TOWARDS A COMPILATION PARADIGM
FOR COMPUTATIONAL APPLICATIONS
ON THE INFORMATION POWER GRID*

Michael J. Voss and Rudolf Eigenmann'
Purdue University, USA

Abstract

Keywords:

The Information Power Grid (IPG) refers to the world-wide infrastruc-
ture of computers and their interconnections. We are only at the very
beginning of exploring applications and system software that can exploit
these resources effectively and, at the same time, provide adequate inter-
faces to the programmer and end-user. In this paper we discuss compiler
technology that serves this purpose. The core consists of methods and
services that enable an application to adapt flexibly to the dynamically
changing nature of the IPG. We present several applications that demon-
strate performance opportunities in such scenarios. We then present and
evaluate new compiler techniques and services that allow an application
to be dynamically re-optimized as the execution environments change.
One very important property of such system support is that the over-
heads of dynamic re-optimizations are kept small. We will show that
this is the case for the presented techniques. The resulting applications
can run close to the best performance that could be obtained with prior
knowledge of the runtime situations.

Information Power Grid, Adaptive Program Optimization, Dynamic
Compilation

*Dedicated to John R. Rice on the occasion of his 65th birthday.

T This work was supported in part by DARPA contract #DABT63-95-C-0097 and NSF grants
#9703180-CCR and #9872516-EIA. This work is not necessarily representative of the posi-
tions or policies of the U.S. Government.

2

1. INTRODUCTION

The Information Power Grid (IPG) refers to the increasingly con-
nected infrastructure of computers and world-wide communication net-
works. The vision of the IPG is similar to that of the electric power
grid: an interconnected system of power sources are optimally managed
by the facilities of the grid and present a user-friendly interface to the
consumer. Similar to the electric power grid, the IPG would provide ser-
vices such as load balancing of computers across the globe and routing
of requests to the right resources. The user interface may be a “Web
Appliance”, plugged into a wall connector similar to today’s electrical
outlet in the office and at home.

From a computer system’s perspective, the IPG is a complex computer
architecture. It is parallel, distributed, and heterogeneous. It is also un-
reliable, because nodes and interconnections may fail or temporarily be
unavailable. System support for the IPG will be distributed and rela-
tively uncoordinated. Compilers, libraries and operating system versions
may get upgraded in widely varying time steps and asynchronously.

Translating a computational application onto such a complex com-
puter system is a tremendous challenge. While today the efficient com-
pilation of a large computer application onto a homogeneous parallel
processor is a grand challenge, the problems introduced by an IPG may
seem unsurmountable. However, given the fact that the IPG is hap-
pening, tackling these problems appears very important. In this paper
we are beginning to address the issues faced by a compiler when trans-
lating an application onto the information power grid. We will discuss
interfaces to the underlying “IPG operating system”, which facilitates
advanced compiler operations. We will also present initial results of ex-
periments that show the potential of new compilation technology as it
deals with the dynamic, heterogeneous, and unpredictable nature of an
architecture such as the IPG.

1.1. NEW COMPILATION TECHNOLOGY

At the core of the new compilation technology are capabilities that
enable an application to dynamically adapt to changing parameters of
architectures and environments, to newly available libraries, to com-
piler upgrades, and to unreliable system components. These capabilities
need to overcome one of the most severe restrictions of today’s compiler
generation, which is the use of conservative assumptions. Conservative
assumptions usually must be made because there is insufficient informa-
tion about a program’s input data and machine environment at compile
time. Hence the compiler is not able to decide on the optimal program

A Compilation Paradigm for Computational Applications on the IPG 3

translation. Conservative assumptions prevent incorrect program trans-
formations. They often lead to suboptimal performance even on today’s
homogeneous multiprocessor machines. On the IPG’s drastically more
dynamic machine structure, conservative compiler assumptions can have
a devastating effect.

To avoid conservative assumptions, the compiler must aggressively de-
fer optimization decisions to runtime. Some optimization decisions may
even need to be deferred to after the computation has completed, that is,
the optimization is applied speculatively, followed by a verification test.
The specific new compiler capabilities that address this issue include

= monitoring techniques for changes in architecture, environments,
tools, and program input data

® dynamic re-optimization techniques

® dynamic optimization decision support

m quality assurance support

® management support for program history and code versions.

In the following sections we will describe these capabilities.

