
Restructuring Fortran Programs for Cedar �

Rudolf Eigenmann, Jay Hoe
inger, Greg Jaxon, Zhiyuan Li, David Padua
Center for Supercomputing Research & Development

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Abstract

This paper reports on the status of the Fortran translator for the
Cedar computer at the end of March, 1991. A brief description of
the Cedar Fortran language is followed by a discussion of the for-
tran77 to Cedar Fortran parallelizer that describes the techniques
currently being implemented. A collection of experiments illustrate the
e�ectiveness of the current implementation, and point toward new ap-
proaches to be incorporated into the system in the near future.

1 Introduction

The University of Illinois has been a pioneer in the development of program trans-
lation techniques for vector and parallel computers since the late 1960s, when Illiac
IV was developed. It is therefore natural that automatic parallelization has become
one of the major concerns of the Cedar project, the latest machine building e�ort
of the University of Illinois.

The Cedar machine is a hierarchical multi-processor. It supports several levels
of parallelism and provides data storage at the processor, cluster, and system levels.
The Cedar architecture links multiple clusters together with global memory mod-
ules. Each cluster contains multiple processors (linked by a concurrency control
bus), local memory, and a shared data cache. Each processor contains a private
instruction cache, scalar and vector registers, plus special instructions to support
concurrent execution at the cluster level. Refer to Figure 1 for more detail about
the architecture.

�This work was supported by the U.S. Department of Energy under Grant No. DOE
DE-FG02-85ER25001. This paper is a modi�ed version of a paper presented at the Inter-
national Conference on Parallel Processing, held in St. Charles, Illinois, August 12 - 16,
1991.

1

...

...

...

...

Cluster

8x8 Switch

8x8 Switch

.
 .
 .

SP

GMM

...

...

...

...

Cluster

8x8 Switch

8x8 Switch

.
 .
 .

SP

GMM

...

...

...

...

8x8 Switch

8x8 Switch

.
 .
 .

SP

GMM

...

...

...

...

SYSTEM

CE CE CE...

Cluster Switch

4−Way
Interleaved
Cache Global

Interface

...

Memory Bus

CMM CMM CMM I/O

Concurrency Control Bus

To
Global
Switch

Scalar
Registers

Vector
Registers

CLUSTER

COMPUTATIONAL
 ELEMENT

+−

*

Instruction
Cache

GMM−Global Memory Module
CMM−Cluster Memory Module
SP−Synchronization Processor
I/O−Input/Output Subsystem

C
E

C
E

C
E

..
.

C
lu

s
te

r
S

w
it
c
h

4
−

W
a

y
In

te
rl
e

a
v
e

d
C

a
c
h

e
G

lo
b

a
l

In
te

rf
a

c
e

..
.

M
e

m
o

ry
B

u
s

C
M

M
C

M
M

C
M

M
I/
O

C
o

n
c
u

rr
e

n
c
y
 C

o
n

tr
o

l
B

u
s

Cluster

Figure 1: The Cedar Architecture

2

The Cedar machine existed in two, very similar con�gurations during the time
when the experiments in this paper were run. Both consisted of four clusters of
eight processors each, 512 kilobytes of shared data cache per cluster, and a two-
stage interconnection network consisting of a forward and a backward path made
of 8x4 and 4x8 crossbars. Con�guration 1 had 64 megabytes of global memory
and four clusters of 16 megabytes of local memory each. Con�guration 2 used 64
megabytes of global memory and four clusters of 64 megabytes of local memory
each.

The most frequent use of supercomputers today is in the execution of scien-
ti�c programs that are dominated by numerical algorithms. Furthermore, parallel
numerical algorithms have been studied extensively and are relatively well under-
stood. For these reasons we have used, and plan to use in the near future, mostly
numerical applications to study Cedar's behavior and performance. Because For-
tran is the dominant language in numerical computing today, most of the compiler
e�ort has been devoted to the design and implementation of Fortran translators.

Even though we emphasize numerical computing, it is not our only interest.
We believe that Cedar is a general-purpose computer that should also perform
e�ectively on non-numerical problems. Therefore, some e�ort has been devoted
to the implementation and study of the behavior of parallel symbolic programs
and more work in this area is planned. To support this e�ort we are developing
parallelizing compilers for symbolic computing languages such as LISP [13] and
PROLOG, as well as for C.

Our Fortran translation system, which is shown in Figure 2, consists of two com-
ponents. The back-end compiler, a modi�ed version of the Alliant Fortran compiler,
generates machine code for Cedar from programs written in Cedar Fortran, a
parallel programming dialect described in Section 2. Cedar Fortran gives the
programmer access to the main architectural features of the machine, including all
levels of parallel execution and memory hierarchy.

A programmer developing a new supercomputer application, who is concerned
with performance and knowledgeable about parallelism and the target machine,
could use Cedar Fortran exclusively. In fact, many of the programs developed
by the applications and algorithms researchers on the Cedar project have been
written in Cedar Fortran.

Some programmers, however, �nd it more desirable or even necessary to write
in a conventional programming language such as fortran77, because they are not
interested in learning the machine details or investing the extra time required to
develop a parallel program. Programmers also may want to use existing fortran77
code (sometimes called \dusty decks") instead of writing a new program, or he or
she may want to build a new program using a large fraction of existing sequential
code. Another motivation for using fortran77 is that parallel source programs
are cumbersome to port, in part because of the lack of widely accepted standards.
This is in contrast with fortran77 programs, which can be ported relatively easily
to most machines (especially if portability was taken into consideration when the
program was written).

3

Parallelizer

Back−end Compiler

Cedar Fortran

Fortran 77

Object Code

Figure 2: Fortran translation for Cedar

The parallelizer (also referred to in this text as the restructurer) in Figure 2
was developed for programmers who prefer or need to program Cedar using for-
tran77. It is based on a 1988 version of the KAP restructurer, a product of Kuck
and Associates (KAI). We modi�ed KAP, as discussed in Section 3, to take into
account those architectural characteristics of Cedar that distinguish it from other
shared-memory multiprocessors. As discussed in Section 4, we are in the process
of evaluating the present version of the parallelizer [2] and studying approaches to
make it more e�ective. Some positive results have already been obtained, but we
are still far from the goal of succeeding most of the time in automatically producing
e�ective Cedar code from sequential fortran77 programs.

