
The Interaction of Architecture and Compilation

Technology for High-Performance Processor Design

Sarita Adve Doug Burger Rudolf Eigenmann

Electrical and Computer Computer Science Electrical and Computer

Engineering University of Wisconsin Engineering

Rice University Madison Purdue University

Alasdair Rawsthorne Michael D. Smith Catherine Gebotys

Computer Science Division of Engineering Electrical Engineering

The University of Manchester and Applied Sciences University of Waterloo

Harvard University

Mahmut Kandemir David J. Lilja Alok Choudhary

Electrical Engineering and Electrical Engineering Electrical and Computer

Computer Science University of Minnesota Engineering

Syracuse University Minneapolis, MN Northwestern University

Jesse Fang Pen-Chung Yew

Intel Corporation Computer Science

University of Minnesota

Minneapolis, MN

April 11, 1997

Corresponding author:

David J. Lilja
Department of Electrical Engineering
University of Minnesota
200 Union St. SE
Minneapolis, MN 55455

Phone: 612-625-5007
FAX: 612-625-4583
E-mail: lilja@ee.umn.edu

1



1 Introduction

Previous decades have seen dramatic growth in computer performance due to a combination of higher
density devices, architectural innovations, and developments in compilation technology. While a computer's
architecture can be de�ned as the line that divides what is implemented in hardware from the operations
implemented in software, this line has become increasingly blurred as signi�cant complexity has shifted back
and forth between the hardware and the compiler. For example, this shift has exposed the inner structure
of the processor to the compiler, allowing sophisticated program analysis techniques to be exploited to hide
branch and memory access delays. At the same time, current processors implement register renaming and
dynamic instruction scheduling algorithms directly in hardware, which previously had been the exclusive
domain of the compiler. A similar shift is occurring in optimizing compilers for parallel machines, where,
to parallelize a larger class of applications, compiler writers are moving beyond static transformations that
are provably correct and exploring techniques that rely on run-time decisions or hardware support.

The increased blurring of the distinction between compile-time and run-time optimizations raises a
variety of new research opportunities. This paper attempts to both identify a general framework for such
research as well as identify speci�c research directions. We begin by describing program optimization
as a continuous process that operates over the continuum spanning from the initial compilation of the
application up to and including the execution of the application binary. We then provide a taxonomy
to categorize the di�erent classes of optimizations within this continuum. For each category, we provide
examples from the literature, as well as examples that represent possible future research directions. Finally,
we discuss ongoing e�orts that completely rede�ne the hardware-software interface to provide both high
performance and architectural exibility, and conjecture on future research directions enabled by these
e�orts.

2 The Optimization Continuum

Program optimization is most commonly thought of as a task to be performed entirely at compile-time.
Though compilers often have access to pro�le information during analysis and can consider platform-
speci�c information during the code transformation process, their access to run-time information is severely
limited. Thus, they must make conservative assumptions so that correctness under all possible run-time
conditions can be guaranteed. Furthermore, today's dynamically scheduled microprocessors perform their
own separate set of code optimizations, such as run-time instruction scheduling. Although the hardware
has perfect knowledge of the run-time environment, it has lost some analysis information that the compiler
knew, which limits its optimization potential. These two optimization approaches can be viewed as end-
points in a continuum of program translation steps where decisions about performance optimizations are
made.

2.1 The range of opportunity

To better understand the possible points in this continuum, it is helpful to think of an optimization
as a process involving the following two phases: an analysis phase, where information is gathered and
evaluated to determine if an optimization is possible and will produce a performance improvement; and a
transformation phase, where the actual code transformation is performed. Typically, when the compiler
performs an optimization, it analyzes the source code, and, if it determines that an optimization is correct

2



and bene�cial in most cases, it will transform the static code. A run-time optimization performed by the
hardware, on the other hand, needs to determine only if the optimization is correct and bene�cial in that
single instance. That is, the hardware analyzes and transforms the dynamic instruction stream, while the
compiler analyzes and transforms the static program executable.

