
Abstract

The limited ability of compilers to �nd the parallelism in programs is a signi�cant barrier to the

use of high performance computers. It forces programmers to resort to parallelizing their programs

by hand, adding another level of complexity to the programming task. We show evidence that

compilers can be improved, through static and run-time techniques, to the extent that a signi�cant

group of scienti�c programs may be parallelized automatically. Symbolic dependence analysis and

array privatization, plus run-time versions of those techniques are shown to be important to the

success of this e�ort. If we can succeed to parallelize programs automatically, the acceptance and

use of large-scale parallel processors will be enhanced greatly.

Keywords: compiler, parallelization, Fortran, dependence analysis, privatization,

symbolic, run-time, Polaris

1

Automatic Detection of Parallelism: A Grand Challenge for

High-Performance Computing �

William Blume Rudolf Eigenmann Jay Hoe
inger David Padua

Paul Petersen Lawrence Rauchwerger

Peng Tu

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

1 Introduction

For several decades, the most powerful computers have been those capable of exploiting parallelism at
one or more levels of granularity ranging from instruction-level to task parallelism. This will probably
continue to be the case, as it is unlikely that hardware technology alone will satisfy the ever increasing
demand for computational power.

To achieve a high level of performance for a particular program on today's supercomputers, software
developers are often forced to tediously hand-code optimizations tailored to a speci�c machine. Usually
that means they have to specify in their programs how parallel processors cooperate in the execution of
the program and how data is mapped onto the memory system. Such hand-coding is error-prone and
often not portable to di�erent machines.

We believe that many users want to write sequential programs in conventional languages, leaving the
machine-speci�c work to a compiler. Conventional languages, such as Fortran and C, provide a familiar
programming environment and, as a consequence, would facilitate the acceptance of high-performance
machines. Explicitly parallel programs are more di�cult to develop, debug, and maintain than sequen-
tial programs. For example, task-parallel programs could exhibit intermittent errors due to misplaced
synchronization operations. This kind of problem is very hard to �nd and �x. Also, to e�ectively ex-
ploit instruction-level parallelism, it is necessary to reorder elementary operations, some of which are
hidden from the high-level language programmer. This reordering must be done by coding in assem-
bly language, which is clearly undesirable. Furthermore, writing sequentially, without machine-speci�c
constructs, makes it possible to port programs to a variety of high-performance computers. Portability
is particularly important because high-performance machines are evolving rapidly. Software houses and
end-users are understandably reluctant to develop parallel code that could be made obsolete by the rise
and widespread acceptance of a radically new machine organization.

Unfortunately, today's compilers cannot do a totally accurate job of detecting parallelism in programs
written in conventional languages. Sometimes the reason is that the information necessary for such a
detection is not available at compile-time, but most often it is because the analysis algorithms used by
the compiler are not su�ciently sophisticated.

Because of compiler limitations, the conventional programming languages are usually extended with
directives to supply the compiler with the information that it is unable to obtain by itself. For example,
most compilers accept directives indicating that the iterations of a do loop can be executed in parallel.

�Research supported in part by Army contract DABT63-92-C-0033. This work is not necessarily representative of the
positions or policies of the Army or the Government.

2

Some compilers also accept assertions about the values of variables or arrays which can be useful to
identify parallelism or to determine how a section of the code should be mapped onto the target machine.

The preceding discussion applies to all high-performance computers including the new breed of mas-
sively parallel processors (MPPs). For these machines, Fortran extensions, HPF, and its precursor
Fortran D, have been designed to provide a familiar environment to spare the programmer the need
to work with low-level message-passing primitives. To circumvent the limitations of current compilers,
these Fortran extensions include directives to specify how the data is to be distributed (the align,
distribute, and decomposition directives) and whether a do loop can be executed in parallel (the
independent directive). The success of MPP compilers rests heavily on the e�ectiveness of their tech-
niques for automatic detection of parallelism. Techniques for dependence analysis, privatization, and
symbolic analysis have all been mentioned as central to Fortran compilers for MPPs [HKT92]. For this
reason, it is pertinent to discuss here the e�ectiveness of today's techniques for the automatic detection
of parallelism and what we believe is necessary to improve their e�ectiveness.

2 Fundamental Techniques

We now present a brief description of automatic parallelization techniques. Due to lack of space we
will omit many details. The interested reader is referred to [BENP93], a recent survey that includes an
extensive list of references.

We begin with a discussion of data dependence analysis, whose purpose is to determine whether two
statement instances1 must execute in the order speci�ed in the source program to guarantee correct
results. Two statement instances may execute in any order or even in parallel when there is no chain of
dependence relations connecting them.

In a sequential program, we say that a statement S2 is
ow-dependent on a statement S1 if, in some
execution of the program, an instance of S2 could read from a memory location previously written to by
an instance of S1. This type of dependence arises when there is a producer-consumer relation between
instances of S1 and S2. We say that statement S2 is anti-dependent (resp. output-dependent) on a
statement S1 if, in some execution of the program, an instance of S2 could write to a memory location
previously read (resp. written) by an instance of S1. Output- and anti-dependences are also known as
memory-related dependences. They occur whenever a memory location is rewritten.

Dependences can be determined statically at compile-time or dynamically at run-time. We will next
discuss static dependence analysis which, for all practical purposes, is the only method used today. We
will brie
y discuss dynamic analysis in a later section.

