
Practical Tools for Optimizing Parallel Programs

Rudolf Eigenmann Patrick McClaughry

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign�

Abstract

This paper describes a set of tools that help a pro-
grammer to be more e�cient in optimizing scienti�c
programs for a parallel computer. The design of these
tools emerged from experience gained during a suc-
cessful optimization e�ort on a set of representative
supercomputer application codes. We have developed
a number of utilities that complement available Unix
tools. Additional tools o�er a higher degree of inter-
activity; they are currently built into the Emacs edi-
tor. The new tools mainly facilitate two development
phases that were identi�ed as time-consuming in the
parallel programming project: The process of creating
and maintaining a consistent set of experimental pro-
gram variants and the analysis and interpretation of
compilation and performance results.

1 Introduction

1.1 Two related motivations

The initiative to invest in a tool design e�ort came
from the need for tools in our project. The goal of
the project was to optimize a large set of real appli-
cations for the Alliant FX/8 and the Cedar machine,
including the Perfect Benchmarks R programs [3]. Ini-
tially, our tools consisted of the parallelizing compiler
Kap/Cedar[2] and ordinary Unix utilities for manu-
ally improving the parallel Fortran code generated by
Kap.

Additional motivation came from the many open
issues in tool design. For example, there is a big dis-
crepancy between the e�orts being invested in design
projects for new tools and the resulting bene�ts for
the user community. This concerned us directly, be-
cause, despite many announced products, we have not
found tools that could help us reach our objective more
quickly. Perhaps one reason for this is the lack of mea-
sures to assess tools and programming environments.
Some concrete issues resulted from our program op-
timization project. An overview of the program op-
timization cycle and the applied methodology is de-
scribed in [1]. Our major �ndings are, that there is
a need for facilities for two development phases that

� This work was supported in part by the U.S. Department of
Energy under grant no. DOE DE-FG02-85ER25001.

were identi�ed as time-consuming: The process of cre-
ating a consistent set of experimental program variants
and the analysis and interpretation of compilation and
performance results.

1.2 Design principles

Keep it simple The major principle we intended
to observe was to keep new tools simple. We intended
not only to keep the time invested in this project to
a minimum; we also believe that large tools may be-
come too complex to use. Certainly, if we managed to
design simple tools that provided the power needed,
we would feel very successful. There is precedent that
this objective can be achieved: users of elaborate pro-
gramming environments quite often report that only
a few features can be credited for the success of their
mission.

Users are advanced parallel programmers The
users for which our tools were designed are profession-
als with a solid understanding of Unix and Fortran.
Our tool set does not attempt to be a parallelizing tu-
tor nor does it attempt to fully automate the task. The
user is assumed to be comfortable with the notions of
parallel architectures and the types of transformations
useful on programs for such architectures.

This work complements other projects of our
research group that develop parallelizing compilers
[2, 3] capable of optimizing sequential programs auto-
matically for parallel machines. Eventually these two
projects will merge in order to satisfy a spectrum of
users, from application programmers that are unable
to invest the time in optimizing parallel programs to
expert programmers who want to exploit all features
of the parallel machines.

Stay at Unix level and provide interactivity
where needed By building on top of the Unix oper-
ating system we hook on to the most widely used plat-
form for parallel programming. Functionality available
at the Unix level should not be reinvented and not be
impeded.

Sometimes a more interactive interface is needed
which can permit easier \what-if" analysis and can
o�er help or guidance for commands and options either
not yet fully learned, or for which the user does not
wish to remember the syntax.

1

An important component of interactive interfaces
is a user interface management system. The require-
ment to provide state-of-the-art features such as cus-
tomizable command accelerators1 and help facilities
often conicts with the available development time.
For this reason we chose Emacs as our �rst interactive
interface. Emacs o�ers a full-featured text editor, �le
management facilities, interactive help, and a famil-
iar language in which to program (ELisp). Replacing
Emacs by an alternative user interface management
system that provides similar features is straightfor-
ward.