1.1.1 An Illustrating Example. An engineer is making use
of a device simulation program. The simulation is available on the IPG -
for example the PUNCH (Purdue University Network Computing Hubs)
system [10]. The IPG determines that a large multiprocessor system in
Alaska is currently only lightly loaded and dispatches the simulation job
to this machine. After the application starts, its monitoring module de-
termines that, although the executable can run on the current processor
architecture, it is only compiled for a single-processor system. While
it begins the execution in this suboptimal way, it also spawns a new
compilation task on the IPG, generating optimal code for the current
machine and the present light load.

After two hours of execution the load changes and the IPG decides
to migrate the application to a different machine. The new machine has
the same basic architecture but a much larger cache. As a result, the
dynamic optimization module readjusts cache optimization parameters.
It does this by executing and timing several code variants obtained from
the code management support. The code management support, in turn,
provides the requested code variants from its database and, where nec-
essary, creates additional code variants via remote dynamic compilation
requests [18].

While the code executes, the monitoring module watches the parame-
ters of the machine and the environment. After each significant change,
it reevaluates the code optimization decisions. For example, a new com-
piler release may become available. The decision support chooses to
recompile the most time-intensive part of the application with the new
compiler’s high optimization level. After the compilation job has com-
pleted, the application dynamically links the new code and executes it
instead of the now stale code. It performs the execution under an ex-
ception domain with prior checkpointing, until it decides that the new
compiler option is of assured quality.

1.1.2 Interfaces Compilers, Applications, and the IPG.
The example scenario makes use of several system software capabilities,
located in the TPG’s runtime system, the associated compilers, and the
application itself. New interfaces provide for proper coordination of these
three agents. For example, the compiler may insert code for dynamic
optimization support directly into the application. At runtime, this code
queries the IPG to learn about machine and environment parameters.
If it decides that a new compilation variant for a section of code is
necessary, it invokes the compiler through an appropriate link.

More specifically, the following interface between compiler, applica-
tion and the runtime system are necessary. We are currently implement-
ing these facilities in the Polaris optimizing compiler and the PUNCH
network computing system.

m Monitoring interface. It allows the compiler and the applications
to query machine and environment parameters, such as static ma-
chine properties (e.g., the cache size), dynamic characteristics (e.g.,
hardware monitors), and environment parameters (e.g., the current
load of the network).

» Management support for program history. This allows the com-
piler and the application to retrieve and store data about past ap-
plication performance and to coordinate with the IPG’s scheduling
intelligence.

» Remote dynamic compilation and code management support. This
allows the running application to order the generation of new code
variants and to retrieve such variants from a “cache”.

®» Quality assurance support. It provides support for checkpointing
and exception domains, which allows a potentially unsafe code
section to be executed in a controlled manner. It also provides
interfaces to hardware error monitors, such as race detectors.

A Compilation Paradigm for Computational Applications on the IPG 5

In a number of pilot studies we have implemented and tested sev-
eral of these facilities. Section 2 describes experiments that show that
dynamically adaptive optimizations outperform static optimizations and
come close to the best performance that one would obtain with full prior
knowledge of the runtime situation. Section 3 then describes several of
the services introduced above, and evaluates their performance on a sim-
ple test program.

2. DYNAMICALLY ADAPTIVE PROGRAMS

In a number of case studies we have looked for answers to the ques-
tion of how much improvement there can be from adaptively optimizing
programs in changing machine environments.

Akt Ter Drsveinidi Fiid Pl el

Figure 1 The speedup, on 4 processors of an UltraSPARC Enterprise, of several versions
of the MXMULT_do10 loop in program DYFESM. The Always Test version refers to the
program with a runtime data dependence test applied in each execution of the loop. This is
representative of current compiler technology that makes static decisions on where to apply
the test. The Dynamic version re-tests the loop only when the subscript array is modified,
which is detected dynamically. The Fized Parallel version refers to a parallel version with
no testing performed, i.e., with prior knowledge that the loop will always be parallel. The
results show that the dynamic version performs much better than the compile-time version
and comes close to the variant that uses prior knowledge.

Figure 1 shows the results of an experiment with the most time-
consuming loop MXMULT D010 of the Perfect Benchmark DYFESM, in which
we have applied a runtime data-dependence test in a dynamic way. Run-
time data-dependence tests can potentially execute program sections in
parallel, even if the parallelism cannot be proven at compile time. This
is the case in the MXMULT_D010 loop. Significant performance gains can
result from this optimization. However, current tests can have substan-
tial overheads. To overcome this problem, our dynamic scheme checks
if the environment in which the test is applied changes between two in-

6

vocations of the code section. If not, then we know that the runtime
data-dependence test would yield the same result as in the last invocation
and therefore does not need to be re-applied. The relevant environment,
in this case, is the value of an array used for indirect addressing in the
loop. Our method tests dynamically for changes to this array. More
details about the experiment of Figure 1 are given in [17].

