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Abstract

Shared-Memory Parallel computers (SMPs) have become a major force in the market of parallel
high-performance computing. Parallelizing compilers have the potential to exploit SMPs efficiently
while supporting the familiar sequential programming model. In recent work we have demonstrated
that Polaris is one of the most powerful translators, approaching this goal. Although shared memory
machines provide one of the easier models for parallel programming, the lack of standardization for
expressing parallelism on these machines makes it difficult to write efficient portable code. In this
paper we will report on a new effort to retarget the Polaris compiler at a range of new SMP machines
through a portable directive language, Guide™™ | in an attempt to provide a solution to this problem.
We will discuss issues in compiling with this language and the performance obtained on two machines
based on a number of significant application programs.

1 Introduction

Shared-memory multiprocessors (SMPs) have recently regained much interest. For example, it is possible
to buy a multiprocessor workstation at only little additional cost over a uniprocessor system. It is likely
that such multiprocessor systems will become very widely used in the near future. Shared memory
machines provide one of the easier conceptual models for parallel programming. Although this makes
programming these machines relatively straight forward, there has been a lack of standardization of
expressing parallelism. In moving from one machine of this type to another, it is often necessary to learn
a new set of vendor-specific parallel language constructs in order to program on the new architecture
[EPV96, VPEIJ6]. Furthermore, even if an existing program is successfully ported, users may not get
the level of performance they expect. Because of the increasing variety of SMP architectures currently
available on the market, this problem represents a still substantial hurdle that we need to take, before
parallel computing with these machines can become ubiquitous.

One way to address this problem is to use a parallelizing compiler, which would free the user from
the need to invest time in learning architecture-specific parallel languages [VPE96]. The burden, then,
is on compilers which face the challenge of translating into a vendor-specific target language (this can
be either an explicit parallel language or an internal representation). However, this creates the need
for a unique set of language constructs to be generated for each machine that a code may be run on.
Creating such architecture-specific back-ends to a compiler adds complexity and costs time. Time, that
may otherwise be available for developing techniques that apply to a range of architectures.

In this paper we begin to explore one possible solution to these problems. Kuck and Associates
(KAT) of Champaign, Tllinois has developed a parallel programming model for shared memory machines,
based on the results of two previous working groups, the Parallel Computing Forum, and the ANSI
subcommittee, X3H5. They have implemented their model with the Guide”™ parallel language and
its translator. The Fortran version of Guide, which is used in this study, is a Fortran 77 (F77) plus
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parallel directive language. Its associated translator converts code expressed in this dialect into F77
plus vendor-specific library calls, which are available for all of the popular SMP architectures in use
today. This frees programmers from machine-specific syntax, allowing portable code to be written
by users, and generated by parallelizing compilers. Thus, in this paper we discuss the performance
of automatically parallelized programs with Guide directives, as compared to the performance of the
same codes automatically parallelized by vendor-specific compilers. In cases where there is a significant
difference in the observed behavior, possible explanations are discussed.

The Guide language can be used as both an explicit parallel user language and a target language
of a parallelizing source-to-source translator. Since our main interest lies in automatic parallelization,
we chose this as our means of obtaining experimental codes. In order to automatically generate Guide
constructs, we added a back-end (referred to as Guide back-end henceforth) to the Polaris paralleliz-
ing compiler. Polaris is a restructuring compiler originally developed at the University of Illinois at
Urbana-Champaign, that uses many advanced techniques to recognize, enhance, and exploit loop-level
parallelism. An overview of the Polaris compiler can be found in [BDE196].

To determine the efficiency of portable code expressed in the Guide parallel language, two shared-
memory machines were then chosen for experimentation. These machines are a four-processor Sun
SPARC workstation, and a twelve-processor SGI Challenge machine. The performance of code expressed
in the portable Guide language is compared with that automatically parallelized by the Sun SPARC20
native compiler and the SGI Power Fortran Accelerator.

Section 2 will give some details of the history and syntax of the Guide programming language.
Section 3 gives an overview of the Polaris compiler and describes the modifications that we have made so
that it generates optimized code for Guide. Next, in Section 4, we briefly outline the architectures of the
machines on which our experiments were performed. Following that, Section 5 presents measurements
of parallel programs run on our machines and a discussion of their performance. Section 6 outlines
our ongoing research. This section also includes subsection 6.3, which gives our view on the features
that could have been useful and evaluates desirable directions for directive languages for shared memory
machine as well as subsection 6.4, which introduces tools used to analyze and extract data from the
experimental results. Finally, the conclusions of the paper are presented in Section 7.

