
Characterization of Locality in Loop-Parallel Programs
(Student Paper)

Seon Wook Kim Michael Voss Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285
(765) 494-3557, 0634, 1741

fseon,mjvoss,eigenmang@ecn.purdue.edu

Abstract

Data locality is one of the most important characteristics of programs. Its study has sig-
ni�cant inuence on the future development of architectures and compilers. Shared-memory
multiprocessor (SMP) machines and their applications have become widely available, but there
are few studies in the classi�cation of data locality in parallel programs. Most studies have
focused on temporal and spatial locality, and false sharing as metrics by which to optimize
cache-coherence actions.

In this paper, we propose a classi�cation of data locality in loop-based parallel programs
on SMP machines. The classi�cation is expressed in terms of the cacheline sharing, processor
sharing, memory reference instruction reuse, and parallel/serial region sharing. This classi�-
cation helps us understand the characteristics of complex parallel programs. For analysis, we
have implemented a tool, called ParaSim which consists of two parts: a code augmenter and a
memory simulator. It can augment highly optimized parallel code written using the Sun native
parallel directives, OpenMP and in thread-based form, and runs in parallel with supporting
parallel execution on SMP machines. As a case study, for this extended abstract, we discuss
the data locality of one Perfect Benchmarks, parallelized by the Polaris compiler.

In our measurements we have found that (1) the characteristics of data locality in loop-
parallel programs is very similar to that in sequential ones, (2) the cachelines are well localized
to processors in highly parallelized code, (3) most variables are reused in the same region type,
(4) hits usually occur in the same region, and misses occur across regions, (5) capacity and
conict misses are more important factors than compulsory and coherence misses, (6) spatial
locality is the dominant factor, and (7) coherence misses occur more often for temporal locality
than spatial locality, and these accesses are by di�erent instructions in the same region.

I. Introduction

One of the fundamental means to characterize an application is to analyze its data locality.
Data locality primarily helps researchers understand the data movement of applications, and
suggests future directions for hardware and software development. Understanding data locality
in parallel programs is crucial for improving performance on SMP systems. However, under-
standing data locality and its implications in parallel programs is di�cult, since data movement
is frequent and not easily predicted on shared-memory machines.

Woo and et al. in [1] characterized the SPLASH-2 programs, which is a suite of parallel
applications used for the study of centralized and distributed shared address space multipro-
cessors. They studied various characteristics such as concurrency and load balance, communi-
cation to computation ratio and tra�c needs, working set sizes, temporal and spatial locality,
and scalability with respect to problem size and number of processors.

Dubois and et al. in [2] classi�ed misses based on interprocessor communication into essential
misses and useless misses. Essential misses are the smallest set of misses required for correct
execution. The other misses can be ignored without a�ecting the correctness of the execution.
Based on this classi�cation, they compared the e�ectiveness of several protocols which delay
and combine invalidations leading to useless misses.

McKinley and Temam in [3] modeled data locality using four categories on loop nests in
sequential programs: spatial, temporal, self, and group depending on the cacheline sharing and
the memory reference instruction reuse. The authors quanti�ed the data locality trends in
numerical applications using the SPEC95 and Perfect Benchmarks. They found that although
most reuse is within loop nests, most misses are inter-nest capacity misses, and correspond
to potential reuse between nearby loop nests. They show that temporal and spatial reuse
are important within a loop nest and most reuse across the nests and the entire program is
temporal.

Even though data locality has been studied extensively, there are many remaining questions
about data locality in parallel programs. Most research in this area has focused on studying
temporal and spatial locality to improve cache-coherence actions. In this paper we introduce a
new cache characterization methodology that will allow us to address the following questions
about data locality in loop-based parallel programs on SMP machines:

1. Are the data locality characteristics of parallel programs the same as those of sequential
programs? For example, in sequential programs, most reuse occurs within a nest rather
than across nests. In a whole program, spatial reuse is the dominant form of reuse [4],
but in loop nests, temporal locality is the dominant factor [3]. Is this the same in parallel
programs?

2. How well are variables localized to processors in highly parallelized code? Can we say that
certain variables or certain ranges of arrays are always used in a speci�c processor? Or
can we classify variables into serial and parallel variables?

3. Are coherence misses a more important factor than the other misses, such as compulsory,
capacity, and conict misses? Unlike sequential programs, parallel programs have one
more miss type, a coherence miss [5]. Do coherence misses occur more often than other
misses?

1

Our classi�cation is an extension of the scheme proposed in [3]. We have extended this
scheme to categorize data locality in loop-based parallel programs. We will discuss how each
classi�cation helps understand parallel applications. For analysis purposes, we have developed
a data locality tool, called ParaSim based on the Polaris preprocessor. As a case study, we will
discuss the data locality in the Perfect Benchmark FLO521.

In Section II, we propose our new classi�cation of data locality in parallel programs, and
in Section III, we present our data locality tool, ParaSim. The tool was implemented for
collecting the proposed locality information, and it can run parallel programs written using
the Sun iMPACT directive language [6], the Polaris/MOERAE thread-based form [7], and
the OpenMP API [8]. Section IV gives the case study presenting the analysis of the Perfect
Benchmark FLO52, and Section V concludes the paper.