Exit

16516
P a2
[Gawba
B 128128
P 5656
512512
i untited
[yramic

Enterprise SPARCstation

Figure 2 The speedup of an application performing matrix multiplications on two machines
and using different tiling strategies. All but the “dynamic” bars represent fixed tile sizes. The
dynamic scheme determines the best variant adaptively. The figure shows that the adaptive
scheme comes close to the best tiling method on both machines.

Figure 2 shows another case study, in which we assume that an ap-
plication is compiled without knowledge of the architecture’s cache size.
This is an important situation because a compiler may generate portable
code that will later execute on several different machine configurations.
Our goal is to apply the best program optimization for the eventual cache
size nevertheless. The test program includes a sequence of 100 matrix
multiplication operations. We applied a dynamic algorithm that tries
and evaluates at runtime several code tiling variants to determine the
best version. The figure compares the dynamic scheme with several fixed
tiling parameters. Our method will not only determine the best tiling
parameters for a given application as it is invoked on a new machine,
but also adapt to a new cache size after the application has migrated to
a new machine with different cache parameters. More details about this
experiment are also given in [17].

The results of a third case study are shown in Figure 3. A dynamic
scheme decides whether or not it is appropriate to execute a parallel loop
on multiple processors. Small parallel loops incur a parallelization over-

A Compilation Paradigm for Computational Applications on the IPG 7

14

12 1

1.0 4

0.8 - [|Criginal
[l Oymamic

=
]
i

[rotie

=)
Y

Mormalized Execilion Time

0z 4 l|
0.0
[orai]

Figure 3 The effect of dynamic serialization. Several benchmarks are shown (1) with their
original, normalized execution time, (2) with applied dynamic serialization, and (3) with
serialization based on full knowledge of the best variant, obtained via profiling. On average,
dynamic serialization achieves significant improvements, and is as good as the profile-based
method.

= dt HED HAH GO i TCRILAT

head, which may offset the gain from parallel execution. This overhead
is very machine-dependent. Our dynamic scheme makes decisions based
on information from micro benchmarks, loop timings, and profiles from
a reference machine. The results show that, in general, the dynamic
scheme performs significantly better than the scheme in which all paral-
lel loops are executed as such. It comes close to the profile-based version,
which applies prior knowledge about which loops execute the fastest in
which mode. The results also show an effect that needs to be given
serious considerations in program optimizations that are performed on
individual program sections: In the Arc2D code, several loops perform
differently in their final context than in the context in which they were
measured. Thus, a parallel loop may be measured as slower than in the
fully serial program execution. However, when executed serially in the
context of other parallel loops, its performance may degrade further. We
attribute this primarily to cache affinity effects between adjacent loops.
To address that problem, one needs to apply overall program optimiza-
tion strategies, in addition to local optimizations. We have not yet done
this in our current work. More details of this study are given in [16].
A fourth study is shown in Figure 4, in which our dynamic scheme
simply “experiments” with compiler options. Starting from a code vari-
ant compiled with no additional flags, the adaptive scheme generates
and evaluates program executions, each compiled with a different com-
bination of flags. The dynamic selection scheme of the flags is generic,
without any knowledge of the best combination or relationships between

*

NEOpa depere NS

Lwargriler Hagn
(EL} L1 e kT

Figure /4 Dynamic selection of compiler flags. The best set of flags are automatically
selected. The figure shows the performance of the SPEC95 Swim benchmark as it is executed
with a progressive set of compilation flags. In this program relative to the original code with
no compiler flags, the -03 and -autopar options have a significant effect, while other options
have a minor performance impact.

A Compilation Paradigm for Computational Applications on the IPG 9

compiler optimizations. While this method finds the best variant less
quickly than an advanced selection scheme, it is important to note that,
for long-running or repeated applications, even this basic scheme con-
verges automatically to the best flag set.

3. SERVICES

The previous section has demonstrated significant performance poten-
tial from applying translation schemes that can re-optimize a program as
it executes. We have obtained the results using various manual and semi-
automatic methods. In this section we describe basic services that will
allow us to implement the described optimizations in a comprehensive
framework that enables a wide range of adaptive program optimizations
to be applied automatically. We will measure these services using a
simple test program.