2 Portable Language for Shared-Address-Space Machines

2.1 A Brief History of Portable Parallel Languages

In 1987 the Parallel Computing Forum (PCF), an informal industry group, was formed with the goal
of standardizing DO loop parallelism in Fortran 77. This group was active from April 1987 through
February 1990, with their final report being published in 1989. Although PCF was dissolved, an ANSI
authorized subcommittee, X3Hb, was chartered for building a language-independent model for paral-
lelism in high-level programming languages, as well as the bindings of this model into Fortran and C.
This subcommittee used the PCF final report as a foundation for their model. The group began their
work in February of 1990; however by May of 1994 interest was lost, and the proposed standards aban-
doned. Nevertheless, their results yielded a completed language-independent model, an almost complete
binding for Fortran 90, and a preliminary draft for ANSI C. [KA]

Kuck and Associates (KKAI) continued to work on the partially completed documents of the ANSI
X3H5 committee, and expanded them when required. This resulted in the Guide programming system,
illustrated in Figure 1, which takes Fortran 77 with the proposed ANSI X3H5 directives as input, and
generates F77 code with vendor-specific thread calls as output. These threads are managed by calls to
the Guide support libraries.

Before describing Guide in more detail, two related efforts shall be noted, that also attempt to
facilitate portable parallel programs: the High-Performance Fortran (HPF) [For93] and the PVM/MPI
[BDGT93, For94] efforts. Both PVM and MPI provide message passing functions for programs that
run on parallel processors with separate memories. Several factors have contributed to the fact that



programming in these message passing packages has become widely applied. These factors include the
standardization achieved by PVM and MPI, the fact that, for some time, message passing has been the
only feasible way to program distributed-memory machines, and the fact that such programs can be
ported to shared-address-space machines as well. On the negative side, message-passing programming
can be tedious because of the task of partitioning a program and data space across processors and
bookkeeping loop indices, array subscripts and conditional operations on partition boundaries.

The HPF effort was initiated with the goal of simplifying this very task. It provides a shared-
address model to the user and generates the message passing program through intelligent translators.
The user specifies data distributions of arrays, but does not need to get involved in array subscript
bookkeeping operations. However, although HPF supports a shared-address-space model, its emphasis
is on distributed-memory/message passing machines. For example, it lacks concepts of loop-private
arrays, which are among the most important language elements for programming SMP machines. On
the other hand, HPF’s pioneer work in data distribution concepts has generated knowledge that may,
in the future, benefit the languages focused on in this paper. Currently, the Guide language does not
provide data distribution or other latency-hiding facilities, which may become important when we deal
with true non-uniform memory access machines.

2.2  An Overview of the Guide Programming System

Fortran 77 with --____ ___ User Created
Guide Directives or Automatically
¢ Generated
GUIDE . . .
Directive Link with Guide
Processor Application Accelerator
or GUIDEVIEW Library
_For_tran 77 GUIDE
with Library Calls Application GUIDEVIEW
i Accelerator

Fortran Compiler

l

Parallel <——| System Threads
Executable Library

Figure 1: The Guide Programming System

The input to the Guide Directive Translator, pictured in Figure 1, is standard sequential Fortran 77,
with Guide directives used to express parallelism. The Guide language is a relatively large directive
language. A detailed description of the Guide programming model and syntax can be found in [Kuc96].
For our compiler interface with the Polaris translator we have used only a small subset of the directives.

A parallel section of code begins with the C$PAR. PARALLEL directive, and ends with the
C$SPAR END PARALLEL directive. Statements between these directives will be executed on each
of the processors. At the beginning of a parallel section, each variable contained within, must be classified



as being shared by all processors, or private to each. This is done by including the variable within the
argument list of either a SHARED() or LOCAL() directive.

Within a parallel section, a parallel do statement is enclosed within C$PAR. PDO and C$PAR
END PDO directives. These loops will then have their iteration space divided among the available
processors. The Guide language also provides for scalar reductions, which are statements within a loop of
the form sum = sum + a(i), where i is the loop index. Any scalar reduction variables must be identified
at the beginning of a parallel do statement by including them in a REDUCTION() directive. Array
reductions are similar patterns, however, the reduction variable is an array with a loop-variant subscript.
Array reductions are not supported by the directive language. Because of this, Polaris transforms them
into fully parallel loops, as we will describe.

Separating parallel regions from the parallel do sections, allow for pre- and postambles, sections of
code executed by each processor participating in the parallel execution once at the beginning and at
the end of the loop. These sections were used for initializing private variables, performing reduction
operation, etc.

3 The Polaris Parallelizing Compiler

3.1 Polaris overview

Polaris is a parallelizing compiler, originally developed at the University of Illinois. As illustrated in
Figure 3.1, the compiler takes a Fortran77 program as input, transforms it so that it can run efficiently
on a parallel computer, and outputs this program version in one of several possible parallel Fortran
dialects.

DO i=1,n
a(i) = b(i)
____________ ENDDO
Fortran77 =~
Polaris
C$PAR DOALL()
V2 VI T N | DO i=1,n
bl AN ENBDO.
eneric
garallel SGl Sun SC4.0
language Guide Fortran Fortran
Fortran Convex
Fortran

Figure 2: Overview of the Polaris parallelizing compiler

The input language includes several directives, which allow the user of Polaris to specify parallelism
explicitly in the source program. The output language of Polaris is typically in the form of Fortran77 plus
parallel directives as well. For example, the generic parallel language includes the directives “CSRD$
PARALLEL” and “CSRD$ PRIVATE a,b”, specifying that the iterations of the subsequent loop shall
be executed concurrently and that the variables a and b shall be declared “private to the current
loop”, respectively. Figure 3.1 shows several other output languages that Polaris can generate, such as
the directive language available on the SGI Challenge machine series; the Sun SC4.0 Fortran directive
language, and the Guide directives introduced above.