II. Classi�cation of Data Locality in Parallel Programs

We extend the classi�cation in [3] for loop-based parallel applications executed on SMP
machines. Unlike serial applications, loop-parallel programs consist of sequences of serial and
parallel regions. The master processor executes serial regions, whereas parallel regions are
executed by all processors. Data is moved across serial/parallel regions and processors. We
classify the data locality in parallel programs in terms of cacheline sharing, processor sharing,
memory reference instruction reuse, and region sharing:

� cacheline sharing:

{ temporal: the word is/was in the cache and the last previous reference accessed the
same word in the same cacheline.

{ spatial: the word is/was in the cache and the last previous reference accessed another
word in the same cacheline.

� processor sharing:

{ local: the current and last previous references were made by the same processor.

{ nonlocal: the current and last previous references were made by di�erent processors.

� memory reference instruction reuse:

{ self: the last previous reference to the word or cacheline came from the same memory
reference instruction.

{ group: the last previous reference to the word or cacheline came from a di�erent
memory reference instruction.

� region sharing:

{ same: the last previous reference to the word or cacheline came from the same type
of region (serial/parallel).

1The full paper will characterize the entire Prefect Benchmark suite.

2

{ other: the last previous reference to the word or cacheline came from a di�erent type
of region (serial/parallel).

We name each classi�cation as follows: \cacheline sharing"-\processor sharing"-
\memory reference instruction reuse"-\region sharing." For example, the category
temporal-local-self-same means the current and the last previous memory reference in-
structions accessed the same word in the same cacheline (temporal). These references were
issued by the same processor (local) and were generated by the same instruction (self). Since
they were generated by the same instruction, it is obvious that they were in the same type of
region (same). The symbol * is used as wildcard and is refers to both categories. We further
extend each classi�cation by breaking them down into cache hits and misses.

Our classi�cation is based upon a 4-state (MESI) Write-Back Invalidation Protocol [9],
which includes the state transitions (Modi�ed, Exclusive, Shared, Invalid). Variants of this
protocol are used in many modern microprocessors, including the Intel Pentium, PowerPC
601, and the MIPS R4400. In a write invalidation protocol, such as MESI, misses can be di-
vided into compulsory misses, capacity/conict misses, and coherence misses [5]. A compulsory
miss occurs at the �rst reference to a data block by a given processor. A capacity/conict
miss is a replacement miss, and a coherence miss results from the invalidation of the cache-
line. A block that has been never accessed before (compulsory miss) is classi�ed by default as
temporal-local-self-same.

Each memory reference is classi�ed according this scheme, and three distances characterizing
the reference is collected: region, instruction, and memory reference instruction distances. The
region distance is the number of serial and parallel regions between the last previous and the
current references to the same data block. The instruction distance is the number of instructions
between these accesses and the memory reference instruction distance is the number of memory
references between the previous and the current references to the block.

Using the classi�cation scheme described above, we can make the following observations:

1. temporal-nonlocal-*-*: This is true sharing, since more than one processor accesses
the same word in the same cacheline. If the current access is a hit, then the sharing was
read-only in the other processor. A coherence miss shows communication.

2. spatial-nonlocal-*-*: These accesses may be, or may be the cause of, false-sharing.
More than one processor accesses di�erent words of the same cacheline. In a hit, writes
can cause false-sharing. Coherence misses show that false-sharing has occurred.

3. temporal-local-*-*: These accesses are local to a single processor. In a hit, a previously
cached word is reused as though it was placed in a bu�er. In a miss, only capacity/conict
or compulsory misses can occur.

4. spatial-local-*-*: These accesses are also local to a single processor. In a hit, a
previously cached line is reused, but a di�erent word is accessed. In a miss, only capac-
ity/conict or compulsory misses can occur so this does not imply false sharing.

5. spatial-*-self-*: The same instruction is accessing di�erent words in the same cache
line. If there is a hit, this shows good use of spatial locality. This usually occurs in loops
that walk through arrays, accessing contiguous regions.

3

6. *-*-self-other: This category never occurs, since it is impossible that the same instruc-
tion appears both in a serial and a parallel region.

7. *-local-group-same: In a hit, variables are used like a regional bu�er. Data is brought
into the cache by one instruction and is later reused by another instruction in the same
type of region. If the region distance is zero, this implies that the variables are reused
within a loop nest. A nonzero region distance shows good data distribution across regions,
since a processor reuses data that was cache while it was executing a di�erent section of
code.

8. *-local-group-other: This can occur only for the master processor. The master pro-
cessor executes both in serial and parallel regions. If the number of hits are high in
this category, and static scheduling is used, there is a potential load imbalance, since the
master processor may experience much fewer cache misses than the other processors.

9. *-nonlocal-group-same: If the access is a miss, this suggests poor distribution across
regions.

10. *-*-group-other: The cacheline is accessed in both types of regions. Coherence misses
suggest a region conict. That is, that the movement of data across region types (from a
parallel to serial region or from a serial to parallel region) caused invalidations.

A summary of all classi�cations are given in Table 1, and Figure 1 shows an example of the
data locality classi�cation of a program section on 2 processors.