2 Cedar Fortran

2.1 Language Description

Cedar Fortran was designed with two purposes in mind: to be the output lan-
guage for the Cedar restructurer and to be a programming language for expressing
parallel programs. The result is a language with minor syntactic extensions to
fortran77, yet with the expressive power to make full use of the architectural
features of the Cedar machine [12].

Cedar Fortran has many features in commonwith the ANSI Technical Com-
mittee X3H5 standard for parallel Fortran (whose basis was PCF Fortran, developed
by the Parallel Computing Forum), including parallel loops, loop-local data decla-
rations, declarations for the visibility of data, and constructs to support post/wait
synchronization.

Vector operations are provided in Cedar Fortran. Assignment and all arith-
metic operators work for vectors as well as for scalars. Some vector reduction in-
trinsics are also provided, such as sum and dotproduct. Also part of the language
is the fortran90 WHERE statement for masked vector assignments.

4

Two types of parallel loops exist in Cedar Fortran: DOACROSS and DOALL.
A DOACROSS loop is called an ordered parallel loop, because its iterations start in
the same order as they would if the loop were sequential. This guarantees correct
execution if cascade synchronization is used in the DOACROSS loop body. In cascade
synchronization, signals are passed from earlier iterations to later ones, for the
purpose of maintaining a sequential ordering of the execution of a particular portion
of the loop body. An example of using cascade synchronization in a DOACROSS loop
may be seen in Figure 4.

The DOALL loops are called unordered parallel loops, because no assumptions
can be made about the order in which the iterations will be executed.

The syntactic form of all these loops is similar to that of a fortran77 DO loop,
but they have a few extra components as shown in Figure 3.

8<
:

C

S

X

9=
;
�

DOALL

DOACROSS

�
index = start ; end [; incr]

[local declarations]

�
preamble
LOOP

�

body�
ENDLOOP

postamble

�
(only SDO or XDO)

END

8<
:

C

S

X

9=
;
�

DOALL

DOACROSS

�

Figure 3: Concurrent loop syntax

There are three classes of loops in Cedar Fortran: cluster loops using the
pre�x C, spread loops using the pre�x S, and cross-cluster loops using the pre�x X.

CDOALL and CDOACROSS loops cause all processors on a single cluster to join in
the execution of the loop body. SDOALL loops cause a single processor on each Cedar
cluster to begin execution of the loop body. CDOALL loops are often nested inside
SDOALL loops to engage all processors on each cluster. An XDOALL loop causes all
processors on all clusters to begin executing the loop body.

Data declared local to CDO and XDO loops (see Figure 3) is visible to only a
single processor. Each processor has its own copy of this data. Data declared local
to an SDO loop is visible to all processors of a single cluster. The preamble of the
loop is executed once by each processor that joins the loop, prior to execution of

5

the loop body. The loop postamble is not currently available for CDO loops, but
may be used for SDO and XDO loops. It is executed once by each processor after the
processor �nishes all its work on the loop.

CDOACROSS i=1,n

c(i) = d(i) + e(i)

g(i) = f(i) * h(i)

call await(1,1)

b(i) = a(i) + b(i-1)

call advance(1)

END CDOACROSS

Figure 4: Cascade synchronization in DOACROSS

Cedar Fortran provides statements for explicitly declaring data outside loops
to be visible to

� all processors on all clusters, or

� all processors on a single cluster.

By default, data declared outside of loops in Cedar Fortran programs is
visible to all processors on a single cluster.

GLOBAL var [; var] : : :
CLUSTER var [; var] : : :

PROCESS COMMON = name = var [; var] : : :

COMMON = name = var [; var] : : :

Figure 5: Cedar Fortran data declaration statements

The GLOBAL and PROCESS COMMON statements (see Figure 5) declare data that
is visible to all processors on all clusters. A single copy of this data exists in global
memory, and any processor with the address of one of these data items may access
it.

The CLUSTER and COMMON statements declare data that is visible to all processors
on a single cluster. A separate copy of this data exists in each cluster participating
in the execution of the program.

The Cedar Fortran language is fully described in [16].

6

2.2 Implementing Cedar Fortran on Cedar

2.2.1 Parallel loops

The parallel loops of Cedar Fortran are all self-scheduled, by default, through a
technique called microtasking [3]. CDO loops use microtasking supported by special
concurrency hardware within the Alliant FX/8. This hardware is used for dispatch-
ing iterations of CDO loops and for synchronizing between iterations of CDOACROSS
loops.

SDOALL and XDOALL loops use microtasking supported by the Cedar Fortran

runtime library. The library starts a requested number of helper tasks (\implicit
tasks" in IBM terminology [18]) which remain idle until an SDOALL or XDOALL loop
starts. At that time, the helper tasks begin competing with the main task for
iterations of the loop.

2.2.2 Tasking

Subroutine-level tasking is also supported by the Cedar Fortran runtime li-
brary. In subroutine-level tasking, a new execution thread is formed for running
a subroutine. When the subroutine returns, the thread ends. Two ways of doing
subroutine-level tasking are available: via a new cluster task built by the oper-
ating system at the time the thread is started (via a ctskstart call), or via an
already-existing helper task (the thread is started via an mtskstart call).

The ctskstart mechanism involves much higher overhead, but it allows unre-
stricted forms of synchronization. On the other hand, synchronization instructions
are not allowed in threads started with mtskstart because of the possibility of
deadlock in our implementation of the microtasking approach. This deadlock po-
tential arises from the fact that a helper task remains associated with a thread until
it completes its execution. Because no context switching is allowed, when the num-
ber of helper tasks is smaller than the number of threads, waiting for threads that
have not been scheduled on any helper task may produce deadlock. On the other
hand, in the right situations, the mtskstart mechanism provides a low-overhead
mechanism for subroutine-level tasking, making possible the use of a �ner grain of
parallelism.