When only scalar variables are involved, static dependence analysis is simple. For example, in the
statements

S1 : A = B+ C

S2 : D = E+ F

S3 : G = A+ C

S4 : E = H+ C

it is easy to determine that S3 is
ow-dependent on S1 (because of A) and therefore, the two statements
have to execute in the order they appear. It is also easy to determine that there is an anti-dependence
from S2 to S4 (because of E). Clearly, there are no other dependence relations and therefore the
sequence S1; S3 can execute in parallel with the sequence S2; S4 without a�ecting the outcome of the
original sequential code.

In the presence of array references, computing the dependence relation accurately is considerably
more di�cult. Consider for example the loop:

1Because of iteration or recursion, program statements are often executed more than once. We call each execution a
statement instance.

3

do I = 1; N
S1 : X(a � I+ b) = :::
S2 : ::: = X(c � I+ d)

end do

To determine whether there is a dependence between statements S1 and S2, it is necessary to deter-
mine whether the equation a� i1 + b = c � i2 + d has a solution in i1 and i2 , both within the loop limits
(i.e. within the interval [1 : N]). S1 is
ow-dependent on S2 if there is a solution satisfying the constraint
i1 � i2, and S2 is anti-dependent on S1 if there is a solution satisfying i2 < i1. In other words, deter-
mining the existence of a dependence in a singly-nested loop is equivalent to determining the existence
of a solution to a system consisting of an equation and several inequalities. For multiply-nested loops
and multi-dimensional arrays, the system would include several equations.

Cross-iteration dependences are the dependences between statement instances executing in di�erent
iterations of a do loop. In the previous example, there will be a cross-iteration dependence between S1
and S2 if there is a solution to the equation where i1 6= i2. A loop can be executed in parallel without
the need for any synchronization (except for the barriers at the beginning and end of the loop) if there
are no cross-iteration dependences.

Because of its importance, the dependence analysis problem has been studied extensively and many
techniques have been developed to determine automatically whether or not there are solutions to the
associated systems of equations and inequalities. Practically all the techniques implemented in today's
compilers, such as the GCD test and Banerjee's test, solve the problem numerically under the assumption
that the subscript expressions are linear combinations of the loop indices. For these numerical techniques
to work accurately, it is often necessary to know at compile time the values of the coe�cients in the
subscript expressions. The values of the loop limits is also necessary even though accurate results can
sometimes be obtained by conservatively assuming that the upper limit is the largest possible integer
value in the target machine [PP93]. If a compiler relies only on numerical techniques, as often is the
case, it has to assume a dependence when the values of the coe�cients or loop limits are not known.
This is one of the main reasons why today's compilers fail to detect parallelism in sequential programs.
This limitation can be overcome by using symbolic analysis. We will discuss symbolic analysis together
with run-time techniques in a later section.

To reduce the number of dependences and increase parallelism, compilers try to apply several trans-
formations. The two most important are privatization and idiom replacement. The objective of privati-
zation is to determine which variables can be replicated across loop iterations to eliminate cross-iteration
memory-related dependences. For example, variable A in the loop

do I = 1; N
S1 : A = X(I) + 2

S2 : Y(I) = A+ 1

end do

is used to carry a value from S1 to S2. Cross-iteration dependences arise because there is only one copy
of A for the loop. Replicating A to create a private copy per iteration would eliminate the cross-iteration
dependences. Today's compilers do a good job of privatizing scalar variables, but as we discuss below,
they are less successful in privatizing arrays. This is perhaps the main reason that they fail to parallelize
many outer loops and thus are limited in their e�ectiveness. Privatization is not only important to
detect parallelism, but also to increase the quality of the code generated by distributed-memory Fortran
compilers [TP92] using the owner computes rule.

Another important transformation to eliminate dependences is the recognition and replacement of
idioms, usually simple recurrences. One recurrence found frequently is induction. An induction statement
in a loop uses the previous value of the induction variable to compute a new value, usually by adding or

4

multiplying a scalar expression. This dependence on the value from a previous iteration can prevent a
loop from being parallelized.

If we can produce an expression for the induction variable which does not refer to its previous value,
then the dependence is removed. The expressions which can be produced for induction variables in
a loop nest become functions of the loop indices. This meshes well with dependence analysis when
the induction variable is used to index arrays, since dependence analysis techniques require that the
subscripts be expressed as functions of the loop indices. For example, in the loop

J=0

do I = 1; N
S1 : J = J+ 2

S2 : Y(J) = X(J) + 1

end do

statement S1 can be eliminated, and all occurrences of J in S2 can be replaced with the expression 2�I.
In this way the cross-iteration dependences caused by S1 disappear and the dependences caused by S2
can be analyzed using conventional techniques. Today's compilers can do a good job at replacing simple
induction variables, but often fail when the induction variables are updated at several points in a loop,
especially in multiply-nested loops where inner loop bounds depend on outer loop indices.

Another recurrence that often arises is reduction. Reductions of the form S = S + V(I) are very
common. Such recurrences can also be detected and their dependences eliminated if the programmer is
willing to accept a reordering of the computation. Today's compilers recognize many of these idioms.

Many other techniques to analyze and expose implicit parallelism have been studied. Some are
applicable in real situations while others are only of theoretical interest because they only occur in the
synthetic loops created for describing them.

We feel that it is important to advance the state of the art in parallelization by studying real programs,
and �nding a set of techniques that are necessary to parallelize them. In our study of real programs,
we have found dependence analysis, privatization and idiom recognition to be the most important and
widely applicable techniques.