III. ParaSim: Data Locality Tool

For analyzing programs according to our proposed classi�cation, we developed the tool called
ParaSim. Unlike other simulators like RSIM [10], WWT-II [11], PROTEUS [12], and Tango
Lite [13] which emulate the parallel machines, our data locality simulator ParaSim actually runs
the programs in parallel on SMP machines. The codes can be compiled by various parallelizing
compilers such as the Sun parallelizing compiler (AutoPar) [6], and Polaris [14], using the Sun
directive sets [14], thread-based codes generated from Polaris with MOERAE backend [7] and
the OpenMP API[8]. ParaSim traces and collects real addresses generated on the SMPs.

We augment the parallel code at the assembly level. Unfortunately few tools for such
augmentation have been implemented for SPARC multiprocessor machines [15]. Two tools are
widely used for augmentation on SPARC machines, not for parallel code but for sequential
code: EEL and Shade. The EEL (Executable Editing Library) is a library for building tools
to analyze and modify executable programs [16]. It supports an editing model that enables
tool builders to modify an executable without awareness of the details of deletion or addition
of instructions. The current version of EEL cannot modify linked libraries, and the executable
objects should be linked statically, which implies that EEL cannot be used for parallel programs
using threads. Shade is an instruction set simulator using dynamic compilation [15]. Shade
reads only statically linked executable codes, interprets them, and generates traces controlled
by an analyzer interface. It supports exible and extensive trace generation capabilities. There

4

Table 1: Classi�cation of Data Locality in Parallel Programs.

Cacheline Processor Instr. Serial/
Sharing Sharing Reuse Parallel Cache Characteristics

temporal local self same hit Local read-only bu�er.
miss Capacity/conict or compulsory only.

other hit Not applicable.
miss

group same hit Local region bu�er. Nonzero region distance shows
good distribution across regions.

miss Capacity/conict only.
other hit Inter-region reuse by master processor.

It may cause load imbalance by favoring
master processor in parallel region.

miss Capacity/conict misses on master processor
across regions.

nonlocal self same hit Read-only sharing.
miss Capacity/conict misses for read-only sharing.

other hit Not applicable.
miss

group same hit Read-only sharing.
miss All types of misses but compulsory possible. Nonzero

region distance shows poor distribution across regions.
other hit Inter-region/inter-processor sharing.

miss Coherence misses show region conict.

spatial local self same hit Exploit spatial locality (read or write).
miss Capacity/conict only.

other hit Not applicable.
miss

group same hit Shows good distribution. It may be a regional bu�er.
miss Capacity/conict only.

other hit Inter-region reuse by master processor.
It may cause load imbalance by favoring
master processor in parallel region.

miss Capacity/conict misses on master processor
across regions.

nonlocal self same hit Write can cause false sharing.
miss Coherence misses are false sharing.

other hit Not applicable.
miss

group same hit Write can cause false sharing.
miss Coherence misses are false sharing. Nonzero region

distance shows poor distribution across regions.
other hit Inter-region/inter-processor sharing.

miss Coherence misses show region conict.

5

Processor 0 Processor 1

SUM

A(1)

A(2)

A(3)

A(4)

cacheline i

cacheline i+1

cacheline i+2

cacheline i

cacheline i+1

cacheline i+2

(a)

SUM = 0

DO I = 1, 4
 A(I) = I
ENDDO

DO I =1, 4
 SUM = SUM + A(I)
ENDDO

PRINT SUM

Parallel loop

Serial loop

SUM: temporal-local-self-same (compulsory miss)

A(1): temporal-local-self-same (compulsory miss)
A(2): spatial-local-self-same (hit)
A(3): temporal-local-self-same (compulsory miss)
A(4): spatial-local-self-same (hit)

A(1): spatial-local-group-other (hit)
A(2): spatial-local-self-same (hit)
A(3): temporal-nonlocal-group-other (coherence miss)
A(4): spatial-local-self-same (hit)

SUM: temporal-local-group-same (hit)

(b)

A(3)

A(3) = 0 A(1): temporal-local-self-same (compulsory miss)

Figure 1: An Example of the Classi�cation of Data Locality. (a) Cachelines. (b) An Example
Program and Its Data Locality. The blocks for A(1), A(3), and SUM have never been brought into the cache

on processor 0 (compulsory miss), so the category is be default temporal-local-self-same. The variable A(2)

is in the same cacheline as A(1), but are di�erent words. The cacheline was accessed by the same processor,

the same instructions, and in the same region. Therefore the category is spatial-local-self-same. Since

A() is in category *-local-self-same, it is used as a bu�er as shown in Table 1. In the �rst iteration of

the serial loop, A(1) is accessed by the same processor but now in a di�erent region. The previous and the

current instructions are di�erent and access the di�erent words in the same cacheline. Therefore, the category

is spatial-local-group-other. A(3) was invalidated by processor 1, and later read by processor 0. Since this

variable is accessed as the same word in the same cacheline by two processors, in di�erent instructions, the

category is temporal-nonlocal-group-other and is a coherence miss.

6

C Code Fortran Code

 SPARC Compiler

Assembly Code

Augmentation

Augmented Assembly

SPARC Assembler

Object Code

Linker Locality SimulatorAugmented Library

Executable SimulationConfiguration File

Polaris

Statistics File

Visualization Tool

Parallel Code (Sun Directive,
OpenMP, MOERAE)

Sun Native

Figure 2: Compilation Process to Build Applications in the ParaSim Simulator.

