
Advanced Modeling Techniques for Computer Graphics
DAVID S. EBERT

Computer Science and Electrical Engineering Department, University of Maryland ^ebert@cs.umbc.edu&

In the past thirty years, modeling tech-
niques in computer graphics have
evolved significantly as the field has
matured and attempted to portray the
complexities of nature. Polygonal models,
patches, points, and lines are insufficient
to represent the complexities of natural
objects and intricate man-made objects in
a manageable and controllable fashion.
Higher-level modeling techniques have
been developed to provide an abstraction
of the model, encode classes of objects,
and allow high-level control and specifica-
tion of the model. The goal of these ad-
vanced modeling techniques is to provide
a concise, efficient, flexible, and controlla-
ble mechanism for specifying and animat-
ing models of complex objects and natural
phenomena. Most of these advanced mod-
eling techniques can be considered proce-
dural modeling techniques: code seg-
ments or algorithms are used to abstract
and encode the details of the model in-
stead of explicitly storing vast numbers of
low-level primitives. The use of algo-
rithms unburdens the modeler/animator
of low-level control, provides great flexi-
bility, and allows amplification of his ef-
forts through parametric control: a few
parameters to the model yield large
amounts of geometric details (Smith
[1984] called this “database amplifica-
tion”). This survey examines several
types of procedural techniques, including
fractals, grammar-based models, volu-
metric procedural models, implicit sur-
faces, and particle systems.

FRACTALS

Fractals [Peitgen et al. 1992] have a
precise mathematical definition, but in

computer graphics their definition has
been extended to refer generally to mod-
els with a large degree of self-similarity:
subpieces of the object appear to be
scaled down, possibly translated and ro-
tated versions of the original object.
Along these lines, Musgrave [Ebert et
al. 1994] define a fractal as “a geometri-
cally complex object, the complexity of
which arises through the repetition of
form over some range of scale.” Many
natural objects exhibit this characteris-
tic, including mountains, coastlines,
trees, plants (e.g., cauliflower), water,
and clouds. Fractals can generally be
classified as deterministic or non-deter-
ministic (also called random fractals),
depending on whether they contain ran-
domness.
Random fractals have been used ex-

tensively in computer graphics to model
natural objects, most notably terrain.
Most fractal terrain-generation algo-
rithms work through recursive subdivi-
sion and pseudorandom perturbation.
An original surface is defined and di-
vided equally into subparts. New verti-
ces are added and pseudorandomly dis-
placed from the original surface, with a
displacement magnitude that decreases
at each iteration as the frequency in-
creases. Therefore, the first iteration
gives the large peaks on the surface,
and later subdivisions add small-scale
detail. Only the parameters for control-
ling the random-number generator, the
level of subdivision, and the “rough-
ness” of the surface are needed to define
an extremely complex terrain. Recent
work in fractals has included the simu-
lation of diffusion-limited aggregation

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



(DLA) models and the use of multi-frac-
tals [Ebert et al. 1994], which allows
different fractal dimensions (degrees of
“roughness”) in the models to simulate
natural terrain better.

GRAMMAR-BASED MODELS

Grammar-based models, primarily L-
systems [Prusinkiewicz and Lindenmayer
1990], also allow natural complexity to be
specified with a few parameters. Gram-
mar-based models have been used by
many authors, including Lindenmayer,
Prusinkiewicz, and Fowler, to produce re-
markably realistic models and images of
trees, plants, and seashells. These models
use formal languages, parallel graph
grammars called L-systems, to describe
natural structures algorithmically and
are closely related to deterministic frac-
tals in their self-similarity, but fail to
meet the precise mathematical definition
of a fractal.1 An L-system is a formal
language where all the rules are applied
in parallel to provide a final “sentence”
describing the object. In the L-system,
each terminal symbol represents a part of
the object or a directional command to be
interpreted by a three-dimensional draw-
ing mechanism (turtle graphics). A “sen-
tence” for a tree would contain words
describing each branch, its length, size,
and branching angle, when it develops,
and its connection in the tree. More com-
plex L-systems, IL-systems, include con-
text-sensitivity, word age information,
and probabilistic rule evaluation, which
allows each plant to be unique. Recent
work in L-systems allows better develop-
mental models, more advanced biologi-
cally based growth models, incorporation
of more growth parameters, and environ-
mental effects.

VOLUMETRIC PROCEDURAL MODELS

Another procedural modeling technique,
volumetric procedural modeling (also

called hypertextures, volume density
functions, and fuzzy blobbies), uses al-
gorithms to define and animate three-
dimensional volumetric objects and nat-
ural phenomena [Ebert et al. 1994].
These techniques have been used to
model natural phenomena such as fire
(Stam and Inakage), gases such as
smoke, clouds, and fog (Ebert, Perlin,
Sakas, Stam), and water (Ebert, Perlin).
The volumetric procedures take as in-
put a point location in space, a time
parameter, and parameters that de-
scribe the object being modeled, and
return the density and color of the ob-
ject for that location in space. Complex
volumetric phenomena can, therefore,
be described with a few parameters.
Perlin has successfully used this tech-
nique to create realistic rock arches,
woven fabric, smoke, and fur [Ebert et
al. 1994], basing his procedures on a
statistical simulation of turbulence and
random noise to give natural-looking
complexity to the objects. Ebert et al.
[1994] have used similar functions to
model and animate steam, fog, smoke,
clouds, and solid marble. These proce-
dural techniques allow the use of simple
simulations of natural complexity
(noise, turbulence) to speed computa-
tion, but also allow the incorporation of
physically based parameters, where ap-
propriate and feasible. This flexibility is
one of the many advantages of proce-
dural techniques.