2.2.3 Vector prefetch from global memory

The Cedar machine provides hardware to prefetch data from global memory. The
back-end compiler generates instructions to trigger the prefetch mechanism prior
to the vector fetching of global data. The data is prefetched into a special bu�er
attached to the processor that issued the prefetch request. Once data is in the
prefetch bu�er, it is available to the processor at cache speed. Ideally, the prefetch
trigger instruction should be placed as early in the instruction stream as possible,
so that the data is in the bu�er when it is needed. The back-end compiler generates

7

a prefetch instruction for 32 elements before each vector register load instruction
whose source is in global memory.

3 Automatic Parallelization

More than two decades of research in parallelization [21, 25] have produced many
commercially available parallelizers. Some are embedded within machine-speci�c
compilers whereas others, notably VAST from Paci�c Sierra Research, and KAP
from Kuck & Associates, Inc. [20], are machine independent and have been targeted
for many di�erent machines.

These parallelizers convert sequential programs into vector/concurrent code
that in some cases runs signi�cantly faster than the original version. However,
there is still much room for improvement, and as a consequence there is a need for
new analysis and restructuring techniques and for a more comprehensive evaluation
of the capabilities and limitations of today's techniques.

New developments in computer architecture produce new problems in paral-
lelization. Recent examples are multiple functional unit machines and distributed mem-
ory multiprocessor architectures. In the case of Cedar, the problem is to generate
code for a hierarchical memory multiprocessor, where the processors are organized
into clusters and there are three levels of parallelism (across clusters, inside clusters,
and the vector pipelined parallelism of the processors).

Particularly important when generating code for Cedar is the existence of clus-
ter memory which can be used in addition to the global memory to achieve good
performance. Data references which are redirected from global memory to cluster
memory make use of the cluster data cache, plus reduce global memory bank con-
tention. Aggressive data privatization can be used to store data in cluster memory.
Domain decomposition, whether applied automatically by the compiler or through
user directives, also holds promise as an e�ective way to make use of cluster memory.
Domain decomposition involves partitioning data structures and storing the parts
in local memory modules accessible by only a subset of the processors. Domain
decomposition techniques can also be used when compiling for distributed-memory
computers.

Thanks to the global memory, domain decomposition is not as critical in Cedar
as it is in distributed memory machines and, in at least some cases, simple data al-
location strategies (e.g. the privatization algorithms discussed below) are su�cient
to produce e�ective parallelization for Cedar.

3.1 The Cedar Fortran restructurer

Cedar Fortran's restructurer is built on KAP. It accepts fortran77 extended
with a subset of the vector operations in the fortran90 standard. Our modi�ed
version also accepts declarations indicating whether a variable or array is to be
stored in global or cluster memory, and whether a COMMON block is to be visible

8

to all cluster tasks or to only one of them. The restructurer produces Cedar

Fortran source code as output.
The following subsections present the restructuring techniques we incorporated

into KAP. Besides implementing these techniques, we further modi�ed KAP by
rewriting or extending several transformations including scalar expansion, stripmin-
ing, DOACROSS synchronization, IF to WHERE conversion, recurrence and reduction
recognition, inline subroutine expansion,
oating of loop bound-related calculations,
and last-value assignments.

3.2 Stripmining, Globalizing, and Privatizing

The general restructuring scheme is illustrated by the following simple loop:

DO i=1,n

a(i) = b(i)

END DO

After detecting that the loop iterations are independent, the restructurer gen-
erates a parallel version that can be executed on all processors in Cedar. In or-
der to exploit all levels of parallelism in Cedar, the iteration space may be strip-
mined [22, 25] so that in each iteration a separate strip of data is processed in vector
form. The loop can be restructured into the following form:

GLOBAL a,b,strip,n

XDOALL i=1,n,strip

a(i:MIN(i+strip-1,n))= b(i:MIN(i+strip-1,n))

END XDOALL

For a given loop, the optimal strip length depends on the total number of
iterations and the number of processors that participate. When these quantities
are not known at compile time, we use default values. In general, XDOALL and
stripmining are used when only one loop in a nest is parallelized. When several
nested loops are parallelized, the outermost loop is transformed into a SDOALL,
and the second to the outermost is transformed into a CDOALL loop. If there are
only two nested parallel loops, the innermost is also stripmined to generate vector
statements.

In the translated version above, the GLOBAL declaration makes a,b,strip and n

visible to all processors on all clusters. This statement is generated by the globaliza-
tion pass, which identi�es the variables used in parallel loops involving processors
from di�erent clusters and then marks them as GLOBAL. Any variable used by the
processors in a single cluster is marked as CLUSTER by the globalization pass.

The privatization pass looks for scalar variables whose value does not cross
iteration boundaries, and marks them as local to the loop. It is worth noticing that
some of the storage introduced by the compiler such as the bounds computed for

9

the inner loop after stripmining can be kept private. An example of privatization
is shown next.

DO i=1,n

t = b(i)

a(i) = sqrt(t)

END DO

+

GLOBAL a, b, strip, n

XDOALL i=1,n,strip

INTEGER upper, i3

REAL t(strip)

i3 = MIN(strip,n-i+1)

upper = i + i3 - 1

t(1:i3) = b(i:upper)

a(i:upper) = sqrt(t(1:i3))

END XDOALL

Here, upper, i3, and t are declared to be private to the processors executing
the parallel loop through the declaration statements within the loop.

Privatization is related to scalar expansion [28] which expands a scalar into
an array if all references to the scalar in iteration i of the loop can be replaced
by references to the ith element of the array. Privatizing expands the storage for
the scalar to one cell per processor. The restructurer searches for the privatizable
usage pattern at every level in a loop nest. It creates temporary storage using a
combination of privatization and scalar expansion. In vector loops, scalar expansion
is applied, while privatization is applied in concurrent loops. Sometimes the array
bounds of expanded scalars need to be computed at runtime.

Both the globalization and privatization passes cooperate with the code that
judges the best execution mode for each loop. However, an inherent di�culty of
statically deciding the placement of a data item is that the decision a�ects the
execution time of all parts of the program where the data item is used. Placing an
array in global memory may bene�t some parallel loops, but slow down some serial
loops that cannot take advantage of the vector prefetch facilities. In most cases,
these costs and bene�ts cannot even be calculated at compile time, yet placement
must be done for every data item. Data placement choices are also complicated by
EQUIVALENCE and COMMON block relations between variables.

