
Protection Mechanisms for Application Service Hosting Platforms

Xuxian Jiang, Dongyan Xu
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, USA
{jiangx, dxu}@cs.purdue.edu

Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907, USA

eigenman@ecn.purdue.edu

Abstract

The Application Service Hosting Platform (ASHP) has
recently received tremendous attention from both indus-
try and academia. An ASHP provides a shared high-
performance infrastructure to host different Application
Services (AS), outsourced by Application Service Providers
(ASP). In this paper, we focus on the protection of ASHP,
which has inherent requirement of sharing, openness, and
mutual isolation. Different from a dedicated server plat-
form, which is analogous with a private house, an ASHP is
like an apartment building, involving the ‘host’ - the ASHP
infrastructure and the ‘tenants’ - the AS. Strong protection
and isolation must be provided between the host and the
tenants, as well as between different tenants.

Unfortunately, traditional OS architecture and mecha-
nisms are not adequate to provide strong ASHP protec-
tion. In this paper, we first make the case for a new OS
architecture based on the virtual OS technology. We then
present three protection mechanisms we have developed in
SODA, our ASHP architecture. The mechanisms include:
(1) resource isolation between AS, (2) virtual switching
and firewalling between AS, and (3) kernelized intrusion
detection and logging for each AS. For (3), we have devel-
oped a system called Kernort inside the virtual OS kernel.
Kernort detects network intrusions in real-time and logs
AS activities even when the AS has been compromised.
Moreover, for the privacy of AS, logs are encrypted by
Kernort so that the ‘landlord’ (namely ASHP owner) cannot
view them without authorization. We are applying SODA
to iShare, an Internet-based distributed resource sharing
platform.

1 Introduction

An Application Service Hosting Platform (ASHP) con-
sists of high performance hosts connected by high speed
networks. The ASHP creates a shared platform for the host-

ing of multiple Application Services (AS), which are out-
sourced by their respective Application Service Providers
(ASP). Examples of AS include e-laboratories, e-campaign,
and on-line conference management. In an ASHP, AS are
installed and invoked on-demand at the requests of their
ASP, and ASHP resources are dynamically allocated to
the AS according to their service load. Therefore, ASHP
reflects the vision of utility computing: computational
resources are supplied on-demand, and turned off when
no longer needed. ASHP have recently drawn tremendous
attention from both industry (eg. IBM, HP, and VERITAS)
and academia (eg. Xen [10] and SHoP [21]).

Current research in ASHP mainly focuses on dynamic
resource provisioning. Much fewer efforts have been
devoted to the critical problem of ASHP security and
protection. In this paper, we show that ASHP protection
poses new challenges. The new challenges are due to
an ASHP’s inherent requirement of openness, sharing and
mutual isolation. Unlike a dedicated server platform which
is analogous with a private house, an ASHP is like an
apartment building, involving both the ‘host’ - the ASHP
infrastructure and the ‘tenants’ - the AS. From a tenant’s
point of view, the ASHP should be a safe place to ‘live’
with privacy and isolation. From the landlord’s point of
view, the tenants should not do any damage to the ‘property’
and should not bother other tenants. More specifically, we
consider the following requirements:

• ASHP host protection: The ASHP hosts should be
protected from attacks from outside the ASHP. If one
ASHP host is attacked, all AS residing in it will be
affected.

• Confinement of AS: The ASHP should prevent any
damage by its tenants - the AS. It is desirable that the
activities of each AS are strictly confined within their
allocated space in the ASHP.

• Isolation between AS: It is equally important that the
ASHP should provide isolation between the tenants:

Each AS should run as if it is in a dedicated environ-
ment. Between AS sharing the same ASHP host, iso-
lation is desirable with respect to (1) administration:
an ASP should have administrator privilege, but only
within its own AS; (2) fault and attack: a crash or
security breach of one AS should not affect other AS;
and (3) resources: each AS should be guaranteed the
‘slice’ of ASHP host allocated to it, and it should not
be able to launch a local DoS attack upon other AS.

• Controlled communication between AS: Sometimes
neighbors do talk to each other: an AS may need to
communicate with another AS to form a composite
service. Therefore, the ASHP should enable controlled
inter-AS communications.

