
Performance Analysis of Compiler-Parallelized Programs

on Shared-Memory Multiprocessorsy

Seon Wook Kim Michael Voss Rudolf Eigenmann
School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907-1285

Abstract

Shared-memory multiprocessor (SMP) machines have become widely available. As the
user community grows, so does the importance of compilers that can translate standard,
sequential programs onto this machine class. Substantial research has been done to develop
sophisticated parallelization techniques, which can detect and exploit parallelism in many
real applications. However, the performance of compiler-parallelized applications can be
below expectations. The speedups of even fully-parallel codes on today's shared-memory
multiprocessors can be signi�cantly less than the number of processors. In this paper we will
investigate reasons for such performance behavior. We will focus on three speci�c issues:
(1) We will determine whether it is appropriate for the preprocessor to express the detected
parallelism in the common loop-oriented form, (2) we will determine sources of ine�ciencies
in fully parallel SMP programs that exhibit good cache locality, and (3) we will discuss the
portability of these programs across SMP machines.

In our experiments we have extended the Polaris compiler, so that it can generate thread-
based code directly. We compare the performance of this code with Polaris' loop-parallel
OpenMP output form and with architecture-speci�c directive languages available on the
Sun Enterprise and the SGI Origin systems. We have analyzed in detail the performance
of several parallel Perfect Benchmarks. Our main �ndings are as follows. (1) Overall, there
is no signi�cant performance disadvantage of the loop-parallel representation. (2) However,
substantial performance di�erences are attributable to the instruction e�ciency, which is
inuenced by the data sharing semantics of parallel constructs. (3) Both the OpenMP and
the thread-based program forms are functionally portable, but can result in substantially
di�erent performance on the two machines.

y
This work was supported in part by DARPA contract #DABT63-95-C-0097 and NSF grants #9703180-CCR and

#9872516-EIA. This work is not necessarily representative of the positions or policies of the U. S. Government.

I. Introduction

A. Trends in Parallelizing Compilers for SMP's

With the increasingly wide availability of shared-memory multiprocessor servers and
workstations, the importance of compilers that can translate standard, sequential programs
onto this machine class is growing steadily. There exists a large body of research in par-
allelizing compiler techniques, ranging from detecting parallelism to e�ciently executing
parallel code on diverse machine organizations.

Automatic program parallelization has been most successful in Fortran code, as demon-
strated by the Polaris and SUIF compilers [1, 2]. Substantial challenges exist when de-
tecting parallelism in science and engineering applications that contain sparse data struc-
tures [3] and in C, C++, and Java programs, which contain pointers and irregular control
ow [4, 5, 6].

B. Performance of the Backend Compiler

In this paper we consider an additional problem, which has been given less attention
in the past. We have observed that even highly parallel programs that exhibit good cache
locality can perform poorly on today's shared memory machines. For example, in the TRFD
Perfect benchmark, two major loops consume 94% of the overall time when using a serial
code. The loops can be fully parallelized and have negligible cache misses. Using Amdahl's
law, we can expect a speedup of 3.3 on 4 processors. However, the best measurement we
have obtained on a real machine was a speedup of 2.6.

These observations raise questions of the backend compilers' performance. For the pur-
pose of this paper we consider a backend compiler the second compilation step, which
follows the parallelizing preprocessing step. Typically, the preprocessor performs sophisti-
cated program analyses and optimizations, while the backend applies more straightforward
code generation techniques. The two compilers are usually not integrated. One approach to
a higher integration has been taken by the Promis compiler [7], in which a common repre-
sentation serves both compilation steps. Another approach is to pass frontend information
to the backend compiler using a universal format [8].

In the present paper we address three speci�c questions related to the performance of
backend compilers and their interface to parallelizing preprocessors.

1. Is parallel loop semantics the right form for expressing parallelizing preprocessor out-

put? Most parallelizing preprocessors rewrite sequential loops into parallel loops.
Could they perform better if they translated the source into a form closer to the ob-
ject code? To answer this question, we have extended the Polaris compiler so that it
generates thread-based code directly. Our results indicate that, overall, no signi�cant
loss is attributable to the loop-parallel representation. However, we have also found
that the two translation methods can lead to signi�cant performance di�erences in
individual code sections. One reason for this is that parallel loop constructs do not
give data dependence information, which can impact backend compiler optimizations.