Our scheme optimizes code intervals, which are code sections that
have a single entry point and a single exit point. We transform intervals
into subroutines that can be optimized in various ways at runtime, re-
compiled, and dynamically linked into the executing application. Multi-
ple versions of an interval may exist, and the variant most appropriate to
the current runtime environment will be selected. In our approach, op-
timization and re-compilation is done on a remote machine. In contrast
to dynamic compilation approaches proposed in related research, our
scheme does not interrupt the execution of the application and, hence,
keep overheads minimal. Consequently we are able to use standard tools
for the program restructuring and compilation. In this section, we give
an overview of the services provided by our framework as well as its
general structure. Details of these scenarios are given in [18].

3.1. THE FRAMEWORK

Our framework provides services to (1) monitor the characteristics
of a program and environment, (2) select code sections that will most
benefit from the framework, (3) perform optimization and compilation
on a remote machine, (4) dynamically select code variants most appro-
priate to the current runtime environment and (5) store and manage
the generated code variants. We will briefly expand on each of these
services.

Figure 5 shows the basic structure of our framework. Optimization oc-
curs at the granularity of intervals, which can be either user- or compiler-
selected. The compiler replaces each interval in the original code by an
if-else block that selects between a call to the code manager and the
default statically-compiled version of the interval. If the execution time

10

of the interval is below the profitability threshold, a flag is set so that
the default version will be selected, minimizing overheads. This flag will
be reset after a configurable time interval.

Monitors
Intervals ; \ Inspector |

U

Contains Sections of code 3 A collction of rountines
The granularty of optimization : Provides monitoring services
Can be user or compiler selected 3 Maintains the various descriptors
The Main Application N Monirng Senes

’A\ocalthread Monitors

Made up of 1 or more intervals Selects o
Code Manager : Code Variant

Acollection of routines An executable variant of an interval
Provides selection services Is described by a code descriptor
Selects and calls variants Statically or dynamically created

Links in

Dynanic Selecton Senvices |

Generates

iDirects

—— Diects — -
Optimization Queue : ~—{ Local Optimizer Thread b (Remote Optimizer)
A data structure Alocaltread Athread running on a remote machine
Used for code triage | 3 Calls remote optimizer Provides remote optimization services
Prorizes intervals } i pLinksin the new varianis Generates new code variants
,,,,,,,,,,,,,,, Cote e S ... RenosOpinaimACueVemgenentSenices |

Figure 5 Overview of the optimization framework.

The behavior of each interval is monitored by the Inspector. The
Inspector contains a set of routines for collecting environmental and
program characteristics. Access to this information is facilitated by an
IPG runtime system, which will be available uniformly across machines.
Calls to these routines are embedded in the code manager and other
support code. The information collected by these routines is stored
into the code descriptors that describe each code variant, the interval
descriptors that describe each interval, or the machine descriptor that
describes the current machine configuration. Where the information is
stored depends upon which routine is called. The IPG runtime system
will also allow this information to be saved and retrieved for future
application runs, hence building up a program optimization history.

Intervals that have sufficiently large execution times will call the code
manager to select and execute an appropriate code variant. The code
manager will select a code variant based upon the interval descriptor and
the code descriptors for the available code variants. It will, by default,
select the previously used variant unless it has become stale. Each code
descriptor will provide the conditions under which its variant becomes
stale, and the code manager will check these conditions each time before

A Compilation Paradigm for Computational Applications on the IPG 11

it executes the code. If the code has become stale a new code variant
will be selected.

The Local Optimizer Thread runs concurrently with the application.
It selects the most important interval from the Optimization Queue and
through a remote procedure call, activates the Remote Optimizer. It
then waits for the Remote Optimizer to return a new code descriptor,
describing the newly generated code variant and its location. Upon
receiving the code descriptor, it dynamically links in the new variant
and adds it to those available to the Code Manager. Finally it marks
the interval’s currently chosen variant as stale and begins the process
again with the current top of the Optimization Queue. If the Remote
Optimizer returns an empty code descriptor, the interval is marked as
fully optimized, removing it from the Optimization Queue. The interval
will be reactivated if its current ‘best’ version becomes stale, allowing
optimization to be performed in the context of the changed runtime
environment.

The Remote Optimizer runs in the background on a remote machine,
waiting for calls from the client application. It can generate a new code
variant using any combination of restructurers and compilers since it is
not limited by the requirement for a short execution time. The Remote
Optimizer is passed an interval descriptor, which includes information
about the current runtime environment and the past behavior of the
interval. It then generates a new version based upon this descriptor
and the history of previous optimizations it has applied. After generat-
ing a new variant in a shared library, it creates a new code descriptor,
updates the variant catalog file, and returns the code descriptor to the
Local Optimizer. In the implementation of this mechanism we assume
the availability of a shared file space across the IPG. Such facilities are
already available, for example through the PUNCH [10] network com-
puting system.