• Untamperable intrusion detection and logging: In
each AS, intrusion detection and logging functions
should be provided and should be untamperable. Fur-
thermore, a log may contain sensitive information such
as customer information. The ASHP should assure that
the logs are not viewable by the landlord (i.e. ASHP
owner), except during post-attack forensic analysis
with authorization.

Unfortunately, the traditional single-level OS architec-
ture, in which one underlying host OS supports all AS
running on top of it, is not adequate to meet the above
requirements (to be discussed in Section 2). In this paper,
we present a new two-level ASHP architecture, based on the
virtual OS technology. In the two-level architecture, each
AS runs on top of a virtual guest OS; while the guest OS
runs on top of the host OS.

Although the virtual OS technology is not new [10, 13,
23], we have developed novel mechanisms for ASHP pro-
tection. Most notably, we have implemented (1) resource
isolation (CPU, bandwidth, and memory) between AS, (2)
virtual switching and firewalling between AS inside the
same ASHP host, and (3) Kernort, a kernelized intrusion
detection and logging system for each AS. The rest of
the paper is organized as follows: Section 2 compares the
single-level and two-level ASHP architectures. Section 3
presents an overview of our two-level ASHP architecture
called SODA. Section 4 describes the novel ASHP protec-
tion mechanisms in SODA. Section 5 presents performance
evaluation results. Section 6 outlines the application of
SODA to iShare, an Internet-based resource sharing plat-
form. Section 7 compares our work with related work.
Finally, Section 8 concludes this paper.

2 Comparison of ASHP Architectures

The two different ASHP architectures are shown in
Figure 1: Figure 1(a) shows the traditional single-level

ASHP architecture; while Figure 1(b) shows the two-level
architecture based on the ‘guest OS/host OS’ structure.

Host OS

AS1 AS2 AS3

ASHP host

(a) Single-level architecture (host OS)

Guest OS Guest OS Guest OS

Host OS

AS1 AS2 AS3

ASHP host

Virtual server

(b) Two-level architecture (guest OS/host OS)

Figure 1. Two different ASHP architectures
(only showing one ASHP host)

In both architectures, multiple AS are hosted in one
ASHP host. In the single-level architecture, all AS run
directly on top of the host OS. In the two-level architecture,
each AS runs within a virtual server, which is physically a
‘slice’ of the ASHP host. Inside the virtual server, the AS
software runs on top of a virtual guest OS.

We argue that the traditional single-level architecture is
not adequate for ASHP protection, in the following aspects:

• Administration isolation: It is desirable that each
ASP has full administrator privilege only within the
corresponding AS, so that the ASP can perform AS-
specific management tasks such as data/software up-
grade. However, if the administrator privileges of all
ASP are at the same (host OS) level, access control will
become complicated and may lead to security holes.

• Installation isolation: Different AS may require the
same library, but of different versions, or their service
daemons may require the same port binding. In the
single-level architecture, such conflicts are difficult to
resolve and can potentially lead to local DoS attacks

(by port exhaustion, for example) between AS. On
the other hand, the two-level architecture naturally
eliminates such conflicts.

• Fault/attack isolation: If all AS run at the same host
OS level, any fault or security breach in one AS
will affect the host OS and therefore other AS. For
example, ghttpd [19] is a light-weight web server run
by the root. However, one known attack upon ghttpd
is: a malicious packet is sent as an HTTP request,
causing buffer overflow to bind a shell on a certain
port. Then the attacker can remotely log in using the
port, and run a remote shell! On the other hand, in the
two-level architecture, since the root that runs ghttpd
is the root of the guest OS, not the host OS, the attack
will not affect the host OS as well as other AS.

• Crash recovery and forensics: In the single-level archi-
tecture, to recover from an attack/crash of an AS, the
entire ASHP host will have to be rebooted. As a result,
other AS in the same ASHP host will be affected.
On the other hand, in the two-level architecture, the
recovery of one AS has no impact on the normal
operations of other AS: the ASHP administrator can
simply restart the virtual server; and the image of the
attacked virtual server is dumped to a file and sent to
an off-line site for forensic analysis.