Data base access During the porting and opti-
mizing process a considerable amount of performance
data can be generated. These data are captured in
a database accessible from within the interactive en-
vironment as well as at the command line. The in-
troduction of a database to manage the performance
data adds signi�cantly to the power of our tool set;
however, that power comes at a cost. In order to ex-
ploit the power of the database, a user must become
familiar with its interface and structure. This trade-o�
must be chosen carefully.

2 A Tour through PTOPP

Our basic approach to optimizing programs was
straightforward: �rst, the time-consuming parts of the
programs were determined; then these code-sections
were improved one by one.

Most often the analysis was done on a loop-by-
loop basis. The �rst step was to get a rank list of
time-consuming loops. For each of these loops, poten-
tial improvements were then determined by looking at
the automatically parallelized code, the compiler list-
ing, and timing pro�les. The growing list of transfor-
mations that had already proven useful in our experi-
ments was another valuable source of information.Ap-
plying transformations and experimenting with them
was the next major step; often this resulted in a
changed loop pro�le, yielding a new display of the
most time-consuming program sections. This process
was reiterated until there were diminishing returns.

The program-optimization process is shown in
Figure 1 and described in more detail in [1]. The fol-
lowing sections explain the steps by examples, describe
the tools we provided, and discuss the design.

2.1 Program instrumentation

We usually started optimizing programs by identify-
ing the time-intensive loops. For this purpose all loop
nests in the serial source code were instrumented. All
optimized program variants were derived from the in-
strumented source code so that loop-by-loop speedups
could be computed from the pro�les.

1. commands bound to a single keystroke or key sequence

 Program
Instrumentation

Generating
executables

 Program
execution

Performance
evaluation

 Editing
transformations

Integrating
components:

naming
scheme

Debugging

Generating
executables

result
 data
 base

Figure 1: The program optimization cycle

PTOPP provides facilities so that program instru-
mentation can be done fully implicitly through the
cfmake command, with the instrument command, or
within the editor while looking at the source code. The
cfmake command will be described later. It usually
makes the explicit call to the instrumentation utility
unnecessary. If the program instrumentation facility
is called from within the editor, the resulting instru-
mented source �le is displayed. Loops are embraced
with calls to a timer and pro�le generation library
function as shown below.

call start_interval(23)
DO 100 i=1,n
....

100 CONTINUE
call end_interval(23)

Although automatic instrumentation works well,
in a later iteration of the program optimization pro-
cess the user may wish to add or delete some of these
calls. The editor facilitates this through Emacs func-
tions that interactively instrument or de-instrument a
speci�ed region of text.

Discussion Although the wish for advanced pro�l-
ing facilities is stated often by software engineers, the
features that contribute to more highly optimized pro-
grams are quite unclear. In our experience the com-
bination of initial automatic instrumentation and in-
teractive modi�cation facilities was very useful. Loop-
level pro�le information was essential, and because of
this, the Unix gprof utility was not su�cient for our
purposes. Functionality that is not yet available and
that we sometimes wished for is combined inclusive
and exclusive pro�ling, the display of the dynamic call
tree, and the full record of original trace information.

2

Some of this functionality is available from a related
tool project [6].

2.2 Generation and execution of
program variants

The program instrumentation step is followed by the
generation and execution of multiple program vari-
ants, each corresponding to a set of compiler options
plus a set of �les that contain individually optimized
program sections. Programs are executed on a number
of di�erent machines and con�gurations. The result
data provide the initial information for analyzing the
program performance. Examples of program variants
of interest for this purpose are serial, vectorized, and
vector-concurrent optimizations.

PTOPP provides the cfmake command at the
Unix level, which, in its simplest form, takes the name
of an executable �le as a parameter. It derives all nec-
essary make steps from the name and generates and
starts a Unix make �le. The make steps include the au-
tomatic instrumentation of the program, if necessary.
The cfmake command also supports the composition
of a �le from a number of sources, such as from a set
of individually optimized program modules plus \the
rest" from another �le. The naming conventions, by
which the utility derives all make steps, are speci�ed
in a separate language designed for this purpose and
can be customized exibly. For example, in our con-
ventions

cfmake testC.wi

will make an executable code starting with the source
�le test.f, instrumenting it, compiling it using the
Cedar optimizer, and linking it with the library that
would generate a wallclock time pro�le.