In the simplest form, we can view this continuum as separate points in time where the entire analyze-
and-transform process can take place, for instance, at link-time, load-time, and run-time. The motivation
for these later optimizations is that the availability of information increases as we go from compile-time to
run-time, assuming nothing learned in the earlier phases is thrown away. At link-time, the code of separately
compiled modules and libraries is available for analysis, enabling whole-program optimization. At load-
time, information about the target machine environment becomes available, enabling further machine-
speci�c optimizations. At run-time, the exact numeric values of program variables are available, enabling
exact program analysis and value-speci�c optimizations.

The reason that optimizations are not performed solely at run-time, when all information is theoretically
available, is that performing the transformations introduces overhead. At run-time, transformations create
extra work that does not contribute directly to the result of the program, rather, the work is done to
speed the actual computation. Thus, any improvement attributed to an optimization must be reduced
by the cost of the analysis and transformation phases. Compile-time optimization is essentially free while
run-time optimization using conventional algorithms is prohibitively expensive.

There is a fundamental tension between these two endpoints in that the need for more information
drives the optimization process toward run-time, while the overhead costs of the optimization process pull
it back toward compile-time. To achieve the best performance after optimization, we must balance the
potential bene�t of greater information against the overhead of acting on that information. Discarding the
traditional viewpoint, we view optimization not as an atomic process that must occur in its entirety at
one point in time, but as a process of narrowing choices. At each point, the system should do as much of
the transformation as possible given its limited information, o�oading some of the optimization overhead
from the later points.

2.2 Optimization decomposition

Viewing the optimization process as a continuum raises the question of how to determine what is the right
point in the continuum, or the right decomposition for an optimization, to achieve the proper balance
between useful information and optimization overhead. This question has no single answer. This way of
viewing optimizations implies that pieces of the analysis and transformation phases for a single optimization
can be spread across the continuum, from compile-time to run-time. Cooperation between the compiler
and the run-time system will ideally result in low overhead access to information only available late in the
continuum.

To better illuminate these issues, consider a �ctitious database that holds the results of the analyses
performed during compilation, linking, loading, and running. The database contains the important in-
formation that transformers need to know, such as static and dynamic information about program input
variables, the structure of library routines, architecture and execution environment descriptors, and pro�le
data. Conceptually, the results of the analyses are entered into a database, while the transformations
use query functions to obtain the results of the pertinent analyses. Developing such a database, which in
reality is distributed across the many optimization stages, is not only an issue of implementing the entry
and query functions. Both entry and query operations introduce overhead that may o�set the bene�ts of

3



optimizing transformations. Another relevant question is how the information in the database is encoded.
Keeping the encoding close to the data format of the entry and query functions keeps their overhead low.
However, these formats may vary widely between compiler and machine architectures. For example, back-
wards compatibility with old instruction sets imposes constraints that may greatly limit the utility of the
database.

An example of an analysis that could be stored in this conceptual database is data dependence analysis.
The analysis attempts to determine whether a load and a store access the same address. When the system
can determine that the instructions are indeed referencing distinct addresses, many transformations are
possible, such as the movement of code to a place where it leads to a better instruction schedule, the
marking of a loop as parallel, or coarser-grained speculative execution.

In many contexts, however, there is a substantial cost associated with gathering data reference and
range information to determine whether two memory accesses conict. Gathering the access expression,
such as the index expression of an array and the expression variable ranges, is a reasonable task for a
source-level translator, while using classical analyses to extract this information from the object code may
be prohibitively expensive. However, since neither a source-level translator nor a code-generating compiler
have access to all of the needed information, the dependence analysis is frequently much more accurate
when it can be performed closer to run-time.

One solution to this dilemma is to distribute the analysis portion of the optimization over several
analysis phases, while passing the relevant information between the phases. This approach, of course,
requires cooperation between the di�erent optimizers in the system. Techniques to both reduce the over-
head of performing the transformation and improve the e�ciency of querying the conceptual database for
the dependence analyses are of great importance. These improvements will allow the actual dependence
transformations to be performed closer to (or at) run-time and, in this way, combine the advantages of
high-level compiler analysis and accurate run-time information. This approach has the potential to make
the e�cacy of the transformation far greater.

