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Abstract
This study outlines a cost-e�ective multiprocessor

architecture that takes into consideration the impor-
tance of hardware and software costs as well as deliv-
ered performance in the context of real applications.
The proposed architecture (HPAM) is organized as a
hierarchy of processors-and-memory (PAM) subsys-
tems. Each PAM contains one or more processors and
one or more memory modules. The following factors
drive the HPAM design

application behavior { an important application be-
havior (locality of parallelism) is characterized
and quanti�ed for a set of benchmarks; two
classes of applications that demand 100 TOPS
computation rates are also characterized.

cost-e�ciency { a favorable comparative analysis of
a 2 level HPAM and a conventional multipro-
cessor is done using empirical data; technology
trends that support the desirability and viability
of HPAM organizations are also discussed.

ease-of-usage { a exible programming environment
for HPAM is proposed; the scenarios addressed
include automatic translation systems, library
based programming and performance-guided cod-
ing by expert programmers.

1 Introduction
Important computer applications have been iden-

ti�ed that will require at least 100 Teraops (1014 op-
erations per second) computing speeds [St et. al 95].
A machine that aims at providing such level of per-
formance will require orders of magnitude more re-
sources than current high-performance computers. As
a consequence, cost-e�ectiveness and programmabil-
ity are the overriding design issues for such a machine.
The heterogeneous multiprocessor system discussed in
this paper is organized as a hierarchy of processors-
and-memory subsystems (HPAM). Our approach is to
leverage as much as possible features of commoditymi-
croprocessors (current and expected in the future). In
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particular, the proposed approach exploits the analogy
of the HPAM organization with conventional memory
hierarchies, which microprocessors readily support.

The HPAM approach meets the spirit of the follow-
ing �ve lessons, learned from previous multiprocessor
research and development, in a cost-e�ective manner.

� the cost of multiprocessors can be greatly reduced
by reusing standard commodity parts and soft-
ware; cost-performance analysis must reect this
reality. //

� high software development costs deter potential
customers of parallel processors; successful mul-
tiprocessor designs should present users with fa-
miliar programming environments and allow (user
and system) software reuse.

� designers must always be aware of Amdahl's
law; any serialization introduced in the system
severely limits multiprocessor speedups.

� memory access and low level communication la-
tencies are fundamental limitations; while band-
widths can always be increased (in theory), la-
tencies result from fundamental limits of physics
and communication software overhead, and thus
are to be avoided or hidden; in practice, costs can
limit bandwidth which, in turn, may increase la-
tencies.

� real applications with irregular control and data
structures should be included in the suite of
benchmarks used to evaluate multiprocessor de-
signs.

We expand on the HPAM architecture in the fol-
lowing section. Issues related to applications behav-
ior, cost and performance are addressed in Sections 3
and 4 respectively. The programming environment of
HPAM is described in Section 5. Section 6 includes
future work and concluding remarks.

2 HPAM Architecture, Organization
and Rationale

Figure 1 shows a high level view of an HPAM.
An HPAM consists of several levels of processors-and-
memory (PAM) systems. A PAM system contains one



Level 1

Level 2

Level h

P

P P P P

P P P P

SM

SM

M

M

M

M M M

M MM

INTERFACE

INTERFACE

IN

IN

... ...

... ...

... ...

...

...

Figure 1: HPAM Organization

or more processors and one or more memory modules.
Each PAM system can be implemented with di�er-
ent processors and interconnections at di�erent levels.
The following advantages are inherent to this kind of
organization:

� it preserves the advantages of a memory hierarchy
(i.e., top levels include only a \small" amount of
expensive fast memory but perceive an inexpen-
sive \very large" fast memory) and leverages of
very e�cient support mechanisms already avail-
able in commodity processor, interface and mem-
ory parts.

� it reduces the number of memory accesses and
memory access time by computing-in-memory in
a given level.