Similarly, if the user wishes to optimize parts of
the �le test.f individually, he or she can extract and
modify these parts into �les a.f and b.f, say, and
then issue the command

cfmake testC.cflib a.f b.f -o testM1

This will compose an executable code named testM1,
which contains the modules a.f and b.f instead of
the ones that are part of �le test.f.

The cfmake commands supports the creation of
a series of related program variants and names them
so they can be clearly identi�ed.

For smaller programming experiments PTOPP
provides functions within the editor that let the user
compile and link the �le being edited. A simple Emacs
function supports the generation of a Unix-type com-
mand line by either editing the last such command
issued or by picking from a set of prepared command
line templates. It also provides descriptions of avail-
able compilation command options while composing
the command.

For program execution, object �les need to be
copied to the target machine, input �les must be made
available, and after the execution, output �les must be
given the proper name so they can be associated with

the executed code variant and machine con�guration.
In our experiments this functionality is provided by a
Unix script that is written for the speci�c needs of our
situation.

Discussion At the beginning of our project, gen-
erating executable �les and running them was time-
consuming for two reasons. First, the large number
of program variants raised a consistency issue. Before
we realized supporting tools, we struggled with many
errors such as forgetting a compiler option or a vari-
able of the runtime environment, which made \per-
formance anomalies" appear among the program vari-
ants. Second, the Unix make utilities were not power-
ful enough to support quick changes to one subroutine
of a given large program. Splitting up �les into sub-
routines was no feasible option because the number of
�le variants for experimenting with optimizations was
already unmanageable enough.

The cfmake command was a great help in man-
aging �les, their names, and corresponding make com-
mands. We used complementary simple Unix facilities
such as a log �le of all cfmake commands with time
stamp, so that we could check make commands and
the date they were issued, and re-make codes at any
time with as few keystrokes. These features come at
the price of creating and sticking to the naming con-
ventions. The naming conventions are de�ned in a sep-
arate language, SDL (string de�nition language), the
description of which is beyond the scope of this paper.
Early experience shows that users may be willing to
use prede�ned naming conventions so that the price of
maintaining SDL �les is reasonable.

The program execution phase is not yet facilitated
by PTOPP. The mentioned script was very important
because it provides many services for a single com-
mand, including waiting for target machines to be up.
It also plays its role in maintaining the naming con-
ventions by renaming output �les properly. The in-
clusion of this functionality into a exible tool is an
increasingly important issue as we extend the range of
programs and target machines.

2.3 Debugging

PTOPP does not include debugging tools. In our ex-
periments we used primitive debugging facilities such
as undoing most recent program modi�cations and, in
worst case, \binary error search" by swapping mod-
ules in and out of an object code until we found the
module causing the problem. This was usually feasible
for our type of work because our objective was to opti-
mize an existing program, of which we had a working
original version.

We also had access to a low-level debugger that
let us inspect the machine state at a binary level. It
served well for indicating the source code position at
runtime traps and inspecting register contents.

Being disciplined is certainly essential for keeping
debugging time low. This is obvious when it comes to
being careful about typos. It is of further importance

3

in terms of carefully naming intermediate program
variants that are created during debugging sessions. A
successful method was to create a new �lename with
every single modi�cation. This way we could always
�nd the version that \used to work or fail", and since
we recorded compilation commands, the options a �le
was made with could always be determined. In our ex-
periment this method was maintained manually. Fu-
ture PTOPP version may provide supporting facilities.

2.4 Performance analysis

In order to �nd program transformations that could
improve the performance, the program result data
were collected and analyzed for a number of optimiza-
tion factors. These factors provided information about
the program performance on a loop-by-loop basis and
gave initial hints for optimizing program transforma-
tions. Examples of such factors are the loop speedup
and the globalization penalty (i.e., the performance
loss when putting data in global instead of in local
memory). The methodology of analyzing these data is
described in [1].