7

are several memory reference tracing tools on other machines, and their detailed comparisons
are in [15].

Figure 2 shows the process for compiling a program to be analyzed by ParaSim. First
the serial and parallel assembly code, generated by the SPARC compiler, is augmented, and
the augmented code is linked with the simulator modules and augmented standard libraries.
Even though augmentation of assembly codes can instrument only the available assembly code
(cannot cover all codes completely) the results are acceptable [13]. ParaSim consists of two
major parts: an augmenter and a memory simulator. The augmenter inserts instructions in
the application assembly code to pass information to the memory simulator, and the memory
simulator analyzes the data locality.

At each call to the memory simulator, the augmented code passes the following information:
memory reference, the number of bytes accessed, the number of instructions executed between
two consecutive calls to the simulator, a memory reference instruction identi�cation number,
and the type of the current code region (serial or parallel). ParaSim can augment applications
compiled by various parallelizing compilers. Augmentation of highly-optimized code is di�cult
because it requires code reordering, hoisting, and compaction. In general, simulators solve this
problem by �rst augmenting the code at a low optimization level, and then further optimize the
augmented code [12]. However, our system needs to augment parallel code, which is generated
using an optimization level of -O3 or higher. Because of this, the augmentation module performs
advanced program analysis and transformations.

The augmenter employs several techniques such as instruction reordering, control ow anal-
ysis, register live analysis, and branch and conditional code hoisting. The instruction reordering
relaxes the code compaction generated by the high optimization of the compiler. The control
ow and register liveness analysis are done to determine which registers are live at calls to
the simulator. The purpose of this analysis is to store and restore the live registers at each
call to the memory simulator, since the simulator program may change the contents of the live
registers. The new blocks are created by hoisting annulled and not-annulled branches, and
integer and oating-point conditional codes are modi�ed. In addition, the mathematical and C
library functions are renamed and augmented by the augmentation libraries, and the number
of instructions between calls to the simulator are counted. Finally the augmentation code is
inserted for storing and restoring live-in and live-out registers and to call the simulator, and
the augmented routines are printed out. The detailed description of the implementation is in
[17].

IV. Case Study: The Perfect Benchmark FLO52

The data locality of FLO52 is measured [18, 19] in this extended abstract. We use the
following parameters: 16K byte L1 data cache, 32 byte cacheline size, direct map, and LRU
replacement scheme. The program is parallelized by the Polaris parallelizing compiler using the
MOERAE thread-based postpass [7], and compiled using -O5 optimization by the Sun iMPACT
compiler [6]. The run was performed on a Sun Enterprise 4000 using 4 processors [20]. The
Sun Enterprise 4000 has 6 UltraSPARC Version 9 processors, and each has a 16K data cache,
with 32 byte cachelines, and the system has a shared 1.5 GB main memory.

8

A. Basic Statistics

Table 2 shows the total number of load and store instructions executed and their ratios
on each processor in serial and parallel regions. In FLO52, about 40% of all instructions are
memory reference instructions. Most of the execution time in spent in parallel regions, and
the processors are well load-balanced. In parallel regions, the number of load instructions are
2 times larger than those of store instructions. Tables 3 shows the cache hit and miss ratio in
serial and parallel regions. It shows that in parallel regions, capacity/conict misses are the
dominant factor over the other misses, which is the same as in sequential programs.

Table 2: Instruction Executed in Serial and Parallel Regions of FLO52. The percentages are
relative to the total number of instructions executed on each processor.

Total Memory Instructions
Instructions Serial Parallel

Benchmark Processor Serial Parallel Load Store Load Store

FLO52 0 7.72e+06 4.41e+08 1.92e+06 9.71e+05 1.28e+08 5.28e+07
(1.72%) (98.28%) (0.04%) (0.22%) (28.61%) (11.75%)

1 0 4.26e+08 0 0 1.23e+08 5.07e+07
(0%) (100.00%) (0%) (0%) (28.95%) (11.91%)

2 0 4.26e+08 0 0 1.23e+08 5.07e+07
(0%) (100.00%) (0%) (0%) (28.95%) (11.92%)

3 0 4.34e+08 0 0 1.25e+08 5.13e+07
(0%) (100.00%) (0%) (0%) (28.66%) (11.82%)

Table 3: The Cache Hit and Miss Ratio (%) in Serial and Parallel Regions on Each Processor.

Misses
Capacity/

Benchmark Region Processor Instruction Hit Compulsory Conict Coherence

FLO52 Serial 0 Load 91.64 0.07 8.13 0.15
Store 90.81 0.29 8.90 0.00

Parallel 0 Load 93.31 0.01 5.92 0.76
Store 94.44 0.07 5.49 0.00

1 Load 92.82 0.01 6.37 0.80
Store 94.11 0.04 5.85 0.00

2 Load 93.27 0.00 5.99 0.74
Store 94.63 0.03 5.34 0.00

3 Load 93.06 0.00 6.20 0.74
Store 94.36 0.05 5.59 0.00

B. Data Locality in FLO52

Figure 3 shows the measurements of data locality in FLO52 using our proposed classi�cation.
In FLO52, the highest category for hits is *-local-group-same. This is high for both temporal
and spatial locality. As noted in Table 1 these correspond to use of cache lines as local regional

9

bu�ers. Figure 4 shows two loops found inside of DFLUX DO30, a parallel loop, and the most
time consuming loop in FLO52. The J variable is the index of DFLUX DO30 and so its range is
distributed across the processors.