� it minimizes Amdahl's law impact by providing
fast processors to execute code sections with low
parallelism.

� it can adapt to variable irregular parallelism by
dynamically moving data and code execution
across levels (just as memory hierarchies respond
to data misses).

From a programming perspective, it is desirable to
have each PAM appear as a shared memory multi-
processor. However, the actual implementation may
result from either a software or hardware emulation
of shared memory over physically distributed mem-
ory. For example, a PAM could be a single bus ma-
chine with a physically shared memory, a symmetric
multiprocessor, a cache coherent (CC) NUMA multi-
processor, a cache only machine (COMA), a non-cache
coherent (NCC) NUMA machine or a massively paral-
lel message-passing machine with distributed memory.
The particular implementation of a given level would
depend on the number of processors. The above exam-
ple roughly orders implementations according to the

increasing number of processors that they would ef-
�ciently support in the context of a shared memory
programming environment (i.e. the lower the level
the larger the number of processors and the harder it
is to e�ciently implement shared memory). However,
even when memory inside a PAM appears to be dis-
tributed among its processors (as in the case of the
lowest levels of the hierarchy with very large numbers
of processors), the PAM appears as a single address
space to the other PAMs in the hierarchy.

The use of di�erent architectures at distinct lev-
els of HPAM is one of the heterogeneous aspects of
the proposed design. Heterogeneity is also present in
the fact that processors may di�er in performance and
microarchitecture. The top HPAM level consists of
a very fast uniprocessor and associated fast memory.
Although the second level of an HPAM is actually a
shared memory multiprocessor, the interface between
the �rst and second HPAM levels is such that the sec-
ond HPAM level can appear as the next level of mem-
ory for the uniprocessor for the non-knowledgeable
programmer. This abstraction can be bypassed by
knowledgeable programmers as discussed in Section 5.

The implementation of the second HPAM level can
take one of the forms mentioned above depending on
the number of processors. The third HPAM level can
appear as the next memory level for the second HPAM
level and is programmed as another shared memory
multiprocessor system and so on. In other words, each
PAM level is viewed as a shared-memory multiproces-
sor \wrapped" (possibly with hardware support) to
look as memory to the level that precedes it.

3 Applications Behavior
Understanding the behavior of target applications

is a critical aspect of architecture design. Further-
more, when seeking a multiprocessor design for a large
range of applications it is imperative to consider appli-
cations whose parallelism pro�le varies over time. In
fact, most applications will have periods of sequential,
low-, medium- and high-parallelism. When taken in
isolation, each of these application segments runs best
on a number of processors that "matches" the paral-
lelism available. Furthermore, fast (thus expensive)
processors should be used for the least parallel appli-
cation segments in order to reduce the impact of Am-
dahl's law. Using processors of di�erent speeds follows
the spirit of this rule while trying to achieve a low cost.
Two-level architectures that explore this fact were pro-
posed and analyzed in [AnPo 91, MeAl 90], the con-
clusion being that cost-e�ective performance improve-
ments resulted from such an approach. A very recent
study [Mo et al. 96], explores the e�ect of Amdahl's
law on heterogeneous machines and concludes that
heterogeneous machines can deliver higher theoreti-
cal performance than homogeneous machines. These
and our own studies provide some of the rationale for
HPAM to include several multiprocessor levels, each
with distinct number and type of processors.

A perhaps conjecturable but less obvious charac-
teristic of applications is the fact that parallelism has
temporal locality for both instructions and data. Our
empirical studies reveal that this behavior leads to lit-



tle communication being required between HPAM lev-
els when they execute di�erent parts of an application.

The following two subsections discuss issues related
to locality of programs with respect to the degree of
parallelism and constraints imposed by petaops ap-
plications.