For example, consider a program section in which a store to some address y is followed by a load
to some address x in the initial static schedule. Assume that performance-enhancing transformations are
possible if x and y are di�erent addresses. If the compiler can determine that x and y are distinct addresses
in all cases, then it is possible to generate a static transformation that is always correct. If the compiler
cannot determine that x and y are di�erent addresses, it may generate transformations for each of the
two possible cases (identical or di�erent addresses) and decide between the two with a run-time check
(run-time selection of static transformations). If the compiler determines that one of the two cases is
much more likely (e.g., x and y are di�erent), it can generate the transformation assuming that they are
di�erent addresses, and instruct the hardware to execute the transformation, rolling back and repairing
the state in those rare instances when x and y are identical addresses (dynamic recovery from a speculative
transformation). Finally, the compiler may choose to instruct the hardware to create the transformation
for the appropriate case at run-time (a fully dynamic transformation), once the addresses of x and y are
resolved and determined to be identical or di�erent. Generating such a transformation at run-time will be
fruitful only if the generation cost is less than the bene�t of the transformation.

4



3 A Taxonomy of Transformations

Given this continuum-based view of the transformation process, it is useful to categorize these di�erent
types of transformations into the following taxonomy:

� Static transformations, in which a single transformation is performed at compile-time.

� Dynamic selection of static transformations, in which the compiler generates multiple versions
(with appropriate conditions for correctness and optimality), with the best version chosen at run-time.

� Dynamic recovery from speculative transformations, in which potentially unsafe transforma-
tions are executed, followed by a check that the transformation was correct (and a rollback or repair
if it was not).

� Dynamic transformations, in which the bulk of a transformation is performed at run-time, al-
though the transformer may use the results of previous analyses.

The following subsections present additional examples of each type of transformation listed in this
taxonomy.

3.1 Static transformations

The majority of existing compiler techniques are static optimizations performed once at compile-time.
They include a large body of established scalar and parallel optimizations [BENP93] that are applied
by source-to-source restructurers and code-generating compilers. The following examples discuss several
current issues with static optimizations.

Load scheduling

The common memory system architecture for current machines consists of one or more levels of on-
chip and/or o�-chip cache. Given current instruction window sizes, out-of-order processors are not very
successful at hiding high latency load misses. For instance, a processor with a 100 cycle load miss penalty
that is capable of issuing 4 instructions in each cycle needs an instruction window of at least 400 instructions
to fully overlap the latency of the load. One way of reducing the impact of load misses is to schedule
multiple load misses within one instruction window so that they can be overlapped [PRA97]. Most compiler
scheduling algorithms have assumed either that all loads will hit or that all loads will miss in the cache,
although more recent techniques perform latency-sensitive load scheduling [LE95]. Nevertheless, signi�cant
challenges, such as compile-time memory disambiguation involving pointer analysis, must be addressed to
exploit these techniques well.

Explicit cache control

The impact of load misses can be reduced by improving the locality of accesses using iteration space
transformations, permutation and tiling, data space transformations, and hooks that give the compiler
more direct control of the cache. In fact, nearly every cache parameter and policy can be put under
compiler control, including the cache line size, the write policy, the data ush policy, the prefetch policy,
whether to bypass the cache, and whether to load data only in the lower levels of caches. While recent

5



processors have begun to provide some of these hooks, signi�cant work is required for compilers to take
advantage of them in a holistic fashion to prevent the various techniques from interfering with each other.
Further, since some of the techniques reduce load misses by increasing bandwidth requirements [BGK96]
and resource contention, compiler algorithms that use these techniques must perform a resource-sensitive
analysis to trade-o� the cost with the expected bene�t.

