
AN OVERVIEW OF SYMBOLIC ANALYSIS TECHNIQUES NEEDED FOR

THE EFFECTIVE PARALLELIZATION OF THE PERFECT BENCHMARKS R
�

William Blume and Rudolf Eigenmann

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

blume@csrd.uiuc.edu and eigenman@csrd.uiuc.edu

Abstract: We have identi�ed symbolic analysis tech-
niques that will improve the e�ectiveness of parallelizing
Fortran compilers, with emphasis upon data dependence
analysis. We have done this by comparing the automat-
ically and manually parallelized versions of the Perfect
BenchmarksR
. The techniques include: symbolic data de-
pendence tests for nonlinear expressions, constraint prop-
agation, array summary information, and run time tests.
Keywords: Automatic parallelization, symbolic anal-

ysis, dependence analysis, Perfect Benchmarks

INTRODUCTION

Parallelizing compilers are necessary to support standard
programming languages on parallel machine architectures.
This is very important because new high-performance ma-
chines and their parallel programming environments are
changing rapidly. Also, the availability of standard pro-
gramming languages is indispensable for non-computer ex-
perts who wish to use high-performance machines. Paral-
lelizing compilation tools are commercially available and
their technology is well documented [1, 23].

Unfortunately these commercial tools are not yet very
e�ective. We have quanti�ed and analyzed this situation
in previous reports [4]. There have also been studies of
potential improvements by manually parallelizing real pro-
grams and reporting the necessary transformation tech-
niques [12, 11]. Table 1 shows some of these results. It
compares automatically and hand-parallelized versions of
the Perfect Benchmarks R
 that we ran on the Cedar mul-
tiprocessor.

For these new transformation techniques, the role of
symbolic analysis is very important. This paper gives an
overview of such analysis techniques and illustrates their
applicability by code examples taken from time-consuming
sections of the Perfect Benchmarks R
. A more detailed de-
scription of these techniques can be found in [3].

ROLE OF SYMBOLIC ANALYSIS IN DATA

DEPENDENCE TESTING

Typically, data dependence tests for parallelizing compil-
ers demand that loop bounds and array subscripts are a
linear (a�ne) function of loop index variables; that is, they
are of the form c0 +

Pn

j=1
cjij where cj are integer con-

stants and ij are loop index variables. Unfortunately, ar-
ray subscripts of real programs may include coe�cients

�This work was supported by Army contract DABT63-92-C-
0033. This work is not necessarily representative of the positions
or policies of the U.S. Army or the government.

ADM ARC2D BDNA DYFESM FLO52 MDG MG3D OCEAN QCD SPEC77 TRACK TRFD
0

5

10

15

20

25

30

35

40

45

50

S
pe

ed
up

Code

Automatic

Automatable

Figure 1: Speedups of automatically and manually paral-
lelized versions of the Perfect Benchmarks R
 on Cedar

that are not integer constants, or the subscripts or array
bounds may contain loop variant variables or subscript ar-
ray references. We can deal with these situations by either
eliminating the o�ending variable or subexpression from
the subscript expression or by extending data dependence
analysis to cope with symbolic expressions.
The techniques constant propagationand induction vari-

able substitution are the most common methods used to
transform array subscripts into testable linear expres-
sions. Symbolic simpli�cation of expressions is also im-
portant for canceling common terms and eliminating com-
plex expressions. However in our analysis of the Perfect
Benchmarks R
 we have seen examples of array subscripts
that could not be transformed into the above form or that
contained loop-variant expressions or subscript array ref-
erences that could not be eliminated. Additionally, some
common compiler transformations can introduce nonlin-
earities or non-constant terms to subscript expressions;
two examples of such transformations are the linearization
of arrays, which is often needed for inlining or interproce-
dural analysis, and the substitution of induction variables
in multiply nested loops.