The current implementation of the framework is written in C, but can
be used with both C and Fortran applications. The Local Optimizer
Thread is implemented using Solaris threads and the remote procedure
calls are implemented using SunSoft ONC+ distributed services. All
dynamic compilation is done using the standard Solaris C and Fortran
compilers and dynamic linking is done with the standard Solaris link-
editor and runtime linker. All of these libraries and utilities are standard
on Solaris 2.6 machines. Unlike many other dynamic compilation frame-
works, no specialized compilers or code generators are required. While
we use specific compilers and operating systems in our current imple-
mentation, an important property of the future IPG will be to make
such facilities uniform across machines.

12

3.2. EXPERIMENTAL RESULTS

We manually applied this framework to a simple application, consist-
ing of a sequence of matrix multiplications of varying matrix size. We
encapsulated each interval in a subroutine and placed an if-else block
at its original location. We transformed all but one program section,
which only executes once and therefore cannot profit from our scheme.
A call to an initialization routine was placed at the beginning of the
application and a call to a cleanup routine was placed at the end. The
initialization routine creates and initializes the interval descriptors for
each code section. It then reads the catalog file that is found in the cur-
rent directory, creating code descriptors for each variant. Next, the ma-
chine’s external cache size is determined by calling the Solaris prtdiag
utility. This value is recorded in the machine descriptor. Finally the
Local Optimizer Thread is created and started by a call to the Solaris
threads library. The cleanup routine is used to kill this thread at the
end of the program execution.

We developed and implemented heuristics for dynamically selecting
the best code variant for each of the intervals. These heuristics are
embedded in the corresponding Code Manager subroutines. At runtime,
they select the best combination of loop tiling, conditional reduction
assignment and loop unrolling. An example of a conditional reduction
assignment (CRA) transformation is shown in Figure 6. The Remote
Optimizer was written to generate variants that were not unrolled as
well as unrolled by factors of 2, 4 and 8. As each new variant is created,
it is forced to run once. This creates a valid average execution time
in its code descriptor. The heuristic then simply selects an applicable
variant with the smallest average execution time. This ‘best’ variant
is set to become stale after a configurable time interval. If the current
version goes stale, all of the variants have their average execution times
invalidated and are again forced to run once. The new ‘best’ variant
is selected from the updated average execution times. This method of
choosing the most appropriate variant is similar in approach to Dynamic
Feedback [4]. The Code Manager subroutines are plug-in modules that
allow experimentation with selection methods. Our framework does not
force the use of any particular selection schemes and allows the easy
addition of user-created methods.

In addition to the default constraints described above, we place spe-
cial restrictions on variants that employ tiling and/or CRA. Whether a
variant that uses tiling is applicable is based upon loop bounds. The
heuristic aims at exploiting reuse of the matrix in our test program. It
assumes that the main matrix multiplication loop needs to be tiled if

A Compilation Paradigm for Computational Applications on the IPG 13

DO K = 1,N
DOL=1,N
DD J = 1,N
C(J,K) = C(J,K) + A(L,K)*B(J,L)
ENDDO
ENDDO
ENDDO

(a)

DO K = 1,N
DOL=1,N
IF (A(L,K) .NE. 0) THEN
DO J = 1,N
IF(B(J,L) .NE. 0) C(J,K) = C(J,K) + A(L,K)*B(J,L)
ENDDO
ENDIF
ENDDO
ENDDO

(b)

Figure 6 An example of conditional reduction asssignment: (a) the original code and (b)
the transformed code. When the A or B matrices are sparse, the technique can lead to
significant reductions in memory accesses and floating point operations.

and only if N > +/C, where C is the machine’s effective cache size and
N is the matrix size. A tiled variant will be selected if this relation
holds, and will become stale when the relation is no longer true. Again,
any variant also becomes stale after the user-specified time interval.
Each CRA variant is transformed such that it returns a denseness
factor (DF). After the first CRA variant runs, it will write the DF to
the interval’s descriptor. If the DF is above 50% no other CRA variant
will be generated or executed for this interval. Likewise, if the DF is
below 50%, the CRA optimization is considered to be applicable, and
no other non-CRA variants will be generated or run. If a CRA variant is
selected as ‘best’, it will become stale after the configurable time interval
or if the denseness factor rises above 50%. When any variant becomes
stale it will invalidate all of that interval’s variants’ average execution
times. Table 1 summarizes the heuristics used for each optimization.