In the DO 28 loop, the load of FS(I,J,N) causes the store to FS(I,J,N) to be a
temporal-local-group-same hit. The following iteration will access the adjacent element
of FS(I,J,N) yielding a spatial-local-group-same hit. Similarly DIS2(I,J), DIS4(I,J),
and DW(I,J,N) will provide spatial-local-group-same hits as the loop iterates. Since pro-
cessors have disjoint values for J no coherence misses are seen. In the DO 18 loop, the loads
of W(I,J,N) and W(I+1,J,N) will generate a spatial-local-group-same hit within the same
iteration. There will be further spatial hits across iterations for all three accesses. The access
to W(I+1,J,N) can also cause W(I,J,N) to have a temporal-local-group-same hit from the pre-
vious iteration. There are many such loops found throughout FLO52 and these explain the large
amount of *-local-group-same hits.

Figure 5 shows the breakdown of the hits in the major loops in FLO52 into
temporal-local-group-same and spatial-local-group-same. Three of the four loops show
that spatial locality is dominant as is reected by the total numbers in Figure 3. However,
in PSMOO DO40 temporal locality dominates. The characteristics of this loop nest are clearly
seen in Figure 6. In each inner loop, the same array element is accessed as many as three
times in each of the Fortran statements. In the assembly code these accesses will be separate
instructions and so will fall into the spatial-local-group-same category.

The dominant form of miss in Figure 3 is capacity, showing that working set size exceeds
the cache size. Over 90% of all misses are capacity misses. Approximately 55% of all misses are
spatial-local-group-same capacity misses and these have large region distances. The fact
that these misses are spatial may be misleading. Figure 7 explains this phenomenon.

About 20% of misses are spatial-nonlocal-group-same capacity misses. Misses that fall
in the spatial-nonlocal-group-same category can signal poor data distribution if the region
distances are nonzero. This is because a di�erent word in the same cache line was last accessed
on a di�erent processor. In the case of coherence misses this is false sharing. FLO52 shows very
few misses due to false sharing (approximately 1%). The reason that so many misses fall in the
spatial-nonlocal-group-same grouping can explained by looking at Figure 8, which shows
EFLUX DO30, the second most time consuming loop in FLO52.

The values of JL and IL vary during the program execution from 4 to 32 and 20 to 160
respectively. The J loop is distributed across the processors. This means, that as the program
progresses, di�erent ranges of the arrays in EFLUX DO30 are accessed by each processor. This
redistribution of the arrays is shown by the high number in the spatial-nonlocal-group-same
category.

Finally, about 8% of misses are due to coherence with a large majority of these
falling into the temporal-nonlocal-group-same category. As Table 1 states, this again
is an indication of distribution problems when the region distance is large. As with the
spatial-nonlocal-group-same capacity misses, EFLUX DO30 is a good example of where such
distribution problems occur.

Table 4 summarizes the data locality in FLO52. From the Tables, we conclude the following:

� In parallel regions, the behavior of all processors is very similar.

� The characteristics of the benchmark is similar to those of sequential programs.

10

te
m

po
ra

l
sp

at
ia

l

hit

miss

lo
ca

l
no

nl
oc

al

se
lf

gr
ou

p

sa
m

e
ot

he
r

sa
m

e
ot

he
r

sa
m

e
ot

he
r

sa
m

e
ot

he
r

sa
m

e
ot

he
r

sa
m

e
ot

he
r

sa
m

e
ot

he
r

se
lf

gr
ou

p
se

lf
gr

ou
p

se
lf

lo
ca

l
no

nl
oc

al
pr

oc
es

so
r

ca
ch

el
in

e
sh

ar
in

g

in
st

ru
ct

io
n

se
ria

l/p
ar

al
le

l
sa

m
e

ot
he

rgr
ou

p

compulsory capacity/conflict coherence

(0.58, 0.54, 0.30, 0.30)
(0.69, 0.65, 0.09, 0.09)
(0.63, 0.59, 0.05, 0.05)
(0.63, 0.59, 0.05, 0.05)

(18.47, 17.37, 0.03, 0.03)
(18.00, 16.90, 0.03, 0.03)
(18.17, 17.06, 0.03, 0.03)
(18.18, 17.09, 0.03, 0.03)

(0.03, 0.03, 2.03, 1.76)
N/A
N/A
N/A

(0.13, 0.12, 0.11, 0.11)
(0.13, 0.12, 0.12, 0.12)
(0.13, 0.12, 0.11, 0.11)
(0.13, 0.12, 0.11, 0.11)

(0.12, 0.12, 3.95, 3.85)
(0.10, 0.10, 6.31, 6.20)
(0.11, 0.10, 5.34, 5.31)
(0.12, 0.11, 5.97, 5.82)