In the two-level architecture, due to the ‘guest OS/host
OS’ indirection, AS performance slow-down is inevitable.
In other words, to achieve the same AS service quality as
in the single-level architecture, the two-level architecture
requires more CPU capacity. With the rapid advances in
processor speed, such cost is getting affordable.

3 SODA: Our Two-Level ASHP Architecture

We have developed a two-level ASHP architecture called
SODA [16], a Service-On-Demand Architecture. Details
about the non-security aspects of SODA can be found
in [16]. Currently, SODA adopts Linux as the host OS
of physical SODA hosts. For the guest OS running in
each virtual server, we leverage and extend an open-source
virtual OS project called UML [13], or User-Mode Linux.
Unlike other virtual machine techniques such as VMWare
[6], a UML runs directly in the unmodified user space of
the host OS; and processes within a UML will be executed
in the virtual server exactly the same way as they would
be executed in a native Linux machine. A special thread
is created to intercept the system calls made by all process
threads of the UML, and redirect them into the guest OS
kernel. The following features are enabled by leveraging
the ‘UML (guest OS)/Linux (host OS)’ structure:

• The host OS has a separate kernel space from the guest
OSes (UMLs), therefore preventing any harm done by
individual guest OS to the host OS.

• An IP address is assigned to each virtual server, so
that it has full internetworking capability just like a
physical server.

• A virtual server can be frozen/restarted without af-
fecting other virtual servers: the images of both the
UML and the AS on top of it can be copied to a file,
and be conveniently backed up and restarted. Such
feature enables easy fault/attack recovery and forensic
analysis.

However, current Linux (as host OS) and UML (as
guest OS) are not sufficient to achieve SODA security. We
have extended both of them by implementing a number of
protection mechanisms as described in the next section.

4 ASHP Protection Mechanisms in SODA

In this section, we present three ASHP protection mecha-
nisms in SODA: (1) resource isolation, (2) virtual switching
and firewalling, and (3) Kernort, a kernelized intrusion
detection and logging system. All mechanisms aim at
meeting the ASHP protection requirements in Section 1.
(1) and (2) are implemented inside the host OS, while (3)
is implemented inside the guest OS.

Although far from being a complete suite of SODA
security solutions, these mechanisms form the basis on
which more complicated security mechanisms and policies
can be implemented.

4.1 Resource Isolation between Virtual Servers

Resource isolation not only provides performance guar-
antee to the AS running in each virtual server, but also pre-
vents an ill-behaving or malicious AS from launching local
DoS attacks upon other AS in the same ASHP host. Cur-
rently, our SODA implementation supports CPU, network
bandwidth, and memory isolation. SODA resource isolation
mechanism has been presented in [16]. A summary is as
follows for the completeness of this paper.

• CPU capacity isolation is achieved by implementing
a coarse-grain CPU proportional sharing scheduler in
the Linux host OS. The scheduler enforces the CPU
share allocated to each virtual server. The CPU share
of a virtual server is decided when the corresponding
AS is admitted to the SODA platform. Within one
virtual server, all processes bear the same user (AS)
id. The host OS CPU scheduler then enforces CPU
proportional sharing among all processes based on
their user ids.

• Network bandwidth isolation is similarly achieved by
implementing a traffic controller inside the Linux host
OS. The traffic controller enforces the outbound band-
width share allocated to each virtual server. Recall
that each virtual server has its own IP address. The
traffic controller achieves bandwidth isolation between
virtual servers based on the IP addresses of outgoing
packets generated by these virtual servers.

• Memory isolation: Memory is critical to the per-
formance of virtual servers (and therefore that of
AS). SODA simply leverages the memory usage limit
feature of UML: the maximum amount of memory
available to a virtual server (both AS and guest OS)
can be specified as a parameter when UML, the guest
OS, is started.

Note that resource isolation only prevents DoS attacks
between AS. To prevent intra-AS DoS attacks launched by
the clients of an AS, other methods (such as client puzzles
[9]) still need to be installed as part of the AS software.

4.2 Virtual Switching and Firewalling

SODA uses virtual switching to connect the virtual
servers to the outside world as well as between the vir-
tual servers. More importantly, virtual switching achieves
strong protection for the SODA host: the physical SODA
host itself will have no IP address. Therefore, the host OS
is totally ‘invisible’ and therefore un-attackable from the
Internet.