3.1 Preliminary Findings
Locality of parallelism has been characterized and

empirically studied in [BeFo 96]. An abbreviated dis-
cussion of this study follows. For this initial ex-
periment, the hierarchy is restricted to two levels
only. The �rst level consisted of a single fast pro-
cessor. Three cases were considered for the second
level (namely, 10, 100 and 1000 processors) in order
to gain some insight into the locality behavior of dif-
ferent degrees of parallelism which might be present
in multilevel machines.

For each of several benchmarks (discussed later
in this section), the experiment consists of executing
a program (on its associated benchmark data) on a
uniprocessor. The program consists of a sequence of
assembly level instructions with execution control di-
rectives. A leader is one of the following control di-
rectives f begin, end, doall, enddoall g. The leaders
begin and end represent the beginning and the end
of the program and are therefore unique. The leader
doall(k) represents the start of a loop do I=a,b such
that k = b� a+ 1 and the loop is parallelizable. The
leader enddoall represent the end of a parallelizable do
loop.

A block bi is the sequence of code between two con-
secutive leaders. That is

bi =]Li; Li+1[ where Li and Li+1 are leaders (1)

Furthermore let the parallelism bp and the size bs of a
block bi be de�ned as follows :

bp(bi) =

(
1 if Li = 0begin0

k � bp(bi�1) if Li = 0doall(k)0

bp(bi�2) if Li = 0enddoall0

(2)

bs(bi) : the number of assembly level instructions
executed between Li and Li+1.

The following example illustrates the de�nition of
block parallelism and block size.

!begin
...

!doall(MK) do I= 1, MK

lduw [%fp + 0x48], %l0
lduw [%l0 + 0], %l0
stw %l0, [%fp - 0x10]
or %g0, 1, %l1
sethi %hi(0x45c00), %l0

!enddoall
...

!end

Let bx be the block enclosed between doall and end-
doall. For this example, bp(bx) =MK and bs(bx) = 5.
The block parallelism does not have to be known stat-
ically and can be evaluated at runtime.

Throughout the remainder of this paper, the term
instruction is used to refer to assembly level code in-
structions. Furthermore, all instructions are assumed
to execute in the same amount of time. Under this as-
sumption, the execution of a given program Pr is rep-
resented by the ordered sequence of blocks [b1; � � � ; bn]
such that L1 = 0begin0 and Ln+1 = 0end0.

The block parallelism reects the application degree
of parallelism at di�erent instances of the execution
of the application undependently of the machine on
which the application is executed. For the machine
degree of parallelism, let MDP be de�ned as follows :

MDP (machine degree of parallelism): the maximum
number of assembly level instructions that can
execute concurrently in the second level.

With respect to a given MDP, a scalar window is de-
�ned as follows:

W s
ij = [bi; � � � ; bj] j(

bp(bi�1) � MDP or i = 1 ,
bp(bj+1) � MDP or j = n and
bp(bk) < MPD for i � k � j

(3)

Similarly, a parallel window is de�ned as:

W
p
ij = [bi; � � � ; bj] j(

bp(bi�1) < MDP or i = 1 ,
bp(bj+1) < MDP or j = n and
bp(bk) � MPD for i � k � j

(4)

Let Ep be an example program speci�ed by the se-
quence [b1; � � � ; b4] such that (bp(b1) = 1, bp(b2) = 2,
bp(b3) = 10, bp(b4) = 100) and (bs(b1) = 30, bs(b2) =
800, bs(b3) = 10, bs(b4) = 20). For MDP = 10, this
example has two windows: W s

12 and W
p
34.

The size of windows is de�ned as:

ws(W x
ij) =

8<
:
Pj

k=i bs(bk) if x = sPj

k=ib
bs(bk)
bp(bk)

c � b bp(bk)
MPD

c if x = p (5)

The size of the window represents the amount of
work done on each processor. For a scalar window,
this amount is equivalent to the sum of all block sizes
in the window. However, for parallel windows this
work is distributed among more than one processor.
The �rst term in the second summation of Equation
5 represents the amount of work done per processor
given unlimited resources. For the example introduced
above ws(W s

12) = 50 and ws(W p
34) = 80

For the program Pr and a given size h, the percent
scalar (parallel) execution time with respect to the
window size is de�ned as ratio of the sum of the sizes
of scalar (parallel) windows with window size = h to
the sum of the sizes of all scalar (parallel) windows.