Polaris performs its transformations in several compilation passes. In addition to many commonly
known passes, Polaris includes advanced capabilities for array privatization, symbolic and nonlinear
data dependence testing, idiom recognition, interprocedural analysis, and symbolic program analysis.
An extensive set of optional switches allow the user and the developer of Polaris to experiment with the
tool in a flexible way. An overview of the Polaris transformations is given in [BDE*96].

The implementation of Polaris consists of some 200,000 lines of CTT code. A basic infrastructure
provides a hierarchy of Ct+ classes that the developers of the individual compilation passes can use
for manipulating and analyzing the input program. This infrastructure is described in [FHPT94]. The
Polaris Developer’s Document [Hoe96] gives a more thorough introduction for compiler writers.

Polaris is a general infrastructure for analyzing and manipulating Fortran programs. The use of
this infrastructure as a parallelizing source-to-source restructurer is the main application. Another
application is that of a program instrumentation tool. Currently, Polaris can instrument programs for
gathering loop-by-loop profiles, iteration count informations, and for counting data references. We made
use of these facilities in order to obtain the results described in this paper. It is also possible to use
this infrastructure to obtain other useful informations on the program under consideration. Other tools
based on Polaris is discussed in Section 6.4.

3.2 Polaris modifications and enhancements

The Guide Programming System is targeted at shared-memory architectures, which is one of the classes
of machines for which Polaris has been developed. Because of this, the initial movement of the compiler to
this language was fairly simple. Most of the additions to the code were localized to the final output pass,
where the generic directives used in the internal representation are mapped to vendor-specific directives.
The output pass is the last one in a series of compilation passes. It generates the Fortran-plus-directive
output language from the internal representation.

Polaris internally provides to its output pass generic directives that distinguish between serial and
parallel loops, and shared and private variables. In our new Guide output pass, these generic directives
can be mapped directly to their corresponding Guide directives. The next section describes some of the
important transformations conducted by our new Guide back-end.

Array Reduction and Privatization

Both reduction parallelization and array privatization are among the most important transformations
of a parallelizing compiler [BDET96, TP93, PE95]. As we have mentioned above, Polaris is capable of
transforming array reductions into fully parallel loops. Figure 3 gives an example array reduction in its
serial and parallelized forms. Often, the number and indices of the privatizable array elements cannot be
determined at compile time, which is a frequently encountered situation in an array reduction operation
(array & in our example) and an array privatization. In the case of array reduction, one solution is to
provide a local copy of the array to each processor, perform the accumulation operations of this array
in the now fully parallel loop, and then recombine the local arrays after the loop is complete.

Array privatization likewise requires creation of local copies of an array for each processor. In cases
that warrant privatization, an array is used as temporary storage for a given iteration. Data dependencies
that may exist are a matter of storage reuse, and are not true flow dependencies [TP93]. Private arrays
can be expressed in the Guide directive language by listing the arrays on the LOCAL list. Arrays whose
size 1s not known at compile time cannot be declared private in this way. Instead, they can be expanded
by a dimension equal to the number of processors and accessed by the processor identification as an
index, as shown in Figure 4. Dynamic allocation of shared arrays is supported in most parallel Fortran
dialects.

As shown in these examples, my_proc_id() may be called frequently within the resulting parallel
codes. This may cause too much run-time overhead. Since Guide allows for preambles to parallel loops,
Guide back-end places a single call and stores the value in a local variable in a preamble, and replaces



DIMENSION A(M),Aloc(M,number_of_processors)
PARALLEL DO I=1,M

Aloc(I,my_proc_id()) = 0

ENDDO

PARALLEL DO I=1,N

DIMENSION A(M) Aloc(B(I),my_proc_id()) =

DO I=1,N
2 Al B(I id + X

AGB(I)) = AGB(D)) + X ENDD;C( (I),my_proc_id())

ENDDO
PARALLEL DO I=1,M
DO J=1,number_of_processors

A(I)=A(I)+Aloc(I,])

ENDDO
ENDO

(a) Serial Array Reduction (b) Parallel Array Reduction

Figure 3: Array Reduction operation
DO J=1,M PARALLEL DO J=1,M
DO I=1,N DO I=1,N
AC(T) = ... A(I,my_proc_id())= ...
ENDDO ENDDO
DO I=1,N DO I=1,N
. = ATI) ... = A(I,my_proc_id())

ENDDO ENDDO

ENDDO ENDO

(a) Serial (b) Expanded array

Figure 4: Array privatization through ezpansion

subsequent calls within parallel code section with that variable. This can amortize the cost over the
total execution time. We have used this transformation in both cases where the processor_id would be
needed: parallel loops with reduction operations and private arrays. Figure 5 shows array expansion
transformation using preambles with actual Guide directives.