To realize the seemingly conflicting goals of virtual
server networking and SODA host in-visibility, we have
implemented a software switch module inside the host OS
(Figure 2). This solution is inspired by a real layer-two
switch connecting physical NICs, yet the switch itself does
not have an IP address. Similarly, we create a software
switch in the host OS, connecting multiple virtual NICs of
the virtual servers and one physical NIC of the SODA host.

The software switch forwards packets to/from the virtual
servers. Furthermore, we enhance the software switch to
support firewalling between the virtual servers. A physical
firewall can protect the SODA host from attacks from the
outside, but it cannot handle attacks from one virtual server
against another virtual server inside the same SODA host.
Fortunately, our software switch provides an ideal venue
to perform inter-virtual-server firewalling: The firewall
module is plugged in on the packet path between the virtual
servers, enforcing access policies (’who can connect to
whom’) between the virtual servers. Currently, the firewall
implementation in SODA is based on the widely adopted
netfilter/iptables suite. The software switch can easily
accommodate more complicated firewalling rules such as
those for reverse firewalls.

������������

������
���
������
���

������������
������
���
������
���

		
	

���
�

�

�

�

������
���

������������
������
���
������
���

������������

Linux
NIC

Virtual NIC Virtual NIC Virtual NIC

UML UML UML

module
Software Switch

AS1 AS2 AS3

: Packet

Firewall

SODA host

Virtual server

Figure 2. Virtual switching and firewalling:
software switch inside the host OS (Linux)

With virtual switching and firewalling, the AS can com-
municate and collaborate in a secure fashion, making it
possible to create composite and value-added application
services. On the other hand, it is also possible to enforce
communication isolation via the virtual firewall - for ex-
ample, to prevent two competing AS (which sell the same
products, for instance) from attacking each other.

4.3 Kernort: Kernelized Intrusion Detection and
Logging

Intrusion detection is important to each AS hosted in
SODA. It is interesting to determine where to install intru-
sion detection systems (IDS) in SODA: If an IDS is installed
as an application-level system, it can be easily disabled by
the intruder once the system is compromised. If an IDS
runs inside the host OS, it will not be able to interpret any
encrypted traffic which may be from an intruder-initiated
ssh session, because the decryption will take place in the
guest OS, not in host OS. As a result, we choose to install
Kernort, our IDS system, inside the guest OS of each virtual
server, as shown in Figure 3. To be tamper-free, Kernort is
not a loadable kernel module. Instead, it is ’hard wired’
as part of the guest OS kernel1 compiled by a trusted UML
factory (to be described shortly).

Kernort can be regarded as the ’kernelized’ and extended
version of snort [4], an open source IDS. Driven by system
calls and packet reception, Kernort performs signature
based real-time intrusion detection. Since Kernort is located
in the data path, one concern is the overhead it adds to the
normal virtual server operations. Our measurement results
in Section 5 show that for a small set of attack signatures

1To make the guest OS kernel un-damageable by its processes, we
leverage the ‘skas’ mode of UML: the UML kernel is in a separate address
space from it processes, making the UML kernel totally invisible to its
processes.

Figure 3. Kernort: the IDS in the guest
OS kernel of each virtual server. Logs are
generated by Kernort and pushed down to
host file system

(we call them the ’top N most wanted’), Kernort incurs very
little overhead.

Kernort also performs logging for each AS, which is
necessary for off-line intrusion detection (based on a much
larger attack signature set) and auditing. However, logging
poses the following dilemma: If it is performed inside the
guest OS, the log may be tampered with or even erased by
an intruder, who tends to do so first thing after breaking into
a virtual server. On the other hand, if logging is performed
by the host OS, two problems will arise: (1) the privacy of
the tenants (AS) is violated, because the landlord can view
the AS log and (2) it is difficult or even impossible to log
activities that happen inside the virtual server.

