
Languages for Computational Science and Engineering { Guest

Editor's Introduction, IEEE Computational Science and

Engineering, Volume 5, Number 2, April-June Issue, 1998

Rudolf Eigenmann L.V. Kale David Padua

Why would you read a theme issue on languages for computational science and engineering?

As a scientist or engineer experienced in computational problem solving you may ask whether
Fortran is still the language of choice? Should you start looking into alternatives? Would that
be C, C++, or Java?

As a new CS&E student or practitioner you may wonder which languages you should learn for
expressing computational problems and implement solutions successfully. What would bene�t
your career the most?

As a manager of a computational engineering group you need to know what courses you should
ask your sta� to attend and how this recommendation might change over the next 5 years.

As a computer scientist developing new languages you'd like to see if CS&E could be your
application area. What are language-related issues of the future computational application?

Maybe you are interested in the larger issues. What applications are enabled by new languages?
Do new languages help thinking about things in new ways? Do changes in programming
languages reect changes in global thinking, just like spoken language does? Do languages
drive applications or vice versa?

Then again you may be just curious: Are there any hot topics?

This theme issue gives answers to a few of these questions - all written by leaders in their
particular �eld of languages for applications in computational science and engineering. In
addition, the �rst article surveys programming languages for modern scienti�c and engineering
computations. It briey presents many of the languages that could not be addressed in detail
by the individual papers.

\A Case Study of Fortran in Computational Science and Engineering" by Moreira and Midki�
is devoted to the currently still most-widely used language for CS&E applicatons. The paper
targets current and new practitioners. It shows how a simple physics problem can be turned
into a Fortran program, explains modern features of Fortran 90 and compares the performance
of Fortran versus C++.

Perhaps the biggest issue with software development in general is the low productivity and

1



high error rate of programs coded in today's standard languages. The CS&E area is no excep-
tion. One solution approach is to provide domain-speci�c languages, which o�er higher-level
constructs for their application area - usually at the cost of generality. Domain-speci�c lan-
guages are especially interesting for large application areas. One such area is that of discrete
event simulations. The paper on \Parallel Languages for Discrete-Event Simulation Models" by
Bagrodia, not only represents this area but also the increasingly import �eld of non-numerical
CS&E applications. Many other domain-speci�c languages exist. The graphical languages of
Computer-aided design systems are well-known examples. Domain-speci�c approaches have
also been taken for solving partial di�erential equations, as they are found in a large number of
CS&E applications. Such tools are sometimes refered to as \problem solving environments." A
theme issue of the CS&E Magazine was devoted to this topic in Fall 1997 (Volume 4, Number
3).

Two articles point at languages for future CS&E applications. The future computational appli-
cation is envisioned as one that solves problems of enormous complexity, encompassing multiple
disciplines, possibly combining hard-core physics with environmental and socio-economic fac-
tors. It will run on world-wide interconnected compute resources and involve design teams
in distant locations. The �rst of the two articles, \Component Architectures for Distributed
Scienti�c Problem Solving" by Gannon, Bramley, et. al., discusses design and interface is-
sues of component-based, object-oriented software. \Language Support for Multidisciplinary
Applications" by Methotra, Van Rosendale, and Zima, then describes issues in the design of
multidisciplinary applications and presents a new language for expressing and coordinating such
large-scope problems.

Evidently, the languages discussed in this theme issue are just a small sample. Many con-
tributions remain unnamed or are presented in less detail than they deserve. One notable
new language that has been proposed recently for CS&E applications is called ZPL. It will be
described in a full paper in the next issue of the CS&E Magazine.

2