4 The Machines Used for Experimentation

The Sun SPARC 20 Multiprocessor architecture

Figure 6 shows the Sun SPARC20 workstation used in our experiments. It consists of four 100 MHz
hyperSPARC processors that share a single global memory space [Wp96]. Each processor has its
own 256-KB external cache and an 8-KB on-chip instruction cache. Both write-through with no write
allocate and copy-back with write allocate caching schemes are provided. In the case of multiprocessing,
the external cache uses the copy-back scheme, maintaining cache coherency through a high performance
snoop mechanism. The copy-back scheme is preferred as it writes to main memory less often than a write
through scheme, and therefore saves memory bandwidth for interprocessor communications through the
shared global memory.



C$PAR PARALLEL
proc = mpptid() + 1

PARALLEL DO J=1,M CﬁEAﬁziD]\?[
. A(x,my_proc_id()) ... ’
ENDO . A(x,proc)
ENDO
C$PAR END PDO
C$PAR END PARALLEL
(a) With Function (b) Using Preamble

Figure 5: Identifying the current processor
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Figure 6: The Sun SPARCstation20 architecture

The SGI Challenge Multiprocessor architecture

A twelve-processor Silicon Graphics Challenge machine was our second target. Even though it has
twelve processors, we only used up to four processors for the comparison with the Sun workstation.
SGI challenge is a shared memory machine with basically the same block diagram as in Figure 6. It
is based on the 150 MHz MIPS superscalar RISC R4400 chip with peak performance of 75 MFLOPs
[[SA]. Each processor is equipped with separate 16-KB direct-mapped on-chip instruction cache and
data cache as well as 4-MB four-way set associative external cache. It has 1 GB of memory, and the
communication between processors is done by a fast shared-bus interconnect with bandwidth of 1.2
gigabyte per second. The basic schematics for SGI Challenge is the same as Figure 6 except the changes
in parameters and the number of processors. As with the SPARC20, it is a bus-based machine which
uses a snoop cache-coherence scheme; however, unlike the Sun workstation, it always uses an Illinois
Protocol write-invalidate scheme [PP84].

5 Measurements

Our measurements will help quantify the following issues:

Performance of Guide directives: The main objective of this paper is automatic parallelization
through a portable directive language for SMPs. Good performance of Guide is the basis of



our research.

Performance of Polaris versus commercial parallelizers: There are several commercial paral-
lelizing compilers available on the market. We will compare the performance of these parallelizers
with Polaris.

Possible improvements for better performance: Another important goal of our effort is to make
suggestions to software and hardware vendors on improving their language, compiler, and archi-
tecture.

The measurements are presented in two parts: the experiments with the Sun workstation and those with

the SGI Challenge machine.

5.1 The Experiment

In our experiments, we have studied several programs in three forms; the serial version, the version
produced by Polaris expressing parallelism with the Guide-specific directives; and the version parallelized
by the vendor-specific parallelizing compiler. We usedtheS recently released version 2.1 of Guide. The
codes we used are MDG, ARC2D, and FLO52Q from the Perfect Club Benchmarks, and APPSP and
EMBAR from the NAS kernels.

The serial version is the original version instrumented with timing functions. In the first step of
our experiments, we measured the execution time of the serial loops. We inserted the instrumentation
functions at the beginning and end of each loop and ran the resulting code to generate the timing profile.
In order to minimize perturbation, we then eliminated the instrumentation functions inserted for either
insignificant loops or the loops that execute a large number of times. We did this based on the profile
obtained previously. We ran the resulting program to obtain the final profile, which then served as the
basis for performance comparisons.

The Fortran SC4.0 compiler on the Sun workstation also includes a capability to do automatic paral-
lelization. We will compare the performance of programs parallelized by Polaris with the performance of
this compiler. Likewise, SGI machines have a native parallelizing compiler, Power Fortran Accelerator
(PFA). When we use these commercial parallelizing compilers, we used the partially instrumented serial
programs described above as the input, so that we can have timing information on the loops of interest.
The two versions of code generated by these compilers will then show us the differences in automatically
generating parallel programs with vendor specific parallelizer and with Polaris in the portable Guide
directives.

To ensure reliable timing data, we usually ran the programs several times under the same environment
and checked the range of execution time before we took the measurement. During our program runs,
we did not enforce a single-user mode on either machine. However we made sure that the machine load
was low during the experiments. In this way we could measure the performance that an ordinary user
would see without taking special precautions.

5.2 Results on the SPARC20
Overall Performance Results

This section presents the experimental results obtained through various runs of the Perfect Benchmark
programs ARC2D, FLO52Q, and MDG, and NAS kernels APPSP and EMBAR on the SUN SPARC20
workstation.

Figure 7 shows the overall timing of the different parallel versions of the Perfect Benchmark programs.
Labels on the x axis indicate the number of processors used to run the program. The graphs show the
timings of the programs parallelized with Polaris+Guide back-end with solid lines and those parallelized
with the Sun parallelizing compiler with dotted lines, respectively. For comparison, the “ideal” curve
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Figure 7: Execution time of different parallel versions of Perfect benchmarks on SPARC20

ZZ%%lefz?cjﬁg;ﬁﬁi, and they are presented in dashed lines. The overall timing of the three NAS

kernel programs 1s shown in Figure 8 in the same format.