3 The Need for Improvement in Current Techniques

One of our goals at Illinois is to improve the e�ectiveness of compilers in the detection of parallelism.
To determine exactly what kinds of improvements are needed, it is necessary to know the strengths and
weaknesses of current technology in automatic restructurers. Thus, in the late 80's, we performed a
study on the e�ectiveness of parallelizing compilers using the Perfect Benchmarks, a suite of programs
representing commonly used applications.

Our study showed that current automatic restructurers seldom achieve good speedups. Although
restructurers can achieve signi�cant gains for small kernels or benchmarks, the typical gain for real
programs is small [EHJ+93]. Our experience has been only with coarse-grain loop parallelism, but a
more accurate analysis of programs could be useful to detect vector and instruction-level parallelism.

In response to these poor results, we began to search for improvements that would increase the
e�ectiveness of automatic restructurers on real programs. We did this by hand-transforming these
programs into an e�cient parallel form. With few exceptions, we have applied only transformations
that can be potentially implemented in a parallelizing compiler. That is, we have restricted ourselves
to transformations that do relatively small code changes as opposed to reorganizing large sections of
the code. Furthermore, we have applied transformations that can be derived from the program text,
rather than from knowledge of the application. The results of this e�ort are displayed in Figure 1. In
all programs we inspected, we found that our transformations could improve the program performance

5

ADM ARC2D BDNA DYFESM FLO52 MDG MG3D OCEAN QCD SPEC77 TRACK TRFD
0

5

10

15

20

25

30

35

40

45

50

S
pe

ed
up

Code

Automatic

Automatable

Figure 1: Speedups of automatically and manually parallelized versions of the Perfect Benchmarks on
the Cedar machine

6

by a signi�cant factor. In fact, in most programs this was close to or matching the performance that
resulted from the best reported manual e�ort [Poi90].

Having identi�ed several techniques that can greatly improve the e�ectiveness of automatic paral-
lelization, we are now implementing these techniques in the Polaris compiler. So far, a preliminary
implementation of Polaris is able to parallelize half the programs shown in Figure 1 to the extent of the
manually parallelized versions. Hence, we now have evidence that half of the suite of representative high-
performance computer applications is amenable to automatic parallelization. This has been achieved by
implementing new techniques for dependence analysis, privatization, and idiom recognition. In the next
section we present an overview of our new techniques: dependence analysis and privatization, which we
have already implemented, plus run-time techniques which we will implement in the near future.

As we have noted earlier, the choice of a benchmark set is critical. The results presented above
are based on the code in the Perfect Benchmarks. Although these codes are perhaps the most widely
accepted suite that represents a supercomputer workload, there is the open question of whether our
�ndings carry over to other programs. To answer this question, we have collected an additional suite of
programs that are currently being used by researchers at NCSA2 and inspected them. So far, we have
carefully examined two of these six codes, and found that our newly-implemented techniques are capable
of parallelizing them.

Table 1 lists the most important loops of the suite of benchmark programs that we have chosen as
a �rst yardstick for our Polaris compiler. Column 2 shows the percentage of program serial execution
time of each loop. Columns 3 and 4 show which loops were parallelized in our hand-optimized program
and in the automatically translated versions, respectively. Column 5 indicates the loops to which the
new compiler technology can be credited for �nding the parallelism.

The table shows that, with very few exceptions, Polaris is able to parallelize the loops which were
parallelized in our previous hand-experiments. The non-parallelized cases include some inherently serial
loops (indicated by \S" in hand-optimized column) and some rare patterns that are automatable but
are not yet being implemented (\A" in the Polaris-optimized column). The mark (\I") indicates that
the implementation is not yet complete, but the work will be done soon.

The loops marked in column 5 could not be parallelized by the compilers we used to compute the
values in Figure 1. In all these programs the loops listed are the most time-consuming. Many of the
other loops that we have not listed in the table can be parallelized successfully as well. For space reasons
we have not shown all of them, although in some programs they contribute signi�cantly to the execution
time.

The serial loops in this table are of particular concern because they limit the achievable speedup on
massively parallel processors. In ARC2D this problem is not as severe because there are inner parallel
loops in the serial outer loops. However, BDNA is limited to a 30-fold speedup. To deal with BDNA,
we need to develop transformations that work on I/O operations - an area we have not yet studied.

4 Improving Current Techniques: Run-Time and Symbolic

Analysis

The manual parallelization e�ort of the Perfect Benchmarks has shown us that it is possible to automat-
ically parallelize real programs e�ectively if parallelizing compilers are given a few enhanced techniques.
These techniques, including dependence analysis, array privatization, and idiom recognition, need to be
done symbolically to be e�ective. Doing these techniques symbolically means that the analysis manipu-
lates or propagates symbolic expressions, equations, and inequalities that contain program variables.

Polaris implements two mechanisms for symbolic propagation. One is based on the techniques dis-
cussed in [CH78] for the forward substitution of symbolic equations and inequalities. The other is a
demand-driven mechanism that backtracks symbolic variables and their relations as they are needed

2The National Center for Supercomputing Applications, Champaign, IL

7

PROGRAM-routine/loop % program hand-optimized Polaris-optimized new technology
execution time P=parallel S=serial is crucial

