
Tools That Led To Increased Program Performance

Patrick McClaughry and Rudolf Eigenmann �

CSRD Report 1184

January 1992

Abstract

This papers describes a set of tools that help a programmer be more e�cient in opti-

mizing scienti�c programs for a parallel computer. The design of these tools emerged from

experience gained during a successful optimization e�ort on a set of representative supercom-

puter application codes. We have developed a number of utilities that complement available

Unix tools. Additional tools o�er a higher degree of interactivity; they are currently built

into the Emacs editor which o�ers help and customization facilities. The new tools mainly

facilitate two development phases that were identi�ed as most time-consuming in the opti-

mization project: The process of creating a consistent set of experimental program variants

and the analysis and interpretation of compilation and performance results.

1 Introduction

The tools we are going to describe grew out of a successful e�ort to optimize the Perfect
Benchmarks codes for the Alliant FX/8 and the Cedar multiprocessors. In all codes, signi�cant
performance improvements were gained using the methodology underlying this paper. Initially,
the tools used for this project were the parallelizing compiler Kap/Cedar[EHJP90] and ordinary
Unix utilities for manually improving the parallel Fortran code generated by Kap. Additional
tool sets were considered, mainly the ones discussed in Section 3. However, they were not
deemed useful for our e�ort because the cost of installing and learning them seemed high
compared to the available evidence about their successfulness in optimizing ordinary programs.

Although we did not �nd the existing program porting environments directly useful for the
given project, it was evident that additional tools could increase the productivity. In fact, some
early versions of the tools described in this paper were developed as part of the optimization
project. The success of these utilities warranted our tool project. The tool design was derived
from a careful analysis of the time-consuming development phases in the optimization e�ort.
The results of this analysis are described in [Eig91]. The following paragraphs summarize the
important development steps.

�Center for Supercomputing Research and Development, University of Illinois at Urbana-Champaign, 305 Tal-

bot Laboratory, 104 South Wright St., Urbana, IL 61801-2932. This work was supported by the U.S. Department

of Energy under grant no. DOE DE-FG02-85ER25001.

1

The �rst development step usually was to instrument the program with loop-level timing
calls. This was followed by the generation and execution of multiple program variants, each
corresponding to a set of compiler options plus a set of �les that contained individually op-
timized program sections. The program result data was then collected and analyzed for a
number of \optimization factors". These factors provided information about the program per-
formance on a loop-by-loop basis and gave initial hints for program transformations to improve
performance. Further potential transformations were derived from many additional sources of
information including the source �le, compiler listing, the list of successful transformations of
other programs, and tools that showed the maximum possible loop parallelism. The next step
was to apply the program transformations using a conventional text-editor. This development
cycle was repeated several times. Figure 1 shows this cycle.

 Program
Instrumentation

Generating
executables

 Program
execution

Performance
evaluation

 Editing
transformations

Integrating
components:

naming
scheme

Debugging

Generating
executables

result
 data
 base

Figure 1: The program optimization cycle

Automatic instrumentation was essential. A simple tool was developed for this purpose and
turned out to be a crucial aid. Often there was a need for later re-instrumentation, usually
where coarser or �ner timing results were desirable.

Generating executable �les and running them was time-consuming for two reasons. First, the
large number of program variants raised a consistency issue. Errors occurred such as forgetting a
compiler option or a variable of the runtime environment, which made \performance anomalies"
appear among the program variants. Second, the Unix make utilities were not powerful enough
to support quick changes to one subroutine of a given large program. Further, there were no
tools available that could run a set of programs on a speci�ed machine, make sure the input
�les are available, and transfer the output �les to the right place.

Debugging can be time-consuming, however this issue is less signi�cant for porting existing
applications than when developing new software. In the porting activities considered in this
paper it was of great help to have available the correct program version from which the de-
velopment started. Our situation could have been improved by the availability of a symbolic
debugger. In addition, a number of mistakes could have been detected by simple tools that
check the program statically. An example of such a tool is a static \race detector".