Table 1 Optimization Technique Parameters

Tiling Cond. Assign Unrolling
Select Type Iterations > Threshold DF < Threshold Min Time
StaleType Iterations < Threshold DF > Threshold -
Threshold VC 50 -

14

The Remote Optimizer is responsible for deciding what optimizations
should be applied to each interval that it is passed, and for generating
the corresponding code variant. We staged the tiling and CRA optimiza-
tions by writing a source code generator that can generate the Fortran
source for any combination of loop tiling and CRA. Unrolling is applied
by simply using the —unroll flag when calling the Sun {77 compiler.
Each variant is compiled into a shared library by using the standard
Sun {77 compiler. For each interval we statically compiled a default ver-
sion that did not use any of the optimization techniques. These default
versions were likewise stored in shared libraries and logged in the catalog
file. Calls to the Remote Optimizer generate new versions based upon
knowledge of the already existing variants and the current interval and
machine characteristics.

3.3. EVALUATION

We ran our example application on both a SPARCstation 20 and
an UltraSPARC Enterprise. Both machines were multiprocessors, how-
ever, all compilation was still performed on remote machines. When the
SPARCstation was running the application, compilation was performed
on the UltraSPARC, and when the UltraSPARC was running the appli-
cation, compilation was performed on the SPARCstation. The SPARC-
station 20 has four 100 MHz HyperSPARC processors, each with a 256
Kbyte external cache. The Enterprise has six 250 MHz UltraSPARC-IT
processors with 64 Kbyte internal data caches and 1 Mbyte unified ex-
ternal caches. All libraries were shared through the network file system.
We set both the stale and the reset time intervals to 600 seconds. We
set the minimum execution time for profitability to 100 us. Conserva-
tively, we set the system to use tiling if the data set exceeded 25% of
the external cache size (the cache size is determined at runtime through
a system call).

We experimented with four data sets: (1) a 100x100 dense matrix, (2)
a 512x512 sparse matrix, (3) a 512x512 dense matrix, and (4) a data set
which included the previous three data sets in succession. The algorithm
includes a sequence of 100 matrix multiplications. We found that loop
unrolling had a negligible effect on the performance. The CRA optimiza-
tion showed a large improvement on the sparse data set, but incurred
large overheads on the dense matrices. Tiling showed improvements on
all but the 100x100 data set.

Figure 7 shows the execution time of the four data sets on each ma-
chine. The execution time is given for our framework, as well as for
four statically optimized variants: (1) the code with no optimizations

A Compilation Paradigm for Computational Applications on the IPG 15

applied, (2) the code with CRA applied, (3) the tiled code and (4) the
tiled code with CRA applied. Loop unrolling is not shown in Figure 7
since its effect was negligible. In the first three data sets, the dynamic
framework was able to closely match the fastest of the statically op-
timized versions on each architecture, being always within 20% of its
execution time. On both machines, the dynamic framework was able to
outperform all of the statically optimized variants when the mixed data
set was used.

The largest variations occurred in the Dense 512x512 data set on the
SPARCstation 20. The CRA optimized variants showed large overheads
when run on this data set and machine. In the course of decision making,
our framework must execute sub-optimal variants in order to determine
the denseness factor as well as to compare execution times. In this
case, the sub-optimal variants had much larger execution times than
the best variant. Therefore, our framework was 19% slower than the
best statically optimized variant. The CRA optimization showed less
overhead on the UltraSPARC, and there our framework was within 3%
of the best variant on this data set.

When the data sets are mixed, we see that our framework executes
15% faster on the SPARCstation, and 28% faster on the UltraSPARC,
than the fastest statically optimized version on each machine. It should
be noted that the fastest statically optimized variant is different for
each machine. Our framework was able to create a better variant for
each machine by using the best set of optimizations during each phase
of the execution.

The administrative overheads incurred from our framework were neg-
ligible in this application. We found that on average less than 0.1% of the
execution time was spent in the initialization and cleanup phase. And
only 1% of the execution time was spent in dynamic code selection and
maintenance. The remaining 99% of the time was spent in performing
useful work.