As expressed in the following principles, the are two
interesting types of locality with respect to the degree
of parallelism:



� Principle 1: if a data item is referenced within a
scalar (parallel) window of the program, it tends
to be referenced again in the near future within
a scalar (parallel) window (data temporal locality
with respect to the degree of parallelism).

� Principle 2: if an instruction being executed be-
longs to a scalar (parallel) window, the instruc-
tions executed in the near future tend also to be-
long to a scalar (parallel) scalar window (instruc-
tion temporal locality with respect to the degree of
parallelism).

We conducted an experiment to quantify and an-
alyze parallelism locality in four benchmarks from
the CMU-benchmark suite (Airshed, �t2, Radar and
Stereo [Di et al. 94] and �ve benchmarks from the
Perfect-Club suite (TRFD, FLO52, ARC2D, OCEAN
and MDG [Be et al. 94]).

For each program, parallelism was �rst detected by
Polaris [Bl et al. 94] and the resulting programs were
instrumented to output the size of each window. Each
window was then classi�ed as scalar or parallel for
values of MDP of 10, 100 and 1000.

Figures 2 and 3 show the histogram of accumulated
percent scalar and parallel execution times with re-
spect to scalar and parallel window sizes respectively,
for the benchmark AR2CD. These scalar and parallel
percentages indicate to what extent instruction tem-
poral locality is present in a given application. If high
percentages correspond to small windows then the ap-
plication exhibits poor instruction temporal locality.
On the other hand, if high percentages correspond
to large windows than the application exhibits high
instruction temporal locality. Table 1 shows window
sizes which accumulated the highest percent scalar ex-
ecution time and the highest percent parallel execu-
tion time for all the benchmarks. For each benchmark
in Table 1, the �rst row indicates the highest percent
scalar or parallel execution time and the second row
is the size of the corresponding window. The results
of this table show that most benchmarks exhibit high
locality (e.g., for MDP=100, 99.7% of �t2 scalar ex-
ecution time corresponds to window of size 107 and
84.9% of its parallel execution time corresponds to a
window of size 105). The exceptions are benchmarks
Airshed and MDG which exhibit relatively poor local-
ity.

For each of the benchmarks used previously, data-
reference traces with respect to MDP were collected.
An M-hit ratio (for mode hit) and M-miss ratio are
de�ned as follows:

� M-hit ratio: fraction of the total number of scalar
(parallel) data references in a given scalar (paral-
lel) window for which their last reference was also
in a scalar (parallel) window.

� M-miss ratio: fraction of the total number of
scalar (parallel) data references in a given scalar
(parallel) window for which their last reference
was in a parallel (scalar) window.

The trace collection in Table 2 was done over a
large bu�er (1,000,000 locations) in order to reduce

Bench� MDP = 10 MDP = 100 MDP = 10
marks Sca. Par. Sca. Par. Sca. Par.

CMU-Suite
Airshed 79.31 71.70 36.55 86.84 96.88 79.86

(102) (102) (101) (103) (109) (103)
�t2 99.72 84.93 99.70 84.90 99.52 84.72

(107) (106) (107) (105) (107) (104)
Radar 71.36 41.12 71.21 42.61 100.00 69.89

(107) (105) (107) (104) (107) (103)
Stereo 84.02 69.81 84.02 69.81 97.68 98.84

(103) (105) (103) (104) (103) (106)
Perfect-Suite

TRFD 90.40 39.74 53.63 40.78 68.41 47.50

(107) (107) (107) (106) (105) (105)
MDG 74.14 96.56 99.75 92.75 99.60 95.60

(102) (101) (108) (103) (108) (102)
FLO52 61.54 54.62 87.34 51.32 71.05 68.34

(104) (105) (105) (104) (106) (103)
ARC2D 90.21 57.22 55.06 58.37 54.91 59.67

(106) (106) (106) (105) (106) (104)
OCEAN 64.95 57.65 54.44 67.40 53.57 73.05

(106) (104) (107) (103) (107) (102)