Figure 9 shows the speedups of the 1 through 4-processor parallel versions of the programs, relative
to the serial execution. The gray bars represent the speedups of the versions generated by Polaris
Guide back-end and the black bars represent those of the versions generated through SC4.0 automatic
parallelization.

The obtained 4-processor speedups range from 0.9 to 2.5. Parallel versions created by Polaris mostly
outperformed those by the Sun parallelizer. In the cases with FLO52Q and EMBAR the overhead of
the Polaris version between the serial and the 1-processor parallel variant, is visibly high. We refer to
this as the parallelization overhead, which it is briefly discussed in Section 6.

In all cases, the speedup curves are almost linear, although we hardly reached the ideal speedup.
Some programs such as FLO52Q have a considerable portion of code that could not be parallelized due
to I/0. Also, the overall parallelization overheads may result in a degradation of performance, especially
when there are many parallel loops with small execution time. We will discuss these results in more
detail by looking at the performance of individual loops.

shows

Performance results of individual loops

The performance figures of individual loops give us more insight into the behavior of the programs and
the machine architecture. We measured the total execution time of each loop accumulated over repetitive
runs in the program as well as the average execution time.

The overall execution time of MDG shows a good speedup compared to others, and the reason is
clear in Figure 10. The execution time of MDG is dominated by one loop, INTERF_do1000. The 4-
processor speedup of this loop shows a speedup of 2.26. The second largest loop, POTENG_do2000,is
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Figure 9: Speedups of the test programs relative to the serial execution on SPARC20. (gray: Polaris
Guide back-end; black: SC4.0)

also parallelized with a speedup of 2.37, taking part in the high performance. On the other hand, SC4.0
was not able to parallelize these two loops, resulting in no speedup on multiple processors.

Another code that we studied is ARC2D. Figure 11 shows the parallel execution times of a few of
the most time-consuming loops. Almost all of these loops are easy for compilers to parallelize. In fact,
in studies with previous parallelizing compilers, we have found that all loops of this code were almost
fully parallelized [BE92]. The Individual loop speedups are very high compared to the serial execution,
but a close examination reveals that two loops;, STEPFX_do210 and STEPFX_do230, run two to three
times faster on one processor than those in the serial version. Compared to the parallel program run
on one processor the speedups of the loops on two, three, and four processors are significantly lower.
We attribute this “negative parallelization overhead” to the loop interchange transformation, which is
applied by the back-end compiler to the parallel code but not to the serial code. It will be discussed
further is Section 6.1.

FLOb52 is another program with plenty of parallelism. Similarly to ARC2D, previous compilers
have been successful in parallelizing this code. As can be seen in Figure 12, major loops were all
parallelized with good speedups, except CPLOT_do30, which is a loop that handles file T/O. Several
loops showed differences in the optimizations performed by the two compilers, however the overall
difference in execution time is insignificant.

One of the two NAS kernel programs we considered, APPSP, executes for a short amount of time.
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Figure 11: Execution times and speedups of individual loops in ARC2D on SPARC20

Nevertheless, the speedup characteristics are much the same. All three loops shown in Figure 13 are
parallelized by Polaris, but SC4.0 parallelized several inner loops with these three loops, resulting in
rather worse performance.

In the case of EMBAR, Polaris was not successful in parallelizing the most time-consuming loop,
VRANLC_do120, due to data dependences. This seriously limits the overall speedup, although the
second-most time-consuming loop, EMBAR _do140, was parallelized using the array reduction technique,
yielding a speedup of 1.3. None of these loops were parallelized by SC4.0, so there was no speedup, as
shown in Figure 14.

The results presented so far indicate that the usage of Guide as a portable directive language along
with the Polaris parallelizing compiler is an efficient way to achieve high performance through automatic
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Figure 12: Execution times and speedups of individual loops in FLO52Q on SPARC20
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Figure 14: Execution times and speedups of individual loops in EMBAR on SPARC20

parallelization on the Sun workstation. However, we have also identified the performance of the memory
and the T/O system to be serious bottlenecks [EPV96]. In Section 6.2 we will discuss this further.

5.3 Results on the SGI Challenge

Overall Performance Results

On the SGI Challenge machine we measured the execution time of the programs on one through four
processors — the same as for the SPARC20 machine. The overall execution time of the Perfect Benchmark
programs MDG, ARC2D, and FLO52Q is shown in Figure 15. In these graphs, dotted lines are the
results from PFA, a native parallelizer on the SGI challenge machine, whereas solid lines represent the
Polaris+Guide measurements.

The programs execute faster on the SGI Challenge machine than on the Sun workstation, but the
improvement is not uniform over all programs. Also, ARC2D parallelized by PFA is faster than the
Polaris version. Figure 16 presents the execution time of NAS kernels APPSP and EMBAR.

The charts show curves similar to those for the Sun workstation. However, the speedups on four
processors are slightly lower. It should be noted that the effect of multiuser mode had more impact on
our experiments on the SGI machine than on the Sun workstation. In fact our measurement, plotted

in Figure 17, show significantly lower performance than results obtained previously in quasi-single-user
mode [BDET96].

