
Parallel Performance of a Combustion Chemistry Simulation

Gregg Skinner

Rudolf Eigenmann �

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

September 1, 1994

Abstract

We used a description of a combustion simulation's mathematical and computational methods
to develop a version for parallel execution. The result was a reasonable performance improvement
on small numbers of processors. We applied several important programming techniques, which we
describe, in optimizing the application. This work has implications for programming languages,
compiler design, and software engineering.

1 Introduction

Numerical simulations of reactive
ow are widely used for problems such as controlling combustion-
generated pollutants, reducing knocking in internal combustion engines, studying the environmental impact
of compounds emitted from combustion, and disposing of toxic wastes [1]. These simulations require extensive
computation. Many can only be served by the advanced capabilities of a parallel supercomputer. In this
paper we describe an e�ort to optimize the parallel performance of a reactive
ow simulation written for
serial execution. Speci�cally, we examine Premix [2], which simulates combustion, an important subclass
of reactive
ow.

Reactive
ow modeling problems are governed by equations conserving mass, energy, and momentum.
They are coupled with a hydrodynamic system driven by the energy released or absorbed from the chemical
reactions. Researchers seek to understand the chemical kinetics behavior of large chemical reaction systems
and the associated convective and di�usive transport of mass, momentum, and energy.

Complicating the numerical simulation of reactive
ow is numerical sti�ness. Sti� equations have one or
more rapidly decaying solutions and usually require special treatment. In the context of chemical kinetics
Curtiss and Hirschfelder [3] �rst identi�ed the problem of sti�ness in ordinary di�erential equations in 1952.
In reactive
ow, sti�ness often arises as a result of the di�ering time scales of the chemical kinetics and the
hydrodynamics [4]. Chemical reactions occur on the order of picoseconds, while the convective
ow occurs
on the order of seconds. Sti�ness also results where large temperature gradients occur. To overcome these
numerical di�culties researchers often employ time-implicit algorithms and adaptive gridding schemes.

A group at Sandia National Laboratories has developed a number of software tools that facilitate sim-
ulation of reactive
ow. Three basic packages lie at the heart of their e�ort. The Chemkin library [5] is
used to analyze gas-phase chemical kinetics. The Transport [6] library is used for evaluating gas-phase
multicomponent transport properties. Surfkin [7] is a package for analyzing heterogeneous chemical ki-
netics at a solid-surface { gas-phase interface. These three combustion libraries undergo continual revision
as part of an ongoing e�ort to provide the numerical combustion community with standardized software.
This approach is successful because the governing equations for each reactive
ow application must share
a number of features. A general discussion of this structured approach to simulating reactive
ow is found
in [1].

�This work is supported by the National Security Agency and by Army contract #DABT63-92-C-0033. This work is not

necessarily representative of the positions or policies of the Army or the Government.

1

Several codes have been built by Sandia to exploit Chemkin, Transport, and Surfkin. One of them is
Premix, which is used to predict the steady state temperature and species concentrations in one-dimensional
burner-stabilized and freely propagating premixed laminar
ames. This combustion is chemically interesting
because the large energy release associated with burning gives rise to high temperatures and many exotic
chemical species. The high temperatures resulting from the transfer of chemical energy to heat lead to rapid
expansion of the gases which in turn a�ect convective
ow.

The goal of this paper is to describe experiences in an e�ort to improve the performance of the Premix
application. The machine architectures we considered are shared memory multiprocessors with a modest
number of CPU's, such as the Alliant FX series, the Convex C2 series, and the high ends of the Sun
SPARCstation, HP Apollo, IBM RS/6000, and Silicon Graphics Iris series. Such machines are becoming less
expensive and more widely available.

Only one version of the FORTRAN 77 source for Premix is distributed by Sandia. This code executes
without signi�cant modi�cation on all machines from a personal computer to a Cray. To insure the software
can still be used by the large established user base, modi�cations to the code are strictly backward compatible;
that is, the subroutine interfaces are �xed. Our main concern, then, was with extracting parallelism from
the chemical and thermodynamic computations performed by the Chemkin and Transport libraries.

We approached Premix with a simple goal: Reduce the actual time a program requires to produce a
solution to a given problem through e�cient use of multiprocessing hardware. To accomplish this, inde-
pendence must be present in the code so that di�erent subproblems can be executed by separate processors
concurrently. Often the desired independence, if it exists, is apparent from the mathematical description of
the physical problem. This conceptual independence may not, however, be expressed in the actual code. Two
factors contribute to the absence of conceptual independence in the �nal program: (1) the computational
method chosen to approximate the mathematical problem may sequentialize formerly independent tasks; (2)
the speci�c implementation of the computational method adds unnecessary synchronizations.

We therefore make a reasonably sharp distinction between the mathematical model of a problem, the
computational method for its solution and the particular implementation of the method. We begin in the
next section with a brief overview of Premix. In Section 3, we observe how well the original version of
Premix expresses parallelism inherent to the mathematical model and computational method. In Section 4
we describe the program transformation techniques applied to produce an optimized version of Premix. In
Section 5 we exhibit the resulting performance improvement, and in Section 6 we o�er the conclusions drawn
from this work.