ANALYSIS OF THE PERFECT

BENCHMARKS R


In our comparisons of the automatically and manually par-
allelized programs, we assume that the parallelizing com-
piler can do certain transformations well, (although these



transformations may not yet exist in current commercial
compilers); that is, the compiler can privatize arrays [20],
parallelize loops containing reduction statements, and par-
allelize loops with function calls [7, 6]. We also assume
that the compiler is capable of performing symbolic anal-
ysis techniques that already have been well covered by
others, including constant propagation of symbolic expres-
sions [21], elimination of induction variables [15, 22], and
symbolic simpli�cation of expressions [8, 15]. However, we
will mention cases where the transformations or analysis
techniques above need minor modi�cations or more accu-
rate information.

In our analysis of the Perfect Benchmarks R
, we have
found a variety of symbolic analysis techniques needed
by the transformations described above to achieve the
speedups of the manually parallelized versions. Except for
FLO52, every code required some sort of symbolic analysis
technique to improve its performance. However, the distri-
bution of these techniques was quite uneven. Some codes,
such as BDNA and MDG, required only a few techniques
to allow parallelizing compilers to match the speedups
attained from the manually parallelized versions. Other
codes, most notably QCD and TRACK, need a long suc-
cession of complex analysis techniques just to parallelize a
single important loop nest.

Rather than examining each code and describing what
additional techniques will be needed to e�ectively paral-
lelize it, we present the symbolic analysis techniques we
have identi�ed, and give examples showing why these tech-
niques are important.

SYMBOLIC, NONLINEAR DEPENDENCE

ANALYSIS

As mentioned above, current data dependence tests have
di�culties in handling subscript terms that include non-
constant coe�cients. Very often, these program patterns
consist of a multiply-nested loop where the inner loops
access an array section, as in the following example. It is
relatively easy to see that the array sections do not overlap
in adjacent iterations of the outer loop.

do i = 0, n
do j = 1, m

x(m*i + j) = ...
end do

end do

In some of these cases, the variable coe�cients were in-
troduced by the compiler. For example in the programs
MDG and TRFD, such subscript expressions appeared in
array subscripts after the elimination of an induction vari-
able of a multiply nested loop. In ADM, non-constant
subscript coe�cients were the result of the linearization
of a two dimensional array when a subroutine was inlined
in an important loop. For example, the following impor-
tant loop nest in MDG has an induction variable in the
following doubly nested loop:

do i = 1, nt
jj = i
do j = 1, nor1

var(jj) = var(jj) + ...
jj = jj + nt

end do
end do

After induction variable substitution, the loop is trans-
formed into the following form, which includes a non-
constant term:

do i = 1, nt
do j = 1, nor1

var(nt*j + i - nt)
. = var(nt*j + i - nt) + ...

enddo
enddo

Again, the above test for accessed array sections reveals
independence.
In OCEAN we have found a more complex example,

which takes 44% of the serial program execution time. The
array sections accessed in this pattern can be detected as
non-overlapping, similarly to the previous examples. How-
ever, the test now also has to consider array sections that
are interleaved.

do jl = 1, i2k
exj = ...
do jj = jl, 64, 2*i2k

do mm = 1, 129
js = 129*jj + mm - 129
js2 = js + 129*i2k
h = data(js) - data(js2)
data(js) = data(js) + data(js2)
data(js2) = h * exj

end do
end do

end do

The need for a test that recognizes this situation was
discussed by Eigenmann [12]. Maslov [17] presented the
delinearization algorithm, which can handle any subscript
expression c0+

Pn

j=1
cjij with symbolic loop-invariant ex-

pressions for the cj's. Essentially, the delinearization al-
gorithm partitions the array expression into several inde-
pendent subexpressions and tests these partitions sepa-
rately for dependences. Haghighat [14] describes how to
prove that a subscript expression is strictly increasing or
decreasing. Although it cannot be used to prove inde-
pendence between two unequal subscript expressions, it is
able to handle a more general class of symbolic expres-
sions. For example, it can prove that there are no output
dependences for the array write a((i � i � i)=2 + j) = � � �,
where 1 � j � i. We are currently developing a symbolic
dependence test that can handle the examples we have
seen [2].

CONSTANT PROPAGATION

By propagating constant values along all execution paths
the constant value of program variables can be determined.
This aids the analysis of subscript expressions by elimi-
nating symbolic terms. Similarly, propagating symbolic
expressions may remove loop-variant variables from the
subscript expressions or may allow the compiler to deter-
mine additional relationships between these variables.