Explicit control of the disk-memory interface

While the above discussion focuses mostly on the cache-memory interface, similar observations also
apply to the disk-memory interface. Many scienti�c applications have large data sets requiring out-of-
core computation. The performance of these applications is greatly limited by the disk-memory interface
which in current systems is managed entirely by the operating system. The performance of the disk-
memory interface can be enhanced by compiler optimizations that maximize page reuse and control various
parameters, such as the page size, the TLB, and the page replacement policy. The challenges here are similar
to those of cache optimizations, although approaches that use explicit �le I/O can o�er even greater control
to the compiler of data layouts on disks, the access pattern, and the striping style of data across disks.

3.2 Dynamic selection of static transformations

With dynamic selection, the compiler generates multiple possible transformations for di�erent cases that it
cannot resolve at compile-time. The appropriate transformation is then selected when enough information
becomes available, typically at run-time. This technique may produce substantially larger programs, but
it may also produce a performance advantage if the overheads associated with the run-time decision and
the larger code size are less than the bene�t obtained from choosing the correct transformation. Since the
run-time check may be expensive, hardware support to reduce the overhead of this check often may be
useful.

Run-time disambiguation using static checks

Probably the simplest example of code checks on run-time conditions involves the insertion of array
bounds checks. Additionally, a compiler can insert similar types of code checks to verify data dependence
assumptions made during the optimization process. For example, the run-time disambiguation (RTD)
system [Nic89] inserts conditional statements into the compiled code to check aliasing between indirect
memory references. These checks are inserted whenever the static alias analysis fails to generate a de�nitive
answer and the rearrangement of these memory operations leads to a better instruction schedule. One
branch of the check leads to an optimized code sequence that assumes no aliasing, while the other branch
leads to an optimized code sequence that assumes that the references are aliased. This approach improved
performance on several benchmark applications by 100-170% [Nic89]. This basic idea could be extended
to create simple code checks for other key pieces of critical run-time information that would lead to better
optimized code sequences.

Dynamic memory control

The loop-blocking optimization transforms a program to use a primary memory working set that �ts in
the cache, whereas the original code has a primary working set much larger than the cache. One issue with
performing such an optimization at compile time is that it presupposes a particular cache size. This problem
can be alleviated by generating code that either uses these unknowns as parameters, or by generating several
distinct versions of the code [CM95]. Since a potentially large number of code versions may be produced,

6



the selection of the cache-speci�c code could be made at load-time by replacing the cache-size parameter
with a constant. Note that guessing wrong in this case only hurts performance, not correctness. Another
(hitherto unexplored) possibility for improving cache performance is to put partitioning hooks in a cache, so
that when the compiler has enough information to manage it explicitly, the compiler generates instructions
to partition the cache, subsequently accessing one partition like registers or memory.

Eliminating unnecessary work

The common subexpression elimination optimization is used at compile-time to avoid the recalculation
of values that are used several times within a small section of a program. A similar idea can be used
at run-time by bu�ering individual instructions along with their operands and results [SS97]. When the
instructions are later fetched to be executed again, the saved result from the previous execution can be used
if the current operands match those in the bu�er. With compiler and hardware support, it is possible to
extend the reuse concept to support hardware memorization. With this technique, the compiler identi�es
a computational tree, which is a sequence of instructions where intermediate results within the tree are
not used outside of the tree. It then identi�es the source operands to the tree so that each time the tree
is entered, the hardware can check the input operands with the values used in a previous execution of
the tree. If they all match, the previous result can be reused instead of having to recompute all of the
instructions in the tree.

The same compiler analysis can bene�t DataScalar architectures [BKG97]. These architectures run
uniprocessor binaries across multiple processors, each of which is tightly coupled with a fraction of the
program's physical memory. Each processor runs the same program, performing redundant computation,
and broadcasts needed local operands to all other processors which, since they are running the same
program, will also need those operands. When the compiler identi�es an isolated tree, each DataScalar
node can check to see if it owns all of the source operands for the tree. If so, all other nodes branch around
the computation. The owner computes the results and broadcasts them to the other nodes. This technique
saves computation at all but one node and thereby reduces total o�-chip tra�c.