2 The Premix application

Premix is a typical example of a library-oriented production FORTRAN code. It is a
exible program
developed to analyze general problems involving combustion of premixed gases in a
ame. Premix consists
of a driver and four libraries: Chemkin [5], used to analyze gas-phase chemical kinetics; Transport [6],
used to evaluate gas-phase multicomponent transport properties; Twopnt [8], a two{point boundary value
problem solver; and Linpack [9], a popular numerical linear algebra package. Each is a standardized,
extensible library intended for use on a wide variety of platforms. The code, approximately thirty thousand
lines of standard FORTRAN 77, is highly modular, robust, and portable. The program can be stopped at any
of several checkpoints and restarted with a new con�guration.

Our testing environment was a shared-memory MIMD machine, an Alliant FX/80 [10] with eight pro-
cessing units. The processors are register-based with chained functional units and memory port. The
computational processors are connected by a concurrency bus, which keeps the overhead for concurrency
small. A sequential pro�le for an execution of the nitrogen combustion simulation mentioned earlier appears
in Figures 1 and 2. For the test problem the program tracks 34 chemical species and 151 chemical reactions
through three simulated burns. The one-dimensional grid begins with 19 grid points and is ultimately re�ned
to 61 grid points.

The program spends most of its execution time in routines from the Chemkin and Transport libraries.
Approximately 65% of the sequential execution time is consumed performing chemical kinetics computations
inChemkin routines ckytx, ckmmwy, ckwyp, ckrat, ckhml, ckcpbs, ckrhoy, and ckcpms. (These subprogram
names are de�ned in Table 1.) Another 20% of the execution time is consumed by transport computations
in Transport routines mtrnpr, ckytx, mcadif, mcedif, mceval, and mcacon. Solving systems of linear

2

driver 9229

1

premix 9228

1

point 1

1

ckinit 0

1

ckindx 0

1

mcinit 0

1

others : : :

fldriv 9227

1

twopnt 1

2802

newton 6

261

timstp 48

3561

newton 3557

others : : :

others : : :

fun 3069

1391 : : :

jacob 4855

21

dcopy 20

21

fun 4834

2289 : : :

dgbco 655

21

dasum 6

14448

dgbfa 603

21

idamax 6

14343

dscal 5

14343

daxpy 543

1231466

dscal 0

452

ddot 4

14343

daxpy 11

28707

dgbsl 551

1269 daxpy 503:0

1733819

others : : :

Figure 1: Execution Pro�le of Sequential Program. Times were obtained on an Alliant FX/80 with serial optimiza-

tions (compile command: fortran -Og -pg). Elapsed times (in seconds) are superscripted and the number of events

is subscripted. Procedure times include time spent in called subprocedures. Total elapsed time is 9305 seconds.

Times for the two invocations of \fun" are combined in Figure 2.

fun 7903

3680

mtrnpr 1710

1412

ckytx 25416

mcadif 1660

25416 mcedif 1654

25416 mceval 878

864144

mcacon 28

3330 mceval 15

3330

mdifv 182

3680

ckytx 39

69920

ckmmwy 18

66240

ckrhoy 18

66240

area 1

102858

ckrhoy 24

102858

ckwyp 5225

62560

ckytcp 36:0

62560

ckrat 4267

62560 cksmh 189

62560

ckhml 1887

62560

ckcpbs 212

62560 ckcpms 197

62560

ckcpms 197

62560

temp 2

47358

Figure 2: Execution Pro�le for Procedure fun.

3

equations consumes most of the remaining time. The Twopnt library simply controls the
ow of the
computations and thus contributes little to the execution time.

3 Description of the algorithm

We �rst give a description of the mathematical model and the computational method, which assisted
us in discovering which level of outer loop parallelism is best to obtain a granularity su�cient to saturate
available processors with reasonably sized parcels of independent work [11]. A mathematical description
of the general problem appears in several references (e.g., [2]). We review them brie
y here. We then
consider the computational methods employed to solve the combustion problem and explore the potential
for parallelism in these methods. Finally, we describe the particular implementation of these methods and
explore the remaining potential for parallelism in the actual program.

3.1 Mathematical model

Premix computes the steady state temperature and species concentrations in one-dimensional burner-
stabilized and freely propagating premixed laminar
ames. The steady state is de�ned by the following
conservation equations [2]:

_M = �uA = constant (mass); (1)

_M
dT

dx
�

1

cp

d

dx

�
�A

dT

dx

�
+

1

cp

KX
k=1

(�AZk)cpk
dT

dx
+
A

cp

KX
k=1

_!khkWk = 0 (energy); (2)

_M
dYk

dx
+

d

dx
(�AZk)� A _!kWk = 0 (k = 1; : : : ;K) (momentum); (3)

where K is the number of chemical species. Thus, K + 2 conservation equations govern the steady state of
the system. The symbols appearing in these equations are de�ned in Table 1.