Often the placement analysis must span procedure boundaries. The Cedar
restructurer provides inline expansion of subroutine calls as an option to reduce
the number of routine boundaries and meet some interprocedural analysis needs.

To simplify the static placement problem, there is a user-settable (global or
cluster) default allocation for all data whose usage may cross a routine boundary,

10

which we call interface data; this includes COMMON blocks and all formal and actual
parameters in subroutine and function calls. Where no single choice is satisfactory,
the programmer can force the placement of particular variables using the GLOBAL

or CLUSTER declarations mentioned above.

3.3 Reductions, Recurrences, and Synchronization

The Cedar restructurer recognizes loops that can be parallel if the order of their
arithmetic or logical operations is allowed to change. Loops such as dot products,
linear recurrences (e.g., X(i) = X(i-1)*B(i) + C(i)) and minimum/maximum
searches are replaced by calls into a library of Cedar-optimized functions. For
example, a dot product can be distributed to all Cedar processors, its partial results
being summed up in two steps: within each cluster, then across the clusters. When
a parallel dotproduct routine was used in the Conjugate Gradient algorithm [23],
it cut the execution time of the whole program in half compared to the version of
the program that used dotproduct vectorized on one processor only.

To make use of a library routine, the restructurer must often distribute an
original loop to isolate those computations done by library code, which adds loop
control overhead, reduces the average grain size of parallel activity, and reduces
the e�ectiveness of the machine's registers. The payo� comes from the wealth of
algebraic and programming insight that library authors use to reduce operation
counts and memory references [5, 8].

Loops where di�erent iterations may use the same storage cell can usually be
concurrentized as DOACROSS loops. Uses of the shared location(s) are serialized by
the await and advance functions in the concurrency control hardware, while the
rest of the loop executes in parallel. The Cedar restructurer inserts the smallest
set of synchronization instructions that will su�ce [24].

When considering a DOACROSS loop version, the restructurer lowers its estimate
of the bene�t owing to parallel execution by a synchronization delay factor. In-
tuitively this is the size of the synchronized region (as a fraction of one iteration)
divided by the number of processors that may be executing it concurrently.

3.4 Optimization Alternatives

Once parallelism has been recognized, there are still many ways that concurrent
activity can be scheduled. Cedar's cluster architecture makes interprocessor com-
munication cost less within a cluster than between clusters. For some loops it is
not certain that a DOALL form could activate other clusters quickly enough to be
of bene�t. In others, the compiler must guess whether a DOACROSS could pass a
synchronization signal through 8 or 32 processors fast enough to outperform the
same loop distributed into serial DOs and parallel DOALLs. An understanding of the
interaction of Cedar's many components and the overhead costs involved is still
taking shape.

11

To �nd the right match between loop levels and hardware levels, the restruc-
turer considers a whole loop nest at one time. A central coordinator tries out many
potential transformations such as how loops in a nest might be interchanged, paral-
lelized, or stripmined, and which data must then be placed in global memory. The
many sources of parallelism and synchronization in Cedar can make the number of
alternatives to consider become quite large.

Currently, the restructurer uses simple heuristics to identify transformed pro-
gram versions worth further consideration. A user-settable hard limit (50 by de-
fault) keeps the number of candidate versions manageable. We believe that as the
number of alternatives increases, so does the number of near-optimal ones; this
should allow us to keep the heuristics simple and still be con�dent of �nding a good
translation of a loop.

4 Experiments

In this section we discuss some of the experience we have accumulated in the au-
tomatic parallelization of the Perfect Benchmarks R
 programs [26] and some linear
algebra routines from Numerical Recipes [27]. The work reported below is part of
an ongoing study whose goal is to learn about the limitations of the current ver-
sion of the parallelizer as well as to develop new automatic techniques that, once
incorporated in the parallelizer, would overcome these limitations.

This section is divided into two parts. In the �rst part we study the general
ability of the restructurer to detect parallelism. This is a summary of work we
have reported in [7], plus some new results. The transformations in this part are
suitable for any parallel machine. In the second part we address some issues speci�c
to compiling for the Cedar architecture.

4.1 Parallelism Detection

After the preliminary version of the parallelizer as described in Section 3 was com-
pleted, we started to study its e�ectiveness on small routines and synthetic loops.
The initial results were encouraging. Table 1 shows the speedup results for a set of
linear algebra routines.

The �rst routine is a conjugate gradient algorithm [23]; the other routines
are from Numerical Recipes [27]. The data size shown in the second column in
most cases represents the number of rows and columns of the input matrices. The
speedup values refer to the increase in speed of the parallelized version run on Cedar
versus the serial (scalar) form. In many cases satisfactory speedups are achieved.
In fact, in all but two of the routines the compiler was able to parallelize all major
loops.

The size of the input data set has a great in
uence on performance and speedup,
because, as the amount of computation grows, it overcomes the negative e�ect due
to the parallel loop overhead and due to the fetching of data from global memory.

12

Some of the routines exhibit very good speedups with relatively small data sets.
Other routines start low, and their speedup is still improving when the size reaches
1000.

One particularly interesting case is that of routine mprove, which has a sharp
increase in speedup when the size reaches 1000. The reason for this increase is
the paging behavior of the serial version. The data for the serial version is all
stored in the memory of a single cluster. For sizes greater than 800, the amount of
data needed in the serial version exceeds the the size of physical memory, causing
thrashing, whereas the data of the parallel version �ts in the larger global memory.
Similar e�ects contribute to the high speedups of the CG algorithm.