PTOPP provides many facilities to support this
phase of the development process. The INGRES
database is used for managing the large amount of
program result data. Currently, it is the user's respon-
sibility to enter these data into the database, usually
by �lling out part of the following Form:
Experiment ID :
Program ID : NA
Variant ID : A.wi
Machine ID : c4s
DataSet Name :
TimeStamp : 28-Mar-92 02:27:06
MFLOPS rate : 2.066728
CPU time : 438.1485
Wallclock time : 468.0000
Status : VALID
Verification File Name : NAA.wi.ver.c4s
Sumfile File Name : NAA.wsum.c4s

The form provides �elds for entering short forms
of the name of a program, the variant (such as au-
tomatically vectorized or manually optimized variant
XY), the machine and con�guration on which the pro-
gram was executed, the chosen data set, the time the
program was run, and the performance data. There
is interactive support for �lling out this form. Usually
the veri�cation �le name is the only �eld �lled out. All
other information can be derived automatically from
the name and the content of this �le. The veri�cation
�le is a �le produced at the end of each program run
and indicated whether the program ran correctly and
in what time. If the name or content of this �le can-
not be used or the user does not wish to use it, then
any or all �elds can be overwritten before giving the
command to enter the information into the database.
The system �lls in an Experiment ID which one can
think of as the page number of the \book" in which
the results are recorded.

The Sum�le contains pro�le result data. Its name
is also usually derived automatically by naming con-

ventions from the veri�cation �le name, and its con-
tent is read into the database. For each loop nest of
each subroutine in the program it gives the following
information:

BNDRY_do100 100 AVE: 0.005819 MIN: 0.005615
MAX: 0.006104 TOT: 0.581856

which says that loop with label 100 of subroutine
BNDRY was executed 100 times, and the average, min-
imum, maximum, and accumulated timings are as
shown.

Once result data for a number of program variants
are available, the user may want to look at the most
time-consuming loops and compare the timings. The
program variants, such as serial, vector-concurrent,
and manual variant XY, were entered in the form
shown above and can now be used in a similar form
to select the data for the pro�le display. If the user
prefers, experiment ID numbers can be used instead.
The top window in Figure 2 shows the resulting dis-
play.

Figure 2: A typical pro�le analysis session

The loop timing numbers are a useful starting
point for understanding the performance behavior of
the program. The user may now wish to see the loops
in the source code that correspond to some of the tim-
ing numbers. This can be done interactively. In Fig-
ure 2 the user has selected two program variants for
source display and is looking at loop 1 in subroutine
tk. Commands are available to scan quickly through
the most time-consuming sections of a program and
review the transformations done to them as well as
the resulting performance. Optionally the user can re-

4

quest a graphical display of the timing information in
various styles.

A number of questions recur with each program
analysis session, and they have been put together as
a methodology of performance analysis [1]. A simple
one of these questions is \what is the resulting loop
speedup". The pro�le display can give an answer by
adding a new column that divides two given columns.
The PTOPP facilities provide a exible mechanism to
generate such derived columns and switch between a
range of displays [4]

Discussion The analysis of the program and per-
formance data and the derivation of the potential
transformations were among the most time-consuming
parts of the development process. The huge amount of
result data called for both a database that can man-
age the data and a methodology that can abstract
the data. Both items come at a cost. Introducing a
database comes with new notions, and a few additional
commands. Furthermore, the user has to learn to think
in terms of the methodology. Having gone through
this exercise we believe that the bene�ts outweigh the
costs. The database opens a new world of power over
the gained data. There is a query language (SQL) that
lets the advanced user compose new displays of the
data and explore many questions and answers. The
methodology turned out to provide a welcome termi-
nology in which to argue about performance e�ects
and explain the behavior of many programs.

