, Be(n) is deducted by 

some penalty amount.

[ ] [ ]( )( ) ( ) ( ) ( )e H LD m D m B m T T B mα β + += − − + −0 0If m  and m :Ln n n> ≤ −

0 0If m  or m :Ln n n≤ > − ( ) ( )eD m D mα=

with (0) (0)eB Bα=
1

( ) (0) ( )
n

e e e
m

B n B D m
=

= +∑

(i.e., in near-beginning or near-end of the low-price zone)
( ) ( ) ( )D m Y m X m= −

: integers; determine how sensitive to the penalty [ ]x +
: x if x>0; otherwise 0

( 1)
1

H

L

T K M
T M

= − −
= −

,α β

: thresholds of the corner cases
(too high)

(too low)
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Advanced Approach: PRIVATUS (3/3)
• How to limit the freedom of choosing PY(n)?

– Force the different elements of PY(n) in PB(n-1) to be more or less equal, thus 
eliminating the possibility that Y(n) is chosen deterministically (or with a 
high probability).

– Put a restriction on  PY(n) in non-corner cases (i.e., battery neither empty nor 
full) such that it does not differ significantly from PY(n -1).

• In the extreme case, PY(n-1) = PY(n) implying that Y(n) is independent 
of X(n-1).

• In order to quickly get out of the corner cases, we enforce this restriction 
to be applied only when the actual battery state stays in non-corner cases 
for two consecutive measurement intervals.

: distance threshold

• Tk is a threshold at B(n-1) = ku.
• Vk is the distribution vector of Y(n) for 
which the possible values of Y(n) at 
B(n-1) = ku are selected equi-probably.

e.g., V5 = [0.25, 0.25, 0.25, 0.25], V1 = [0.5, 0.5, 0, 0]
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Dynamic Programming in PRIVATUS

• In the low-price zone

: state vector of
four different dimensions
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Simulation Results for PRIVATUS
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Evaluations
• Two aspects

– How much privacy information is revealed
– How much electricity cost is saved

• The metric of information leakage from the use process to the draw process

• The metric for the cost saving for a day

a measure of uncertainty a measure of the uncertainty reduction

the original cost for what the user 
actually consumes

the money that a user pays to the 
utility company
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General Performance Trend

• Information leakage is the highest when s = 1, i.e., X(n-1) and Y (n) has the highest dependency in 
our solution approaches.

- This is due to our solution’s inherent nature that Y (n) is chosen to change the current battery 
state resulting mainly from X(n-1).

• The worst-case information leakage in the advanced approach occurs around the price zone 
boundaries.

- This is because around the price zone boundaries, there is no penalty defined and thus the battery 
state has a relatively higher chance to remain constant, which again makes it more likely that 
Y (n) tries to compensate for X(n-1).
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Effects of sequence length and capacity

• Adversary has no advantage in observing a longer sequence in the draw process.
– x-bit uncertainty can be understood in such a way that approximately the use process sequence has 2x

possible realizations with an equal probability 1/2x.
– As m increases, there is a minor increment in percentagewise uncertainty reduction, while the 

uncertainty of the use process sequence increases significantly.
– m=3: use-process uncertainty = 5.3 bits; reduction 11% at worst; 25.3(1-0.11)=26.3 possible sequences
– m=4: use-process uncertainty = 7 bits; reduction 17% at worst; 27(1-0.17)=56.1 possible sequences

• When the battery capacity is too small, information leakage may be significant.
– Once the battery capacity is above a threshold, further increasing the battery capacity leads to little 

benefit in terms of further reducing the information leakage.
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Comparison (1/2)

• Kalogridis’ scheme (published in Smart Grid Comm. 2010, ‘conv’ in the figure) 
performs a simple low-pass filtering over the use process in a best-effort 
manner, using a battery.

– Without considering the energy cost factor.
• Thus, it reduces the high frequency variations in the resulting draw process.

– Still allows the low-pass component of load profile to be revealed.
• If there is no significant low-pass component in X(n),  Privatus performs slightly 

better than Kalogridis’ to keep the privacy information, except at the price zone 
boundaries.

• If there is a significant low-pass component in X(n), Privatus will provide much 
better privacy protection than Kalogridis’.
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Comparison (2/2)

• The unit energy u = 0.2143kWh and RH = $0.033/u = 
$0.155/kWh.

• The average daily usage is 30kWh (U.S. residential 
customer).

• A typical home can achieve about $16 saving for a month 
with a 6.43kWh battery, based on the following tariff 
example: RL = $0.04/kWh and RH = $0.15/kWh
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Summary of Part 1

• In order to resolve the privacy issue in smart grid, we 
proposed PRIVATUS.

• PRIVATUS uses a rechargeable battery to make the 
meter reading reported to the utilities look different from 
the actual usage.

• PRIVATUS is also geared to the future of time-of-use 
pricing of electricity and it ensures that the battery is 
charged to achieve the maximal savings in the energy 
cost.
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Part 2: long-term window (week)
Are you home or not?
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Per-Day Energy Usage Flattening
• So far, we have seen that PRIVATUS hides the energy consumption 

pattern within a day.
– The short-term part of PRIVATUS does not change the total amount of energy 

consumption.
• However, the total usage per day may be different across days, and this 

information can still be revealed to the adversary (by which the 
adversary may know whether you are home or not for a given day).

• PRIVATUS handles this issue by flattening the energy use across days.