Routine Data size Speedup
CG 400 163

ludcmp 1000 9.2
lubksb 1000 6.8
sparse 800 29
gaussj 600 10
svbksb 200 32
svdcmp 200 7.2
mprove 1000 1079
toeplz 800 1.3
tridag 800 2.1

Table 1: Speedups of automatically restructured linear algebra routines on Con�g-
uration 1 of the 32-processor Cedar

As part of this study, we also ran several of the programs in the Perfect Bench-
marks suite, which are complete applications ranging in size from a few hundred to
a few thousand lines of code. The results obtained were less satisfactory, as shown
in Table 2, where the speedups obtained on both Cedar and the Alliant FX/80 are
presented. It must be noted that the \Automatically Compiled" results listed for
Cedar in the table were run on Con�guration 1 of the Cedar machine (as mentioned
in the Introduction), while the \Manually improved" results for Cedar were run on
Con�guration 2 of Cedar. This di�erence in con�guration should have had very
little e�ect, limited to possibly reducing the speedup for the \Manually improved"
programs by reducing page faults for the sequential version of the programs.

As can be seen from Table 2, in several cases practically no speedup was ob-
tained automatically. Our experience with these codes corresponds to that reported
by many computer vendors, who have obtained for these programs a performance
far below their machine's theoretical peak. Analyzing the restructured codes by
hand, we have found that many of the di�culties result from the general weakness
of the existing restructuring technology and not from the target architecture or the
algorithms used.

In our hand analysis [7], we examined the loops of the restructured program. If

13

program Automatically Manually Manual speedup
Automatic speedup

compiled improved
FX/80 Cedar FX/80 Cedar FX/80 Cedar

ARC2D 8.7 13.5 10.6 20.8 1.2 1.5
FLO52 9.0 5.5 14.6 15.3 1.6 2.8
BDNA 1.9 1.8 5.6 8.5 2.9 4.7

DYFESM 3.9 2.2 10.3 11.4 2.6 5.2
ADM 1.2 0.6 7.1 10.1 5.9 16.8
MDG 1.0 1.0 7.3 20.6 7.3 20.6
MG3D 1.5 0.9 13.3 48.8 8.9 54.2
OCEAN 1.4 0.7 8.9 16.7 6.4 23.9
TRACK 1.0 0.4 4.0 5.2 4.0 13.0
TRFD 2.2 0.8 16.0 43.2 7.3 54.0
QCD 1.1 0.5 2.0 1.81 1.8 3.8

SPEC77 2.4 2.4 10.2 15.7 4.3 6.5
Average manual improvement: 4.5 17.2

Table 2: Speedups versus serial for Perfect Benchmarks programs on Alliant FX/80
and Cedar

a loop was not parallelized by the restructurer, we studied the reason. If the prob-
lem resulted from limitations of the parallelizer, we tried to use more aggressive
strategies and hand-parallelize the loop when possible. Throughout this process,
we limited ourselves to automatable analyses and transformations rather than pur-
suing a complete analysis of the application problems and their numerical solutions.
We restricted our work to automatable techniques because our goal is to improve
the parallelizer. Those automatable techniques that we found successful will be
incorporated into later versions of the parallelizer.

The methodologywe used, in general, was to present the original serial programs
to the restructurer, then hand-modify the resulting parallelized form. We built
many tools to assist us in this very time-consuming and tedious work. Some of
them are described in [6, 14].

Preliminary results from our experiment are encouraging. For the twelve pro-
grams we show in Table 2, by calculating the ratio of the speedup for the manually
transformed code to the speedup for the automatically transformed version and av-
eraging, the codes targetted at the Alliant FX/80 perform an average of 4.5 times

1A random number generator produces a dependence cycle in QCD which serializes half
of the computation. The speedup value from the table (1.8) is the result when both halves
of the cycle are serialized. If only the lexically forward dependence is serialized with a
critical section, then a speedup of 4.5 is obtained. If the dependence is not serialized at all,
(for instance, if the random number is replaced with a parallel random number generator),
then a speedup of 20.8 is obtained. Only when the cycle is completely serialized does the
code pass the Perfect Benchmarks validation test.

14

better than the automatically restructured codes. Applying the same calculation to
the codes targetted for Cedar, the manually-transformed codes perform an average
of more than 17 times better than the automatically restructured codes. When
reading Table 2, keep in mind that these are speedups of the vector-concurrentized
code versus the serial/scalar code, therefore speedup numbers greater than the
number of processors involved are possible.

The rest of this section discusses some of the techniques we applied by hand to
obtain the improved performance shown in Table 2. We believe that most of these
techniques can be automated.

4.1.1 Compiling in the presence of interprocedural information

Our compiler currently relies on inlining [17] for interprocedural analysis. Inlining
replaces call statements with the text of the called subroutine. However, in many of
the Perfect programs, inlining fails. Sometimes subroutine calls are so deeply nested
that inlining causes the compiler to run out of memory for its data structures. In
other cases, array reshaping across subroutine boundaries causes the subscripts of
the arrays in a loop to become too complex for the dependence analyzer to analyze.

For our hand-analysis, we quite often did the analysis in the presence of in-
terprocedural information. This means that whenever we needed information that
could not be found in the subroutine itself, we crossed procedure boundaries to get
it, keeping in mind the control
ow of the program. Sometimes, our techniques
required that constants or relations between variables be propagated interprocedu-
rally. Rather than attempt to propagate all constants, and all possible relations
in a separate pass, we would proceed with a transformation technique until some
constant or relation was needed, then do the propagation for just the object needed.
This was particularly important for relations, for it allowed us to put the relations
in precisely the form in which they were needed.

Interprocedural summary information was also very useful. It involved simply
keeping track of which interface variables were used and de�ned by a particular
routine and all of the routines which it called. This helped us to focus on the de-
pendences within a subroutine which prevented it from being called from a DOALL
loop, and to �nd techniques to deal with them.

4.1.2 Array privatization

One of the most important techniques which we employed by hand was array pri-
vatization. This transformation is closely related to scalar privatization, discussed
in Section 3.2. The pattern of de�nition and use for a privatizable array is the same
as it is for a privatizable scalar. Any element used must have �rst been de�ned.

The privatization of arrays is important for two reasons. First, it enables paral-
lelization by removing dependences from the loop. Second, it allows the data in the
array to reside local to the processor executing a particular iteration of the loop,
reducing memory latency. Both of these e�ects are useful for all parallel machines.

15

We encountered many privatizable arrays in the Perfect codes. Most were
very easy to recognize. Some were more di�cult, requiring the propagation of
relational information, sometimes across procedure boundaries. Array privatization
was important for all of the Perfect programs.