In Kernort, we adopt a novel strategy to solve the above
problem as shown in Figure 3: the log data are generated
by Kernort in the guest OS kernel, but they are stored in
the host file system. Kernort is capable of taking snapshots
of AS execution, as well as collecting system-wide (within
the virtual server) log data such as those from syslogd
and klogd, and verbatim record of user console (local and
remote) input. The log data are immediately pushed down
to the host file system for storage. Recall that the host OS
is un-attackable from both inside and outside, and therefore
a much safer place to store the log data.

Furthermore, to conserve the privacy of the AS, Kernort
will encrypt the log data before pushing them down to the
host OS. For an AS, the key to encrypt the log data is
generated and compiled into the UML kernel by a trusted
authority called the Trusted UML Factory, before the AS
is created in the SODA host. As shown in Figure 4, the
Trusted UML Factory obtains the image of the AS from the
ASP, and builds a customized guest OS (UML) kernel with

both Kernort and the key compiled in it. The images of the
AS and guest OS will then be downloaded to the SODA
host. The key is nowhere to be obtained in the SODA host.
Instead, it will be kept by the Trusted UML Factory and by
the ASP. In the event of a crash or an attack, the key will be
used to decrypt the log data for forensic analysis.

Figure 4. Guest OS with Kernort and log
encryption key compiled by Trusted UML
Factory; log data are first encrypted before
getting to the host file system

5 Experiments and Performance Evaluation

We have deployed a local testbed of SODA to demon-
strate and evaluate the protection mechanisms in Section 4.
The SODA hosts in the testbed are Dell PowerEdge 2650
servers each with a 2.6GHz Intel Xeon processor and 2GB
RAM, connected by 100Mbps LAN. Performance of the
resource isolation mechanisms has been presented in [16].

We first demonstrate Kernort in action: we launch a
known attack called Lion Worm against one virtual server
running in a SODA host. When the attack occurs, Kernort
issues an intrusion alarm in real-time as shown in Figure 5.
As another demonstration, Figure 6 shows a screenshot that
looks very much like a regular session. In fact, it is not. It
is instead a replay of an earlier ssh session, based on the log
recorded by Kernort.

To evaluate the overhead added to each virtual server
by Kernort, we have performed a number of experiments
using LMbench [17], a suite of benchmarks for UNIX
system performance comparison. More specifically, we
compare the performance of a virtual server with and
without Kernort running in its guest OS. The virtual server
runs under otherwise the same configuration in the same
SODA host. Kernort contains a set of 10 attack signatures.
Tables 1-3 show the comparison results: Table 1 shows

Figure 5. Screenshot of real-time intrusion
alert raised by Kernort when the Lion Worm
attacks a virtual server

process microbenchmarks; Table 2 shows context switching
time between different number of processes with different
working set sizes; and Table 3 shows the file system and
virtual memory system latency. All results clearly indicate
that Kernort in the guest OS incurs very low overhead to the
virtual server.

Finally, to evaluate the networking overhead incurred
by Kernort, we performed another set of measurements of
TCP throughput and latency. Figures 7 and 8 show the
comparison results under different TCP send buffer sizes.
The throughput and latency penalty incurred by Kernort
is low, as indicated by the results. In summary, all our
experimental results show that Kernort is an effective and
low-overhead mechanism for ASHP protection.

6 Application to iShare

As our ongoing work, we are integrating SODA into a
fully decentralized resource sharing platform called iShare
[2]. Designed as an Internet-sharing middleware, iShare
facilitates the supply and request of shared computing
resources, including programs and AS dispersed over the
Internet. A key idea of the de-central structure is that re-
source/service providers can post their availability, together
with any access rules, on web pages. iShare user nodes will
then discover these resources and access them, if they agree
with the published rules. iShare presents the discovered
resources to end users in the form of Cyberlaboratories.
For example, the Nanotechnology, Lifesciences, or Parallel
Programming Cyberlaboratories include software tools as
well as databases that are specific to the respective subjects.

To a resource/service provider or an advanced user,
iShare provides four basic functions: The iPublish function
allows the provider to post resource availability and define

Figure 6. Screenshot of (off-line) replay of
ssh session, based on the log generated by
Kernort

access rules. iDiscover is capable of detecting published
resources. The iRun function can remotely execute a
program or AS on an available machine (or a slice of the
machine), thereby mapping programs to machine resources.
Finally, the iCompose function uses published resources as
components and compose them into new entities, such as
collaborative programs or composite AS.