2

The analysis of the program and performance data and the derivation of the potential
transformations were the most time-consuming parts of the development process. The huge
amount of result data calls for some sort of a database that can manage and �lter the data. A
methodology was introduced in [Eig91] that determines important factors from this data and
helps the user explain the program performance and �nd transformations for its improvement.
Here is a possible place for major growth in new tool designs. They would have to facilitate
the analysis of all available sources of information and guide the user to a successful program
transformation.

The process of editing the program transformations was comparably fast, although errors
introduced in this phase have caused extra debugging sessions. It is mentioned in [Eig91] that
transformation-directed editors could be of some help.

The need for a certain degree of tool integration arose frommany situations. We have already
mentioned the issue of managing the result data of many program runs. The major additional
need was for a consistent naming scheme among the programs, their variants, intermediate �les,
result �les, and the program and performance data. It is unclear to what extent tool integration
is desirable. Highly integrated tool sets tend to obscure the interface to the underlying operating
system from those who wish to use it. This is often an unwanted side e�ect. In order to coexist
with the Unix environment, it seems feasible for new tools to take small integration steps by
providing facilities that support the consistency among �le names, object names, and the make
commands and options with which the objects are made.

2 Description of Our Tool Set

We have created a tool set that addresses several parts of the porting process (see Figure
1). These services are divided into three components: interactive Cedar Fortran1 source �le
utilities, Cedar Fortran pro�le generation and manipulation utilities, and unix level services.
The source �le utilities contain functionality to aid in instrumentation and compilation of
programs. The pro�le utilities cover the generation and analysis of performance data during
the porting operation. We provide unix level services because we do not wish to limit access
to our tools to the interactive environment. These services permit the user to perform many
of the functions available in the interactive environment from the unix command line. Before
describing each of these parts in greater detail, we will describe the context in which these tools
are to be used.

2.1 The intended users, the interface, and the environment

The needs of the users have been a primary motivation in the design of our tool set. The
users for which our tools were designed are professionals with a solid understanding of unix
and Fortran. Our tool set does not attempt to be a parallelizing tutor nor does it attempt to
fully automate the task. The user is assumed to be comfortable with the notions of parallel
architectures and the types of transformations useful on programs for such architectures.

From the beginning we have envisioned tools which could o�er an interactive interface as
well as a unix command line interface. An interactive interface has the bene�t of permitting

1Our utilities are named Cedar Fortran because they were designed to be used on the Cedar multiprocessor

at the Center for Supercomputing Research and Development.

3

easier \what-if" analysis. Furthermore, an interface which can interact with the user can o�er
help or guidance for commands and options either not yet fully learned or for which the user
does not wish to remember the syntax. However, we also realize that interactive interfaces can
present barriers to users. If the command set is too complex, unfamiliar, or diverse the user
may resist using the tool set. This thought has prompted us to consider a unix level version of
many of the functions provided by our tool set, thus exploiting the knowledge of unix present
in our users.

Because of its familiarity and ease of use we have chosen Emacs as the interactive envi-
ronment. Emacs o�ers a full-featured text editor, �le management facilities, interactive help,
and a familiar language in which to program (ELisp). Because Emacs is customizable, each
user can change many of the elements of our tool set to make the tool set more comfortable
to use. For example, commonly used functions can be bound to easily remembered keystrokes.
Recognizing that not all users want to use Emacs, we o�er a unix level interface for many of
the functions present in our tool set. Wherever possible we have provided a command which
produces results similar to those available inside the Emacs environment. In fact several tools
are really unix scripts and Emacs is only used to compose the unix command for the user.

During the porting and optimizing process a considerable amount of performance data can
be generated. We intend to capture this data in a database accessible from within the interactive
environment as well as at the command line. The introduction of a database to manage the
performance data adds signi�cantly to the power of our tool set, however, that power comes
at a cost. In order to exploit the power of the database, a user must become familiar with its
interface and structure.

In our tool set, ptopp (Practical Tool Set for the Optimization of Parallel Programs), we
provide two levels of access to the database. If the user needs only limited power from the
database, they can use ptopp where many of the interface details are hidden. If the user needs
greater power from the database, they can exploit it fully using a unix level interface that
requires knowledge of SQL and the internal structure of the database. It is our intention that
ptopp provide reasonably complete database services and the unix interface be reserved for
more complex queries.