Performance results of individual loops

In this section, we will examine the performance of the test programs in more detail. We consider the
same loops that are discussed in Section 5.2.
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Figure 15: Execution time of different parallel versions of Perfect benchmarks on SGI Challenge

Figure 18 shows similar curves as Figure 10. The speedups on both machines are also almost identical.
None of these loops were parallelized by PFA| which is obvious from the figure. The speedups of these
loops on four processors on both machines are almost identical.

The performance of three loops in ARC2D is shown in Figure 19. The effect of the loop interchange
are still present with STEPFX_do210 and STEPFX_do230, although they are not as pronounced as in
Figure 11. This time, the PFA version benefits more from loop interchange. Also, they show speedup
curves. All three loops were parallelized by both Polaris and PFA.

Two things are worth noting about the performance of FLO52Q on the SGI Challenge. First, the
effect ofthe 1/O loop is not dominant. On SPARC20, CPLOT_do30 is the most time-consuming loop,
taking more than five seconds to execute, but here it is insignificant. As mentioned earlier, this shows
that the /O system on the Sun workstation could be improved significantly. On the other hand, the
speedups of the other three loops on SPARC20 ranges from 2.8 to 3.2 on four processors, but on the
Challenge machine they stay within the range of 1.4 to 2.7 on four processors. In this case, the Sun
workstation shows better scalability for the chosen configuration and environment.

All three loops from APPSP shown in Figure 21 are parallelized by both Polaris and PFA. APPSP is
parallelized very successfully. The situation is different with EMBAR. The most time-consuming loop,
VRANLC_do120, remains serial in both cases. Polaris parallelized EMBAR_do140, but the speedup is
less than two on four processors. In fact, like SC4.0, PFA was not able to parallelize any loops, leaving
EMBAR as a serial program.
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Figure 16: Execution time of different parallel versions of NAS kernels on SGI Challenge
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Figure 17: Speedups of the test programs relative to the serial execution on SGI Challenge. (gray: Polaris
Guide back-end; black: PFA)

6 Ongoing Research

6.1 Improved code generation in the parallelizing compiler

As described earlier, we attribute to the loop interchange transformation the improvement of the parallel
version of ARC2D on one processor over the serial version. The strategy chosen by the back-end compiler
(SC4.0) for applying this transformation is unclear. It seems preferable to make decisions on what
performance improving transformation to apply in the front-end, parallelizing compiler, where advanced
program analysis and performance modelling capabilities are available.

Loop interchanging is a well-known technique [BENP93], but not yet applied by Polaris. The devel-
opment of loop interchange strategies is an ongoing project. Here we report on measurements that have
quantified the effects of the transformation. We have compiled the parallel version of ARC2D without
applying loop interchange and compared its performance with the program with manually interchanged
loops. The transformation was applicable in two distinct cases. The first case was to increase locality
of reference by creating a stride of 1 in array accesses. This was applied to 7 loops in the program
ARC2D: RHSC_do400, COEF24_do20, STEPFX_do210, STEPFX_do230, FILERX_do16, FILERX_do19
and FILERX_do20 with great success.

The second benefit from this manipulation is increased parallelism by exchanging an inner parallel
loop with an outer serial loop, when such an exchange is legal. This increases granularity and allows
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Figure 19: Execution times and speedups of individual loops in ARC2D on SGI Challenge
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Figure 21: Execution times and speedups of individual loops in APPSP on SGI Challenge
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Figure 22: Execution times and speedups of individual loops in EMBAR on SGI Challenge

more work to be done in parallel, reducing the total startup overhead of repeatedly starting the inner
loop. This transformation was applied to 3 loop nests in ARC2D: XPENT2_do3, XPENTA _do3, and
XPENTA _do4. Each of these loops showed significant improvement when interchanged.

30

20

[ original 1oop

Il interchanged loop

10 -

XEPNT2 do3
XPENTA_do3
XPENTA_do4
RHSX_do400
COEF24 _do20
STEPFX_do210
STEPFX_do230
FILERX_do16
FILERX do19
FILERX_do20

Figure 23: Execution Times of Interchanged Loops in ARC2D

Figure 23 presents the change in execution times for each of these modified loops. The loops
STEPFX_do210 and STEPFX_do230, which were the two most time-consuming loops in the bench-
mark, greatly reduce their execution time due to the creation of stride 1 accesses. Their 4-processor
execution times decreased by the factors 4.88 and 5.84, respectively. Both loops have an inner loop,
which when interchanged enhances the spatial locality that each cache can exploit. This speedup is
also present in the 1-processor execution, since it i1s a result of improving the cache behavior of each
individual processor.

In XPENT2_do3 and XPENTA _do3 the effect of interchanging for the sake of increased granularity
can been seen. Reducing the startup overhead and increasing the total work done in parallel allows these
loops to reduce their parallel execution time by factors 5.77 and 5.26, respectively.

After interchanging these 10 loops, the overall execution time of the code dropped from 192 seconds
to 97 seconds, a speedup of 2. This increased the program speedup with respect to the original, serial
version significantly, from 1.6 to 3.2. We are currently implementing a Polaris pass that determines
where loop interchanging is profitable and then applies the transformation.