1

2. What are the sources of performance loss in parallel shared-memory programs? Highly-
parallel programs that do not perform well on SMP systems are often thought of as
\not having enough locality." In our work we have analyzed a number of overhead
factors that impact the program performance. We have found that both the synchro-
nization time (such as the barrier time at the beginning and end of a parallel loop)
and the instruction e�ciency (a code with higher instruction e�ciency executes fewer
instructions than a less e�cient code) can make a signi�cant di�erence.

3. Is the output of a parallelizing preprocessor portable? The Polaris compiler can gen-
erate output in both the OpenMP parallel language standard and the thread-based
form. We have compared the portability of these two representations in terms of their
performance on two di�erent machines, a Sun Enterprise 4000 and an SGI Origin
2000 systems. We have found that, while functional portability is provided, there are
signi�cant performance di�erences of the same parallel program compiled with the
respective backend compilers of the two machines.

The remainder of the paper answers these questions more quantitatively. It is organized
as follows. Section II describes the experimental setup and overall program execution results
that we have obtained on the Sun Enterprise and SGI Origin systems. Section III introduces
MOERAE, the thread-based translator that we have implemented as part of our project.
Section IV investigates the performance of the most time-consuming loops in each program
in detail. Section V presents conclusions.

II. Experiment Setup and Overall Results

For our experiments we have implemented two Polaris output passes for generating
OpenMP and thread-based programs, respectively. Our implementation of the MOERAE
translator and microtasking library will be described in Section III. The test suite consists
of �ve programs from the Perfect Benchmarks, which can be parallelized to a high degree
by Polaris. We have translated these programs into OpenMP form, into thread-based
MOERAE form, and { for comparison { into the native, machine-speci�c directive languages
available on the target systems. All these translations were performed by Polaris. Figure
1 gives an overview of our compilation system. In our experiments we have measured the
overall and the loop-by-loop performance on the Sun Enterprise 4000 and on the SGI Origin
2000 systems. We have also measured the serial (non-parallelized) program, which de�nes
speedup=1 in our performance results.

Figure 2 shows the speedups relative to the serial execution time of the original codes.
The �ve programs: TRFD, MDG, BDNA, ARC2D, and FLO52 from the Perfect Benchmarks suite
were used in our evaluation [9, 10]. The codes were run on a Sun Enterprise 4000 (Solaris 2.5)
and an SGI Origin 2000 (IRIX 6.4). The Sun Enterprise 4000 has six 248 MHz UltraSPARC
Version 9 processors, each with a 16 KB L1 data cache and 1 MB uni�ed L2 cache. The
SGI Origin 2000 has 128 195MHz R10000 processors, each with a 32 KB L1 data cache and
4MB uni�ed L2 cache. Each code was parallelized by Polaris and transformed into three

2

Languages

Parallelizing Preprocessor

Parallel
Programs

Sequential
Programs

Architecture-Specific
Directive Language

OpenMP API MOERAE API

Polaris
Parallelizer

Architecture-Specific
Parallel Compiler

Sequential Compiler

SMP Machines

Guide Preprocessor/
Sequential Compiler

LibrariesArchitecture-Specific
Parallel Libraries

Guide Libraries MOERAE
Runtime Libraries

Backend Compilers

Languages

Figure 1: Language and Translator System Used in Our Machine Environment.

parallel forms: (1) using native, architecture-speci�c directives, (2) using OpenMP parallel
loop directives, and (3) using the MOERAE scheme, respectively.

(a) (b)

(c) (d)

Figure 2: Speedup of Benchmarks as Executed on a Sun Enterprise 4000 and an SGI Origin
2000: (a) 1 processor speedup on the Enterprise, (b) 1 processor speedup on the Origin,
(c) 4 processor speedup on the Enterprise and (d) 4 processor speedup on the Origin. All
speedups are calculated with respect to the original sequential time on each machine.