(0.01, 0.00, 1.96, 3.16)
(0.00, 0.00, 6.76, 5.67)
(0.00, 0.00, 25.51, 24.42)
(0.00, 0.00, 2.99, 1.86)

(5.09, 4.79, 0.08, 0.08)
(5.14, 4.82, 0.07, 0.07)
(4.86, 4.57, 0.04, 0.04)
(4.87, 4.58, 0.05, 0.05)

(75.39, 70.92, 0.05, 0.04)
(75.85, 71.22, 0.04, 0.04)
(75.99, 71.32, 0.04, 0.04)
(75.97, 71.40, 0.05, 0.05)

(0.09, 0.08, 2.99, 2.80)
N/A
N/A
N/A

(0.01, 0.01, 1.36, 1.36)
(0.01, 0.01, 5.28, 5.28)
(0.02, 0.01, 2.60, 2.60)
(0.02, 0.01, 3.69, 3.69)

(0.09, 0.08, 1.33, 1.27)
(0.08, 0.08, 1.71, 1.64)
(0.09, 0.08, 1.51, 1.46)
(0.09, 0.08, 2.05, 1.99)

(0.01, 0.01, 3.58, 4.95)
(0.00, 0.00, 4.15, 2.94)
(0.00, 0.00, 3.88, 2.73)
(0.00, 0.00, 2.28, 1.21)

N/A

N/A

N/A

N/A

(0.00, 0.00, 1.86, 1.26)
(0.00, 0.00, 206.04, 204.97)
(0.00, 0.00, 179.14, 178.06)
(0.00, 0.00, 180.61, 179.51)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(0.04, 0.00, 0.00, 0.00)
(0.01, 0.00, 0.00, 0.00)
(0.05, 0.00, 0.00, 0.00)
(0.04, 0.00, 0.00, 0.00)

(87.04, 5.16, 1.29, 1.29)
(89.84, 5.49, 1.42, 1.43)
(89.16, 5.48, 1.40, 1.41)
(89.61, 5.39, 1.39, 1.40)

(2.47, 0.15, 5.71, 5.81)
N/A
N/A
N/A

(0.03, 0.00, 0.00, 0.00)
(0.04, 0.00, 0.00, 0.00)
(0.04, 0.00, 0.07, 0.07)
(0.00, 0.00, 1.03, 1.03)

(6.40, 0.38, 3.23, 3.27)
(7.05, 0.43, 4.05, 4.08)
(6.99, 0.43, 4.54, 4.55)
(6.09, 0.42, 4.27, 4.27)

(0.26, 0.02, 9.55, 10.84)
(0.06, 0.00, 28.09, 26.85)
(0.06, 0.00, 40.43, 39.34)
(0.05, 0.00, 21.34, 20.16)

N/A

N/A

N/A

(3.32, 0.20, 3.08, 3.20)
(2.50, 0.15, 2.78, 2.75)
(3.20, 0.20, 2.96, 2.97)
(2.78, 0.17, 3.18, 3.18)

(0.00, 0.00, 37.97, 39.07)
(0.05, 0.00, 3.15, 1.78)
(0.05, 0.00, 2.34, 1.00)
(0.04, 0.00, 2.49, 1.33)

N/A

(0.43, 0.03, 2.57, 2.65)
(0.39, 0.02, 3.93, 3.90)
(0.39, 0.02, 4.23, 4.22)
(0.52, 0.03, 3.06, 3.05)

(0.02, 0.00, 18.52, 19.86)
(0.05, 0.00, 4.16, 3.14)
(0.05, 0.00, 2.54, 1.52)
(0.04, 0.00, 1.57, 0.56)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Figure 3: Data Locality Characteristics of FLO52. In each category the number of references is given

for each processor in the form (X, Y, A, B), where X is the ratio of the category to the total hit or miss memory

references, Y is the ratio of the category to the total memory references, and A and B are the serial and parallel

region distances respectively.

11

DO 28 I=1,IL

FS(I,J,N) = DIS2(I,J)*FS(I,J,N)-DIS4(I,J)*DW(I,J,N)

28 CONTINUE

...

DO 18 I=1,IL

FS(I,J,N) = W(I+1,J,N)-W(I,J,N)

18 CONTINUE

Figure 4: Inner Loops of DFLUX DO30. These loops show a high number of *-local-group-same
hits.

Figure 5: The Breakdown of Hits in the Major Loops in FLO52.

DO 40 N=1,4

DO 10 J=2,JL

DW(1,J,N) = 0.

10 CONTINUE

DO 20 I=2,IL

DO 20 J=2,JL

DW(I,J,N) = DW(I,J,N)-R*(DW(I,J,N)-DW(I-1,J,N))

20 CONTINUE

I= IL

DO 30 J=2,JL

DW(I,J,N) = T*DW(I,J,N)

30 CONTINUE

DO 40 II=3,IL

I = I-1

DO 40 J=2,JL

DW(I,J,N) = DW(I,J,N)-R*(DW(I,J,N)-DW(I+1,J,N))

40 CONTINUE

Figure 6: The PSMOO DO40 Loop Nest in FLO52.

12

PARALLEL DO = 1,N

A(I) = ...

ENDDO

...