• Assume that the average energy consumption per day varies in a cycle of 
P
– P = 7 implies that a regular pattern of living is repeated every week.
– Weekday vs. weekend

• We categorize the days into two types
– Type 1 days: total amount of usage per day is less than average
– Type 2 days: total amount of usage per day is more than average
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Notations
• P: the period of the long-term pattern.
• U(d): the average amount of energy consumption for the d-

th day of the period.
• The index set of days 

• Ua: the average of U(d) across days.

• The index set of type 1 days 
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PRIVATUS’s Approach

In type 1 days, PRIVATUS consumes more energy than
U(d) by charging more energy in the low-price zone than
used in the high-price zone, and by keeping the unused
energy in the battery.

In type 2 days, PRIVATUS consumes less energy than U(d) by using
the energy kept in type 1 days. It charges less energy than used in the
high-price zone: the gap is supplied by the energy kept in type 1 days.
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PRIVATUS’s Approach

• The per-day usage flattening does not change the 
randomization framework of the short-term window.
– Just changes the initial value of the actual battery state in a 

price zone changes the amount of energy that is used or 
charged per day.

• Why flattening?
– It requires smaller extra capacity for a battery compared to the 

randomization.
– Minimum to maximum vs. minimum to average
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Virtual Battery State
• In order to flatten the energy usage across days, we apply the 

virtual battery state Bv(n) to the Bellman equation in the place of 
the actual battery state B(n).

• The virtual battery state Bv(n) is defined as follows:

B(n) is replaced with Bv(n)

the amount of energy that is kept for future use

the virtual battery capacity:
determines the size of a decision table
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How to keep the energy in type 1 days

• To keep Uk amount of energy in a day of type 1, we update Ek as 
Ek (Ek + Uk) before the (nL+1)-th measurement interval starts, 
i.e., before the high-price zone begins.

Results in the sudden
drop in Bv(n) in the
boundary between the
low-price and high-price
zones.



Slide 41/50

How to use the kept energy in type 2 days

• To use Ux amount of energy from the kept energy in a day of 
type 2, we update Ek as Ek (Ek - Ux) before the first 
measurement interval starts, i.e., before the beginning of the low-
price zone of the day

Leads to the sudden
jump in Bv(n) in the
boundary between
days
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Battery Capacity
• Suppose we keep Uk amount 

of energy for two consecutive 
days.

• Although we start from 0  at 
the beginning of day 2, we 
already have Uk amount in the 
battery.

• Thus, in day 2, the actual 
battery state can reach Ku+ 
Uk.

• In general, if we keep energy 
for m days,

the maximum amount of energy
that we keep for a day

actual battery capacity
virtual battery capacity
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Simulation Results for Per-day Usage Flattening
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Change of Per-day Average Usage
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Effects of Per-day Usage Flattening

• There is no significant difference in the information leakage across 
days.

• Per-day usage flattening of PRIVATUS does not change the 
privacy protection performance significantly at a similar condition 
(K=30).

Decision table with Kv=30

w/o the per-day flattening
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Influence on Cost Saving (1/2)
• The maximum possible cost saving for a day is determined 

by the amount of energy that is charged in the low-price 
zone and then used in the high-price zone. Denote this 
amount of energy by Us.

• Without the per-day usage flattening,
– Us = Ku for every day.

• With the per-day usage flattening, Us becomes smaller than 
Ku, and varies according to the type of a day.

– In a type 1 day, Us= Kvu − Uk.
– In a type 2 day, Us= Kvu .

• When there are m days of type 1 within a P-day period, the 
per-day average of Us is

assuming for each day of type 1

• The worst-case average for the maximum possible cost saving per day is
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Influence on Cost Saving (2/2)

the ratio of the maximum cost saving w/ the per-day usage flattening
to the maximum cost saving w/o the per-day usage flattening

• As a larger amount of energy is kept for future use, the 
cost saving is further reduced.
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Summary of Part 2

• PRIVATUS can flatten the energy use across days in the 
average sense.

• The privacy-protection mechanism within a day window 
is the same as before.
– Information leakage level remains similar.

• The flat per-day usage comes at the expense of a reduced 
cost saving.
– Due to the amount of energy to be  kept for future use, the cost 

saving is reduced.
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Conclusion

• PRIVATUS de-couples the meter readings and the actual 
user behaviors.
– The meter readings reported to the utility are randomized, and 

also achieve the optimal cost saving.
• PRIVATUS can flatten per-day energy usage to hide 

whether you are home or not.
– At the expense of reduced cost saving.
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Thank you!
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Appendix
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Effects of the Estimation Error for Px(n)

• Our estimation: PX(n) = [0.5, 0.2, 0.2, 0.1] in the low-price zone and PX (n) = [0.1, 0.3, 0.4, 0.2] in the high-
price zone

• However, X(n) is generated by different distributions PX (n) = [0.1, 0.2, 0.3, 0.4] (`case1'), PX (n) = [0.25, 
0.25, 0.25, 0.25] (`case2'), and PX(n) = [0.4, 0.3, 0.2, 0:1] (`case3').

• Although there exists an estimation error in PX(n), it does not affect the information leakage much.
• The estimation error influences the cost saving more significantly: the magnitude of the saving goes down 

with the estimation error.
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Effects of Different Values of α and β

• When the ratio of α to β goes down, the frequency to hit the 
penalty areas also decreases.

• We see a negative effect in terms of information leakage, when the 
ratio of α to β is too low.
– In that case, the actual battery state wants to stay in the middle of the two 

penalty area thresholds TH and TL to avoid getting a penalty score.
– This makes the compensation effect larger.