ARC2D-filerx/15 7.9 P P (I) X
ARC2D-stepfx/230 7.6 P P
ARC2D-filery/39 7.4 P P (I) X
ARC2D-stepfy/435 6.8 P P
ARC2D-tkinv/1 5.6 P P
ARC2D-stepfx/210 5.5 P P
ARC2D-stepfy/428 5.4 P P
ARC2D-tk/1 5.3 P P
ARC2D-ninver/1 4.7 P P
ARC2D-eigval/100 4.6 P P
ARC2D-xpenta/3 3.5 P P
ARC2D-ypenta/1 3.0 S (R) S
ARC2D-ioall/501 2.7 P P
ARC2D-xpent2/3 2.3 S (R) S
ARC2D-update/600 2.3 P P
ARC2D-rhsx/400 2.3 P P
ARC2D-rhsy/30 2.2 P P
BDNA-actfor/500 60.8 P P X
BDNA-actfor/240 33.6 P P X
BDNA-restar/15 2.1 S (IO) S
BDNA-actfor/320 1.8 P P
BDNA-actfor/700 0.3 P P X
FLO52-dflux/30 10.3 P P
FLO52-eflux/10 10.0 P P
FLO52-eflux/30 9.8 P P
FLO52-psmoo/40 8.7 P P
FLO52-psmoo/80 8.4 P P
FLO52-euler/50 8.0 P P
FLO52-dflux/60 6.0 P P
FLO52-eflux/40 5.0 P P
FLO52-step/20 4.8 P P
MDG-interf/1000 91.9 P P X
MDG-cshift/100 29.2 P P
MDG-poteng/2000 6.8 P P X
MDG-predic/1000 0.9 P S (A)
OCEAN-ftrvmt/109 42.7 P P X
OCEAN-in/10 14.5 P P
OCEAN-out/10 12.8 P P
OCEAN-ftrvmt/116 4.7 P S (A)
OCEAN-csr/20 4.6 P P (I) X
OCEAN-ocean/340 3.6 P P (I) X
OCEAN-acac/30 3.1 P P (I) X
OCEAN-ocean/420 2.9 P P (I) X
OCEAN-ocean/460 2.7 P P (I) X
OCEAN-ocean/440 2.7 P P (I) X
TRFD-olda/100 71.1 P P (I) X
TRFD-olda/300 27.8 P P (I) X
TRFD-intgrl/140 0.6 P S (A) X
CLOUD3D-kessler/1000 17.2 P P (I) X
CLOUD3D-s advect/ 7.7 P P X
CLOUD3D-s advect/1 7.6 P P (I) X
CLOUD3D-s advect/2 7.5 P P (I) X
CLOUD3D-kmsource/5 6.3 P P (I) X
CLOUD3D-s mix/3 2.2 P P X
CLOUD3D-filter4/1 2.2 P P X
CLOUD3D-s mix/1000 1.8 P P X
CLOUD3D-s mix/2000 1.8 P P X
CLOUD3D-padvect/1 1.2 P P
CLOUD3D-wadvect/1001 1.2 P P
CLOUD3D-vadvect/1001 1.2 P P
CLOUD3D-cloud3d/14 1.0 P P
CMHOG-solvex2/200 34.8 P P (I) X
CMHOG-solvex1/300 16.4 P P X
CMHOG-solvex1/3000 11.2 P P X
CMHOG-pgas/10 8.7 P P
CMHOG-solvex2/1000 2.4 P P
CMHOG-solvex1/4000 2.0 P P X
CMHOG-nudt/100 1.8 P P
CMHOG-solvex1/110 1.6 P P
CMHOG-solvex1/100 0.9 P P
CMHOG-nudt/200 0.7 P S (A)
CMHOG-setup/70 0.7 P P
CMHOG-maxmin/10 0.3 P S (A)
CMHOG-hdfall/800 0.2 P P X

Notes:
(R)=true recurrence; (IO)=input/output operations;

(I)=not yet fully implemented; (A)=Automatable technique not being implemented

Table 1: Transformation of the time-critical loops of our evaluation suite

8

[TP93b]. We have used the former to support dependence analysis and the latter to support array
privatization and idiom recognition. Even though, in theory at least, either approach could support all
three analysis techniques, the demand-driven approach is potentially more e�cient because it derives
only the information that is needed.

In this section, we will discuss two ways that symbolic analysis can improve the e�ectiveness of
automatic parallelization. First, we will discuss how symbolic data dependence tests can identify an
important subclass of loops as parallel, which conventional data dependence tests cannot. Then, we
will discuss how symbolic analysis can be used to improve array privatization, which is one of the most
important techniques needed for e�ectively parallelizing programs. We will not discuss idiom recognition
further in this paper. Some issues regarding this topic are discussed in [EHJ+93].

Even the most powerful symbolic analysis techniques cannot detect parallelism if the information is
unavailable at compile time. In Section 4.3 we will describe techniques that perform run-time analysis
in such situations.

4.1 Symbolic dependence analysis

4.1.1 Motivation for symbolic dependence analysis

Much research has been conducted in the area of data dependence analysis. Because of this, modern
day data dependence tests have become very accurate and e�cient [PP93]. However, these tests place
constraints upon loop bounds and array subscript expressions of the loops that they examine. If these
constraints are not met, these tests fail, thus preventing the loop from being fully parallelized.

Most data dependence tests require their loop bounds and array subscripts to be represented as a
linear (a�ne) function of loop index variables. That is, the expressions must be in the form

c0 +
nX

j=1

cj � Ij

where cj are integer constants and Ij are loop index variables. Expressions not of this form are called
nonlinear. Most often, nonlinearity arises because the value of at least one coe�cient is not known at
compile-time. Because nonlinear expressions prevent the application of dependence tests, parallelizing
compilers perform several analyses and optimizations to eliminate nonlinear expressions. Transforma-
tions such as constant propagation and induction variable substitution are used to remove loop variant
variables. Other techniques have also been developed to handle additive loop invariant terms or to
eliminate unwanted operations such as divisions [Pug92][HP91].