2.2 Cedar Fortran mode

Cedar Fortran mode is an Emacs mode (and is thus part of the interactive interface of ptopp)
that provides several helpful functions useful in the porting and optimization of programs.
Cedar Fortran mode (CF) is useful during the early part of a porting process. It provides
functions to aid in the instrumentation and the compilation of programs. CF can also be useful
later in the porting process by o�ering interactive facilities to view particular program points.

2.2.1 Instrumentation

Instrumentation in our context is the addition of source code to generate event timings. The
code is added in pairs; a call to record a start time and a call to record a �nish time. These
instrumented regions are called intervals. Intervals are given a name during the instrumentation
process which is later used to identify important performance measurements. When using CF
mode, users have several ways of inserting instrumentation into their program. CF o�ers an
automatic method which instruments the outermost loops of a given module or program. This

4

automatic method is often useful for a �rst approximation of the most time consuming portions
of a program. The instrumentation tool is available at the unix level as well. CF also o�ers
interactive insertion and removal of instrumentation calls. By marking a region of Fortran
text and invoking a CF command, the user can insert instrumentation calls around the region.
Using another instrumentation command the user can comment out instrumentation calls thus
removing them from the trace reports. Since instrumentation causes perturbations in the overall
runtime of a program, it is common to remove unimportant intervals from the analysis. The
instrumentation calls can easily be reinstated again.

2.2.2 Compilation

CF mode o�ers several ways to compile a program, both interactively and from the unix

command line. The unix level tool is called cfmake and it creates a make�le which can be used
to generate executable code. cfmake allows the user to make a set of consistent compilation
commands and options and it supports quick modi�cations to individual subroutines. Section
2.4 describes the command in more detail. The make�le format is suitable for the unix utility
make. Modi�cation of the make�le by the user permits variations that are outside the scope of
the design of the tool. For example, if unusual dependencies between �les need to be maintained,
appropriate lines can be added to the make�le.

When invoked from within the Emacs environment, compilation takes one of two forms. The
most general way of producing an executable from a given source is to invoke the compilation
command from within CF. This command composes a unix command line using �lenames
derived from the current context and presents the command in a unix shell bu�er within
Emacs. The user may make changes to this command before execution. After any necessary
changes, the command is executed with the output being captured by the Emacs bu�er for
examination. In a sense this tool is really both a CF tool and a unix level tool; it can be
invoked in a similar form directly from the unix command line.

Nicknamed compilation is a tool which adds simple, user-de�ned nicknames to certain com-
monly used compilation schemes. A nickname is a tuple of items expressing the elements of
a properly composed compilation command. Some of the items recorded in a nickname are
the source �les required, the object �les required, and the compiler, linker, and preprocessor
options. New nicknames are de�ned by extracting the items from a user supplied compilation
command. Once de�ned, a nickname can be used repeatedly so that the user no longer needs
to remember all the component parts of a properly composed compilation command.

While composing a compilation command from within CF the user has quick access to
compiler, linker and preprocessor option descriptions. A single keystroke displays these options
without the need to abandon the compilation command.

2.2.3 Source-based information

Moving around in a large source �le can be time-consuming. CF has several functions which
make it easier to navigate through large source �les. Since Fortran programs often consist of
subroutines, CF o�ers the facility to locate a particular subroutine or loop in the source �le and
bring it into view. In the cases when the source �le is already instrumented for analysis, CF can
locate an interval given the interval name. This tool makes it easy to examine the source code
responsible for a particular timing result. The function is used in the Cedar Fortran pro�le

5

mode. This tool resembles the etags utility available with Emacs. At present etags works
at the subroutine level rather than the interval level, but in the future it may make a good
starting point for more elaborate positioning tools.

2.3 Cedar Fortran pro�le mode

The tasks of generating and manipulating instrumentation timing reports is left to Cedar For-
tran pro�le mode (CFP). CFP has tools which help the user in specifying the tabular reports
of instrumentation timings and methods which permit manipulations of the resulting tables.