Interprocedural Constant Propagation with
Procedure Cloning

In our code analysis we have often found a need to propa-
gate values across procedure boundaries, sometimes with



the aid of procedure cloning[6]. For example, the code
OCEAN requires both techniques to parallelize seven of
its most important loop nests, accounting for 60% of the
program's serial execution time. One of those loops is
shown below. We have applied loop normalization, induc-
tion variable elimination, forward substitution, and dead
code elimination to transform the loop into this form.

do j = 0, mtrn-1
work(1) = c1 * ac(n + q*j + 1)
do i = 2, m/2, 1

temp1 = ac(p*(2*i - 1) + q*j + 1)
. - ac(p*(2*i - 3) + q*j + 1)

temp1 = c2 * temp1
temp2 = ac(p*(2*i - 2) + q*j + 1)
work(i) = temp1 + temp2
work(m-i+2) = temp1 - temp2

enddo
work(m/2 + 1) = c3

. * ac(p*(2*(m/2) - 1) + q*j + 1)
do i = 1, m, 1

ac(p*(i-1) + q*j + 1) = work(i)
enddo

enddo

The symbolic index expressions p*i + q*j for array ac
would disable traditional dependence tests, and symbolic
tests fail because the values for p, q, mtrn, and m are not
known and thus not comparable. The array privatization
pass would also have di�culties in proving that array work
is privatizable because the variable m must be evenly di-
visible by 2 for the entire array to be de�ned in the loop.
Interprocedural constant propagation can resolve all these
problems.

Guarded Constant Propagation

This technique deals with propagating values of variables
that can take on one of several constant values, dependent
upon the values of one or more boolean variables or ex-
pressions. We have found one code (ARC2D) where prop-
agating guarded constants are essential for parallelizing a
subroutine (filerx) that takes about 10% of the code's
parallel execution time. The de�nition of these constants
are:

L1 do j = 1, jmax
jplus(j) = j+1
jminu(j) = j-1

enddo
S1 if (.not. peridc) then

jplus(jmax) = jmax
jminu(1) = 1
jlow = 2
jup = jmax-1

else
jplus(jmax) = 1
jminu(1) = jmax
jlow = 1
jup = jmax

endif

And the simpli�ed body of routine filerx is:

L2 do n = 1, 4
L3 do j = jlow, jup

work(j) = ...

enddo
S2 if (.not. peridc) then

work(1) = ...
work(jmax) = work(jmax-1)

endif
L4 do j = jlow, jup

... = work(jplus(j)) - 2*work(j)
. + work(jminu(j))

enddo
...

enddo

If the constant propagation pass takes control

ow into account, it can see that jlow and jup
take one of two constant values, depending upon
the the constant boolean variable peridc. More
speci�cally, jlow = peridc ? 1 : 2 and jup = peridc ?
jmax : jmax-1 (borrowing the ?: expression from the C
language). Using this information, the compiler can deter-
mine that the range work(1:jmax) is de�ned at the start
of L4. Thus, the de�nitions of work cover every use in the
same iteration and array work can be privatized.
We have seen further examples in important sections of

the programs ARC2D,MDG, and QCD where control 
ow
must be taken into account in array def/use analysis for
array privatization. An algorithm that deals with these
situations was developed in a related project by Tu and
Padua [20].

SYMBOLIC CONSTRAINT

PROPAGATION

Symbolic constraint propagation gathers information from
the program that can determine equalities and inequalities
between program variables (e.g., a < b). This information
can then be used to �nd the relationship between two ar-
bitrary expressions. We have found this to be very useful
for a variety of compiler passes, including data dependence
analysis, array privatization, and dead code elimination.
Constraint propagation is needed by symbolic data de-

pendence analysis for several purposes, such as determin-
ing whether certain variables are non-zero. For example,
the following loop has no cross-iteration output depen-
dences from S1 to S1 if and only if n 6= 0.

do i = 1, 100
S1 a(n * i + c) = ...