On the Sun Enterprise and on the SGI Origin, the overall results show comparable

3

performance of the MOERAE and the OpenMP schemes. In only one case is the 4-processor
performance of the machine-speci�c directive version the best, by a small margin. Although
all three code variants exhibit the exact same parallelism, the individual numbers di�er
substantially. Furthermore, the speedups on the SGI system are generally lower than on
the Sun Enterprise. However, we have measured the absolute performance on the SGI Origin
to be on average 2.6 times higher than on the Sun Enterprise. Before we investigate these
performance results in detail, we describe the new Polaris output pass and microtasking
libraries, MOERAE, in the next section. In Section IV, we will then analyze the performance
of the backend compilers, and Section V concludes the paper.

III. MOERAE: Portable, Thread-Based Interface

The MOERAE system expresses loop-level parallelism in Fortran programs. MOERAE
consists of two major components: a compiler pass to translate sequential programs into a
portable thread-based form, and a runtime library for managing these parallel threads. The
program transformations are performed by a modi�ed version of the Polaris [1] compiler.
We have added a postpass to Polaris, which transforms parallel loops into subroutines and
replaces the original loops with calls to a scheduler. At runtime, the scheduler dispatches
the subroutines to the participating threads. The master thread executes the modi�ed main
program, and the child threads execute the newly-created subroutines, as orchestrated by
the scheduler. Figure 3 illustrates this scheme.

DO I = 1, 1000, 1

ENDDO

Parallel
Loop

Sequential
Section

Sequential
Section

PROGRAM TEST

STOP
END

Sequential
Section

Sequential
Section

PROGRAM TEST

STOP
END

CALL
SCHEDULING(LTEST_)

Master Thread

Child Threads

Transformation
 by MOERAE

Sequential Compiler/MOERAE Runtime LibrariesParallel Compiler/
Libraries

SUBROUTINE LTEST_(...)
DO I=INIT,FINAL,STEP

RETURN
END

User View Implementation

Figure 3: Overview of the MOERAE Translator and Runtime Libraries.

The key factor in achieving performance with MOERAE was a simple API consist-
ing of 6 runtime functions for scheduling and dispatching parallel tasks (initialize thread,
block scheduling, interleaved scheduling, lock, unlock, and num threads). This design con-
trasts with the rich functionality of the libraries used by the OpenMP implementation, and

4

has allowed us to provide e�cient mechanisms. The runtime library uses a microtasking
scheme using Pthread packages in order to reduce the overhead of creating threads each
time a parallel section is encountered. That is, at the beginning of the program all of
the threads are created (initialize thread). Using spin-wait, the threads sleep during se-
rial program sections and wake up for each parallel section. MOERAE supports blocked
and interleaved scheduling schemes (block scheduling, interleaved scheduling). It provides
lock/unlock functions to create critical sections (lock, unlock). For portability, the runtime
library is implemented using the Pthreads package and is also available on Solaris threads.
Our current implementation on the SGI IRIX 6.4 uses sproc() processes, because Pthreads
are not yet fully supported.

IV. Detailed Performance Analysis

Our analysis is based on the measured loop-by-loop performance of the benchmarks on
the Sun and the SGI machines. In addition, we used the ParaSim parallel program simulator
[11], from which we obtained the number of instructions issued and cache hit ratios. The
benchmarks are simulated using parameters comparable to the measured machines. As
in Figure 2, all programs are measured in three di�erent forms. They exploit the same
parallelism (detected by the Polaris preprocessor) but di�er in their representation and
backend compilers. All programs are compiled with -O5 optimization on the Sun and -O3
on the SGI systems.

In our analysis we will focus on four potential overhead factors that prevent a parallel
loop from having ideal speedup: (1) small parallel loops can be dominated by the barrier
delays at loop start and end (fork/join overhead), (2) irregular or low numbers of iterations
can cause load imbalance, (3) cache misses may increase when parallelizing a program, and
(4) the instruction e�ciency.

The term instruction e�ciency needs introduction. A parallel code with low instruction
e�ciency has a higher number of executed instructions than the serial code. This can be
due to additional instructions inserted by the parallelizer and/or more conservative code
generation by the backend. Instruction e�ciency has proven to be a useful measure in
our performance analysis, although instruction execution times and pipeline stalls are not
factored in. We will point out situations where these additional e�ects need to be considered.