The chemical kinetics computations occur in evaluating the molar rates of species production _!k, the
speci�c form of which is determined by the input dataset according to the equation,

_!k =
KX
i=1

�k;iqi (4)

where the �k;i are user-speci�ed integer stoichiometric coe�cients and the qi are the computed reaction rates.
Determining the value of qi is computationally intensive, consisting of numerous exponentials, logarithms,
and reductions, both multiplicative and additive.

The heat generated or absorbed by these reactions strongly a�ects the gas
ow. In Premix, the chemical
kinetics are computed �rst from the input data; then the hydrodynamic system governed by the conservation
equations (1) { (3) is solved in the presence of the chemical reactions.

Equations (2) and (3) are discretized using �nite di�erence approximations. A grid is numbered from 1

at the cold (input) boundary to J at the hot (output) boundary. The convective terms,
�
_M dT
dx

�
from the

energy equation and
�
_M dYk

dx

�
from the momentum equation, are modeled by either �rst order windward or

central di�erences as necessary. The other derivatives are approximated by �rst and second order central
di�erences. The di�usive term of the species conservation equation, d

dx
(�AZk), is approximated in the same

manner. Appropriate boundary conditions are implemented for both the cold and hot boundaries, yielding
a two{point boundary value problem. (See equations (10){(21) in [2] and discussion therein for a detailed
description.) The nitrogen combustion problem is solved �rst using windward di�erences for the convective
terms. Then the initial solution is used as a starting condition for a run using central di�erences for the
convective terms.

The �nite di�erence approximations reduce the sti� two{point boundary value problem to a system
of nonlinear algebraic equations. The boundary value problem is modeled �rst on a coarse mesh. When
necessary, new grid points are added (nonuniformly) in regions where the solution or its gradients change

4

Symbol Quantity Where Computed
x spatial coordinate along
ow direction {
T temperature subroutine fun
_M mass
ow rate (independent of x) subroutine fun
Yk mass fraction of the kth species subroutine fun
� thermal conductivity of the mixture subroutines mcmcdt,

mcacon, mceval
Zk = YkVk mass fraction times di�usion velocity subroutines mdifv,

of the kth species mcatdr, mtrnpr, mcadif,
mcedif, mceval, ckytx

� = pW

RT
mass density subroutine ckrhoy

hk speci�c enthalpy of the kth species subroutine ckhml
cpk constant pressure heat capacity of the kth species subroutine ckcpms
cp constant pressure heat capacity of the mixture subroutines ckcpbs, ckcpms
_!k molar rate of production of the kth species subroutines ckwyp, ckrat

per unit volume
W mean molecular weight of the mixture subroutine ckmmwy
Vk di�usion velocity of the kth species read from input
Wk molecular weight of the kth species read from input
A cross-sectional area of the stream tube subroutine area

encompassing the
ame
p pressure (constant) read from input
u velocity of the
uid mixture (constant) read from input
R universal gas constant read from input

Table 1: Symbols Appearing in the Premixed Flame Equations (1) { (4). More detail is available from the Chemkin

and Transport documentation [5, 6].

rapidly. Assuming a unique solution exists, this process ends when the solution has been resolved to a
speci�ed degree.

The nonlinear system is solved using the modi�ed Newton-Raphson algorithm. We seek a vector � which
satis�es

F () = 0: (5)

We begin with a (usually poor) approximation �̂ to �. It is clear that F (�̂) is not zero. The quantity

y = F (�̂) (6)

is called the residual.
In order to obtain a block-tridiagonal structure in the Jacobian, the mass
ow rate, _M , is treated as an

independent variable _Mj at each grid point, and the additional equation stating that they are all equal,

d _Mj

dxj
= 0 (j = 1; : : : ; J) (7)

is added with a suitable boundary condition. This mass conservation equation, coupled with the energy
conservation equation (2) and the K equations of momentumconservation (3) yield a total ofK+2 equations.

The approximate solution vector �̂ has the form,

�̂ = (�̂1; �̂2; : : : ; �̂J) (8)

where
�̂j = (Tj ; Yj;1; Yj;2; : : : ; Yj;K; _Mj): (9)

Equation 9 corresponds to the independent variables for temperature, species concentration, and mass
ow
rate for each grid point, j.

5

The modi�ed Newton-Raphson algorithm produces a sequence f�(n)g,

�(n+1) = �(n) � �(n)(J (n))�1F (�(n)): (10)

In the equation, � is a damping parameter and J is a �nite di�erence approximation to the Jacobian matrix.
The sequence converges to the solution of the nonlinear equations F (�) given a su�ciently good starting
estimate �(0). It is rejected if it does not converge.