Unfortunately, not all nonlinear expressions can be removed. It was believed that this would not
a�ect dependence testing in real programs since nonlinear expressions would be rare in real programs.
However, our manual parallelization e�ort of the Perfect Benchmarks has shown us that this is not the
case. In fact, four of the twelve codes (i.e. DYFESM, QCD, OCEAN, and TRFD) that we parallelized
by hand would exhibit a speedup of at most two if we could not parallelize loops with nonlinear array
subscripts [BE94b]. For some of these loops, nonlinear expressions occurred in the original program text.
For other loops, nonlinear expressions were introduced by the compiler.

Two common compiler transformations can introduce nonlinearities into array subscript expressions:
induction variable substitution and array linearization. As discussed in Section 2, induction variable
substitution replaces variables that are incremented by a constant value for each loop iteration with
a closed form expression composed of only loop invariants and loop indices. However, when induction
variable substitution is performed upon multiply-nested loops, the resulting closed form expression may
be nonlinear. For example, performing induction variable substitution on the loop nest in Figure 2
introduces a nonlinear expression into the subscript of array A if the value of N is not known at compile-
time.

Array linearization transforms two or more dimensions of an array into a single dimension. Array
linearization may be needed for interprocedural analysis when an array is dimensioned di�erently across

9

K = 0

do J = 1, M

do I = 1, N

K = K + 1

A(K) = ...

end do

end do

=)

do J = 1, M

do I = 1, N

A(I + N*(J-1)) = ...

end do

end do

Figure 2: Before and after induction variable substitution

procedure boundaries. If the declared dimensions of a multidimensional array are symbolic expressions,
the resulting linearized array may be nonlinear. For example, if the array A, which was originally
dimensioned as A(N,M), was linearized, its declaration will be changed to A(N*M), and a reference A(I,J)
will be changed to A(I + N*J).

4.1.2 Symbolic dependence analysis in Polaris

To handle the nonlinear expressions that we have seen in the Perfect Benchmarks, we have implemented
a symbolic dependence test in Polaris, called the range test [BE94a]. In the range test we mark a
loop as parallel if (1) there are no cross-iteration dependences caused by scalars and (2) for all arrays
A we can prove that the range of elements of A accessed by an iteration of that loop do not overlap
with the range of elements accessed by other iterations. We prove this last condition by determining
whether certain symbolic inequality relationships hold. Variable constraint propagation and symbolic
simpli�cation techniques are necessary to determine such constraints. For example, the range test can
identify both loops in Figure 2 as parallel because the span of the range of elements of A generated by
the I loop, which equals N� 1, �ts within the stride of access to A due to the J loop, which equals N.

In general, the range test proves independence in a loop L by determining that for each array A

the range of values that can be accessed within L �ts within the absolute value of the stride of L.
As illustrated next, to maximize the number of loops found parallel, we apply the range test upon
permutations of the loop nest.

do I = 1, N

do J = 0, (64 - I) / (2*N)

do K = 1, 129

L = 258*N*J + 129*I + K - 129

A(L) = A(L) + A(L + 129*N)

A(L + 129*N) = H * E

end do

end do

end do

Figure 3: Simpli�ed version of loop nest ftrvmt/109 from OCEAN

An example of an important loop nest that contained non-linear subscripts is shown in Figure 3.
This is a simpli�ed version of a loop which accounts for 43% of OCEAN's sequential execution time.
Interprocedural constant propagation and loop normalization were needed to transform the loop nest
into the form shown. Traditional data dependence tests would not be able to parallelize any of the loops
in this loop nest because of the nonlinear term 258*N*J. The range test can prove all three loops are
parallel. This can be seen by examining Table 2, which displays the spans and strides of a permutation

10

Loop index Span Sum of inner spans Stride
K 128 128 1
I 129 � N� 129 (129 � N� 129) + 128 = 129 � N� 1 129

(OFFSET) 129 � N 129 � N+ (129 � N� 1) = 258 � N� 1 129 � N
J � � � � � � 258 � N

Table 2: Spans and strides of permuted loops in Figure 3

of the loop nest. The range test treats the two accesses A(L) and A(L + 129*N) as a single access of
the form A(L + OFFSET), where OFFSET is pseudo-loop of the form \do OFFSET = 0, 129*N, 129*N."
In Table 2, it can be seen that, for the permutation shown, the sum of the inner spans of a loop always
�ts within the stride of the next loop in the permutation.

Although the range test was developed to complement rather than replace conventional dependence
analysis, it was the only test needed to parallelize the loops listed in Table 1.

4.2 Array privatization

Although symbolic dependence analysis will allow us to prove that more references in a loop nest are
independent from each other, it will not allow a signi�cantly greater number of important loops to
be parallelized without additional transformations. In our experience, the most important of these
transformations is array privatization [TP93a].

As mentioned in Section 2, array privatization is used to eliminate memory-related dependences.
That is, array privatization identi�es scalars and arrays that are used as temporary work spaces by a
loop iteration, and allocates a local copy of those scalars and arrays for that iteration so as to eliminate
any cross-iteration anti-dependences or output-dependences caused by storage reuse.

To prove that a variable is privatizable, every use of that variable must be dominated by a de�nition
of the variable in the same loop iteration. The de�nition of a variable dominates a use if and only if all
control
ow paths, from the start of the loop iteration to the statement containing the use, pass through
the statement making the de�nition. If a de�nition dominates a use, then we may say that the de�nition
covers the use.