A. TRFD

In TRFD, two loops OLDA DO1001 and OLDA DO300 take more than 94% of the total
execution time in the serial code. As shown in Figure 4, the MOERAE thread-based
program form outperforms the others on both Sun and SGI machines.

TRFD contains large, regular loops and the cache hit ratio of the parallel program is
about 97%. Figure 5 shows the relative number of instructions of the code variants. There
is about 30% overhead between the serial and the best parallel variant. This is consistent

1Our notation means the loop with label 100 in subroutine OLDA.

5

(a) (b)

Figure 4: Speedup of the Major Loops in TRFD as Executed on (a) the Sun Enterprise 4000
and (b) the SGI Origin 2000.

with the fact that the benchmark has complex induction variables, whose substitution in
the parallel code leads to signi�cantly more complex expressions. The di�erence in executed
instructions accounts for the di�erence in speedups of the code variants. In fact, factoring
in the instruction e�ciency models the obtained speedups closely.

Figure 5: The Number of Instructions Executed in the Major Loops of TRFD on the Sun
Enterprise 4000. The values are normalized to instructions executed in the MOERAE code.
We refer to a code with low relative number of instructions as having high instruction

e�ciency.

The instruction e�ciency also reects the ability of the backend compiler to apply
advanced optimizations. In our analysis we have found that the parallel program represen-
tation in the interface between preprocessor and backend compiler can have a substantial
impact on these optimizations. The semantics of shared-memory parallel program execution
requires that data written by one processor can be read immediately by another proces-
sor. A conservative compilation of such a program would disable all register allocation of
shared data (because the shared variable could be overwritten by a di�erent processor at
any time, hence the register value would become stale). Simple analysis methods could
improve these conservative assumptions. For example, one could easily determine that the
variable factor in Figure 6 is read-only inside the parallel loop. However, we have found
that both the native and the OpenMP compiler translate this case most conservatively. In
contrast, MOERAE knows when Polaris generates loops that are dependence-free, hence

6

unrestricted register allocation is possible. The sequential backend compiler of MOERAE
performs this optimization in the usual way. One reason that this optimization does not
have an even bigger performance impact, is that after the �rst access, the variable factor is
in the cache, hence the second access is a cache hit. On the other hand, if a compiler tends
to pass program constants as subroutine parameters, the called subroutine will see them as
shared variables, amplifying the described e�ect. This is the case in our OpenMP compiler,
and it accounts for the inferior performance of the shown loops. A simple solution to this
problem would be for the preprocessor to add directives indicating that the loop or the ac-
cessed variables are dependence-free. We have experimented with such improved interfaces
between preprocessor and backend compiler and have found signi�cant improvements of up
to 53% [12].

C$OMP PARALLEL DO

DO i=1,n

a(i) = b(i) * factor

c(i) = d(i) * factor

e(i) = f(i) * factor

ENDDO

Figure 6: Conservative Assumption by the Backend Compiler. The shared variable factor
is read-only. However, the backend compiler does not detect this fact and disables the
allocation of factor in a register.

In summary, in TRFD the thread-based MOERAE representation leads to better perfor-
mance than the loop-based OpenMP and the native directive forms. The primary reason is
in the more highly optimized code generated by the backend compiler, which is enabled by
the MOERAE representation. Functional portability between the two machines is provided
and the obtained speedups on the two machines are comparable.

B. MDG

In MDG, two parallel loops INTERF DO1000 and POTENG DO2000 take more than 95% of
the total execution time in the serial code. Figure 7 shows the speedups of these two loops.
OpenMP yields the best performance on the Sun Enterprise, and MOERAE on the SGI
Origin. However the di�erences are not as pronounced as in TRFD.

Similar to TRFD, the cache hit ratio is close to 97% and the loops are large and regular.
The di�erence in performance is again due to the better instruction e�ciency as indicated by
Figure 8. However, in contrast to TRFD, the instruction e�ciencies are generally better and
can even be higher than in the original code. We attribute this to optimizations performed
in the parallelizing preprocessor (a combination of partial inline expansion and constant
propagation). The number of executed instructions in INTERF DO1000 using the native Sun
directive version is larger than the others because of an instruction scheduling ine�ciency.
The Sun directive version uses an indirect addressing mode rather than direct addressing.
In POTENG DO2000 the native Sun directive version could not be parallelized due to an error

7

(a) (b)

Figure 7: Speedup of the Major Loops in MDG as Executed on (a) the Sun Enterprise 4000
and (b) the SGI Origin 2000.

in the native compiler. However, the number of executed instructions in this loop still
increases slightly by 3% in the resulting code.