Should the Newton algorithm fail to converge, a user-speci�ed number of arti�cial time integrations are
performed to improve the conditioning of the nonlinear system. The discretized time integration is again a
system of nonlinear equations. The modi�ed Newton-Raphson method is employed to solve the nonlinear
system, but in this case it is much more likely to converge. See the discussion in [2] for more details.

Independence inherent to the computational method

Each Newton or time-stepping iteration depends directly on the result of the previous iteration, so we will
not discover independence necessary for parallelization outside the computations within a single iteration.
We will show, however, that Jacobian evaluation contains considerable independence, in that all residual
di�erences can be computed simultaneously. Additionally, many of the properties evaluated for each species
and reaction within a single residual evaluation are independent in principle. Others are not independent,
but many have the form of a reduction, a computation amenable to partial parallel optimization.

Let �(n) represent the vector of independent variables after Newton iteration n. It has been shown in [12]
that y = F (�(n)) depends only on the partial vectors,

�
(n)
j�1; �

(n)
j ; �

(n)
j+1; �

(n�n0)
j�1 ; �

(n�n0)
j ; �

(n�n0)
j+1 : (11)

(The dependence on some previous evaluation n� n0 arises from the fact that the transport coe�cients are
not recomputed for each iteration.) It follows that y depends only on solution vectors �(n) and �(n�n0), both
of which are available at the beginning of Newton iteration n+1. That is, y = F (�(n)) is a completely explicit
computation. Thus, the computations for each grid point sectioning of y can be performed simultaneously.
It follows that all the residuals needed to approximate the Jacobian can be computed concurrently.

We see that there exists the potential for several levels of signi�cant parallelism in Premix. Note,
however, the hierarchy is not strict. For e�ciency, the Jacobians are often reused. Thus, a signi�cant
number of residual evaluations occur which are not part of Jacobian evaluation. In the nitrogen combustion
simulationwe used for testing, one third of the residual evaluations occur independent of Jacobian evaluation.
This suggests that if a single level of parallelism is to be exploited, it should be done at the level of residual
evaluation.

3.2 Speci�c implementation

The control
ow of Premix can be viewed as in Figure 3. The Chemkin Interpreter [5] and Trans-
port Property Fitting Code [6] are each external modules which access databases to create \linking"
�les to be read during execution. The Chemkin and Transport libraries require access to many problem-
speci�c constants, such as the molecular weights of the species. In addition, each library requires some
scratch space, or memory locations used to store values needed only temporarily. Tracking the use of these
scratch arrays is signi�cant when analyzing for parallelism.

Because the libraries are general-purpose and used in a wide variety of applications, these work arrays
must be of arbitrary size. Thus, a \dynamic" memory allocation scheme is used. Both Chemkin and
Transport implement dynamic memory allocation in a way common to scienti�c programs written in
FORTRAN. For each data type employed by one of the program libraries (character, integer, double precision

oating point), a single, large array is carved into sections by a sequence of integer o�sets computed at
runtime. The indices are computed during initialization and stored in COMMON blocks for future use. They
are never modi�ed after initialization. The work arrays for each of the libraries are passed as arguments
down the calling tree. A COMMON block for each of the libraries encapsulates the pointers into their respective
integer and
oating point work arrays. It is important to note that the COMMON blocks for a particular library
are declared only in procedures within that library.

Returning to Figure 3, we see that each time the outer control loop iterates, either the Newton solver or
time stepping is invoked. The Newton solver is always invoked �rst; time stepping is only performed when
the Newton solution phase fails to converge. A single Newton iteration consists of the following steps [2]:

6

Y

Perform modi�ed Newton-Raphson

N

Y��HH ��
HHConverged?

Y

Perform modi�ed Newton-Raphson

��HH ��
HHConverged?

Y

N

Finish, solution found

N

��HH ��
HHConverged?

N

?

?
�

?

6
��HH ��

HH-
?

?

?

?
.

? ?

?

-

6

Chemkin Interpreter Transport Property Fitting Code

Re�ne?

Initialize

Re�ne approximate solution

Perform time stepping

Finish, solution not found

Figure 3: Flow Diagram for Premix. The nonlinear discretized system is solved using the modi�ed Newton-Raphson

algorithm. Should the Newton algorithm fail to converge, a user-speci�ed number of arti�cial time integrations are

performed to improve the conditioning of the nonlinear system. The time stepping algorithm also uses the Newton

method.

� calculate the residual (fun),

� if necessary, evaluate (jacob) and factor (dgbco) the Jacobian matrix, and

� backsolve (dgbsl).

Because chemical computations involve only a grid block and its immediate neighbors (equation (11)), the
chemistry is local. As the residual evaluations are independent of one another, no conceptual reason exists
that the residuals cannot be computed e�ciently in parallel.

Computing the residual requires numerous chemical and thermodynamic property evaluations at each
grid point. The computation has three distinct steps. First, the transport coe�cients are evaluated, if
necessary. Then the di�usion velocities are computed. Finally, the chemical kinetics terms are evaluated
and the residuals of the governing equations (2), (3), and (7) are determined.