end do

Constraint propagation can also be very useful at iden-
tifying that there is no dependence for array subscripts
containing loop variant variables. The code TRACK has
several important loops that need such an analysis. A
greatly simpli�ed version of one of these loops is:

ntrold = lsttrk
do k1 = 1, nm1

do kt = 1, ntrold
S1 if (k1 .ne. ihits(kt)) then ...

end do
if (...) then

lsttrk = lsttrk + 1
S2 ihits(lsttrk) = ...

endif
end do



Current data dependence tests are unable to compare
the use of ihits(kt) at statement S1 with the de�nition of
ihits(lsttrk) at statement S2 and would have to assume
that a dependence exists. However, using the fact lsttrk
> ntrold at S2, gathered by constraint propagation, a
compiler can determine that there is no dependence be-
tween S1 and S2. Haghighat [13] describes how a popular
data dependence test, (i.e., Banerjee's inequalities test),
can be extended to use symbolic constraint information.

The array privatization technique needs to determine
whether a range of array elements that is de�ned (e.g.,
a(1:m)) covers another range of elements used (a(1:n)).
This example involves the comparison of the bounds of
the ranges (i.e., is m � n?). Constraint propagation can
improve the accuracy of these tests. For example, in the
following time-consuming loop of the code BDNA

do i = 1, n
do k = 1, i-1

S1 xdt(k) = ...
end do
l = 0
do j = 1, i-1

if (...) then
l = l + 1

S2 ind(l) = j
end if

end do
do j = 1, l

S3 ... = xdt(ind(j))
end do

end do

the presence of the subscript array ind would prevent
the privatizer from determining any relationship between
the array ranges accessed in statements S1 and S3. How-
ever, the fact that ind(1:l) � i-1 found at S2 can be
propagated to S3, and hence the variable xdt can be pri-
vatized.

Dead code elimination of conditional statements has
turned out to be very useful in the context of last value
assignments generated by induction variable substitution.
The following excerpt of program TRFD has an induction
variable (mijkl) in a loop nest that is nested four deep.

do mi = 1, morb
do mj = 1, mi

...
do ml = mj, mi

xijkl(mijkl + ml - mj + 1) = ...
end do
if (mj - 1 .le. mi)

S1 mijkl = mijkl + mi - mj + 1
end if
...
do mk = mi + 1, morb

...
do ml = 1, mk

xijkl((mk*mk - mi*mi
. - mi - mk)/2
. + ml + mijkl) = ...

end do
end do
if (mi .le. morb) then

S2 mijkl = mijkl + morb
. + (morb*morb - mi*mi

. - mi - morb)/2
end if

end do
end do

The code example is taken after the induction variable
has been substituted in the inner two loops. The condi-
tional statements around S1 and S2 were inserted in this
process, which now prevents induction variable substitu-
tion from eliminating mijkl entirely from the loop nest.
However, by using constraint propagation, the compiler
can determine that both tests are always true, which al-
lows the outermost loop to be parallelized.

There has been some work in the determination of vari-
able constraints. Much work has been done in determining
the possible range, or interval, of values that variables can
take, for the purpose of array bounds checking or pro-
gram veri�cation [16, 5]. These algorithms, however, only
propagate integer ranges. Cousot and Halbwachs [10] of-
fer a powerful algorithm for determining symbolic linear
constraints between variables. Their algorithm is based
upon the calculation, intersection, and merging of convex
polyhedrons in the n-space of variable values. However,
their algorithm cannot handle nonlinear expressions such
as a < b � c. Although it is not too common, we have
seen cases where nonlinear bounds must be propagated
or nonlinear expressions must be compared. Because of
this, we will be looking into methods that can handle such
nonlinear expressions as well.

SUBSCRIPT ARRAY ANALYSIS

In our analysis of the Perfect Benchmarks R
, we have
found that a small but signi�cant fraction of subscripts in-
clude arrays (e.g., x(index(i)), which disable all known
data dependence tests. In a few of these cases the index
arrays are initialized to constant symbolic expressions at
the beginning of the program and never modi�ed. Hence,
any use of these arrays can be replaced with their constant
expressions. To our knowledge, there has not been any pre-
vious published work in this area. One example is a loop
nest in TRFD which, if not parallelized, accounts for 25%
of the parallel execution time. The loop uses a subscript
array IA that has the value IA(i) = (i � (i � 1))=2. This
knowledge can be used to parallelize the loop successfully.