Figure 8: The Number of Instructions Executed in the Major Loops of MDG on the Sun
Enterprise 4000. The values are normalized to instructions executed in the MOERAE code.

On the SGI system, the overall performance of MOERAE is better than OpenMP and
similar to the native directive form, even though the performance of the major loops is
similar. One reason for this is the many small parallel loops in MDG, which incur a substantial
fork/join overhead on the SGI system. We have developed techniques that address this
problem in related work [13]. However, the present results do not include this optimization.

In summary, MDG does not favor any particular parallel program representation. Instruc-
tion e�ciency and small-loop overheads account for the observed performance di�erences.
Functional portability is provided, but the performance on the two machines di�ers notice-
ably.

C. ARC2D

ARC2D consists of many small loops, each of which has a few micro-seconds average
execution time. Figure 9 shows that the three code variants yield comparable performance.
The loops in Figure 9 consume about one third of the total execution time. Two loops show
a highly superlinear speedup. This is due to the fact that Polaris applies loop interchanging

8

to achieve stride-1 references in these loops. This optimization is not applied in the serial
version. On the Sun Enterprise, the overall performance of MOERAE is best, but on the
SGI Origin OpenMP is best. ARC2D di�ers from TRFD and MDG in that the cache hit ratio is
91.6%. A miss rate of 8.4% is signi�cant and negatively impacts the program speedup. In
fact, stalls due to cache misses on store instructions consume over half of the total execution
time.

(a) (b)

Figure 9: The Speedups of the Major Loops in ARC2D executed on (a) the Sun Enterprise
4000 and (b) the SGI Origin 2000.

In addition, the loops have short execution times and are executed many times. This
repeated incurring of fork/join overheads likewise will degrade speedup. The fork/join over-
head is larger on the SGI system, which is consistent with our measurements. They show
generally lower speedup levels on this machine. The same holds for the overall performance
shown in Figure 2. Figure 10 shows the measured executed instructions, which does not
match the measured execution time well. It is evident that there are other factors in ARC2D

that must determine the performance di�erences in the versions, although the measured
speedups do show that there are large gaps in the optimization done by the backend com-
pilers.

Figure 10: The Number of Instructions Executed in the Major Loops of ARC2D on the Sun
Enterprise 4000. The values are normalized to instructions executed in the MOERAE code.

In summary, as for the other codes, the parallel-loop and thread-based representations
show comparable performance, although substantial di�erences exist for individual loops.
Cache misses, fork/join, and instruction e�ciency impact the performance of the parallel

9

code. As for MDG, functional portability is provided, but the speedups obtained on the two
measured machines di�er.

D. FLO52

As with ARC2D, the major loops in FLO52 have small execution times. Figure 11 shows
the performance of the various parallel forms. On the Sun system, the native directive
form performs better than the others except for one loop, with MOERAE's performance
falling between that of the native directive code and OpenMP. On the Origin, the OpenMP
version is best, with the native directive form again falling between the other two. But in
the overall performance on both machines, the OpenMP versions are best.

(a) (b)

Figure 11: The Speedups of the Major Loops in FLO52 executed on (a) the Sun Enterprise
4000 and (b) the SGI Origin 2000.

Again, due to the short loop execution times, the fork/join overheads can have signi�cant
impact on loop performance. The Origin performance is lower in all measurements, which
we attribute to this fact. The fork/join overhead also has a signi�cant e�ect on the overall
execution time of this program, with the overall program speedup on the Origin degrading
to a 1.5 at best.