2.3.1 Pro�le generation

The fundamental components of a CFP pro�le are one or more trace timing �les produced
during the execution of an instrumented program. The format of the input trace timings can,
of course, vary depending upon the instrumenting libraries and the type of data generated. It
is also likely the user will want to combine certain data to produce derived measurements, i.e.
speedup from timings. CFP is designed to address the general problem of composing a pro�le
given a disparate set of instrumentation �les.

Users of ptopp can specify a translation rule that is applied to the performance data as it
is being read into the database. This rule tells ptopp which portions of the data to retain for
future use and which to ignore. It also normalizes the data in the database. The translation
rule is thus used to capture various formats of performance data.

The user composes a pro�le by de�ning a mapping from the data recorded in the database
to the desired pro�le output. For example, a pro�le column could be speci�ed as the result
of dividing parallel execution time by serial execution time to indicate relative speedup of a
transformation. ptopp will include a Pro�le Description Language for the straightforward
expression of such a mapping. These mappings will be saved in the form of templates which
can be reused in other contexts. Figure 2 shows a pro�le consisting of total interval execution
times for 3 variants of a program.

2.3.2 Interactive Pro�le Commands

CFP also permits the user to use the pro�le as a starting point for more information about
the program and its execution. The user can see the raw trace timing data by invoking a CFP
function while positioned over the desired interval. This is useful when the user does not wish to
recompose a pro�le but would like to see some aspect of the trace di�erent from that speci�ed
in the pro�le. The user may also attach one or more source �les to a pro�le bu�er. Then,
when desired, the user can view the relative positions of the interval under analysis in each of
the attached �les simultaneously. It is also possible to sort the rows of a pro�le on any column
of the pro�le in increasing or decreasing order. Figure 2 shows a typical CFP bu�er with its
associated source �les.

2.4 Notable Implementation Aspects

Interfacing ptopp with ingres. An interesting implementation issue is the interface be-
tween ptopp and the database holding the performance data. The database manager we are
currently using is ingres.

6

Program ID : LW

profile template ... tot-template

Interval Name S.wi Vec.wi CM9x8.wi

-machine- c1s c1s c4s

-dataset-

MDMAIN_do2000 3990.194 3092.734 202.099

INTERF_do1000 3707.857 2841.540 162.781

POTENG_do2000 272.430 221.535 13.545

PREDIC_do1000 27.775 43.080 4.156

INTRAF_do1000 8.610 8.554 2.023

CORREC_do1000 7.475 4.853 20.101

INTRAF_do2000 0.921 0.161 0.238

KINETI_do100 0.650 0.288 0.131

BNDRY_do100 0.459 0.352 0.842

INTERF_do2000 0.433 0.416 0.000

POTENG_do1000 0.424 0.198 0.110

MDG_do101 0.201 0.170 0.143

INITIA_do2000 0.056 0.056 0.112

INITIA_do300 0.042 0.047 0.053

Figure 2: A typical pro�le analysis session

As was mentioned previously, we are using Emacs as a front end for the interactive portion
of ptopp. ingres o�ers its own command interpreter as well as a C level interface. Since
Emacs has facilities for executing unix commands within a bu�er, we have developed a simple
interface using a unix script that accesses the ingres command interpreter. This script accepts
an SQL database command, executes it against the ingres database using input and output
redirection, and composes the result in a form understandable by Emacs. ptopp must then
parse the resulting information into the required data structures.

A further complication is that the error messages reported by ingres appear in the expected
data �le without a return error code from the unix process. Thus errors can only be detected
by correct parsing of the output stream. This error parsing must take place in ptopp, making
error detection and recovery tricky.

While this primitive interface is su�cient for our current intentions, we are investigating
more robust and exible ways of supporting communication between ptopp and the database.
We are also examining other database solutions in search of a better match.