Since iShare imposes no constraints on publishable
resource properties, access protocols, and authentica-
tion methods, security becomes a concern for resource
providers. It is desirable that the ‘slice’ of resource con-
tributed by a provider to the community remains highly
isolated from the remaining and private part of the resource.
SODA and its protection mechanisms are expected to bring
strong isolation and enhanced security to the iShare plat-
form.

7 Related Work

Internet hosting has been moving from content hosting
to application service (AS) hosting. The latter requires a
higher degree of isolation in resource, administration, and

Configuration null null stat open slct sig sig forc exec sh
call I/O close TCP inst hndl proc proc proc

w/o Kernort 11.0 11.3 119 146 23.8 11.9 28.5 4707 8016 15.K
w/ Kernort 11.0 11.4 120 147 24.3 12.0 29.0 4910 8221 16.K

Table 1. LMbench result: processes - time in µs

Configuration 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
w/o Kernort 9.1100 8.7500 9.6700 11.7 37.4 16.7 46.7
w/ Kernort 10.9 11.5 10.7 11.6 39.6 19.1 47.2

Table 2. LMbench result: context switching time in µs

0

20

40

60

80

100

1 10 100 1000 10000

T
hr

ou
tp

ut
 (

M
b/

se
c)

TCP send buffer size (bytes)

Virtual server w/o Kernort
Virtual server w/ Kernort

Figure 7. Comparison result: TCP throughput
with and without Kernort

fault/attack impact. Examples of ASHP platform include
Oceano [8] of IBM, Utility Data Center [7] of HP, and
Virtual Private Server (VPS) of Ensim [1].

Recently, virtual OS and isolation kernel have re-
ceived significant attention. Representative projects include
VMWare [6], Denali [23], Xen [10], UML [13], and
UMLinux [12]. They all support the creation of virtual
servers based on the guest OS/host OS architecture. It is
noteworthy that virtual machine and networking technology
has also been applied to Grid computing, such as in In-
VIGO [5] and Virtuoso [20]. The protection and security
mechanisms in SODA can be integrated into these systems.

It is noteworthy and interesting that the user-level mech-
anism for system call interposition in [15] is very similar to
the way the UML [13] guest OS is implemented. They both
exploit the ptrace mechanism provided by a UNIX-style OS
(including Linux) for the surveillance of other processes.
The purpose of [15] is intrusion detection and confinement,
also similar to that of the UML.

The honeypot is ”a computer system that is specifically
designed to capture all activity ... of a criminal who has

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500

La
te

nc
y

(u
se

c)

TCP send buffer size (bytes)

Virtual server w/o Kernort
Virtual server w/ Kernort

Figure 8. Comparison result: TCP latency
with and without Kernort

gained unauthorized access to the system” [11]. Recently,
virtual OS (including UML) has also been applied to the
deployment of honeypot [3], in order to achieve better
attack confinement and log data capture. However, due
to its different purpose from SODA, UML-based honeypot
does not support resource isolation and virtual firewalling
between honeypots. As to logging, UML-based honeypot
supports untamperable logging of attacker’s keystrokes.
However, it is not capable of intrusion detection and AS-
specific logging. Another project that addresses untampera-
ble logging is ReVirt [14]. ReVirt is based on the UMLinux
[12] guest OS. In ReVirt, the logging module is completely
outside the guest OS. As a result, the log data of ReVirt may
be less detailed than those captured by SODA’s Kernort.

A paradigm similar to the ASHP is the execution of
mobile code on a foreign host platform. It also involves a
two-way security relationship between the mobile code and
the host: we need protection of the latter against the former
[22] and vice versa [18]. However, the ASHP paradigm
is different in that the host-tenant relationship in an ASHP
usually lasts longer, and that the inter-tenant relationship

Configuration Create/ Delete/ Create/ Delete/ Latency/ Prot Page 100fd
0K 0K 10K 10K Mmap Fault Fault selct

w/o Kernort 160.2 83.1 226.2 90.2 792.0 14.1 15.0 21.9
w/ Kernort 160.8 83.6 228.6 90.2 772.0 14.2 15.1 21.9

Table 3. LMbench result: file and virtual memory systems latency in µs

should also be considered.