4.1.3 Parallel reductions

Statements of the type sum = sum + a(i) form a cycle in the data-dependence
graph, which usually serializes the loop. The fact that the sum operation is com-
mutative permits a parallel execution that accumulates partial sums on each pro-
cessor. The partial sums can be accumulated after the loop or added inside the
loop in a (possibly unordered) critical section.

Quite often in the Perfect Benchmark codes we found loops which contained
multiple accumulation statements, e.g.

DO 100 i=1,n

DO 100 j=1,m

. . .

a(j) = a(j) + <expression1>

. . .

a(j) = a(j) + <expression2>

. . .

a(j) = a(j) + <expression3>

. . .

100 CONTINUE

While our restructurer could handle forms like sum = sum + a(i), it was not
prepared for multiple accumulation statements, nor for accumulation locations
which were array elements.

The parallel reduction transformation turned out to be important for the rou-
tines BDNA, DYFESM, MDG, MG3D, and SPEC77. In MDG, very little speedup
is possible without it.

4.1.4 Generalized induction variables

In Fortran DO loops, array subscripts often use the values of induction variables [1]
which are updated in each iteration in the form of V = f(V, K), where the values
produced by f are monotonically increasing (e.g. V = V + 1). Such a recursive
assignment causes cross-iteration
ow dependences. If a compiler can solve such
a recursion and rewrite each induction variable in terms of the loop indices, for
example, V = g(A, I, B, J), where I and J are loop indices and A and B are loop
invariants, then the appearance of V in array subscripts can be replaced by the
expression g(A, I, B, J). The recursive assignment (and the dependence) can be
eliminated as a result. There are well-known compiler techniques for recognizing
and replacing an induction variable whose values form an arithmetic progression.

16

These techniques typically deal with induction variables assigned in the form of V
= V + K.

In our experiment with the Perfect codes, we found induction variables whose
values do not constitute arithmetic progressions. Here we call them generalized in-
duction variables or GIVs. We found two types of GIVs. The �rst type is updated
using multiplication instead of addition, thus forming a geometric progression. The
second type is updated using addition, but forms no arithmetic progression nonethe-
less because the loops are triangular, that is, an inner loop limit depends on the
value of an outer loop index. For both types of induction variables that we found
in the Perfect code, we were able to determine the closed form expression for the
value of the GIV. In the program OCEAN, one loop could be parallelized and sped
up by a factor 15.8, thanks in part to the recognition of the multiplicative GIVs
(that loop takes 46% of the serial execution time of the program). In the program
TRFD, we found generalized induction variables of the second type.

4.1.5 Run-time dependence test

When the subscript expressions within loops contain variable coe�cients, or the
loop bound expressions contain variables, or both, traditional dependence tests
have di�culty determining independence and therefore, in most cases conservatively
assume that a dependence exists.

In the cases in which it is not possible to symbolically eliminate the variables
from the subscript expressions and the loop bounds, the existence of a dependence
cannot be known until run-time, when the values of the variables are �xed. All a
compiler could do in such cases is to insert a dependence test which executes prior
to the loop itself, using the values of the variables.

In OCEAN, 65% of the serial execution time of the program is spent in loops
which contain potential dependences due to complex indexing expressions for singly-
dimensioned arrays. The arrays are used inside multiply-nested loops. Both the
indexing expressions and the loop bound expressions contain variables. If these
loops are not parallelized, OCEAN is limited to an extremely small speedup.

To overcome this di�culty, we developed a dependence test which involves a
test at run-time which chooses between a parallel and a sequential version of a loop.
The test determines whether the indicated array is being indexed in a way which
makes it a linearized version of a multi-dimensional array [15].

With this technique applied, all of these OCEAN loops with the complex index-
ing patterns turned out to be perfectly parallel in all cases, the aggregate speedup
for them being 15.7 over the serial version.

4.1.6 DOACROSS loops and critical sections

Techniques for executing parallel loops with cross-iteration dependences have been
known for many years. The Cedar restructurer can generate await and advance

synchronization instructions to preserve cross-iteration dependences of simple types,

17

thus allowing DOACROSS parallel loop execution. In the TRACK program, we faced
a variety of problems which required that we execute DOACROSS loops e�ciently. For
instance, in one loop, we found it more e�cient to perform await synchronization
conditional upon a runtime test.

Cedar Fortran also provides locking and unlocking to protect unordered crit-
ical sections. Little has been published in the literature about compiler recognition
and protection of unordered critical sections. However, in at least two programs
(TRACK, and MDG) we parallelized the most time-consuming loops using un-
ordered critical sections.

4.2 Important optimization techniques for Cedar programs

In this section we discuss some compiler issues that are speci�c to the Cedar ma-
chine. Several optimization techniques are discussed, and their e�ects on a few
programs are presented. Some of these techniques have already been implemented;
while others are being studied for future inclusion in the parallelizer.

4.2.1 Prefetching data from global memory

The memory hierarchy is one of the most signi�cant characteristics of the Cedar
architecture. In the presence of such a hierarchy it is particularly important to
store and fetch data in such a way that keeps memory access cost low. This holds
in particular for referencing data from the Cedar global memory.

A straightforward approach to reducing global memory access costs is to com-
bine data requests and issue them as a block transfer to take advantage of the
prefetch facility of Cedar. In Cedar Fortran a natural program entity that
refers to a block of data is the vector operation. Section 2.2.3 described how the
compiler inserts prefetch instructions for vector operations. Figure 6 shows the ef-
fects of this optimization in two programs, the Conjugate Gradient(CG) Algorithm
[23] and the Perfect code TRFD.

Although there is an improvement of up to 100% in CG, TRFD exhibits only
a 15% gain, primarily because vector lengths are large in CG and small in TRFD.
In addition, the manually optimized version of TRFD has a high percentage of
its references privatized (diverted to cluster memory), while CG does not, further
explaining the di�erence in improvement between the two programs.

There are many additional issues related to prefetching that we plan to study
in the near future. For example, what is the e�ect of an aggressive
oating of
prefetching instructions [10]? The strategy used today in the Cedar Fortran

compiler is to generate prefetch code to precede each vector register load from
global memory without any code motion optimizations.