A consistent naming scheme. Another interesting aspect is the function used by the ptopp
building blocks to support a consistent naming scheme. The intelligence of this function is
based on a naming �le in which the user describes how names and commands are composed
from their items. For example, a �lename may consist of a programId, a variantId, a traceId,
and a type extension. Similarly, a compilation command may be composed of a compilername,
a source�le, and options. There is a simple description language for these items that provides
operators for string manipulations, and composition alternatives. The tools call the naming

7

function in a form such as \given the executable �lename; return the compilation command
and source �le" or, in general, \given a set of known items; derive the requested set of related
items".

The cfmake command. A third notable detail is how the cfmake command generates exe-
cutable �les. Both derived and composed �les are supported. Derived �les are simply the ones
whose make commands can be derived by the naming function described above. The user only
passes the name of the executable �le to the cfmake command. As a result, a Unix make �le
is created and run. cfmake generates a composed �le when given a number of �les containing
individually optimized subroutines plus a default �le. The default �le supplies all routines that
aren't speci�ed explicitly on the command line. This allows the user to quickly modify individ-
ual routines of the program given as the default �le. The cfmake command works by compiling
all routines of the default �le separately (if not yet done so) and then linking only those needed.

3 Related Work

There are several programming environments o�ering tool sets that are similar in some part
to what ptopp o�ers (Faust [VGGJ+89], Start/Pat [ASM89],sigmacs [SG90],RN [CCH+87]).
However, the similarities are somewhat super�cial. All of these environments, including ours,
attempt to make the life of a programmer easier. They all make an e�ort to integrate the tools
into a common interface that tries to be intuitive to use. However, beyond this our approach
diverges from many of the others.

Comparing ptopp to other environments. Perhaps one of the most obvious di�erences
between ptopp and many of the other parallel programming environment e�orts is the user
interface environment. Most of the other environments use X-Windows to present their tools
to the user. We have chosen a text-based interface as the prototype environment for ptopp
and we will o�er graphics capabilities as an option where needed. We believe this will make
ptopp more versatile and familiar. sigmacs also has an Emacs front end and as such resembles
ptopp more than any of the other environments. During the development of ptopp we have
been concerned with users shunning a tool because the interface is unfamiliar or di�cult to
learn. Rather than developing an entirely new environment in which to work, we chose to
exploit the environment which with all of our users are familiar: unix.

Faust and sigmacs have strong notions of a project. For them a project includes source,
object and executable code, compilation information, program data, etc. The environment
supports operations on these components of the project, such as �le management. The user
remains within the environment during the entire process with these operations as the interface
to the underlying system. This notion of a project is much stronger than the notion present in
ptopp. ptopp manages source, object, executable and performance result �les through a heavy
reliance on its unix underpinnings. No explicit project management facilities are provided but
rather users are encouraged to use the unix directory hierarchy to organize their �les. While
we likely will expand our notion of a project, possibly using the database, for the time being
we feel a unix foundation is a solid, familiar way to manage project �les.

Another shared feature among many of the other programming environments is a project
database. Faust, Start/Pat, RN and sigmacs all maintain a project database for their users.

8

This database often manages access to data about the program under development such as
data dependency information and the program source. The user may browse through this data
during program porting or development. This use of a database di�ers from that of ptopp.
ptopp uses a database to manage the performance data reported after a program execution.
Our database does not contain program structure data primarily because the tools necessary
to generate this data are not available at this time. We also see maintaining the consistency of
this data as a concern for which we do not currently have a solution.

While ptopp has features which help the user evaluate program transformations, sigmacs
and Start/Pat go beyond this to suggest possible transformations that apply to a particular
piece of code. The user may choose from these applicable transformations and the environment
makes the changes. While we do expect ptopp to support feedback from the compiler on the
transformations applied or discarded, we do not expect ptopp to make recommendations on
the best transformation.

Start/Pat and RN include debugging interpreters and the ability to interactively replay the
execution of a program. Users of ptopp use the debugging techniques available at the UNIX
level while within Emacs. Several techniques used in the porting process are mentioned in
[Eig91]. At this point we do not plan on providing replay/simulation capabilities in ptopp.