Table 1: Scalar and parallel window sizes which accu-
mulated the highest percent of scalar or parallel exe-
cution time for MDP = 10, 100 and 1000.
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Figure 2: Histogram of the percent scalar execution
time with respect to scalar window sizes for ARC2D.

capacity misses. The references that are not covered
by the M hit or M miss ratios are due to capacity or
cold start misses. Table 2 shows a low M Miss ratio
for almost all of the benchmarks. This indicates that
the benchmarks also exhibit signi�cant data temporal
locality with respect to the degree of parallelism.

3.2 Petaops Applications
A conveniently programmable machine able to run

at speeds of more than 100 TOPS will enable many
important applications. Applications which require
computation rates of more than 100 TOPS are hereon
called "petaops applications". The signi�cance of
this fact is best understood by describing the nature
of a subset of applications that fall into two classes:
time-constrained, �xed-size problems and large-scale,
complex problems.

Time-constrained, �xed-size problems: Pro-
grams for time-constrained problems must execute
within a given time due to system requirements, are
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Figure 3: Histogram of the percent parallel execution
time respect to parallel window sizes for ARC2D.

compute-bound and have a �xed size dataset. An ex-
ample of this a class of problems, is scienti�c simu-
lations used with interactive, immersive visualization
systems. These systems allow observers to move freely
about computer-generated three-dimensional objects
and to explore new environments. Scientist users can
then focus on the analysis of the data rather than ma-
nipulation of the analysis environment [BiFu 92] by
taking advantage of the evolved ability of humans to
process three-dimensional spatial information [Ka 93].
In engineering, this technology may be incorporated
into the product design cycle, allowing virtual proto-
typing and testing of products prior to their physi-
cal construction. Hence, interactive, immersive three-
dimensional visualization is an important medium for
scienti�c applications.

A critical issue facing virtual environments is end-
to-end lag time (i.e., the delay between a user action
and the display of the result of that action.) Like any
closed loop adaptive system, if the lag is too great,
users �nd it di�cult to maintain �ne control over sys-
tem behavior and complain that the system is unre-
sponsive. Liu et al. [Li et al. 93] conducted exper-
iments on a telemanipulation system and found the
allowable lag time to be 0.1s and 1s for inexperienced
and experienced users, respectively.

In [Ta et al.95], a lag model was developed for a
�nite element simulation executed on an IBM SP
[Cr et al. 93]. The following components of the end-
to-end lag were measured: tracking, rendering, simu-
lation, data transmission between the simulation sys-
tem and the display system, and synchronization. The
results indicated that the simulation time must be re-
duced by two orders of magnitude for the visualization
system to be considered responsive. Therefore, time-
constrained scienti�c simulations can bene�t from a
machine capable of achieving petaops rates. In par-
ticular, we consider two applications: �nite element
and uid dynamics simulations.

� Finite element simulations are widely used to
solve partial di�erential equations in such areas as
circuit simulations, bone deformations and struc-
tural mechanics. Implicit �nite element methods
must solve a system of linear equations, the most
computationally-intensive step. Generally, iter-

Scalar Parallel
Bench- MDP M-hit M-miss M-hit M-miss
marks Ratio Ratio Ratio Ratio

(%) (%) (%) (%)
CMU-Suite

10 86.4182 13.5340 99.2039 0.7930
Airshed 100 99.5312 0.4589 99.8106 0.1856

1000 99.9867 0.0101 99.8718 0.0932
10 99.6436 0.2517 97.1807 2.3348

�t2 100 99.6436 0.2517 97.1807 2.3348
1000 99.6412 0.2541 97.1546 2.3607
10 99.5987 0.3807 93.3386 6.3088