PARALLEL DO = 1,N

... = A(I)

ENDDO

Figure 7: Two Parallel Loops. The �rst loop accesses A(1), A(2), ... and then second
loop accesses A(1), A(2), ... If the A is evicted due to capacity between the two loops,
spatial-local-group-same capacity misses will result, since A(2) was accessed last in the
�rst loop and the miss is on A(1) in the second loop.

DO 30 J=2,JL

DO 30 I=2,IL

XX = X(I,J,1)-X(I-1,J,1)

YX = X(I,J,2)-X(I-1,J,2)

PA = P(I,J+1)+P(I,J)

QSP = (XX*W(I,J+1,3)-YX*W(I,J+1,2))/W(I,J+1,1)

QSM = (XX*W(I,J,3)-YX*W(I,J,2))/W(I,J,1)

FS(I,J,1) = QSP*W(I,J+1,1)+QSM*W(I,J,1)

FS(I,J,2) = QSP*W(I,J+1,2)+QSM*W(I,J,2)-YX*PA

FS(I,J,3) = QSP*W(I,J+1,3)+QSM*W(I,J,3)+XX*PA

FS(I,J,4) = QSP*(W(I,J+1,4)+P(I,J+1))+QSM*(W(I,J,4)+P(I,J))

30 CONTINUE

Figure 8: EFLUX DO30. The second most time consuming loop in FLO52.

13

� Cacheline sharing: Spatial locality is more important than temporal locality. Temporal
locality is the main factor in the occurrence of coherence misses, and spatial locality is
the main factor in the occurrence of capacity/conict misses.

� Processor sharing: Cachelines are highly privatized to processors. The local category suf-
fers from capacity/conict miss, but the nonlocal category results in both capacity/conict
and coherence misses. Interestingly most evicted cachelines are later accessed by the same
processor.

� Instruction reuse: There are few misses in the self category, and most cachelines are used
by di�erent memory references.

� Region sharing: Most variables are always used either in a serial region or in a parallel
region, not in both. There is little data movement between regions.

C. Locality Distances

Figure 5 shows the distance of instructions, memory reference instructions, serial and parallel
regions. It shows that misses have larger distances than hits, and hits generally occur inside
the same loop. Most misses occur across regions. This result corresponds to that on single
processor machines [3].

V. Conclusion

Data locality is an important characteristic of programs, and its analysis helps determine
future directions in the development of architectures and compilers. Even if shared-memory
multiprocessor machines and their applications have become widely available, there are few
studies in the classi�cation of data locality in parallel programs. Most studies have focused on
temporal and spatial locality, and false sharing to optimize cache-coherence actions.

In this extended abstract, we have proposed a new classi�cation of the data locality in
parallel programs on shared-memory multiprocessors. This classi�cation is based on the cache-
line sharing (temporal and spatial), processor sharing (local and nonlocal), memory reference
instruction reuse (self and group), and region sharing (same and other). Also each category
is classi�ed into hit, miss, cache-coherence state transitions, and we further divide misses into
compulsory, capacity/conict, and coherence misses. For the analysis of our proposed classi-
�cation, we developed the tool called ParaSim. Unlike other existing tools, ParaSim can run
various versions of parallel programs compiled by several parallelizing compilers. Using the
proposed classi�cation scheme, we have discussed the data locality of the Perfect Benchmark
FLO52.

Our results show that (1) The characteristics of the data locality in FLO52 is very similar
to that in sequential programs. (2) The cachelines are well localized to processors in highly
parallelized code. (3) Most variables are reused in the same type of region, not across the
di�erent regions, (4) A hit occurs in the same region, and a miss occurs across the regions,
(5) Capacity and conict misses are more important than compulsory and coherence misses in
highly parallelized code. (6) Like on single processor systems, spatial data locality is also the

14

Table 4: The Summary of the Locality (%) in FLO52.

Misses
Capacity/

Processor Locality Hit Compulsory Conict Coherence

0 cacheline sharing temporal 18.37 0.03 0.59 0.44
spatial 75.23 0.00 5.25 0.08

processor sharing local 92.57 0.03 4.13 0.00
nonlocal 1.04 0.00 1.71 0.52

instruction reuse self 6.02 0.03 0.25 0.00
group 87.59 0.00 5.59 0.53

region sharing same 93.48 0.03 5.73 0.53
other 0.12 0.00 0.11 0.00

1 cacheline sharing temporal 17.90 0.02 0.58 0.47
spatial 75.30 0.00 5.64 0.09

processor sharing local 92.13 0.02 4.35 0.00
nonlocal 1.07 0.00 1.87 0.56

instruction reuse self 5.73 0.02 0.25 0.00
group 87.46 0.00 5.97 0.57

region sharing same 93.19 0.02 6.21 0.56
other 0.00 0.00 0.01 0.01

2 cacheline sharing temporal 17.94 0.01 0.49 0.43
spatial 75.73 0.00 5.31 0.08

processor sharing local 92.59 0.01 4.06 0.00
nonlocal 1.07 0.00 1.74 0.52

instruction reuse self 5.70 0.01 0.26 0.00
group 87.97 0.00 5.54 0.52

region sharing same 93.67 0.01 5.79 0.52
other 0.00 0.00 0.01 0.00

3 cacheline sharing temporal 17.79 0.02 0.52 0.42
spatial 75.65 0.00 5.50 0.09

processor sharing local 92.38 0.02 4.30 0.00
nonlocal 1.06 0.00 1.73 0.52

instruction reuse self 6.03 0.02 0.26 0.00
group 87.41 0.00 5.77 0.52

region sharing same 93.43 0.02 6.02 0.52
other 0.00 0.00 0.01 0.01

15

Table 5: The Distance of Instructions, Memory References, Serial and Parallel Regions on Each
Processor.