Multi-version loops

Parallelizing compilers can apply a multiversion loop transformation technique in several situations.
A common example is where the existence of a data dependence is determined by an unknown variable.
In this case, the compiler generates both a serial and a parallel version of the code, and chooses between
them at run-time, depending on the actual value of the variable. Another example is the \parallelization
threshold" introduced by some parallelizing compilers. If a loop does not have a su�cient number of
iterations, for instance, a serial loop variant will instead be chosen since the overhead of parallel execution
would outweigh any bene�t.

3.3 Dynamic recovery for speculative transformations

If the condition that violates a transformation is relatively rare, we can defer the decision-making process
and speculate that a transformation is a valid one. After the execution of the code section in question, the
run-time system can check to verify that the optimization was correct. If the transformation was incorrect,
the system must roll back to a point in the execution before the execution of the o�ending code section. As
long as the cost of the veri�cation, roll-back, and re-execution is less than the bene�t of the optimization,
the speculation will improve overall performance.

7



Control speculation

Control speculation, which is a common technique found in today's microprocessors, guesses the out-
come of a conditional branch before its evaluation is possible. This speculation allows the microprocessor
to continue fetching and issuing instructions down one possible path of a branch before it has resolved
whether the path is the correct one. With control speculation, the compiler can move control-dependent
instructions above the conditional branches on which the instructions depend [Fis81, H+93]. Without hard-
ware assistance, the compiler must guarantee that these speculative instructions do not destroy program
semantics if the outcome of the conditional branch is predicted incorrectly.

The requirements of ensuring safe compile-time speculation severely constrain the ability of the compiler
to perform global code motions. As a result, several researchers have proposed new architectures that allow
the compiler to perform potentially unsafe code motions by indicating which instructions are speculative
and on what condition they depend. With this compiler assistance, the hardware can nullify the e�ect of the
instruction if the speculation was incorrect. Boosting [Smi94] is one early example of such an architectural
mechanism. The Multiscalar processor [SBV95], conversely, is an example of a processor that uses compiler
support for dynamic speculation, but uses the hardware to keep track both of which instructions are
speculative, and of conditions that signal an incorrect speculation. Multiscalar processors execute a serial
instruction stream on multiple processing elements by having one stage execute a portion of the program
nonspeculatively, while the other processing elements speculatively execute groups of instructions found
farther ahead in the instruction stream.

Data-dependence speculation

In addition to speculating on conditional branch outcomes, it is also possible to speculate on depen-
dences between memory operations, on the result of a load operation [LWS96], or on any other currently
unknown (or unavailable) piece of process state. The Memory Conict Bu�er (MCB) [GCM+94], for
example, enables the compiler to move load operations above potentially aliased store operations by main-
taining the addresses of speculative loads and checking these addresses against stores originally found
before the loads but reorganized to issue later. When a dependence violation occurs, the hardware redi-
rects the execution to a piece of compiler-generated code that repairs the program state. Similarly, the
squash bu�er [MBVS97] holds loads that are likely to cause rollbacks as a result of a dependence. When
a suspect load is found in the squash bu�er, it is prevented from issuing until all store addresses ahead
of it in the reorder bu�er have been resolved. With these types of hardware structures, the compiler or
hardware can speculatively issue the load earlier while recovering from a misspeculation with the MCB, or
misspeculating less often with the squash bu�er.

Speculative loop parallelization

Another speculative transformation is speculative loop parallelization in which a loop that cannot be
determined to be parallel at compile-time is instrumented with code that allows the veri�cation of the
correctness of a speculative parallel execution of the loop [BDE+96]. To minimize the run-time overhead
of this scheme, the variables whose values determine if the loop can be parallelized are compared from run
to run of the same loop. If the values do not change, then the chosen optimization for the next execution
of the loop (i.e. either serial or parallel) is the same as for the last loop invocation. The overhead can
be reduced further if it can proven statically at compile-time that the decision variables do not change
between consecutive executions of the loop. Finally, the instrumentation of the loop involves setting bits
in shadow copies of arrays and using bit operations on the resulting bit vectors. Instructions supporting
appropriate bit operations could substantially increase the applicability of this speculative parallelization

8



technique.