Radar 100 99.5914 0.3872 92.9609 6.6863
1000 99.6076 0.3701 88.9526 10.4950
10 93.6667 5.5103 93.7090 1.9916

Stereo 100 93.6667 5.5103 93.7090 1.9916
1000 96.3878 2.4318 93.6529 0.9970

Perfect-Suite
10 93.9835 1.2055 99.8709 0.0274

TRFD 100 87.6801 93.0352 99.6427 0.0256
1000 95.0454 3.5792 99.5787 0.3413
10 84.8500 15.1500 78.9451 21.0539

MDG 100 99.9822 0.0178 99.2532 0.7304
1000 99.9823 0.0177 99.2471 0.7363
10 87.2143 12.6980 99.0314 0.1148

FLO52 100 94.9608 3.7852 98.6414 0.5721
1000 97.7333 1.6851 98.2484 0.7748
10 80.0336 11.1256 92.2167 0.0028

ARC2D 100 91.8608 2.0135 91.9536 0.0835
1000 91.5781 1.5383 91.8025 0.1953
10 99.0923 0.9076 97.7900 2.2044

OCEAN 100 99.3940 0.6060 98.3178 1.6741
1000 99.3392 0.6600 97.9322 2.0615

Table 2: M-hit and M-miss ratios for MDP = 10, 100
and 1000.

ative solvers, such as preconditioned conjugate
graduate or multigrid, are used since the system
matrix is very sparse. Such methods require N1:5

oating-point operations, where N is the order of
the matrix. For three dimensional problems, grids
can range between 106 to 109 grid points, with six
degrees of freedom per grid point. Hence, three
dimensional problems can require 1014 computa-
tions per step. The coupling of the simulations
with a visualization system, results in the need
to have the 1014 computations require less than
0.5s, thereby requiring close to petaops, perfor-
mance.

� Computational uid dynamic problems in-
volve computationally-intense simulations used to
model the air ow in applications such as weather
prediction, combustion modeling and aerodynam-
ics. These applications can greatly bene�t from
immersive, interactive visualization for virtual
prototyping.

Large-scale complex applications: The SPEC
High-Performance benchmarks provide a set of large-
scale, complex applications [EiHa 96]. One of these
applications is based on GAMESS (General Atomic
and Molecular Electronic Structure System). Many
of the functions found in GAMESS are duplicated in
commercial packages used in the pharmaceutical and
chemical industries for drug design and bonding anal-
ysis.



Seismic is another application from the SPEC
benchmarks. It consists of an industrial application
representative of modern seismic processing programs
used in the search for oil and gas. Seismic is compu-
tationally complex and intensive. A typical execution
can generate up to a tera-byte of data and requires in
excess of 1018 oating-point operations. Each execu-
tion of Seismic consists of four phases : data genera-
tion, data stacking, time migration and depth migra-
tion. Phase one is reported not to require any commu-
nication. Whereas, both phases two and three require
a large amount of communication. Relative to phase
two and three, phase four requires a small amount of
communication. All the phases include both parallel
and sequential sections.

The SPEChpc benchmarks target both current and
future high-performance machines. They include scal-
able data sets. The largest set currently included in
the suite exhaust the resources of most available ma-
chines. These large data sets do not represent actual
limitations of the codes. Even larger sets are available
from the code sponsors in SPEC.

Although our initial experiments used small bench-
marks, we will use the petaops applications intro-
duced in this section to further study the di�erent as-
pects of HPAM.

4 Cost and Performance
Given that petaops machines will most likely use

a large number of components, reducing the cost of
these machines becomes a key design issue. In this
section we report our preliminary �ndings about cost-
e�ciency of HPAM machines and comment on current
trends and future technology.