Determining the dominating de�nition for a use of a scalar variable is straightforward, since the scalar
is an atomic object which can only be read and written as a whole. However, since an array variable is a
composite object that can be partially read and written, determining whether an array assignment covers
an array use needs an elaborate analysis of the array ranges. More speci�cally, the array privatizer must
prove that the region of array elements referenced by the use is a subset of the region of array elements
de�ned by the assignment to determine that the use is dominated by the assignment. Symbolic analysis
techniques are often required for these region comparisons, since the regions often contain symbolic
expressions. As mentioned in Section 2, because of the di�culty of analyzing array references, most of
today's parallelizing compilers only privatize scalars.

In many cases, determining the ranges in the de�nitions and use of arrays and whether one covers the
other can be done using information immediately available at the points of de�nition and use. However,
a more elaborate analysis requiring global information is necessary in many other cases.

An example where global information is necessary for array privatization is shown in Figure 4.
To parallelize the I loop, the equivalenced arrays A and AA must be privatized. Loop J de�nes the
region AA(1:MP), while loop K uses region A(1:M, 1:P). Thus, to prove that A (and therefore AA) are
privatizable, we only need to prove that MP � M�P. To prove this, we must use information from outside
the loop. As mentioned above, we use a demand-driven algorithm, based on a Static Single Assignment
(SSA) representation, to obtain global information. To obtain the SSA form, program variables are
renamed such that each time the variable is de�ned it is given a new name. Then, each time a variable
is used, it is named according to which de�nition reaches it. In the program shown in Figure 4, each

11

equivalence A(1,1), AA(1)

: : :
S1 : M = : : :

: : :
S2 : MP = M * P

: : :
do I = 1, N

do J = 1, MP

AA(J) = : : :
end do

: : :
do K = 1, M

do L = 1, P

: : := A(K,L) : : :
end do

end do

end do

Figure 4: Example for array privatization

variable is assigned only once, so no renaming is necessary to obtain the SSA form. Our demand-driven
algorithm proceeds backwards from use to de�nition. To prove that MP � M � P, the algorithm starts at
loop J and backward-substitutes MP with M � P as de�ned in statement S2. Because the goal is satis�ed,
the algorithm stops at this point and no further replacements are performed.

Another example of the need for global information is shown in Figure 5, taken from BDNA. Several
intermediate variables need to be privatized to parallelize the outermost loop in Figure 5. They are the
scalar variables R, P, and M, and the arrays IND, and A. Except for array A, it is easy to determine that
these intermediate variables are privatizable.

To determine whether A is privatizable in loop I, it is necessary to determine the range of the use of
A in loop L. By analyzing the subscript and the range of the loop L, it is easy to determine that the range
is fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g. The possible dominating de�nition for A is in loop J, where A

is de�ned for the range A(1:I-1). To prove that the de�nition in loop J dominates all the uses in loop
L, we need to prove that fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g falls in the range of A(1:I-1).

A demand-driven strategy works well in situations like this where it is necessary to propagate values
from complicated control structures with conditional assignments. The demand-driven analysis deter-
mines how many elements of IND are de�ned in loop K making use of the fact that the subscript P for
the assignment to IND(P) is a monotonically increasing variable with an initial value of 1 and step of
1. Using a monotonic variable identi�cation technique similar to induction variable identi�cation, the
algorithm determines that all the elements in fIND(1); IND(2); : : : ; IND(L)g are assigned in loop K.

Now that the algorithm knows the de�nition point for fIND(1); IND(2); : : : ; IND(P)g, it can substitute
the loop variant terms in fA(IND(1)); A(IND(2)); : : : ; A(IND(P))g with their values. Each of them takes on
a value of loop index K. Because the value of K falls in the range [1:I-1], fIND(1); IND(2); : : : ; IND(P)g
will also fall in the same range. Hence all the uses of A fall within the range [1:I-1] and are therefore
dominated by the de�nition A(1:I-1). Thus, the algorithm determines that the array A is privatizable
in loop I.

12

do I = 2,N

do J = 1, I - 1

IND(J) = 0

A(J) = X(I,J) - Y(I,J)

R = A(J) + W

if (R .LT. RCUTS) IND(J) = 1

end do

P = 0

do K = 1,I - 1

if (IND(K) .NE. 0) then

P = P + 1

IND(P) = K

end if

end do

do L = 1,P

M = IND(L)

X(I,L) = A(M) + Z

end do

end do

Figure 5: Example from BDNA

4.3 Run-Time Techniques

Although compiler techniques such as those discussed above can often detect parallelism, it has become
clear that, for a class of programs, compile-time analysis must be complemented with run-time techniques
to obtain good speedups.

The reason for this is that the access pattern of some programs cannot be determined statically, either
because of limitations in the current analysis algorithms or because the access pattern is a function of the
input data. For example, compilers usually conservatively assume data dependences in the presence of
subscripted subscripts. Although more powerful analysis techniques could remove this limitation when
the index arrays are computed using only statically-known values, nothing can be done at compile-time
when the index arrays are a function of the input data. Therefore, if data dependences such as these
are to be detected, the analysis must occur at run-time. Because of the overhead involved, it is very
important that run-time techniques be fast, in addition to being e�ective.

Another situation in which compilers have thus far been unable to generate parallel code is when the
iteration space of a loop is not known at compile-time, as in while loops or do loops with conditional
exits. Run-time techniques which are fast and e�ective are needed for these loops.