The cache hit ratio in this program is close to 94%, hence the miss rate may negatively
impact the program speedup. The number of instructions executed in the major loops of
FLO52 is shown in Figure 12. Although most code variants agree in the number of executed
instructions, there are two outliers. The low instruction e�ciency in the native directive
version of loop PSMOO DO40 is due to the conservative code generation, explained in Figure 6.
It accounts for the low speedup of this loop on the Sun Enterprise (Figure 11 (a)). However,
the loop DFLUX DO30 shows a good speedup despite the apparent low instruction e�ciency.
The reason for the low number of instructions in the serial version is the code generated
for an expression of the form x � y. It is generated as only one subtraction instruction in
the serial code, whereas in all other versions the expression is compiled as two instructions,
a negation and an addition. Despite the code di�erences the instruction cycles for the two
variants are the same [14].

In summary, the loop-parallel and thread-based program forms agree in their perfor-
mance. Fork/join overhead and instruction e�ciency are the primary overhead factors of
the parallel performance. Porting the code from the Sun Enterprise to the SGI Origin incurs

10

Figure 12: The Number of Instructions Executed in the Major Loops of FLO52 on the Sun
Enterprise 4000. The values are normalized to instructions executed in the MOERAE code.

a substantial performance decrease, which we attribute to the higher fork/join overhead.

E. BDNA

The BDNA benchmark is di�erent from the other programs in that it contains a substantial
number of reduction operations. Both scalar reductions and array reductions (in which
the reduction variable is an array) are used. The Polaris parallelizer, together with the
MOERAE output pass, can translate reductions into several forms, potentially resulting in
substantial performance di�erences. Because of this we will describe this aspect of BDNA in
particular and compare the performance of these di�erent schemes.

Polaris generates three forms for expressing reduction operations, called blocked reduc-

tion, privatized reduction, and expanded reduction [15, 16]. Briey, in blocked reductions
all reduction statements are enclosed within critical sections such that they are performed
atomically within a parallel loop. In contrast, in both privatized and expanded reductions,
the reduction variables are replicated versions of the original variable. The replication is
done either by array privatization or by array expansion. Each processor performs the re-
duction into its local version of the replicated variable. At the end of the loop, a global
reduction is performed from the replicated variable into the original reduction variable. For
privatized reductions this is done within a critical section at the end of the parallel loop in
a postamble. For expanded reductions the global reduction can be done after the parallel
loop. Before the parallel loop body, a preamble sets the replicated reduction variable to
zero. Most compilers for parallel languages can transform scalar reductions. Polaris is able
to also recognize array reductions. MOERAE's task includes the transformation of such
operations into the proper parallel form.

BDNA has two major parallel loops, ACTFOR DO500 and ACTFOR DO240, which take more
than 80% of the total serial execution time. The loop ACTFOR DO500 performs reductions
on three arrays and one scalar variable, and the loop ACTFOR DO240 has 12 array reductions
and one scalar reduction. The performance of these loops is shown in Figure 13.

Table 1 compares the performance of the privatized and the expanded reduction schemes
in ACTFOR DO500 in the MOERAE versions. Expanded reductions are about 50% better
than the privatized reductions in execution time. Even if the array size of the reduction

11

(a) (b)

Figure 13: Speedup of the Major Loops in BDNA as Executed on (a) the Sun Enterprise 4000
and (b) the SGI Origin 2000.

Table 1: Composition of Execution Time (Seconds) in Loop ACTFOR DO500 when Using
Privatized Reductions and Expanded Reductions in MOERAE on the Sun Enterprise 4000.

Number of Processors

Reduction Statements 1 2 4

Privatized Memory Allocation 0.000186 0.000358 0.000605

Initialization 0.000109 0.000108 0.000098

Computation 2.479811 1.189530 0.600789

Summation 0.000192 0.000290 0.000345

Free 0.000020 0.000011 0.000011

Expanded Memory Allocation 0.000293 0.000255 0.000284

Initialization 0.000100 0.000223 0.000345

Computation 1.486813 0.760792 0.396877

Summation 0.000163 0.000205 0.000261

Free 0.000019 0.000012 0.000015

variables is large, the overhead of the preamble (which allocates memory and initializes it to
zero) and the postamble (which does the �nal summation and frees memory) are negligible
compared to the loop computation time.