4.2.2 Data privatization

Prefetching data reduces the latency for reading global data, but the latency still
exists. Another source of performance loss stems from contention in the shared

18

1

2

speed

no prefetch prefetch no prefetch prefetch

Conjugate Gradient TRFD

Figure 6: The e�ect of compiler-inserted prefetch instructions

1

.5

privatization expansion

speed

Figure 7: Data privatization vs expansion in MDG

global memory. An important architectural idea in the Cedar project is to over-
come these problems by providing a local cluster memory, which grants faster and
less contended access to data that need be seen by the local cluster only. In addi-
tion, cluster data references can bene�t from the cache. A major challenge for the
compiler is to �nd data that can be placed at this level of the memory hierarchy.

In Section 3.2 we described the compilation scheme for �nding data that can be
privatized to a given loop. All privatized data gets placed in cluster memory. We
have found important code sections in the Perfect Benchmarks where this transfor-
mation improves performance. For example, in Figure 7 two variants of the major
loop in the program MDG are measured. The �rst variant has privatized array
data. In the second variant the same data elements were expanded and put in
global memory. The �gure shows a 50% slow down of the non-privatized version.
The performance loss is not only attributable to the memory placement of the data,
but also to the more costly addressing mode of the data which are now expanded by
one array dimension. Although the measurement does not discriminate these two
sources of performance loss, it clearly demonstrates the execution speed advantage
of the privatization transformation.

19

4.2.3 Data partitioning and distribution

As determined in the previous section, data can be privatized when its life is con-
�ned to a loop iteration. When the lifetime spans several loops, one can attempt to
place data partitions onto each cluster memory and assign corresponding subsets
of the loop iteration spaces to the cluster processors. This works without further
communication for data that is read-only or that is read by the same cluster on
which it was written. Figure 8 shows the performance of the Conjugate Gradient
algorithm before and after we have applied such a simple data partitioning and
privatization strategy.

The �gure shows the speed of the CG relative to a program variant that was
optimized for a 1-cluster execution and which has its data in cluster memory. The
solid curve corresponds to the automatically compiled algorithm, where most data
is placed in global memory. On one cluster this causes a factor of 1.6 performance
gain because of the high transfer rate of global memory and prefetch. On two
clusters the performance is nearly twice the one-cluster performance; however, on
3 and 4 clusters the speed improves less and less. We attribute this e�ect to the
program accessing global data near the maximumtransfer rate of the global memory
system. The dashed curve represents the data-partitioned implementation variant.
This variant has 50% of its data references localized to the cluster memory. On
one cluster the speed is less than the global-data version, but then it achieves a
near-linear speedup through four clusters.

We intend to implement some data partitioning scheme in our compiler. This
area of research is not mature and the practical value of proposed techniques is yet
unclear [4, 9, 29, 11]. More experiments are needed. We have found that the Cedar
architecture is a useful testbed for this purpose. It allows us to combine shared-
memory and distributed-memory programming schemes. It lets us take advantage
of newly explored data placement strategies while retaining in shared memory data
whose distribution would cause intolerable communication overhead.

4.2.4 Making large concurrent loops

Within a Cedar cluster, hardware is available to quickly start, end, and synchronize
parallel loops, whereas the global memory is the only mediator for the inter-cluster
communication needed for cross-cluster parallel loops, and the overhead for it is
large. This raises the issue of providing the appropriate large grain parallelism at
the program level. In loop-oriented programs, large granularity means loops with
a high number of iterations and a large loop body.

Large loop iteration counts can often be obtained with large input data sets.
Although current \real program" benchmark suites, such as the Perfect codes ex-
hibit relatively small iteration counts for many of their crucial loops, we have hopes
that larger data sets will make it possible to obtain larger speedups. We have
shown above that linear algebra routines working on matrices of size 1000 by 1000
run quite e�ciently on Cedar.

20

4

3

2

1

0
1 cluster 2 clusters 3 clusters 4 clusters

global−memory data placement
data distribution

speed

5

Figure 8: Data partitioning in the Conjugate Gradient Algorithm

21

1

.5

Alliant FX80 Cedar

2

1.5

A B C A B C

A

B

C

inner loops parallel

outer loops parallel

outer loops fusedspeed

Figure 9: combining multiple parallel loops into a single parallel loop

The issue of �nding large bodies for concurrent loops is a challenge to the
compiler. Figure 9 shows the e�ect of restructuring techniques that increase the
size of parallel loops in FlO52, one of the Perfect codes. The major subroutine of
this program consists of two loops, each having a sequence of small inner loops. The
�rst version of our compiler parallelized the inner loops only, which is represented by
variant a. Variant b shows a program where the two outer loops were parallelized.
In variant c these two loops were fused, thus the whole subroutine becomes one
parallel loop.

The fusion of the outer loops (variant c) was made possible by replicating the
code between the original outer loops on all clusters, adding redundant computa-
tions to the program. This technique has been applied successfully in other areas
of the code, as well [19].

The parallel loops were stripmined into CDOALL / vector loops for the Alliant
FX/80 and into SDOALL / CDOALL / vector loops for Cedar.

On the Alliant FX/80 architecture the resulting performance gain amounts to
50%, whereas on Cedar, a 100% speedup results, which illustrates the di�erence
in startup latencies between the CDO and SDO loops and shows that compiling a
structure of multiple small SDOALL loops into a single SDOALL can be a signi�cant
improvement on Cedar.

Our current compiler is often able to �nd large concurrent loops or to inter-
change parallel loops to an outer position (see Section 3.4). In other cases it fails
because too many potential data dependences are detected or the outer loop is in
a calling subroutine. These problems constitute important issues for the ongoing
project.

22

5 Conclusions

We have designed and implemented the Cedar Fortran language. The com-
piler and language support software have operated reliably since the �rst Cedar
con�guration came up in mid-1988.

We have retargeted KAP, a parallelizing restructurer, to automatically translate
fortran77 programs into Cedar Fortran programs. We have extended the
restructurer to cope with the challenges presented by the Cedar machine. The
modi�ed restructurer performs well on some linear algebra routines and synthetic
loops. However, it does not perform as well on some large application programs.