However, the speci�c implementation of the computational methods hides some of the potential for
parallelism. Concurrent evaluation of the residuals is hampered by the presence of shared local variables and
work arrays. The chemical and thermodynamic computations for each grid point, which we also identi�ed
as independent in principle, cannot be executed concurrently either. In addition to shared local variables
and work arrays, the nearest-neighbor communication of density and area data forces a sequentializing
synchronization. The next section describes techniques to overcome some of these problems.

4 Programming techniques and optimization

In this section we describe the program transformation techniques we applied to the speci�c implemen-
tation of Premix and the program analysis that was necessary to do this. We compare these techniques

7

real temp(kk), c(jj)

do j = 1, jj

do k = 1, kk

temp(k) = k * b(k)

end do

do k = 1, kk

c(j) = c(j) + temp(k)

end do

end do

real temp(kk,jj), c(jj)

doall j = 1, jj

do k = 1, kk

temp(k,j) = k * b(k)

end do

do k = 1, kk

c(j) = c(j) + temp(k,j)

end do

end do

Figure 4: Privatization of Arrays. In the second code fragment, each iteration of the outer loop is provided a

separate copy of work array \temp".

to those applied in other application programs and discuss some implications on programming languages,
compiler design, and software engineering issues.

4.1 Transformation and analysis techniques

The basic program modi�cation that enabled multiple processors to participate in the parallel execution
of the program was to declare a number of time-consuming loops to be executable concurrently. Simply
speaking, in order to do this we �rst had to recognize that the iterations of these loops were potentially
independent, then perform some transformations to make them truly independent, and �nally insert a
directive informing the compiler that the loops shall be executed in parallel.

By far the most important transformation in this process was the privatization of arrays (Figure 4) that
are used as temporary work spaces within loop iterations. In the original program all such loop iterations
use the same array(s) for storing temporary results. In a parallel execution of the unmodi�ed program,
every iteration would have to wait before using this array until the previous iteration is done using it, which
e�ectively would serialize the loop. However, by giving each iteration a separate copy of the array, we can
avoid these dependences. The di�culty of this transformation is in making sure that it is a truly temporary
array where no array element passes information from one loop iteration to the next. This is usually done
by an array de�nition/use analysis of the program.

An additional technique { the parallelization of reduction operations { we have found to be applicable
in our program. However, we have not done this because we exploited an outer level of parallelism. The
transformation will become important on machine architectures that support the exploitation of multiple
levels of parallelism, for example machines that have cluster structure so that the outer parallel loops can
be spread across clusters while the inner loops exploit the parallel resources within the cluster.

8

For both the de�nition/use analysis and the detection of independence of the loops we had to analyze the
program interprocedurally. Often, array sections were de�ned (i.e., written) in one subroutine and used (i.e.,
read) in another subroutine. Even more di�cult was the analysis of accessed array sections that involved
program input data. Sometimes it was only knowledge of the application that could ensure that, in all
reasonable executions of the program, input variables would relate so that the de�ned array ranges would
always cover the used ranges or that the ranges accessed in di�erent loop iterations would never overlap.

The dynamic memory allocation scheme, mentioned in Section 3.2, further complicated the situation.
We had to track array subscripts which were themselves subscripted array elements in order to determine
which sections of the original, large array are read or written. Since the subscript arrays are read-only
after their initialization, it is possible to determine temporary arrays and parallel loops from the analysis of
the program code. However, this process is tedious and it makes the interesting question of whether such
techniques could be automated in a compiler quite challenging.

4.2 Tools, languages, and programming methodology

A pro�le facility that identi�ed the most time-consuming loops in the program was the basic instrument
for our program analysis. In addition, the most helpful tool was an array section analysis facility that
determined the array sections read and written in each subroutine and loop. This information was then
propagated up the calling tree so that the summary of all accessed arrays could be seen at each loop.

The actual transformations were done in a conventional text editor. Compared to the time consumed by
the program analysis this task was not overly expensive, although the mechanics of array privatization could
be somewhat tedious as described below.

We restructured our program by explicitly specifying parallel activities, rather than changing the program
so that the compiler could recognize the parallelism automatically. The language we used is FORTRAN 77

plus directives. The only directive we used is CNCALL, which speci�es that the loop shall be executed in
parallel. Private arrays were speci�ed in two forms, both using available FORTRAN 77 constructs. One form
is to declare the array local to a subroutine that is called inside the parallel loop and the other is to expand
the array by one dimension and index this dimension with the loop variable. The second form is usually
called array expansion. Sometimes, subroutine parameter lists had to be modi�ed in order to pass expanded
arrays from calling to the called routine.

Common extensions to FORTRAN 77 are constructs for dynamic array declaration. Arrays of arbitrary
size and dimension can be declared locally, within a subprogram. Had we used this extension, we would not
have had to modify any of the subprogram parameter lists, leaving the Chemkin and Transport libraries
backward compatible.