In cases where subscript arrays are non-constant, there
can still be useful information to gather from the program.
Information whether the array is singly valued or mono-
tonically increasing or decreasing is very useful for elimi-
nating false dependences [18]. Knowing the di�erence be-
tween adjacent index array values also aids dependence
analysis. The minimum or maximum value of the array is
very useful for array privatization, as shown previously in
the example for the usefulness of constraint propagation
in BDNA.

One code that would bene�t greatly from subscript ar-
ray information is DYFESM. Most of the time-consuming
loops in this program include subscripted subscripts. Us-
ing the described information, we believe that many of
these loops can be identi�ed as parallel automatically.



RUNTIME TESTS AND OTHER

TECHNIQUES

Runtime Tests. Sometimes, proving that a loop is par-
allelizable at compile time is impossible or too expensive.
In these cases, runtime tests with two version loops may
parallelize them. For example, suppose that a given loop
cannot be parallelized unless a certain condition is true.
To handle this, the compiler inserts a conditional state-
ment that tests this condition. If it is true, a parallelized
version of the loop nest is executed. Otherwise, the pro-
gram executes the sequential version. We have seen situa-
tions where such techniques are applicable in the programs
DYFESM, ADM, and MG3D. The situations range from
simple tests, such as whether or not a variable is greater
than a threshold, to tests for more complex symbolic con-
ditions. Details and examples are given in [3].

There were a few other important symbolic analysis
techniques that were necessary for the e�ective paralleliza-
tion of the Perfect Benchmarks R
. Although these tech-
niques are computationally expensive or have limited ap-
plicability, we do believe they are worth mentioning. Again
we refer to [3] for more details.

Compile Time Interpretation. One important, but
very expensive technique is the compile time interpreta-
tion of programs. Essentially, the idea is to execute the
program without input data; that is, to perform abstract
interpretation [9] where the abstractions in the analysis
are kept to a minimum. One example is the determina-
tion of whether an array is �lled with the factors of some
scalar, which we have seen in program ADM. Another ex-
ample occurs in QCD, where much of the code cannot be
parallelized unless the control 
ow of a speci�c routine can
be determined. This 
ow is de�ned by the content of an
array that can be seen as an instruction stream. The rou-
tine interprets this stream to determine what operations
it should perform on other inputs.

Algorithm Recognition. Another expensive technique
required by some codes is algorithm recognition. Basi-
cally, the compiler must recognize that a given code frag-
ment implements a certain algorithm so that it may be
replaced with a parallel version. Algorithm recognition
and replacement can be feasible if the code fragments are
small and relatively simple. For example, some commer-
cial parallelizing compilers can replace matrix multiplies
or recurrences with library calls. When the algorithms to
be replaced are longer and more complicated, performing
algorithm recognition becomes more challenging. We have
met such situations in the programs QCD and SPEC77,
where the compiler must recognize a random number gen-
erator and a linear search in a sorted array, respectively.

SUMMARY

The techniques required to parallelize the Perfect
Benchmarks R
 and their importance are shown in Table 1.
A number in a cell for a speci�c code and technique is
the estimated slowdown incurred from the manually par-
allelized code if the technique could not be used; that is,
the slowdown equals te=ta, where te is the estimated time
taken with the technique disabled and ta is the time taken

by the manually parallelized version. The value te was cal-
culated by assuming that all important loop nests1 that
use the given technique could not apply the transforma-
tions that allowed the faster execution times for the nest
(i.e., such nests will have an execution time equal to the
time taken by the automatically parallelized version of the
loop nest). Other important loop nests, which did not use
the technique, have an execution time equal to the manu-
ally parallelized versions. An empty cell indicates that no
important loops use the given technique. The last column,
Automatable speedups, displays the speedup from the au-
tomatically parallelized codes to the manually parallelized
codes using only techniques that could be implemented in
a compiler, which is the ratio between the two bars of each
code in Figure 1.