The initialization and summation in an expanded reduction are parallelized. The actual
computation dominates the overall execution time. The overhead of memory allocation
in the privatized reduction is larger than that in an expanded reduction, because the pri-
vatized reduction allocates separately for each thread from a common pool, guarded by a
lock/unlock pair. The overhead of initialization in the expanded reduction is larger than for
privatized reductions. In expanded reductions, during initialization the shared array is be-
ing accessed, requiring interprocessor communication, while in privatized reductions a local
copy is accessed. The overhead of summation in the privatized reduction is larger because
of the overhead of lock and unlock operations. In the overall program performance, the
choice of reduction operation makes a substantial 10% di�erence. In Figure 13 all programs
use the expanded reduction scheme.

Similar to other benchmarks, BDNA has a high cache hit ratio and the execution time

12

is primarily inuenced by the number of executed instructions. There is a substantial
di�erence in speedup for the ACTFOR DO500 loop on the Sun system between the MOERAE
and the other program forms. However, Figure 14 indicates better instruction e�ciency for
the serial and the native versions than the MOERAE version. A detailed analysis of the
assembly code has revealed that the generated code in the native and OpenMP directive
forms lead to signi�cant pipeline stalls, which is not the case in the MOERAE variant.
The execution time does not match the number of executed instructions. We have found
that in neither case the base address of the reduction array is placed in a register. In
the privatized reduction code the memory load and use of this address is done in two
consecutive instructions, while in the expanded reduction case, the load is moved upward in
the instruction stream. The latter allows the pipelined SPARC architecture [17] to overlap
this memory load with the subsequent instructions. For the code generator, the di�erence
between the two reduction schemes is merely that of a subroutine parameter versus an
address on the local stack. This raises code generation and register allocation issues beyond
the scope of this paper.

Figure 14: The Number of Instructions Executed in the Major Loops of BDNA on the Sun
Enterprise 4000. The values are normalized to instructions executed in the MOERAE code.

In summary, all program variants perform comparably. Instruction e�ciency varies
substantially in this program. Among the measured schemes for parallel reductions, the
expanded reduction form performed the best. As for most programs, portability is provided
but the performance di�ers substantially between the Sun Enterprise and the SGI Origin
systems.

V. Conclusion

In this paper we have investigated three questions that are related to the performance
of compiler-parallelized programs. The questions are (1) whether or not the common use of
parallel loop representations between the preprocessor and backend compiler has a negative
performance e�ect, (2) why fully parallel programs that exhibit good cache locality perform
less than ideal on current SMP machines, and (3) to what extent the output of parallelizing
compilers can be ported across SMP platforms.

13

To answer these questions we have implemented two output passes to the Polaris par-
allelizing preprocessor, which generate parallel loop directives and a thread-based parallel
form, respectively. We have described the latter pass, the MOERAE translator and runtime
library, in this paper. We have analyzed the performance of �ve Perfect benchmarks, which
can be parallelized to a high degree by Polaris. Our analysis included detailed measurements
on a loop-by loop basis on both a Sun Enterprise and an SGI Origin machine.

We have found that, overall, there is no signi�cant performance degradation attributable
to the loop-parallel representation. Although we have found substantial performance di�er-
ences at individual loops as well as at the overall program level, no scheme outperformed the
other consistently. One important reason for the performance di�erence is the instruction
e�ciency. That is, the code generated by the di�erent compilers results in substantially
di�erent numbers of executed instructions. We have found that an important cause is the
lack of data dependence information in the parallel loop representation between the prepro-
cessor and the backend compiler, which leads to conservative optimizations in the backend
compiler. Another cause for performance di�erences was the fork/join overhead in small
parallel loops. Of minor importance was the cache behavior. Three of the �ve benchmarks
had negligible cache misses. We have also found that di�erent schemes for implementing
reduction operations can make a signi�cant di�erence for individual loops. In one of the
�ve applications, this made a 10% overall performance di�erence.

We have also found that both the OpenMP and the MOERAE thread-parallel program
versions are functionally portable between the two SMP platforms. However, there are
substantial performance di�erences. One reason for this is the di�erent fork/join overhead
of the two machines, which results in a di�erent threshold for pro�table parallel loops.