FLO52

Processor Distance Total Hit Miss

0 Instructions 440868.80 136.64 6891008.79
Memory References 406075.87 124.95 6347190.33

Serial Regions 12.52 0.05 194.90
Parallel Regions 12.52 0.05 194.92

1 Instructions 422110.33 136.16 6201290.73
Memory References 388862.73 124.24 5712861.08

Serial Regions 24.67 0.05 361.82
Parallel Regions 24.67 0.05 361.82

2 Instructions 319719.12 135.96 5048614.66
Memory References 294536.81 124.21 4650981.65

Serial Regions 1.16 0.05 17.56
Parallel Regions 1.16 0.05 17.56

3 Instructions 283347.47 163.25 4314397.80
Memory References 261068.02 147.53 3975200.32

Serial Regions 16.53 0.05 251.13
Parallel Regions 16.53 0.05 251.13

16

dominant factor on shared-memory multiprocessor systems. (7) Coherence misses occur more
for temporal locality than spatial locality, and these access are by di�erent instructions in the
same region.

VI. References

[1] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 programs: Characterization and methodological considerations.
Proceedings of the 22nd Annual Symposium on Computer Architecture (ISCA'95), pages
24{36, June 1995.

[2] Michel Dubois, Jonas Skeppstedt, Livio Ricciulli, Krishnan Ramamurthy, and Per Sten-
str�om. The detection and elimination of useless misses in multiprocessors. Proceedings
of the 20th Annual International Symposium on Computer Architecture (ISCA'93), pages
88{97, 1993.

[3] Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loop nest locality.
The 7th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS'96), October 1996.

[4] A. J. Smith. Line (block) size choice for cpu caches. IEEE Transactions on Computers,
36(9):1063{1075, September 1987.

[5] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantative Ap-
proach. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd edition, 1996.

[6] Sun Microsystems Inc., Mountain View, CA. Fortran Programmer's Guide, 1996. SC23-
0431-0.

[7] Seon Wook Kim, Michael Voss, and Rudolf Eigenmann. Performance analysis of parallel
compiler backends on shared-memory multiprocessors. Technical Report ECE-HPCLab-
99202, HPCLAB, Purdue University, School of Electrical and Computer Engineering, 1999.

[8] OpenMP Forum, http://www.openmp.org/. OpenMP: A Proposed Industry Standard API
for Shared Memory Programming, October 1997.

[9] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann Publishers, 1998.

[10] Vijay S. Pai, ParthasarathyRanganathan, and Sarita V. Adve. RSIM: An execution-driven
simulator for ILP-based shared-memory multiprocessors and uniprocessors. Proceedings of
the Third Workshop on Computer Architecture Education, February 1997.

[11] S. Mukherjee, S. Reinhardt, B. Falsa�, M. Litzkow, M. Hill S. Huss-Lederman, J. Larus,
and D. Wood. Wisconsin Wind Tunnel II: A fast and portable parallel architecture simu-
lator. Workshop on Performance Analysis and Its Impact on Design (PAID), June 1997.

[12] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A high-
performance parallel-architecture simulator. Technical Report MIT/LCS/TR-516, MIT,
September 1991.

17

[13] Stephen Alan Herrod. Tango Lite: A Multiprocessor Simulation Environment, Introduction
and User's Guide. Computer Systems Laboratory, Stanford University, Stanford, CA
94305, November 1993.

[14] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming
with Polaris. IEEE Computer, pages 78{82, December 1996.

[15] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execution
pro�ling. Proceedings of the 1994 ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, pages 128{137, May 1994.

[16] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. Pro-
ceedings of SIGPLAN Conference on Programming Language Design and Implementation
(PLDI'95), June 1995.

[17] Seon Wook Kim and Rudolf Eigenmann. ParaSim: The parallel program simulator on
shared-memory multiprocessors. Technical Report ECE-HPCLab-99203, HPCLAB, Pur-
due University, School of Electrical and Computer Engineering, 1999.

[18] M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Rolo�, A. Sameh,
E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, G. Swanson, R. Goodrum,
and J. Martin. The Perfect Club Benchmarks: E�ective Performance Evaluation of Su-
percomputers. International Journal of Supercomputer Applications, 3(3):5{40, Fall 1989.

[19] George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer Performance
Evaluation and the Perfect BenchmarksTM . Proceedings of the 4th International Confer-
ence on Supercomputing (ICS'90), Amsterdam, Netherlands, pages 254{266, March 1990.

[20] Sun Microsystems Inc., Mountain View, CA,
http://www.sun.com/servers/enterprise/e4000/index.html. Sun Enterprise 4000.

18