8 Conclusion

In this paper, we show that the protection of Application
Service Hosting Platforms (ASHP) poses new research
challenges. Due to ASHP’s inherent requirement of open-
ness, sharing, and mutual isolation, novel OS architecture
and mechanisms are needed to provide protection and
isolation between the host (ASHP infrastructure) and the
tenants (AS), as well as between different tenants. We
argue that the traditional single-level ASHP architecture
is not adequate for such protection, and that the two-level
architecture based on virtual OS technology appears to be a
promising candidate. Based on SODA, our two-level ASHP
architecture, we have implemented a number of effective
and efficient protection mechanisms, including resource
isolation, virtual switching and firewalling, and Kernort for
intrusion detection and logging. These mechanisms will
serve as the basis for more complicated security mecha-
nisms and policies for ASHP protection.

9 Acknowledgments

We thank Xiaojuan Ren from the iShare Project for
helpful discussion. We thank the anonymous referees for
their constructive comments and suggestions. This work
was supported in part by a gift from Microsoft Research
and a grant from the e-Enterprise Center at Discovery Park,
Purdue University.

References

[1] Ensim Virtual Private Servers. http://www.ensim.com.
[2] iShare. http://www.ecn.purdue.edu/ParaMount/iShare.
[3] Know Your Enemy: Learning with User-

Mode Linux. Honeynet Project White Paper,
http://project.honeynet.org/papers/uml.

[4] Snort. http://www.snort.org.
[5] The In-VIGO Project.

http://invigo.acis.ufl.edu/docs/aboutInVigo.html.
[6] VMWare. http://www.vmware.com.
[7] HP Utility Data Center. HP Technical White Paper, 2001.

[8] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and
M. Kalantar. Oceano: SLA based Management of a
Computing Utility. IFIP/IEEE Intl. Symp. on Integrated
Network Management, May 2001.

[9] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authen-
tication with client puzzles. Security Protocols Workshop
2000, LNCS, 2133, 2000.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. 19th ACM Symposium on Operating
Systems Principles (SOSP 2003), Oct. 2003.

[11] C. Brenton. Honeynets. Technical White Paper, Institute for
Security Technology Studies, Dartmouth College.

[12] K. Buchacker and V. Sieh. Framework for Testing the Fault-
Tolerance of Systems Including OS and Network Aspects.
IEEE Symposium on High Assurance System Engineering
(HASE 2001), 2001.

[13] J. Dike. User Mode Linux. http://user-mode-
linux.sourceforge.net.

[14] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Re-
Virt: Enabling Intrusion Analysis through Virtual-Machine
Logging and Replay. USENIX OSDI 2002, Dec. 2002.

[15] K. Jain and R. Sekar. User-Level Infrastructure for System
Call Interposition: A Platform for Intrusion Detection and
Confinement. Network and Distributed Systems Symposium
(NDSS 2000), 2000.

[16] X. Jiang and D. Xu. SODA: a Service-On-Demand Archi-
tecture for Application Service Hosting Utility Platforms.
IEEE HPDC-12, June 2003.

[17] L. McVoy and C. Staelin. LMbench: Portable Tools for
Performance Analysis. USENIX Technical Conference,
1996.

[18] O. K. Onbilger, R. Newman, and R. Chow. A Dis-
tributed and Compromise-Tolerant Mobile Agent Protection
Scheme. International Conference on Intelligent Agents,
Web Technology and Internet Commerce (IAWTIC 2001),
2001.

[19] G. Owen. ghttpd. http://gaztek.sourceforge.net/ghttpd.
[20] A. Sundararaj and P. Dinda. Towards Virtual Networks for

Virtual Machine Grid Computing. USENIX VM Symposium,
May 2004.

[21] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Over-
booking and Application Profiling in Shared Hosting Plat-
forms. USENIX OSDI 2002, Dec. 2002.

[22] V. N. Venkatakrishnan and R. Sekar. Empowering Mobile
Code Using Expressive Security Policies. 10th New Security
Paradigms Workshop (NSPW 2002), 2002.

[23] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. USENIX OSDI
2002, Dec. 2002.