4. RELATED WORK

To our knowledge the presented work is the first approach to de-
veloping compiler technology for direct use by the information power
grid. Related system software for IPG applications is being developed
by projects such as PUNCH, Legion, and Globus. The PUNCH system
comes closest to the idea of an IPG with an end-user interface. It al-
lows users to run a number of pre-installed applications “on the Web”.
An advanced scheduler decides where to best run a requested applica-
tion [11]. The predictive capabilities of the scheduler is related to our

16

Tireas (eacondsj

Yo wd

Dhariciel 2120512
Spmres N1 28l P

CRA Dhartiia 1000 100

Thrres: |wis cenad

Mim !
Demnem G 20512
Sipwred 51381 7

Dengs 1000 | [0

ChRA,

O

Figure 7 The performance of the application on (a) a SPARCstation 20 and (b) an Ul-
traSPARC Enterprise. Dynamic refers to our framework. The other data points refer to
statically applied optimizations.

A Compilation Paradigm for Computational Applications on the IPG 17

adaptive scheme. However, the PUNCH scheduler adapts to the envi-
ronment on a per-request (i.e., per-program) basis, whereas our scheme
adapts to changing environments during the program’s execution.

The Globus [6] project differs from our view of the IPG in that it
focuses on the provision of services for the development of IPG applica-
tions. Examples of these services are authentication, resource allocation,
remote data access, and fault detection. These services are largely or-
thogonal to the ones provided by our compiler scheme. For example,
using Globus services the programmer may explicitly migrate a pro-
gram to a different machine, as a result of which our compiler-inserted
modules adapt selected code sections to the new environment.

Legion [8] is an operating system for “Wide-Area Computing” that
addresses specifically the needs to share resources across heterogeneous
domains with different administrative requirements and procedures. It
applies a consistent object-oriented methodology to the construction of
the operating system and its services. It provides a single, global name
space to all shared resources. Similar to Globus, Legion provides services
for distributed applications, addressing issues orthogonal to the goal of
the presented compiler techniques.

The compiler research that is most directly related to the presented
techniques deals with runtime optimizations techniques. One of the ear-
liest methods for performing runtime optimization was to use multiple
version loops [2]. In this technique, several variants of a loop are gener-
ated at compile-time and the best version is selected based upon runtime
information. Many modern compilers still use this technique for select-
ing between serial and parallel variants. In our framework, the selection
between a call to the Code Manager and the use of the default static
version is done through multiversioning.

Gupta and Bodik [9] proposed adaptive loop transformations to allow
the application of many standard loop transformations at runtime using
parameterization. They argue that the applicability and usefulness of
many of these transformations cannot be determined at compile-time.
Although they do not give criteria for selecting transformations based
upon runtime information, they provide a framework for applying loop
fusion, loop fission, loop interchange, loop alignment and loop reversal
efficiently at runtime.

Diniz and Rindard [4] propose dynamic feedback, a technique for dy-
namically selecting code variants based upon measured execution times.
In their scheme, a program has alternating sampling and production
phases. In the sampling phase, code variants, generated at compile-time
using different optimization strategies, are executed and timed. This
phase continues for a user-defined interval. After the interval expires,

18

the code variant that exhibited the best execution time during the sam-
pling phase is used during the production phase. The heuristics we
applied for selecting variants in Section 3 included a time interval as a
means for determining staleness. This could be likened to a production
phase. Our framework, being general, does not however preclude the
use of other selection schemes. Like dynamic feedback, Saavedra and
Park [15] propose adaptive execution for dynamically adapting program
execution to changes in program and machine conditions. In addition to
execution time, they use performance information collected from hard-
ware monitors.

The approaches discussed above selected from previously generated
code, or modified program execution through parameterization. Much
work has also been done on dynamic compilation and code generation
[7, 13, 14, 1, 3, 5, 12]. This work has primarily focused on efficient
runtime generation and specialization of code sections that are identified
through user-inserted code or directives. To reduce the time spent in
code generation, optimizations are usually staged by using compilers
that are specialized to the part of the program being optimized [7]. We
attempt to minimize the need for these specialized compilers by removing
code generation from the critical path.

5. CONCLUSIONS

The discussions, experiments, and results presented in this paper rep-
resent a first step towards our goal of creating compiler technology that
can translate applications for the Information Power Grid (IPG). The
IPG is viewed as a very complex target computer system that has a large
number of parameters unknown at compile time. To deal with such pa-
rameters the compiler needs to aggressively defer program optimization
decisions to runtime. We have presented a framework of services that
facilitate optimization decisions at runtime. These services include en-
vironment monitors, management support for program history, remote
dynamic compilation, code management support, and quality assurance
facilities. Some of these services are inserted into an application by the
compiler while others are part of an IPG runtime system.