The availability of a directive that declares variables private to a loop would have been very useful for our
purposes because it would have allowed us to leave the existing program text unchanged. Such a directive
would also have to support the privatization of a partial array. We encountered situations where part of an
array was read-only and another part was used for temporary storage. To handle this situation we split the
arrays into di�erent parts and privatized the temporarily used sections. The need for a PRIVATE directive is
an important conclusion of our work, and it corresponds to �ndings of related work.

The method of program optimization we have applied consists of identifying the time-consuming loops
in the program, analyzing array sections that are read and written in these loops, and deriving privatizable
and independent array sections. The parallel loops in our program could then be determined from this
information. The actual transformations necessary to express the parallelism were straightforward. This
programming scheme seems generally applicable and may be used as a programming methodology that can
be applied in a systematic way. Although we have found this to be useful for optimizing other programs as
well, we should note that there are time-consuming optimization steps for which we don't know generally
applicable methods. Such steps are the gathering of knowledge about the application that goes beyond the
analysis of the program text. We have found this to be important in some cases for our program optimization.

4.3 Comparison to �ndings of related projects

In a related project of optimizing application programs for parallel computers similar results were found.
Such projects include the Cedar Fortran project [13, 14] which was completed at our center in 1992, and the
follow-on Polaris project [15]. Both projects studied transformation techniques that are needed to speed up

9

real programs. This was done by hand-parallelizing a suite of codes, including the Perfect Benchmarks and
some applications of relevance to the users at the NCSA1.

The most important transformations identi�ed were the same as in our project. Array privatization was
most e�ective, followed by the parallelization of reduction operations. Interprocedural de�nition/use analysis
was a crucial technique to determine the applicability of the transformations. The transformations yielded
fully parallel loops whose iterations could be executed independently on multiple processors.

Our application is relevant for these other projects in that it con�rms the results and thus shows that
they carry over from the sample benchmark suite to new programs. One di�erence seems worth noting. The
ultimate goal of the above related projects was to �nd techniques that can be automated in a parallelizing
compiler, and in fact most of the transformations identi�ed were reported to be automatable. In our program
we have found that some crucial information for determining the applicability of the parallelization techniques
is known only from the input �les and thus is not available at compile time. Although there are compilation
techniques that are able to parallelize such situations at runtime [16], our �ndings indicate that it will be at
least di�cult to detect the parallelism automatically. A full discussion of this point is beyond the scope of
this paper and is the object of future projects.

A related approach to methodologies for parallel programming is described in [17]. Our �ndings largely
agree with this approach. One di�erence is that [17] envisions a \program-level" optimization, in which all
necessary information for transforming the program can be gathered from the program text. As we have
mentioned, for optimizing Premix there was sometimes a need to use knowledge about the mathematical
and physical properties of the problem that could not easily be gathered from the speci�c implementation
of the program.

Our �ndings can also be compared with the parallel programming methodology that envisions the design
of application programs from optimized libraries. The parallelism would be hidden in these libraries and the
programming method for the user of these libraries would be no di�erent from sequential programming. A
further advantage of this approach is that the libraries could be optimized speci�cally for each machine and
the application program would be portable. Because Premix uses standard libraries, it would be a natural
candidate for such an approach. However, we have found that exploiting parallelism within the libraries
does not lead to signi�cant speedup. The parallelism we exploited is at a higher loop level and the libraries
themselves execute on one processor each.

5 Results

We gathered performance data on the Alliant FX/80 for four versions of Premix:

� Original Sequential { the originalPremix code compiled with sequential optimizations (fortran -Og);

� Original Parallel { the original code optimized for parallel execution by the FX/FORTRAN automatic
compiler (fortran -Ogc);

� Optimized Parallel { Original Parallel with explicit parallel constructs added, as described in Section 4;
and

� Optimized Sequential { Optimized Parallel compiled for sequential execution (fortran -Og).

The pro�ling option (-pg) was disabled for these experiments. We also excluded vectorization optimizations
from our performance tests because the vectors were too short to be useful with the FX/80 architecture.
Enabling vectorization consistently resulted in greater execution times.

The performance improvement can be seen in Figure 5. The third group of bars shows total execution
times for the four versions of Premix. We see that the Optimized Parallel version of the code executes
approximately 4.4 times faster than Original Sequential. The added overhead of the manual parallelization,
seen by comparing the execution time of Optimized Sequential to Original Sequential, is minimal (less than
0.3%). Automatic compiler optimizations, isolated in the Original Parallel version of the code, are responsible
for about half the performance improvement. This result can also be seen in Figure 6, which exhibits the
inverse execution times of the parallel versions of the code for varying numbers of processors.