We have engaged in an e�ort to study how to improve the current techniques
for automatic parallelization, and in particular, how to improve our restructurer.
We found several techniques which improved the performance of the Perfect Bench-
marks programs on both the Alliant FX/80 and the Cedar. Some techniques are
new and some are extensions to current techniques. Many of the techniques were
useful for enhancing the recognition of parallelism where it exists. Such techniques
are applicable to all parallel machines. We plan to incorporate all these techniques
into later versions of our restructurer. When we have implemented our techniques,
we hope that our restructurer will be able to automatically generate e�cient parallel
code for a wide range of existing sequential application programs that are written
in fortran77.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, Mass., 1986.

[2] William Blume and Rudolf Eigenmann. Performance Analysis of Parallelizing
Compilers on the Perfect BenchmarksTM Programs. IEEE Transactions of
Parallel and Distributed Systems, November 1992.

[3] M. Booth and K. Misegades. Microtasking: A New Way to Harness Multipro-
cessors. Cray Channels, pages 24{27, 1986.

[4] David Callahan and Ken Kennedy. Compiling programs for distributed-
memory multiprocessors. Journal of Supercomputing, 2(2):151{169, October
1988.

[5] S. C. Chen and D. J. Kuck. Time and Parallel Processor Bounds for Linear
Recurrence Systems. IEEE Trans. on Computers, C-24(7):701{717, July, 1975.

[6] Rudolf Eigenmann. Towards a methodology of optimizing programs for high-
performance computers. Technical Report 1178, Univ. of Illinois at Urbana-
Champaign, Center for Supercomp. R&D, December 1991.

[7] Rudolf Eigenmann, Jay Hoe
inger, Zhiyuan Li, and David Padua. Experi-
ence in the Automatic Parallelization of Four Perfect-Benchmark Programs.

23

Proceedings of the Fourth Workshop on Languages and Compilers for Parallel
Computing, Santa Clara, CA, pages 65{83, August 1991.

[8] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. Parallel Algorithms for
Dense Linear Algebra Computations. SIAM Review, 32(1):54{135, March
1990.

[9] Kyle Gallivan, William Jalby, and Dennis Gannon. On the problem of opti-
mizing data transfers for complex memory systems. Proc. of 1988 Int'l. Conf.
on Supercomputing, St. Malo, France, pages 238{253, July 1988.

[10] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum.
Compiler-directed Data Prefetching in Multiprocessors with Memory Hierar-
chies . Proceedings of ICS'90, Amsterdam, The Netherlands, 1:342{353, June
1990.

[11] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. IEEE Transactions
on Parallel and Distributed Systems, 3(2):179{193, March 1992.

[12] Mark D. Guzzi, David A. Padua, Jay P. Hoe
inger, and Duncan H. Lawrie.
Cedar Fortran and other vector and parallel Fortran dialects. Journal of Su-
percomputing, pages 37{62, March 1990.

[13] W. Ludwell Harrison, III and David Padua. PARCEL: Project for the Auto-
matic Restructuring and Concurrent Evaluation of Lisp. Proceedings of 1988
Int'l. Conf. on Supercomputing, St. Malo, France, pages 527{538, July 1988.

[14] Jay Hoe
inger. Interval libraries for program analysis. Technical Report 1224,
Center for Supercomputing Research and Development, 1992.

[15] Jay Hoe
inger. Run-time dependence testing by integer sequence analysis.
Technical Report 1194, Center for Supercomputing Research and Develop-
ment, 1992.

[16] Jay Hoe
inger. Cedar Fortran Programmer's Handbook. Technical report,
Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. &
Dev., October 1991. CSRD Report No. 1157.

[17] Christopher Alan Huson. An In-Line Subroutine Expander for Parafrase. Mas-
ter's thesis, Univ. of Illinois at Urbana-Champaign, Dept. of Computer Sci.,
Dec., 1982.

[18] International Business Machines Corporation. Parallel FORTRAN: Language
and Library Reference, 1988. SC23-0431-0.

[19] William Jalby, 1991. Private communication.

[20] Kuck & Associates, Inc., Champaign, Illinois. KAP User's Guide, 1988.

24

[21] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence
Graphs and Compiler Optimizations. Proceedings of the 8th ACM Symp. on
Principles of Programming Languages (POPL), pages 207{218, Jan., 1981.

[22] David B. Loveman. Program Improvement by Source-to-Source Transforma-
tion. Journal of the ACM, 24(1):121{145, January 1977.

[23] Ulrike Meier and Rudolf Eigenmann. Parallelization and Performance of Con-
jugate Gradient Algorithms on the Cedar Hierarchical-Memory Multiproces-
sor. Proceedings of the 3rd ACM Sigplan Symp. on Principles and Practice of
Parallel Programming, Williamsburg, VA, pages 178{188, April 21-24, 1991.

[24] Samuel Midki� and David Padua. Compiler Algorithms for Synchronization.
IEEE Transactions on Computers, C-36(12):1485{1495, December 1987.

[25] David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for
Supercomputers. Communications of the ACM, 29(12):1184{1201, December
1986.

[26] M. Berry; D. Chen; P. Koss; D. Kuck; L. Pointer, S. Lo; Y. Pang; R. Rolo�;
A. Sameh; E. Clementi, S. Chin; D. Schneider; G. Fox; P. Messina; D. Walker,
C. Hsiung; J. Schwarzmeier; K. Lue; S. Orszag; F. Seidl, O. Johnson; G. Swan-
son; R. Goodrum, and J. Martin. The Perfect Club Benchmarks: E�ective
Performance Evalution of Supercomputers. Int'l. Journal of Supercomputer
Applications, Fall 1989, 3(3):5{40, Fall 1989.

[27] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes: The Art of Scienti�c Computing (FORTRAN
Version). Cambridge University Press, 1989.

[28] Michael J. Wolfe. Optimizing Compilers for Supercomputers. PhD thesis,
University of Illinois, October 1982.

[29] Hans P. Zima and Michael Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1{18, 1988.

25