We have presented preliminary measurements that demonstrate op-
portunities for improving performance in programs that adapt dynami-
cally to changing environments. We have also implemented some of the
needed services and evaluated them in a simple test application. Our
measurements show that the overheads associated with our dynamic op-
timization methods can be kept low. Even the overhead of dynamically
invoking regular compilers can be amortized, thanks to the opportu-

A Compilation Paradigm for Computational Applications on the IPG 19

nity of the IPG to execute dynamic compilation requests on remote
systems. Based on these experiments and results we believe that there
are both significant needs and opportunities for creating a new genera-
tion of compilers that can generate applications capable of adapting to
the dynamically changing nature of the Information Power Grid.

References

1]

J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Ber-
shad. Fast, effective dynamic compilation. Proceedings of the SIG-
PLAN 96 Conference on Programming Language Design and Im-
plementation, pp. 149-159, May 1996, Philedelphia, PA.

M. Byler, J. R. B. Davies, C. Huson, B. Leasure, and M. Wolfe.
Multiple version loops. International Conference on Parallel Pro-
cessing, pp- 312-318, August 1987.

C. Consel and F. Noel. A general approach for run-time special-
ization and its application to C. Proceedings of the SIGPLAN
96 Conference on Principles of Programming Languages, January
1996.

P. Diniz and M. Rinard. Dynamic feedback: an effective technique
for adaptive computing. Proceedings of the ACM SIGPLAN 97
Conference on Programming Language Design and Implementa-
tion, pp. 71-84, May 1997, Las Vegas, NV.

D. Engler. VCODE: A retargetable, extensible, very fast dynamic
code generation system. Proceedsings of the SIGPLAN 96 Confer-
ence on Programming Language Design and Implementation, pp.
160-179, May 1996, Philedelphia, PA.

I. Foster and C. Kesselmann. Globus: a metacomputing infras-
tructure toolkit. International Journal of Supercomputing Appli-
cations, 11(2):115-128, January 1997.

B. Grant, M. Philipose, M. Mock, C. Chambers, and S. J. Eggers.
An evaluation of staged run-time optimizations in DyC. Proceed-
ings of the SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pp. 293-304, May 1999, Atlanta, GA.

A. S. Grimshaw and W. A. Wulf et al. The legion vision of a
worldwide virtual computer. Communications of the ACM, 40:1,
1997.

R. Gupta and R. Bodik. Adaptive loop transformations for scien-
tific programs. IEEE Symposium on Parallel and Distributed Pro-
cessing, pp- 368-375, October 1995, San Antonio, Texas.

20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

N. H. Kapadia and J. A. B. Fortes. On the design of a demand-
based network-computing system: the Purdue University network
computing bubs. Proceedings of IEEE Symposium on High Perfor-
mance Distributed Computing, pp. 71-80, 1998, Chicago, IL.

N. H. Kapadia, and C. E. Brodley, J. A. B. Fortes, and
M. S. Lundstrom. Resource-usage prediction for demand-based

network-computing. Workshop on Parallel and Distributed Sys-
tems (APADS), October 1998.

P. Lee and M. Leone. Optimizing ML with run-time code genera-
tion. Proceedings of the SIGPLAN 96 Conference on Programming
Language Design and Implementation, pp. 137-148, May 1996.
Philedelphia, PA.

R. Marlet, C. Consel, and P. Boinot. Efficient incremental run-time
specialization for free. Proceedings of the SIGPLAN ’99 Conference
on Programming Language Design and Implementation, pp. 281—
292, May 1999, Atlanta, GA.

M. Polettto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and
tce: A language and compiler for dynamic code generation. ACM
Transactions on Programming Languages and Systems, 21(2):324—

369, March 1999.

R. Saavedra and D. Park. Improving the effectiveness of software
prefetching with adaptive execution. Proceedings of the 1996 Con-
ference on Parallel Algorithms and Compilation Techniques, Oc-
tober 1996, Boston, MA.

M. J. Voss and R. Eigenmann. Reducing parallel overheads
through dynamic serialization. IPPS: 13th International Parallel
Processing Symposium pp. 88-92, April 1999, San Juan, Puerto
Rico.

M. Voss and R. Eigenmann. Dynamically adaptive parallel pro-
grams. Proceedings of the International Symposium on High Per-
formance Computing, May 1999, Kyoto, Japan.

M. Voss and R. Eigenmann. A framework for remote dynamic pro-
gram optimization. Proceedings of Dynamo’00: ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and Optimiza-
tion, January 2000, Boston, MA.