We separated the linear algebra and chemistry computations in Figure 5 to demonstrate how the nature
of the Optimized Parallel version of the program has changed from the original. While performance of

1The National Center for Supercomputer Applications at the University of Illinois

10

| |

0

|

5000

|

10000

 Seconds

O
riginal Sequential

O
riginal Parallel

O
ptim

ized Sequential
O

ptim
ized Parallel

1153

 540

1180

 518

7350

3525

7409

1284

8658

4172

8773

1951

L
inear A

lgebra
C

hem
istry

T
otal

F
ig
u
r
e
5
:
C
om

p
arativ

e
P
erform

an
ce

of
F
ou
r
V
ersion

s
of

P
r
e
m
ix
.
T
im

es
w
ere

ob
tain

ed
u
sin

g
an

eigh
t-p

ro
cessor

A
llian

t
F
X
/80

w
ith

th
e
F
X
/F

O
R
T
R
A
N
p
arallelizin

g
com

p
iler.

0
1

2
3

4
5

6
7

8
9

10
0

0.2

0.4

0.6

0.8 1

x 10
-3

Num
ber of Processors

Inverse Elapsed Time (1/s)

O
ptim

ized Parallel

O
riginal Parallel

Ideal

F
ig
u
r
e
6
:
In
verse

E
x
ecu

tion
T
im

es
V
ersu

s
N
u
m
b
er

of
P
ro
cessors.

T
im

es
for

origin
al

an
d
op
tim

ized
p
arallel

v
ersion

s

o
f
P
r
e
m
ix

w
ere

ob
tain

ed
on

an
A
llian

t
F
X
/80.

A
n
id
eal

p
erform

an
ce

im
p
rovem

en
t
lin
e
is
in
clu

d
ed

for
com

p
arison

.

11

Original Original Optimized Optimized Performance
Sequential Parallel Sequential Parallel Improvement
Sec. % Sec. % Sec. % Sec. %
(a) (b) (c) (d) (c)/(d)

Residual
Evaluation Loop 5472 63.2 2283 54.7 5430 61.9 920 47.1 5.9
Transport Loop 1651 19.1 1118 26.8 1735 20.0 296 15.1 5.9
Di�usion Loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0
Other Chemistry 57 0.0 42 0.0 77 0.0 40 0.0 1.9

Total Chemistry 7350 84.9 3525 84.5 7409 84.4 1284 65.8 5.8

Linear Algebra 1153 13.3 540 12.9 1180 13.5 518 26.5 2.3

Two{Point BVP
Solver 68 0.8 37 0.9 86 1.0 60 3.1 1.4

I/O and OS 1.0 70 1.7 98 1.1 89 4.6 1.1 0.2

Total 8658 100.0 4172 100.0 8773 100.0 1951 100.0 4.5

Table 2: Elapsed Execution Times of Four Versions of Premix. The parallel versions were executed using eight

processors.

the chemical computations improved signi�cantly, by a factor of almost six, the gain for the linear algebra
routines, which we were only able to parallelize partially, was a more modest 2.3. Linear algebra commanded
only about 13% of the Original Sequential execution time. In the Optimized Parallel version linear algebra is
responsible for about 27%. As the number of processors grows, linear algebra computations will increasingly
dominate execution time.

Formerly the chemistry was so expensive that the time spent in linear algebra could be easily ignored.
Now that the chemistry can be made relatively cheap, the algorithmic trade-o�s have changed. Alternatives
to the overall solution strategy should be reviewed. Some discussion of parallel methods for solving two{point
boundary value problems can be found in [18]. The Lapack e�ort [19] o�ers parallel versions of banded
system solvers, exploiting parallelism in multiple right-hand sides and blocking algorithms. We did not,
however, obtain any performance improvement when we replaced the Linpack linear algebra routines with
their Lapack counterparts. Premix has no multiple right-hand sides to exploit, but blocking should have
yielded some improvement. The reason it did not do so is still under investigation.

Table 2 shows the execution times of the four versions of Premix. The three loops we manually paral-
lelized constitute nearly all the signi�cant chemical computations in the code. As these loops are explicitly
parallel in the Optimized Parallel version of the code, we have successfully modi�ed the implementation to
express the parallelism inherent to the computational method. However, the execution times of these loops
exhibit only a six-fold improvement on eight processors. We believe this is largely due to an imbalance in
the work load. The program spends much of its time working with a 19-point grid. If we assume each
iteration of the loop over the grid points executes in the same amount of time, 19 iterations are completed
in the time that the eight processors could execute 24. This roughly 79% e�ciency would reduce the perfor-
mance improvement factor to 6.3. A further source of ine�ciency is the limited memory bandwidth of the
FX/80 machine, which provides only a four-way path between the eight processors and the shared memory,
and penalizes applications with poor cache hit ratios. Factoring in these ine�ciences models the measured
performance with good accuracy, so that we can characterize the scalability of our application as follows.

The Premix application runs with reasonable e�ciency on machines with small numbers of processors.
It is potentially scalable to larger numbers of processors for the solution of larger problems with signi�cantly
more than 65 grid points. As the chemistry component of the application speeds up, the linear algebra
part becomes speed limiting. We have not investigated possible improvements to this component of the
application; however, it seems possible to resolve this limitation through appropriate changes in the used
algorithms.