4.3.1 Detecting data dependences at run-time

Consider a do loop for which the compiler cannot statically determine the access pattern of a shared
array A that is referenced in the loop. Instead of executing the loop sequentially, the compiler could
decide to speculatively execute the loop as a doall, and generate code to determine at run-time whether
the loop was, in fact, fully parallel. If the subsequent test �nds that the loop was not fully parallel, then
it will be re-executed sequentially.

In order to implement such a strategy, we have developed a run-time technique, called the Privatizing
Doall test (PD test), for detecting the presence of cross-iteration dependences in a loop [RP94]. If there
are any such dependences, this test does not identify them; it only
ags their existence. In addition,

13

do I = 1, n

... = A(T(I))

A(U(I)) = ...

... = A(V(I))

end do

T(1:8) = [2 2 2 10 8 8 8 10]

U(1:8) = [1 3 5 4 7 3 6 12]

V(1:8) = [1 3 2 10 7 3 8 12]

Position in shadow arrays

1 2 3 4 5 6 7 8 9 10 11 12 wA mA

Aw 1 0 1 1 1 1 1 0 0 0 0 1 8 7

Ar 0 1 0 0 0 0 0 1 0 1 0 0

Anp 0 0 0 0 0 0 0 0 0 0 0 0

Aw ^ Ar 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6: PD Test - PASSED

if any variables were privatized for speculative parallel execution, this test determines whether those
variables were, in fact, validly privatized. Our interest in identifying fully parallel loops is motivated by
the fact that they arise frequently in real programs.

The PD test

The PD test is applied to each shared variable referenced during the loop whose accesses cannot be
analyzed at compile-time. For convenience, we discuss the test as applied to only one shared array, say
A. Brie
y, the test traverses and marks shadow array(s) during speculative parallel execution using the
access pattern of A, and after loop termination, performs a �nal analysis to determine whether there
were cross-iteration dependences between the statements referencing A. The �rst time an element of A
is written during an iteration, the corresponding element in the write shadow array Aw is marked. If,
during any iteration, an element in A is read, but never written, then the corresponding element in the
read shadow array Ar is marked. Another shadow array Anp is used to
ag the elements of A that cannot
be privatized: an element in Anp is marked if the corresponding element in A is both read and written,
and is read �rst, in any iteration.

A post-execution analysis determines whether there were any cross-iteration dependences between
statements referencing A as follows. If any(Aw(:)\ Ar(:))3 is true, (i.e., if the marked areas are common
anywhere), then there is at least one
ow- or anti-dependence that was not removed by privatizing A

(some element is read and written in di�erent iterations). If any(Anp(:)) is true, then A is not privatizable
(some element is read before being written in an iteration). Let wA be the total number of writes that
were marked in Aw by all iterations (computed during the parallel execution), and let mA be the total
number of marks in Aw (computed after the parallel execution). If wA 6= mA, then there is at least
one output dependence (some element is overwritten); however, if A is privatizable (i.e., if any(Anp(:)) is
false), then these dependences were removed by privatizing A. The PD test is fully parallel and requires
time O(a=p+ logp), where p is the number of processors, and a is the total number of accesses made to
A in the loop.

The PD test is illustrated using the loop shown in Figure 6. The access pattern is given by the
subscript arrays T; V and U. Since Aw(:) ^ Ar(:) and Anp(:) are zero everywhere, the loop was a doall,
but only after privatizing A since wA 6= mA.

3any returns the \OR" of its vector operand's elements, i.e., any(v(1 : n)) = (v(1)_ v(2)_ : : : _ v(n)).

14

Figure 7:

4.3.2 While loops

We have also developed techniques for concurrently executing loops with unknown iteration spaces (i.e.,
while loops and do loops with conditional exits) [?]. For simplicity, we assume here that the while loop
has no cross-iteration dependences except for those necessary to control the loop. If the dependence
relations among the iterations of the loop are unknown, then, with some care, the PD test can be
incorporated into the techniques discussed below.

Such a while loop can be considered as a sequence of independent iterations ordered by some un-
derlying recursion. If the recursion has a closed form solution (e.g., a do loop with a conditional exit),
then the loop can be executed in parallel. If each processor keeps track of the lowest iteration it executes
that meets the termination condition, then the last valid iteration of the sequential version of the loop
can be found by taking the minimum of the processor-wise minima. The values overwritten during
executed iterations found to be invalid can be restored if we checkpoint prior to the parallel execution
and maintain a record of when (iteration number) a memory location is written.

If the recursion does not have a closed form solution (e.g., a loop that traverses a linked list), then
the iterations of the loop cannot be initiated simultaneously. In this case signi�cant speedups may still
be obtained by computing the values of the recursion serially, and performing the rest of the loop's work
in parallel. One obvious method is to serialize the operations that update the values of the recursion
(e.g., next()). A method that avoids explicit serialization is to compute all values of the recursion in each
processor, but to assign each value to only one processor for processing, e.g., assign to processor i the
iterations which are congruent to i mod p, where p is the total number of processors. Invalid iterations
can be undone in the same way as when the recursion has a closed form solution.

4.3.3 Performance of run-time techniques

It can be shown that if the PD test passes (i.e., the loop is in fact fully parallel), then a signi�cant
portion of the ideal speedup of the loop is obtained. In particular, the speedups obtained range from
nearly 100% of the ideal in the best case, to at least 25% of the ideal in the worst case. On the other
hand, if the PD test fails (i.e., the loop is not fully parallel), then the slow-down incurred is proportional
to 1

p
Tseq, where Tseq is the sequential execution time of the loop. If the target architecture is a MPP with

hundreds, or in the future thousands, of processors, then the worst case potential speedups reach into
the hundreds, and the cost of a failed test becomes a very small fraction of sequential execution time.
Thus, speculating that the loop is fully parallel has the potential to o�er large gains in performance,
while at the same time risking only a small increase in the sequential execution time.