16



6.2 Improved performance modeling

Understanding the detailed performance behavior is important for identifying applicable transformations.
To this end, we have used a simple parallel loop model. It includes the notions of a parallelization
overhead and a spreading overhead, both of which prevent a parallel loop from speeding up by the
number of processors. Improving the understanding of these overheads is another important effort. In
the following subsections, the analysis for the Sun architecture is given, although a similar analysis can

also be done for the SGI.

The parallelization overhead represents the difference between the serial program and the 1-
processor parallel program performance. It is mainly caused by the parallel loop startup latency, code
inserted by transformations that may need to be performed for parallelizing the code, and the usually
lesser degree of scalar optimizations that can be applied to the parallel code.

We have measured the loop startup latency on the SPARC20 to be typically 150 microseconds. For
loops that execute serially in less than 0.5 milliseconds, parallelization is usually not profitable. Our
measurements show that parallelization overheads for the significant loops in the program range up to
20%. For ARC2D we have seen apparent negative parallelization overheads. That is, the 1-processor
parallel version runs faster than the serial loop. We attribute this effect to advanced optimizations that
are applied to the parallel code only, although they could benefit the serial code as well. An example is
the loop interchange transformation, as seen for the ARC2D code.

The spreading overhead limits the speedup of the parallel program when increasing the number
of processors. The primary factor on our machine is the performance of the memory system. In order
to model this effect, we have studied the amount of references to global and private variables. Private
variables are touched by one processor only and they are likely to reside in the cache. In contrast, shared
references are less likely to exploit the cache well because they will be referenced by different processors
over the course of the program execution. Hence, the ratio between the amount of private and shared
data can be an indicator of the expected degradation caused by memory traffic.

This simple model would explain some of the performance differences in our programs. For example,
the loops is MDG have a large amount of private data, whereas in ARC2D, a significant portion of the
references are shared. In order to validate this model more quantitatively we counted the number of
private and shared references for the major parallel loops in ARC2D, and we plotted the ratio of private
to total references; as shown in Figure 24.
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Figure 24: Private/Total References versus Speedup

A trend toward a higher speedup is noticeable as the ratio of private references to total references
increases. However there are also a few points that deviate from this trend. We have looked at the
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source code of these loops (indicated by arrows in Figure 24) and have found that they contain code
patterns that lead to good cache locality of shared variables. For example, the loop with the largest
speedup of 3.0, GRADCO0_do4, shown in Figure 25, accesses many global variables, but the coef array
1s read-only shared and so they are more likely to be cached.

C$PAR PARALLEL LOCAL(K,J), SHARED(JLOW,JUP,KMAX,COEF,JMINU,JPLUS,PRSS)
C$PAR PDO
CSRD$ LOOPLABEL ’GRADCO0_do4’
DO j = jlow, jup, 1
CSRD$ LOOPLABEL ’GRADCO0_do4/2’
DO k = 2, (-1)+kmax, 1
prss(j, k) = MAX(coef(jminu(j), k), coef(jplus(jplus(j)), k), co
*xef (jplus(j), k), coef(j, k))
ENDDO
ENDDO
C$PAR END PDO
C$PAR END PARALLEL

Figure 25: The GRADCO0_do4 Loop Nest

The other outlying point in Figure 24 represents CALCPS_dol, Figure 26. This loop demonstrates
the effect of a stride of 1 in enhancing cache performance. CALCPS_dol reads from the read-only q
array often, and since the inner loop iterates on j, successive iterations on a given processor access this
array, and others with a stride of 1. This greatly enhances the locality of reference exploited by the
cache. In fact, in the previous example, GRADCO0_do4 does not access the coef array with a stride
of 1, however if the j and k loops are interchanged this is corrected, and the execution time is reduced
by 16%. The results of similar manual modifications on the most time consuming loops of ARC2D are
presented in the next section.

C$PAR PARALLEL LOCAL(J,K), SHARED(KMAX,JMAX,GAMI,Q,PRESS,GAMMA,SNDSP)
C$PAR PDO
CSRD$ LOOPLABEL °’CALCPS_dol
DO k = 1, kmax, 1
CSRD$ LOOPLABEL °’CALCPS_dol/2’
DO j =1, jmax, 1
press(j, k) = gami*(q(j, k, 4)+(-1)*((0.5*%(q(j, k, 2)**2+q(j, k,
* 3)%%2))/q(j, k, 1)))
sndsp(j, k) = SQRT((press(j, k)*gamma)/q(j, k, 1))
ENDDO
ENDDO
C$PAR END PDO
C$PAR END PARALLEL

Figure 26: The CALCPS_dol Loop Nest

We can conclude that program sections that contain many private references or cacheable global
references can take advantage of the 4 processors in our machine, whereas for other loops the available
memory bandwidth is a serious performance limitation.

The data presented in Figure 24 is only a starting point. Understanding the cache and memory effects
that influence the performance more quantitatively is critical, as it will help us identify not only compiler
transformations but necessary architectural improvements. Both are important ongoing projects.