12

6 Conclusion

We performed a detailed analysis of the mathematical model used in Premix coupled with a study of the
computational methods to gain a picture of a hierarchy of parallelism inherent to the problem being solved.
A manual analysis of the code followed, from which we determined to what extent the parallelism inherent
to the implementation was expressed in the original version. We then chose an outer loop level appropriate
to our target machine and applied a handful of manual parallelizations. In all, we modi�ed less than 100
lines of code. The result was a greater than four-fold improvement in the simulation's execution time on an
Alliant FX/80 with eight processors.

In this work we have found that the Premix combustion chemistry application runs with reasonable
speed on small numbers of processors and potentially scales up to more highly parallel systems. The most
important program transformation to achieve our performance improvement was the privatization of arrays.
To determine the applicability of this transformation we had to do a careful, interprocedural analysis of
de�ned and used array sections. The available language constructs were not always adequate for expressing
dynamically-sized loop-private arrays, and we suggest that such constructs be included in future language
designs. The method used for optimizing our program seems generally applicable and, with the provision of
supporting tools, we believe they represent a step toward the understanding and improvement of the process
of optimizing large application codes for high-performance computers.

13

References

[1] R. Kee and J. Miller. A structured approach to the computational modeling of chemical kinetics and molecular
transport in
owing systems. Technical Report SAND86{8841, Sandia National Laboratories, 1986.

[2] R. Kee, J. Grcar, M. Smooke, and J. Miller. A FORTRAN program for modeling steady laminar one{dimensional
premixed
ames. Technical Report SAND85{8240, Sandia National Laboratories, 1985.

[3] C. Curtiss and J. Hirschfelder. Integration of sti� equations. Proceedings of the National Academy of Sciences
of the United States of America, 38:235{243, 1952.

[4] E. Oran and J. Boris. Numerical Simulation of Reactive Flow. Elsevier, 1987.

[5] R. Kee, F. Rupley, and J. Miller. CHEMKIN{II: A FORTRAN chemical kinetics package for the analysis of
gas{phase chemical kinetics. Technical Report SAND89{8009, Sandia National Laboratories, 1989.

[6] R. Kee, G. Dixon-Lewis, J. Warnatz, M. Coltrin, and J. Miller. A FORTRAN computer code package for the
evaluation of gas{phase, multicomponent transport properties. Technical Report SAND86{8426, Sandia National
Laboratories, 1986.

[7] M. Coltrin, R. Kee, and F. Rupley. Surface CHEMKIN: A FORTRAN package for analyzing heterogeneous
chemical kinetics at a solid-surface{gas-phase interface. Technical Report SAND90-8003, Sandia National Lab-
oratories, 1990.

[8] J. Grcar. The Twopnt program for boundary value problems. Technical Report SAND91-8230, Sandia National
Laboratories, April 1992.

[9] J. Dongarra, C. Moler, J. Bunch, and G. Stewart. LINPACK Users' Guide. Society of Industrial and Applied
Mathematics, Philadelphia, 1979.

[10] Alliant Computer Systems Corporation, Acton, MA. FX/FORTRAN Programmer's Handbook, 1985.

[11] J. Tyler, A. Bourgoyne, D. Logan, J. Baron, T. Li, and D. Schneider. A vector-parallel version of BOAST II for
the IBM 3090. Internal Report, IBM Kingston, 1990.

[12] G. Skinner. Finding and Exploiting Parallelism in a Production Combustion Simulation Program. Master's
thesis, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., December 1993.

[13] R. Eigenmann, J. Hoe
inger, Z. Li, and D. Padua. Experience in the Automatic Parallelization of Four Perfect-
Benchmarks Programs. In Lecture Notes in Computer Science 589, pages 65{83. Springer Verlag, NY, 1992.

[14] W. Blume, R. Eigenmann, J. Hoe
inger, D. Padua, and G. Jaxon. The Cedar Fortran Project. Technical Report
1262, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., April 1992.

[15] W. Blume, R. Eigenmann, J. Hoe
inger, D. Padua, P. Petersen, L. Rauchwerger, and P. Tu. Automatic Detection
of Parallelism: A Grand Challenge for High-Performance Computing. Technical Report 1348, Univ. of Illinois
at Urbana-Champaign, Center for Supercomputing Res. & Dev., April 1994.

[16] L. Rauchwerger and D. Padua. Speculative Run-Time Parallelization of Loops. Technical Report 1339, Univ. of
Illinois at Urbana-Champaign, Center for Supercomputing Res. & Dev., March 1994.

[17] R. Eigenmann. Toward a methodology of optimizing programs for high-performance computers. In Proceedings
of 1993 International Conference on Supercomputing, Tokyo, Japan, pages 27{36, Tokyo, Japan, July 19-23
1993. ACM Press.

[18] S. Wright. Stable parallel algorithms for two{point boundary value problems. SIAM Journal on Scienti�c and
Statistical Computing, 1992.

[19] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-
ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics,
Philadelphia, 1992.

14