3.4 Dynamic transformations

Dynamic transformations delay producing the �nal optimized code until run-time, although they may use
the results of previous analyses. For example, most modern microprocessors now use dynamic instruc-
tion scheduling, in which instructions may be issued in an order di�erent than the static program order.
Although the compiler generates an instruction schedule, the hardware dynamically tracks dependences
among instructions to allow independent instructions to issue ahead of stalled instructions that reside
earlier in the static instruction stream. The processor thus continuously transforms the static instruction
schedule into a dynamic schedule that can hide unpredictable latencies, such as cache misses. The overhead
of this scheme consists mainly of extra hardware, such as register renaming logic, a reorder bu�er, extra
reservation stations, and dependence state. With the silicon real estate now available, the hardware cost
of dynamically generating a schedule is acceptable.

Dynamic code generation is another example where the �nal generation and optimization of a piece of
code is delayed until run-time. For example, data bound at load time and invariant over a speci�c run of an
application program can be used at run-time to perform optimizations such as constant propagation and
folding, common subexpression elimination, branch elimination, and so forth [APC+96]. This technique
also has been used in operating systems to eliminate repetitive checking of environment variables and to
improve execution e�ciency in languages that use dynamic type information [CU89].

4 Rede�ning the Hardware-Software Interface

The taxonomy of compiler optimizations described above assumes a fairly �xed interface between the
hardware and the software. A �xed interface ensures backward compatibility so that existing software
applications are guaranteed to run on new implementations of an architecture. Since complex applications
may take several years to develop and are expected to provide useful service for a decade or more, backward
compatibility is a foremost commercial goal. However, as discussed above, there is a clear performance
advantage in allowing software to evolve as hardware evolves. Yet, the separation of the compilation process
from the run-time optimization process in today's systems inhibits any automatic and persistent evolution
of the code in a shipped application.

This section examines the bene�ts of systems that allow for the automatic and continuous optimization
of application software. It begins with a look toward the future of microarchitectures and the problems
of increasing heterogeneity in processor and memory system implementation and then discusses two envi-
ronments for the automatic and transparent optimization of application software. Both increasing system
heterogeneity and the development of the optimization environments described below will increase the
need for sophisticated code generation and optimization techniques that can e�ectively handle complex
and application-speci�c hardware structures.

9



4.1 Heterogeneity in processor architectures

The increasing complexity of microarchitectures is leading to design decisions that compromise homogene-
ity, making compilation di�cult. This issue is already a key research challenge in DSP processors where
hardware features such as small non-homogeneous register sets, specialized functional units, restricted
connectivity, and highly irregular datapaths are common [LDK+95, Me95]. The DSP processor must also
meet tight timing constraints with a very small code size, typically on the order of 1K instructions. The
use of conventional code generation techniques and compilers speci�cally designed for commercial DSP
processors tends to produce very ine�cient code. The need for decreasing time to market, development
costs, and maintenance costs of modern DSP chips demands the use of high level language compilation.
All of these factors create signi�cant challenges for writing e�cient and retargetable code generators for
such DSP processors.

Increased heterogeneity is beginning to appear frequently in general-purpose processors as well. For
example, almost all microprocessor vendors now include some type of specialized support for multimedia
applications. The latest wide-issue superscalar processors are also clustering register banks with certain
functional units and creating non-orthogonal forwarding paths, much like the early VLIW machines of the
1980s. Thus, in the near future, compilation challenges similar to those faced by DSP processors are likely
to be critical issues for general-purpose processors as well.