In addition to our performance results, a contribution of this work is the MOERAE
translator and runtime library. The system is available for distribution together with the
Polaris infrastructure. It provides a portable environment, comparable to the OpenMP
language. We have shown in this paper that analyzing performance e�ects of the translation
system is often complex. MOERAE simpli�es this analysis since it uses only standard,
sequential compilers as a backend. Compared to a compiler for parallel directive languages,
this gives its users more direct insight into the performance behavior of parallel programs.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeinger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming with Polaris. IEEE
Computer, pages 78{82, December 1996.

[2] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion, and
M. S. Lam. Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer,
pages 84{89, December 1996.

[3] Aart J. C. Bik and Harry A. G. Wijsho�. Compilation techniques for sparse matrix compu-
tations. Proceedings of the 7th ACM International Conference on Supercomputing (ICS'93),
pages 416{424, 1993.

[4] Xingbin Zhang and Andrew A. Chien. Dynamic pointer alignment: tiling and communication
optimizations for parallel pointer-based computations. Proceedings of the Sixth ACM SIGPLAN

14

Symposium on Principles and Practice of Parallel Programming (PPoPP'97), pages 37{47,
1997.

[5] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.
Proceedings of the ACM SIGPLAN '90 Conference on Programming Language Design and Im-
plementation (PLDI'90), pages 296{310, 1990.

[6] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based alias analysis. Proceed-
ings of the ACM SIGPLAN '98 Conference on Programming Language Design and Implemen-
tation (PLDI'98), pages 106{117, 1998.

[7] Carrie Brownhill, Alex Nicolau, Steve Novack, and Constantine Polychronopoulos. The
PROMIS compiler prototype. Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT'97), 1997.

[8] Sangyeun Cho, Jenn-Yuan Tsai, Yonghong Song, Bixia Zheng, Stephen J. Schwinn, Xin Wang,
Qing Zhao, Zhiyuan Li, David J. Lilja, and Pen-Chung Yew. High-level information - an ap-
proach for integrating front-end and back-end compilers. Proceedings of the 1998 International
Conference on Parallel Processing (ICPP'98), August 1998.

[9] M. Berry, D. Chen, P. Koss, D. Kuck, L. Pointer, S. Lo, Y. Pang, R. Rolo�, A. Sameh,
E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier,
K. Lue, S. Orszag, F. Seidl, O. Johnson, G. Swanson, R. Goodrum, and J. Martin. The Perfect
Club Benchmarks: E�ective Performance Evaluation of Supercomputers. International Journal
of Supercomputer Applications, 3(3):5{40, Fall 1989.

[10] William Blume and Rudolf Eigenmann. Performance Analysis of Parallelizing Compilers on
the Perfect Benchmarks Programs. IEEE Transactions on Parallel and Distributed Systems,
3(6):643{656, November 1992.

[11] Seon Wook Kim, Michael Voss, and Rudolf Eigenmann. A methodology and a tool for cache
characterization of loop-parallel programs. Technical Report ECE-HPCLab-99201, HPCLAB,
Purdue University, School of Electrical and Computer Engineering, 1999.

[12] Seon Wook Kim and Rudolf Eigenmann. Interface issues between parallelizing preprocessors
and code generators. Technical Report ECE-HPCLab-99208, HPCLAB, Purdue University,
School of Electrical and Computer Eng ineering, 1999.

[13] Michael J. Voss and Rudolf Eigenmann. Generating portable shared-memory applications using
OpenMP. Technical Report ECE-HPCLab-98207, HPCLAB, Purdue University, School of
Electrical and Computer Engineering, 1998.

[14] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version 9. SPARC
International, Inc., PTR Prentice Hall, Englewood Cli�s, NJ 07632, 1994.

[15] Jee Ku. The design of an e�cient and portable interface between a parallelizing compiler and
its target machine. Master's thesis, University of Illinois at Urbana-Champaign, Department
of Electrical Engineering, December 1995.

[16] Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the Polaris Parallelizing Compiler.
Proceedings of the 9th ACM International Conference on Supercomputing (ICS'95), pages 444{
448, 1995.

[17] Richard P. Paul. SPARC Architecture, Assembly Language Programming, & C. Prentice Hall,
Englewood Cli�, NJ, 1994.

15