IMPLICIT SURFACES

While previously discussed techniques
have been used primarily for modeling
the complexities of nature, implicit sur-
faces [Wyvill et al. 1986; Wyvill and
Gascuel 1995] (also called blobby mole-
cules, metaballs, and soft objects) have
mainly been used for modeling organic
shapes, complex man-made shapes, and
“soft” objects that are difficult to ani-
mate and describe using more tradi-
tional techniques. Implicit surfaces are
a more concise representation than para-
metric surfaces and provide flexibility in
modeling and animating soft objects. Im-

1Some authors consider L-systems to be determin-
istic fractals.

154 • David S. Ebert

ACM Computing Surveys, Vol. 28, No. 1, March 1996



plicit surfaces are iso-valued surfaces cre-
ated from blending primitives (skeletal
elements) represented by implicit equa-
tions of the form F(x, y, z) 5 0. Each
primitive is a procedure that returns a
functional value for the field defined by
the implicit equation. A key feature of
implicit surfaces is the procedural,
smooth, often volume-preserving blend-
ing of primitives to form quite complex
surfaces from simple primitives. Objects
are defined as offsets (isosurfaces) from
a series of blended skeletal elements
(points, lines, polygons, spheres, ellip-
soids, and so on). Modeling and anima-
tion of implicit surfaces is achieved by
controlling the skeletal elements and
blending functions, which provide com-
plex models and animations from a few
parameters (another example of data
amplification). Recent work in implicit
surfaces [Wyvill and Gascuel 1995] has
extended their use to character model-
ing and animation, human figure mod-
eling, and representing rigid objects
through the addition of CSG (construc-
tive solid geometry) operators.

PARTICLE SYSTEMS

Particle systems differ from the previ-
ous four techniques in that their ab-
straction is in control of the animation
and specification of the object. Particle
systems do use a large database of geo-
metric primitives to represent natural
objects (“fuzzy objects”), but the anima-
tion, location, birth, and death of the
particles representing the object are
controlled algorithmically. Particle sys-
tems are most commonly used to repre-
sent natural phenomena such as fire,
water, clouds, snow, rain, grass, and
trees [Reeves and Blau 1985]. A parti-
cle-system object is represented by a
large collection (cloud) of very simple
geometric particles that change stochas-
tically over time. The procedural aspect
and main power of particle systems al-
low the specification and control of this
extremely large cloud of geometric par-
ticles with very few parameters. Besides
the geometric particles, a particle sys-

tem has controllable stochastic particle-
animation procedures that govern the
creation, movement, and death of the
particles. These animation procedures
often include physically based forces to
simulate effects such as gravity, vortic-
ity, conservation of momentum, and en-
ergy. Particle systems pose special ren-
dering problems because of the large
number of primitives, but specialized
rendering techniques, including proba-
bilistic rendering algorithms, have been
developed to render particle systems
[Reeves and Blau 1985].

FUTURE DIRECTIONS

Advanced modeling techniques will con-
tinue to play an important role in com-
puter graphics. As computers become
more powerful, the complexity that can be
rendered will increase; however, the abil-
ity of humans to specify more geometric
complexity (millions of primitives) will
not. Therefore, procedural techniques,
with their ability to amplify the user’s
specification and control, are the only vi-
able alternative. The ability of these tech-
niques to specify and control incredibly
realistic and detailed models with a small
number of user-specified parameters will
evolve. More work will be done to allow
high-level control and specification of
models in user-understandable terms,
while more complex algorithms and im-
proved physically based simulations will
be incorporated into these procedures. Fi-
nally, automatic generation of the proce-
dural models through artificial evolution
techniques, similar to those of Sims
[1994], will greatly enhance the capabili-
ties and uses of these advanced modeling
techniques.

REFERENCES

EBERT, D., MUSGRAVE, F. K., PEACHEY, D., PERLIN,
K., AND WORLEY, S. 1994. Texturing and
Modeling: A Procedural Approach. AP Profes-
sional, Boston, MA.

PEITGEN, H.-O., JÜRGENS, H., AND SAUPE, D.
1992. Chaos and Fractals: New Frontiers of
Science. Springer-Verlag, New York.

PRUSINKIEWICZ, P. AND LINDENMAYER, A. 1990.

Advanced Modeling Techniques for Computer Graphics • 155

ACM Computing Surveys, Vol. 28, No. 1, March 1996



The Algorithmic Beauty of Plants. Springer-
Verlag, New York.

REEVES, W. T. AND BLAU, R. 1985. Approximate
and probabilistic algorithms for shading and
rendering structured particle systems. Com-
put. Graph. 19 (July) 313–322. (Proc. SIG-
GRAPH ’85)

SIMS, K. 1994. Evolving virtual creatures. Com-
put. Graph. (July) 15–22. (Proc. SIGGRAPH
’94)

SMITH, A. R. 1984. Plants, fractals and formal
languages. Comput. Graph. 18 (July) 1–10.
(Proc. SIGGRAPH ’84)

WYVILL, B. AND GASCUEL, M.-P. 1995. Implicit
Surfaces ’95, The First International Work-
shop on Implicit Surfaces. INRIA, Eurograph-
ics (April).

WYVILL, G., MCPHEETERS, C., AND WYVILL, B.
1986. Data structure for soft objects. Visual
Comput. 2, 4 (Feb.), 227–234.

156 • David S. Ebert

ACM Computing Surveys, Vol. 28, No. 1, March 1996