Some of ptopp's di�erences. Perhaps because of its close ties to the actual porting of bench-
mark programs, ptopp o�ers some functionality not well supported by the other environments.
It is not clear that any of the related work address the automated or manual instrumentation of
the source code for production of trace timings. Faust's Impact lets a user examine a trace �le,
but it is not known how the �le was generated. We have found that timing measurements from
actual execution runs rather than simulations were useful in the identi�cation of the portions
of a program where our optimization e�orts would be most fruitful.

Since we use actual execution timings as a basis for our performance optimizations, ptopp
includes aids for generation of executable code. Most of the similar environments are not based
on the results of actual program executions. Due to this, little support for program compilation
is mentioned. The focus of these environments is more the generation of data to aid in the
restructuring of a program than the generation of real world performance �gures.

Similarly, ptopp generates and manipulates the performance �gures in a way di�erent than
the other environments. The closest similar tool is Faust's Impact which graphically displays
an event time line. However, ptopp is more concerned with presenting the timing �gures in
such a way that the user can see the success (or failure) of a particular transformation quickly.

Evaluating the success of an environment. Something missing from most of the papers
is a discussion of the level of success of each of these environments. Have they been met with
wide acceptance? How long does it take a new user to become familiar with the interface? Do
they �nd the environment su�cient or do they go outside the environment to do certain tasks
for which the tools were originally designed? Does the environment improve the productivity
of the user and if so, how was the increase measured?

ptopp has been designed in an incremental way directly from experience gained in the
porting and optimizing of parallel programs. At each step we have tried to generalize the
techniques enough to permit individual variations without unnecessarily overburdening the

9

environment. While this may mean that ptopp lacks certain features, the tools that make up
our tool set have proved their value even before they became a part of ptopp.

4 Conclusion

Because virtually everything can serve as a tool, it seems necessary to talk about what makes
a good tool. We feel that a tool must �ll a void in the users current toolbox. A tool should
address a particular need or perhaps several needs of the users. Another crucial aspect of a
good tool is that it is used. While this might sound obvious, many tools designed to aid a group
of users go unused for a number of reasons.

One possible reason a tool may go unused is also something we feel makes a tool useful. A
tool should be able to adapt to the needs of the users. Thus the tool remains useful and the
user doesn't need to reinvest substantial amounts of time in learning new tools. Along the same
lines, if a tool is easy to learn in the �rst place, it is more likely to be used.

We have collected a set of tools that have grown out of speci�c needs. These needs were
realized by a (albeit small) number of professionals at the Center for Supercomputing Research
and Development during the porting of a large number of benchmark applications. We have
wrapped our tools in an environment that is easy to learn and use. We have also tried not
to stray too far from the familiar and powerful unix interface in which all of our users are
comfortable. By doing so we have directly addressed some of the most time consuming portions
of the porting and optimization process.

References

[ASM89] Bill Appelbe, Kevin Smith, and Charles McDowell. Start/Pat: A Parallel-
Programming Toolkit. IEEE Software, 6(4):29{38, July 1989.

[CCH+87] Alan Carle, Keith D. Cooper, Robert T. Hood, Ken Kennedy, Linda Torczon, and
Scott K. Warren. A Practical Environment for Scienti�c Programming. IEEE

Computer, pages 75{89, November 1987.

[EHJP90] R. Eigenmann, J. Hoeinger, G. Jaxon, and D. Padua. Cedar fortran and its
restructuring compiler. In A. Nicolau D. Gelernter, T. Gross and D. Padua, editors,
Languages and Compilers for Parallel Computing II. MIT Press, 1990.

[Eig91] Rudolf Eigenmann. Towards a methodology of optimizing programs for high-
performance computers. Technical Report 1178, Univ. of Illinois at Urbana-
Champaign, Center for Supercomp. R&D, December 1991.

[SG90] Bruce Shei and Dennis Gannon. SIGMACS: A Programmable Programming En-
vironment. 3rd Workshop on Languages and Compilers for Parallel Programming,
1990.

[VGGJ+89] Jr. Vincent Guarna, Dennis Gannon, David Jablonowski, Allen Malony, and Yo-
gesh Gaur. Faust: An Integrated Environment for the Development of Parallel
Programs. IEEE Software, pages 20{27, July 1989.

10