These facilities have given us much help for �nd-
ing new program transformations. Although they do
not directly point out speci�c actions to take, recipes
are given that lead to optimizing transformations, de-
pending on the answers to the questions mentioned
above. As our project proceeds we expect to re�ne
this methodology of guiding the user through the op-
timization steps. In many cases, recipes are di�cult to
give. For example, if loops are not (yet) parallel, the
user has to �nd out whether they can be transformed
into parallel forms. Most useful for this purpose is the
hit list of most e�ective transformations found in our
project so far. This process is described more detailed
in [1].

2.5 Editing transformations

The process of editing the program transforma-
tions was comparably fast, although errors intro-
duced in this phase have caused extra debugging ses-
sions in our experiments. It is mentioned in [1] that
transformation-directed editors could be of some help.
Some of these transformations are not di�cult to edit,
but they require a careful interprocedural analysis of
the program. Examples of such transformations are
privatizing of arrays and turning a loop into a con-
current loop. The editing action of array privatization
is just moving the data declaration from its original
place to the loop header, and making a loop con-
current is replacing the keyword DO by DOALL. How-
ever, the analysis of privatizable arrays requires careful

de�nition-use investigations, and making sure a loop
is fully parallel requires data-dependence analysis. For
our experiments we had only the compiler-generated
data-dependence information available, which did not
detect privatizable arrays. Tools that promise to be
very useful for this analysis are being developed.

Other transformations are easier to analyze but
more tedious to edit. They may be the primary can-
didates for support in transformation tools. Examples
are stripmining and loop coalescing. Such tools are
also being designed in related projects [5].

3 Questions and Answers

Assessing the usefulness of new tools is di�cult with-
out hands-on experience. Therefore, in this paper we
are not trying to argue why our tools are better or
worse than others, but we will provide a wide range
of opinions by reporting a number of questions and
comments we have received so far, and our replies to
them.

Did PTOPP really improve the situation?
How? If there is any \proof" that PTOPP helps
programmers do a better job, it is that the tools were
designed out of direct needs in a project that success-
fully optimized one of the most widely accepted work-
loads for supercomputers. So far, six people have used
the tools in this project. PTOPP helped primarily in
two areas: keeping related �les in a consistent state and
selecting and juxtaposing related information.The for-
mer is achieved by naming conventions that reect
program variants, such as compilation, link, execu-
tion options, and manual transformations. The latter
is achieved though a database and interactive query
facilities.

The tool set does not appear to be state of the
art. True, PTOPP does not provide the newest in-
teraction technology, such as color-graphical displays
and audio. Instead, our focus was on providing the
functionality needed in a substantial program opti-
mization project. Although we do not say that mod-
ern interaction instruments are the wrong approach to
programming environments, our design was inuenced
by the observation that the cost of learning elabo-
rate interfaces can o�set the bene�t. Even in terms
of user interfaces PTOPP provides some features that
state-of-the-art tools often lack. Examples are exi-
ble customization and help capabilities, and the abil-
ity to provide much of the functionality through non-
graphics terminals.

You claim that all you need is Emacs; this is
certainly wrong. Basing the interactive portion of
PTOPP on the Emacs editor has allowed us to do what
we just said: work on the functionality and still provide
an acceptable user interface. For those who use Emacs
as their main editor, learning PTOPP is expected to
be quite easy. Learning PTOPP plus Emacs is more

5

di�cult, but probably not much more so than learn-
ing any other new user interface, such as X-windows-
based environments. To those who are fundamentally
opposed to Emacs, we can only suggest that they try
it.

Are integrated tools important, and what does
PTOPP do about them? The need for a certain
degree of tool integration arose from many situations
in our programming experience. We have addressed
the issue of managing program variants and their re-
sult data. It is unclear to what extent tool integration
is desirable. Highly integrated tool sets tend to ob-
scure the interface to the underlying operating system
from those who wish to use it. For example, in order
to maintain the consistency expected from integrated
environments, they may need to disallow low-level ac-
tions such as explicitly renaming �les, or copying �les
from one directory to another. This is often an un-
wanted side e�ect. In order to coexist with the Unix
environment, PTOPP's approach is to to take small
integration steps by providing facilities that support
the consistency among �le names, object names, and
the make commands.