One caveat to Table 1 is that the techniques are not
orthogonal. First, some techniques are dependent upon
information provided by others. For example, symbolic,
nonlinear expression data dependence tests almost always
need the information provided by constraint propagation
so that they can e�ectively compare expressions. Secondly,
some important loop nests can be parallelized by using
one symbolic analysis technique or another. The only ex-
amples that su�er from this problem in Table 1 are the
runtime test and compile time interpretion techniques for
ADM and MG3D. For these slowdowns, either of the two
techniques can be used to parallelize the important loop(s).

CONCLUSION

Other work has shown that current commercial paralleliz-
ing compilers perform poorly on real codes [4], and that
a compiler can theoretically achieve good speedups for
these codes [12, 11]. Motivated by this, we examined
the Perfect Benchmarks R
 to determine what symbolic
analysis techniques are required to get the observed good
speedups. The techniques that we identi�ed ranged from
minor extensions of current techniques to complex and ex-
pensive transformations. The most interesting of these
techniques are: symbolic, nonlinear expression data de-
pendence tests, constraint propagation, guarded constant
propagation, constant array propagation, subscript array
analysis, and the generation of run time tests. We are
currently implementing these techniques within the Po-
laris parallelizing compiler [19], which is being developed
at the University of Illinois.

We believe that the symbolic analysis techniques that
we have identi�ed, along with other powerful techniques
such as interprocedural analysis, array privatization, im-
proved handling of induction variables, and reduction par-
allelization, can signi�cantly improve the e�ectiveness of
parallelizing compilers on real codes. A preliminary im-
plementation of the nonlinear, symbolic data dependence
test and constraint propagation algorithm supports this;
it has been able to identify all the parallel loops for all the
examples in the symbolic, nonlinear data dependence sec-
tion. We also believe that some of these symbolic analysis
techniques will be bene�cial for other kinds of optimizing
compilers.

1We consider a loop nest as important if its parallelization may
signi�cantly a�ect the speedup of the entire program.



Nonlinear Inter. Guard. Con- Const. Run Compile Auto-
Code Depend. Const. Const. straint Array Array Time Time Alg. Matable

Anal. Prop. Prop. Prop. Prop. Anal. Tests Interp. Recog. Speedup

ADM 1.1 3.3 1.8 4:3y 4:3y 7.8
ARC2D 1.1 1.1 1.1 1.1 1.5
BDNA 2.1 2.1 4.1
DYFESM 3.6 3.1 3.6 3.6 3.9
FLO52 1.7
MDG 1.2 18.5 1.2 20.3

MG3D 36.9 36.9 36.9 36:9y 36:9y 36.9
QCD 11.3 19.0 19.0 19.0 19.0 11.4 19.1
OCEAN 8.3 11.5 8.3 1.5 12.2
SPEC77 2.4 6.4
TRACK 2.9 3.3 5.3
TRFD 18.2 18.2 1.4 18.2

yFor ADM and MG3D the given slowdown is incurred only if neither runtime tests nor compile time tests can be used.

Table 1: Estimated amount of slowdown on Cedar from manually parallelized codes if a speci�c symbolic analysis
technique could not be used.

REFERENCES

[1] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua.
Automatic Program Parallelization. Proceedings of the

IEEE, 81(2), February 1993.

[2] W. Blume and R. Eigenmann. The Range Test: A Depen-
dence Test for Symbolic, Nonlinear Expressions. Technical
report, Univ. of Illinois at Urbana-Champaign, Cntr. for
Supercomputing Res. & Dev., April 1994. CSRD Report
No. 1345.

[3] W. Blume and R. Eigenmann. Symbolic Analysis Tech-
niques Needed for the E�ective Parallelization of the Per-
fect Benchmarks. Technical Report 1332, Univ. of Illinois
at Urbana-Champaign, Cntr. for Supercomputing Res. &
Dev., January 1994.

[4] W. Blume and R. Eigenmann. Performance Analysis of
Parallelizing Compilers on the Perfect Benchmarks Pro-
grams. IEEE Transactions of Parallel and Distributed

Systems, 3(6):643{656, November 1992.

[5] F. Bourdoncle. Abstract Debugging of Higher-Order
Imperative Languages. Proceedings of the ACM SIG-

PLAN '93 Conference on Programming Design and Im-

plementation, pages 46{55, June 1993.