4.2 MORPH

Morph [ZWG+97] is a combination of compiler, pro�ler, executable rewriting, and operating systems
technology that provides a practical environment for pro�le-driven, machine-speci�c optimizations. Morph
provides an environment for optimizations that were previously invoked only during compilation to occur
automatically and transparently on the end-user's machine. With Morph, the �nal stage of optimization
occurs after the end-user has installed and used the application, making it possible to consider all details
of the host hardware during optimization. It also allows pro�le-based optimizations to incorporate the
idiosyncratic usage patterns of a speci�c user and track changes in the way a program is used.

Each Morph environment is speci�c to a single instruction set and programming interface. The center-
piece of this environment is the Morph executable, which is an executable that includes the supplementary
information required by the re-optimization process. Pro�le collection is typically done using an oper-
ating system pseudo-device to sample the program counter of all running applications, which increases
application run-time by only 0.2 percent. Currently, pro�le processing and application optimization occur
o�-line after the application has terminated, although load-time or run-time optimizations could also be
used. Finally, the PostMorph tool rewrites legacy executables to contain the annotations needed by the
automatic optimization process and to provide the system with a way to evolve.

4.3 Dynamite

Dynamite [RS97] is an execution environment designed for experimentation with pure run-time optimiza-
tions. Dynamite operates on a program consisting of subject instructions that are never directly executed
by the underlying target processor. Instead, every subject instruction is translated into an intermediate

representation when it is �rst executed. As jumps are encountered, the intermediate representation for the
previous block of instructions is compiled into a block of target instructions and executed. On subsequent

10



executions of the same instruction, the translated instructions can be used directly. The environment also
dynamically pro�les the running program, and as it detects \hot-spots" (groups of frequently-used blocks
of instructions), it invokes an optimizer to generate higher-quality code for these instruction groups. The
optimizer uses the intermediate representation generated by the initial translator, and bene�ts from the
analysis carried out during the initial translation.

As execution proceeds further, larger and larger groups of blocks are combined, often giving more
and more scope for optimization. When conventional optimization reaches its limits in innermost blocks,
Dynamite investigates value-speci�c optimizations that create special-purpose sections of code tailored to
the current behavior of the program. The cost of analysis is minimized by limiting its scope to the group
of blocks that is currently being optimized. Analysis that needs to proceed beyond this scope is avoided
by planting the appropriate tests at the entry to this optimized group. Since no subject instruction is ever
directly executed, there is no requirement for subject and target architectures to be the same. In fact,
the Dynamite system is constructed with replaceable front-ends and back-ends to construct a family of
cross-platform dynamic binary translators.

5 Summary

The old performance optimization model in which all program transformations were performed exclusively
at compile-time has been replaced with something more exible and amorphous. Both the analysis and the
transformation portion of an optimization may occur at compile-time, run-time, in between the two, or in
any combination thereof. This paper has presented these choices as a continuum of steps, and discussed
how an optimization may be made anywhere along this continuum. A taxonomy was also developed that
categorized di�erent strategies for performing transformations, speci�cally statically, selectively, specula-
tively, and dynamically. Examples from both the literature and untested potential research directions were
presented for each of these possibilities. Finally, the e�ect of how increasing heterogeneity in processor
architectures would drive the need for architecturally independent optimizers was discussed, along with
examples of two major projects performing research in this area.

Many of the optimizations presented require new hardware support, and are thus not compatible with
older machines. The large installed base of legacy binaries would also fail to take advantage of many of
the new hardware mechanisms that have been proposed. The rate of innovation in microprocessors will
determine whether there is a need for architectural independence. A slow, gradual introduction of new
features would give software the time to catch up. Conversely, a relentless rate of new hardware feature
introduction would mandate systems that do not require a complete recompilation to take advantage of
each new feature. The industry's situation currently resembles the latter, and, if anything, will be growing
more so as designers have orders of magnitude more on-chip resources available in the near future.

References

[APC+96] J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Bershad. Fast, E�ective Dynamic
Compilation. In Proceedings of the SIGPLAN '96 Conference on Programming Language Design

and Implementation, pages 149{159, May 1996.

[BDE+96] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeinger, Thomas
Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger, Lawrence Rauchwerger,

11



and Peng Tu. Parallel programming with Polaris. In IEEE Computer, pages 78{82, December
1996.