In Figure 7, we show experimental results of a Fortran implementation of the PD test on loop

15

nl�lt/300 from the Perfect Benchmark program TRACK. The measurements were made on the Alliant
FX/80, a modestly parallel machine with 8 processors. The access pattern of the shared array in this
loop cannot be analyzed by the compiler since the array is indexed by a subscript array that is computed
at run-time. In addition, this loop is parallel for only 90% of its invocations. In the cases when the test
failed, we restored state, and re-executed the loop sequentially. The speedup reported includes both the
parallel and sequential instantiations.

Our experimental results indicate that our techniques for loops with unknown iteration spaces usu-
ally yield signi�cant speedups when compared to the available parallelism in the original loop. The
experiments have also shown that the overhead associated with these techniques is generally very small.

5 Conclusions

The last decade has seen a dramatic increase in the use of parallelism in all classes of machines. At
the lower end of the spectrum, most new microprocessors exploit functional unit parallelism and, at the
upper end, new MPP machines with thousands of processors have recently been developed. There is
also an increasing presence of multiprocessor workstations and mainframes.

However, a major stumbling block for the widespread acceptance of parallelism is the di�culty of
writing e�ective parallel programs. Better compilers with more powerful techniques for the detection
and exploitation of parallelism are clearly needed. Even though today's compiler techniques are limited,
it seems clear to us that compilers that accurately detect and e�ectively exploit parallelism can be
developed. Such compilers will need to use a combination of static and dynamic techniques and include
symbolic algebra and analysis methods. In the development of new techniques, researchers should
devote a substantial e�ort to the analysis of real programs and program patterns to help them focus
their attention where it is needed and to evaluate the e�ectiveness of the new methods. The problem of
automatic detection of parallelism is certainly not trivial, but it is not insurmountable either, and the
reward for success will more than compensate for the e�ort.

References

[BE94a] William Blume and Rudolf Eigenmann. The Range Test: A Dependence Test for Symbolic,
Non-linear Expressions. Technical report, Univ. of Illinois at Urbana-Champaign, Cntr. for
Supercomputing Res. & Dev., April 1994. CSRD Report No. 1345.

[BE94b] William Blume and Rudolf Eigenmann. Symbolic Analysis Techniques Needed for the E�ec-
tive Parallelization of the Perfect Benchmarks. Technical report, Univ. of Illinois at Urbana-
Champaign, Cntr. for Supercomputing Res. & Dev., January 1994. CSRD Report No. 1332.

[BENP93] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua. Automatic Pro-
gram Parallelization. Proceedings of the IEEE, 81(2), February 1993.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Proceedings of the 5th Annual ACM Symposium on Principles of

Programming Languages, pages 84{97, 1978.

[EHJ+93] R. Eigenmann, J. Hoe
inger, G. Jaxon, Zhiyuan Li, and D. Padua. Restructuring Fortran
Programs for Cedar. Concurrency: Practice and Experience, 5(7):553{573, October 1993.

[HKT92] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD
Distributed-Memory Machines. Communications of the ACM, 35(8):66{80, August 1992.

[HP91] Mohammad Haghighat and Constantine Polychronopoulos. Symbolic Dependence Analysis
for High-Performance Parallelizing Compilers. In A. Nicolau D. Gelernter, T. Gross and

16

D. Padua, editors, Advances in Languages and Compilers for Parallel Processing, pages 310{
330. MIT Press, 1991.

[Poi90] Lynn Pointer. Perfect: Performance Evaluation for Cost-E�ective Transformations Report
2. Technical report, University of Illinois at Urbana-Champaign, Center for Supercomputing
Res & Dev, March 1990. CSRD Report No. 964.

[PP93] Paul M. Petersen and David A. Padua. Static and Dynamic Evaluation of Data Dependence
Analysis. In Proc. of ICS'93, Tokyo, Japan, July 1993.

[Pug92] WilliamPugh. A Practical Algorithm for Exact Array Dependence Analysis. Communications

of the ACM, 35(8):102{114, August 1992.

[RP94] Lawrence Rauchwerger and David Padua. The PRIVATIZING DOALL Test: A Run-Time
Technique for DOALL Loop Identi�cation and Array Privatization . Technical report, Univ.
of Illinois at Urbana-Champaign, Cntr. for Supercomputing Res. and Dev., January 1994.
CSRD Report No. 1329.

[TP92] Peng Tu and David Padua. Array privatization for shared and distributed memory ma-
chines. In Proc. 2nd Workshop on Languages, Compilers, and Run-Time Environments for

Distributed Memory Machines, ACM SIGPLAN Notices 1993, September 1992.

[TP93a] Peng Tu and David Padua. Automatic array privatization. In Utpal Banerjee, David Gel-
ernter, Alex Nicolau, and David Padua, editors, Proc. Sixth Workshop on Languages and

Compilers for Parallel Computing, volume 768 of Lecture Notes in Computer Science, pages
500{521, Portland, OR, August 1993. Springer Verlag.

[TP93b] Peng Tu and David Padua. Demand-driven symbolic analysis. CSRD Report 1336, University
of Illinois at Urbana-Champaign, Center for Supercomp. R&D, Dec 1993.

17