You seem to ignore parallelizing and interactive
restructurers. Are they not important? They
are! Our tool project is complementing our primary
project of creating parallelizing restructurers [2, 3, 5].
That's why little is said about such tools in this pa-
per. In Section 2.5 we mentioned the potential bene-
�t users can expect from interactive restructurers. So
far, PTOPP attempted to facilitate the programming
tasks that are mechanical in nature, whereas restruc-
turing tools will need to aid the programmer in making
many intelligent decisions about program transforma-
tions. The integration of all these tools is a long-term
goal.

Where are limitations of your tools? Our tool
project is a small-scale e�ort. It would need extensions
on many fronts to become a complete tool set. Devel-
opment phases that are unsupported so far are debug-
ging, program execution, and editing transformations.
For each existing tool area in PTOPP there exists a
wish list from the user community that will allow us
to make the facilities more useful. Finally, the tools
need to be ported to further machine environments in
order to be of value to a large user community.

Where do you go from here? We will continue
to use and extend PTOPP in a strictly need-driven
way. The main application will be our project of port-
ing and optimizing large applications to new parallel
machines. In the past the Alliant FX/8 and Cedar ma-
chines were the targets. In the future we will look at
newer machines, which will require us to port the tools
to di�erent platforms.

Conclusions

We have presented a set of Unix-based tools that
led us to optimize successfully variants of a wide
range of application programs, including the Perfect
Benchmarks R codes. In this parallel programming ef-
fort we identi�ed the management of the variety of
�les generated during program optimization and the
inspection and analysis of program result data as time-
consuming programming phases. In a strictly need-
driven way we have added simple tools to facilitate
these tasks.

The relative success of this modest programming
environment project leads us to believe that there is a
way out of a big dilemma in which current program-
ming environment research appears to be: the discrep-
ancy between the wealth of both tool research papers
and commercial developments, and the usefulness of
delivered environments. In contrast, we were able to
create simple facilities that were of signi�cant help. Al-
though there is more proof of e�ectiveness we have to
deliver, in terms of widening the tool user community
and machine spectrum, the results indicate that tool
developments should go in these directions: (1) Tools
must be designed in a need-driven way.(2) New tools
should be simple extensions of available environments
with which users have experience. (3) Interactive in-
terfaces can be built at reasonable costs using existing
platforms as well. (4) Although very di�cult, we must
quantify the usefulness of new tools. By lack of a direct
goodness measure we propose that the accomplished
mission in which newly proposed tools have proven
their value be clearly reported. In our case we have
successfully optimized one of the most widely accepted
program suites for parallel machines.

References
[1] R. Eigenmann, Toward a Methodology of Optimizing Pro-

grams for High-Performance Computers, Univ. of Illinois
at Urbana-Champaign, Center for Supercomputing Res. &
Dev., Report No. 1178, August 1992.

[2] R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and
D. Padua, Restructuring Fortran Programs for Cedar, Pro-
ceedings of ICPP'91, St. Charles, IL, 1 (August 12-16, 1991),
pp. 57{66.

[3] R. Eigenmann, J. Hoeflinger, G. Jaxon, and D. Padua,
The Cedar Fortran Project, Univ. of Illinois at Urbana-
Champaign, Center for Supercomp. Res. & Dev., Report
No. 1262, 1992.

[4] P. E. McClaughry, PTOPP - A Practical Toolset for the
Optimization of Parallel Programs, Master's thesis, Univ. of
Illinois at Urbana-Champaign, Center for Supercomputing
Res. & Dev., May 1992.

[5] P. M. Petersen, Evaluation of Programs and Parallelizing
Compilers Using Dynamic Analysis Techniques, PhD thesis,
University of Illinois at Urbana-Champaign, January 1993.

[6] S. Sharma, R. Bramley, P. Sinvahl-Sharma, J. Bruner,
and G. Cybenko, P3S: Portable, Parallel Program Per-
formance Evaluation System, Univ. of Illinois at Urbana-
Champaign, Center for Supercomputing Res. & Dev., Re-
port No. 1170, September 1992.

6