[BENP93] Utpal Banerjee, Rudolf Eigenmann, Alexandru Nicolau, and David Padua. Automatic Program
Parallelization. Proceedings of the IEEE, 81(2):211{243, February 1993.

[BGK96] Doug Burger, James R. Goodman, and Alain K�agi. Memory bandwidth limitations of future
microprocessors. In Proceedings of the 23rd International Symposium on Computer Architec-

ture, pages 79{90, May 1996.

[BKG97] Doug Burger, Stefanos Kaxiras, and James R. Goodman. Datascalar architectures. In Pro-

ceedings of the 24th International Symposium on Computer Architecture, May 1997.

[CM95] S. Coleman and K.S. McKinley. Tile size selection using cache organization and data layout. In
SIGPLAN '95 Conference on Programming Language Design and Implementation, June 1995.

[CU89] Craig Chambers and David Ungar. Customization: Optimizing Compiler Technology for SELF.
In Proceedings of the SIGPLAN '89 Conference on Programming Language Design and Imple-

mentation, pages 146{160, June 1989.

[Fis81] Joseph A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. Trans-

actions on Computers, C-30(7):478{490, July 1981.

[GCM+94] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal, and Wen mei
W. Hwu. Dynamic memory disambiguation using the memory conict bu�er. In Proceedings

of the Sixth Symposium on Architectural Support for Programming Languages and Operating

Systems, pages 183{193, 1994.

[H+93] H. Hwu et al. The Superblock: An E�ective Technique for VLIW and Superscalar Compilation.
The Journal of Supercomputing, 7(1/2):229{248, 1993.

[LDK+95] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Code optimization techniques for
embedded DSP microprocessors. In 32nd Design Automation Conference, June 1995.

[LE95] Jack L. Lo and Susan J. Eggers. Improving balanced scheduling with compiler optimizations
that increase instruction-level parallelism. In Proceedings of the Conference on Programming

Language Design and Implementation, 1995.

[LWS96] Mikko H. Lipasti, Christopher B. Wilerson, and John P. Shen. Value locality and load value
prediction. In Proceedings of the Seventh Symposium on Architectural Support for Programming

Languages and Operating Systems, pages 138{147, 1996.

[MBVS97] Andreas Moshovos, Scott E. Breach, T.N. Vijaykumar, and Gurindar S. Sohi. Dynamic spec-
ulation and synchronization of data dependences. In Proceedings of the 24th International

Symposium on Computer Architecture, May 1997.

[Me95] P. Marwedel and G. Goossens (eds.). In Code Generation for Embedded Processors. Kluwer
Academic Publishers, 1995.

[Nic89] Alexandru Nicolau. Run-Time Disambiguation: Coping with Statically Unpredictable Depen-
dencies. Transactions on Computers, C-38(5):663{678, May 1989.

12



[PRA97] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The Impact of Instruction
Level Parallelism on Multiprocessor Performance and Simulation Methodology. In Proceedings

of the 3rd International Symposium on High-Performance Computer Architecture, 1997.

[RS97] Alasdair Rawsthorne and Jason Souloglou. Dynamite: A framework for dynamic retargetable
binary translation, Technical Report UMCS-97-3-2. Technical report, The University of Manch-
ester, March 1997.

[SBV95] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Pro-

ceedings of the 22nd International Symposium on Computer Architecture, pages 414{425, June
1995.

[Smi94] Michael D. Smith. Architectural Support for Compile-time Speculation, pages 13{49. Kluwer
Academic Publishers, 1994. edited by D. Lilja and P. Bird.

[SS97] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In Proceedings of the 24th

International Symposium on Computer Architecture, May 1997.

[ZWG+97] X. Zhang, Z. Wang, N. Gloy, B. Chen, and M. Smith. Operating System Support for Automatic
Pro�ling and Optimization. In Submitted to the 16th ACM Symposium on Operating Systems

Principles, October 1997.

13