18



6.3 Suggested Improvements to the Guide Directive Language

The parallelism that Polaris detected in our programs could be expressed adequately in Guide. Nev-
ertheless the language interface between Polaris and the backend compiler could be improved. The
following suggested additions to the parallel directive language would help reduce the complexity of
Polaris’ interface pass. They would also help to express parallel programs more concisely for users who
wish to do so explicitly. Our findings match those of other experiments on different machines [PE95].

Processor identification: The availability of an efficient function to query the current processor num-
ber is important. This number 1s used in many array subscript expressions. Therefore obtaining it
should be not significantly more expensive than accessing a register. This processor identification
could be provided through an intrinsic function, which is the case on some other machines.

Array reductions: The parallelization of array reductions is among the most important compiler trans-
formations. The Guide directives allow only for scalar reductions. In array reductions the range of
an array being accumulated into is often unknown at compile time. Because of this, dynamically-
sized private arrays need to be available as a basis for implementing array reductions.

Dynamically-sized private arrays: The size of arrays or array sections that need to be privatized
may not be a compile-time constant. The current directive language does not accept such arrays
on private lists of parallel loops. Because of this, Polaris had to expand these arrays, allocate them
in shared space, and use the processor number as an index. Placing expanded private arrays in
shared space is likely to have a negative impact on the locality because it obscures the fact that
the array references do not need to be coherent.

Processor-private data: These are private variables whose lifetime is longer than the duration of a
single loop. The availability of such variables could further increase the efficiency of the generated
code. For example, expensive functions for processor identification could be called at the beginning
of the program and be kept in private storage. Furthermore, in other studies [PE95] we have
seen the need for processor-private data for expressing data structures that are placed in private
storage for the duration of the program. Guide provides one means for this: a Fortran common
block attribute that places the common data in processor-private space. The same attribute for
non-commonblock data 1s desirable.

6.4 Performance Analysis Tools

Tools for understanding the performance of a parallel program are important complements of a paralleliz-
ing compiler. The tools that we used in our study will be equally useful for a somewhat knowledgeable
programmer who may take advantage of the capabilities of an optimizing compiler at first, but then
wishes to understand and tune the program performance. Also, researchers who would like to add to
the existing automatic parallelization techniques will find these tools useful in identifying more possible
parallel loops.

Our tools facilitated the collection, manipulation, and visualization of information from various
sources. These are

e Loop-by-loop timing information. We have instrumented our programs with Polaris and collected
timing information using a trace library developed in previous projects [EM93].

e Loop iteration count information was collected in the same way. The Polaris instrumentation
capability can insert calls to a statistics library, which collects and summarizes the number of
iterations for each loop as the program executes.

e Reference count information was needed to find the private and global memory reference ratios.
For this purpose we have developed a Polaris pass that counts data references in each loop body.
Iteration count information is then used to compute the ratios for larger program sections.
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We used a spreadsheet for manipulating and visualizing this information. The tool allowed us to
combine the various sources of data, compute statistics, build ratios, and create graphic displays in a
variety of forms. For example, the graphs presented in this paper were generated with these tools.

Polaris, as a general infrastructure for analyzing and manipulating programs, provides a variety of
facilities for extracting other useful informations from programs. We are currently developing tools based
on these facilities that can help better understand the program structure for performance tuning and
enable more applicable parallelization techniques.

e Calling structure information. In identifying possible parallel section of a program, one needs to
know which loops to focus on. Nested subroutines, functions, and inner loops make this task not
so trivial. We have developed a facility that systematically displays this information.

e Range propagation information helps identify privatizable arrays. This information proves to be
useful in many cases in which a programmer uses a large block of memory to simulate dynamic
memory allocation.

The information provided by these facilities can also be incorporated into the spreadsheet mentioned
above. A user, then, can combine the information that he or she needs from this data set. To develop a
tool that will enable convenient gathering and displaying of these informations is the object of another
one of our ongoing projects.

7 Conclusion

In four out of five programs, the Polaris parallelizing compiler was able to recognize all time-consuming
loops as parallel. This means that in many cases, the user of parallel machines does not need to deal
with the issue of searching for parallelism in ordinary scientific and engineering programs. Compilers can
express this parallelism in the Guide language, for which a portable implementation across many SMP
platforms exists. This directive languages includes most of the feature we needed in our experiments to
express parallelism directly on multiprocessors from both Sun and SGI.

However, there remains substantial work to make parallel processing on SMPs widely-usable. First,
the state of the art of commercial compilers is significantly below the capabilities demonstrated in the
Polaris project. Substantial technology transfer will need to happen in order to achieve the successful
automatic parallelization that we were able to prove.

Second, although the identification of parallelism can be automated to a high degree, there is still
significant room for improving the parallel performance of the programs. It would not be correct to
assume that SMP machines are easy targets for executing parallel programs. In our measurements we
have found that on both the SPARC20 and the SGI Challenge machine, fully parallel programs can
show speedups of less than two on four processors in low-load multi-user mode. We have identified the
memory systems and the I/O systems to contribute significantly to this performance limitation. Hence,
better performance modeling leading to a better understanding of the performance behavior remains not
only an issue for complex, distributed-memory machines, but also for shared memory multiprocessors.
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