[6] P. Briggs, K. D. Cooper, M. W. Hall, and L. Torczon. Goal-
Directed Interprocedural Optimization. Technical report,
Rice University, November 1990. TR90-147.

[7] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torc-
zon. Interprocedural Constant Propagation. Proceedings

of the SIGPLAN `86 Symposium on Compiler Construc-

tion, pages 152{161, June 1986.

[8] T. E. Cheatham Jr., G. H. Holloway, and J. A. Townley.
Symbolic Evaluation and the Analysis of Programs. IEEE
Transactions on Software Engineering, SE-5(4):402{417,
July 1979.

[9] P. Cousot and R. Cousot. Abstract Interpretation: A uni-
�ed LatticeModel for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. Proceedings of

the 4th Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 238{252, January 1977.

[10] P. Cousot and N. Halbwachs. Automatic Discovery of Lin-
ear Restraints Among Variables of a Program. Proceedings
of the 5th Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 84{97, 1978.

[11] R. Eigenmann, J. Hoe
inger,G. Jaxon, and D. Padua. The
Cedar Fortran Project. Technical Report 1262, Univ. of
Illinois at Urbana-Champaign, Cntr. for Supercomputing
Res, & Dev., April 1992.

[12] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua. Ex-
perience in the Automatic Parallelization of Four Perfect-
Benchmark Programs. Lecture Notes in Computer Science

589. Proceedings of the Fourth Workshop on Languages

and Compilers for Parallel Computing, Santa Clara, CA,
pages 65{83, August 1991.

[13] M. Haghighat and C. Polychronopoulos. Symbolic Depen-
dence Analysis for High-PerformanceParallelizingCompil-
ers. In D. Gelernter, T. Gross, A. Nicolau, and D. Padua,
editors,Advances in Languages and Compilers for Parallel

Processing, pages 310{330. MIT Press, 1991.

[14] M. Haghighat and C. Polychronopoulos. Symbolic Anal-
ysis: A Basis for Paralleliziation, Optimization, and
Scheduling of Programs. Presented at the sixth An-

nual Languages and Compilers for Parallelism Workshop,

Portland, OR, August 12{14, 1993.

[15] M. Haghighat and C. Polychronopoulos. Symbolic Pro-
gram Analysis and Optimization for Parallelizing Compil-
ers. Presented at the �fth Annual Workshop on Languages

and Compilers for Parallel Computing, New Haven, CT,
August 3{5, 1992.

[16] W. H. Harrison. Compiler Analysis of the Value Ranges for
Variables. IEEE Transactions on Software Engineering,
SE-3(3):243{250, May 1977.

[17] V. Maslov. Delinearization: an E�cient Way to Break
Multiloop Dependence Equations. Proceedings of the SIG-
PLAN `92 Conference on Programming Language Design

and Implementation, pages 152{161, June 1992.

[18] K. S. McKinley. Dependence Analysis of Arrays Sub-
scripted by Index Arrays. Technical report, Rice Univer-
sity, June 1991. TR91-162.

[19] D. Padua, R. Eigenmann, J. Hoe
inger, P. Petersen, P. Tu,
S. Weatherford, and K. Faigin. Polaris: A New-Generation
Parallelizing Compiler for MPP's. Technical Report 1306,
Univ. of Illinois at Urbana-Champaign, Center for Super-
computing Res. & Dev., June 1993.

[20] P. Tu and D. Padua. Automatic Array Privatization. Pre-
sented at the Sixth Annual Languages and Compilers for

Parallelism Workshop, Portland, OR, August 12-14, 1993.

[21] M. N. Wegman andK. Zadeck. Constant Propagationwith
Conditional Branches. ACM Transactions on Program-

ming Languages and Systems, 13(2):181{210, April 1991.

[22] M. Wolfe. Beyond Induction Variables. Proceedings of

the SIGPLAN `92 Conference on Programming Language

Design and Implementation, pages 162{174, June 1992.

[23] H. P. Zima and B. M. Chapman. Supercompilers for Par-

allel and Vector Computers. ACM Press, New York, 1991.