4.1 Preliminary Findings
We made a comparative analysis of a single level

multiprocessor with a two-level machine that results
from adding a fast processor to the single level. In
[AnPo 91] it was shown analytically that the two-level
machine can have better cost � performance than the
one level-machine. Our analysis [BeFo 96] with empir-
ical data from the benchmarks introduced in section
3.1 and actual hardware costs indicates the two-level
organization is best in almost all the cases.

Table 3 shows the ratios of speedups of a two-
level HPAM to a one-level HPAM. The second level
of the two-level HPAM and the one-level HPAM have
the same number and type of processors. The �rst
level of the two-level HPAM is a fast uniprocessor. In
[BeFo 96], it was shown that the two-level HPAM is
more cost-e�cient than the one-level HPAM if the ra-
tio of their speedups is greater than 1.88, 1.09 and
1.01 for values of MPD = 10, 100 and 1000 respec-
tively. The results of Table 3 show that these condi-
tions are met for almost all the benchmarks and values
of MDP . In some cases the gain factor is as high as
8.

The intent of this example was to show that gains
can be achieved in terms of speedup and cost-e�ciency
for 2-level HPAM-like machines using real processors
and representative applications. Additional improve-

MDP 10 100 1000
CMU-Suite

Airshed 1.88 7.52 8.14
�t2 7.36 8.06 8.14
Radar 7.81 8.14 8.15
Stereo 2.92 6.62 8.08

Perfect-Suite
TRFD 1.31 4.15 7.91
MDG 5.36 8.14 8.15
FLO52 1.02 4.65 8.02
ARC2D 1.00 4.65 7.85
OCEAN 6.95 7.13 7.21

Table 3: Ratios of speedups of a two-level HPAM
(level 1 : fast uniprocessor, level 2: multiprocessor
with MPD processors) to a one-level HPAM multi-
processor with MPD processors identical to the ones
in the second level of the two-level HPAM. The results
are shown for values of MDP = 10, 100 and 1000.

ment may be achieved by overlapping scalar and par-
allel computations.

4.2 Current Trends and Future Technol-
ogy

There are converging trends in the design of pro-
cessors and memories that point to future existence
of chips that include both processors and mem-
ory. Examples include Processors-In-Memory (PIM)
[Ko 94], Computational RAM [El et al. 92], IRAM
[Pa 95, Sh et.al 96, Sa 96]. Similar ideas were pro-
posed as early as 1970 in [St 70]. The driving argu-
ment for these approaches is the fact that the integra-
tion of CPU and memory on the same chip brings
bene�ts of lower latency and higher bandwidth in
accessing memory that outweigh possible reductions
in the complexity of the processor [Sa 96]. Since
memory access latency is becoming a limiting per-
formance factor [Jo 95, Wi 95, WuMc 95], it is rea-
sonable to expect that future generations of com-
mercial chips will increasingly follow this trend. In
fact, there are already some examples of such chips
([Sa 96, Sh et.al 96, AD 93]).

Two additional trends can be observed in the work
mentioned in the last paragraph. One is the inclusion
of hardware support for multiprocessor architectures
in the integrated CPU-memory chips [Sa 96]. This
means that they can be used as the basic blocks for
building PAMs. The other is the inclusion of CPU
cores on DRAM devices [Sh et.al 96]. It is reasonable
to expect that, within 10 years, it will be possible to
e�ectively fabricate chips with several processors and
memories (i.e., small PAMs) which can be combined
in multichip modules to build (large) PAMs. Chips
used to implement di�erent PAM levels can either con-
tain large complex CPUs and small memories or small
simple CPUs (or fewer processors) and large memo-
ries. Since these chips will be used in general purpose
computing their cost should be low enough for their
use in large numbers in an HPAM machine. Further-
more, these chips can reuse existing CPU cores that
are widely available for commodity parts and thus be
less expensive than others that use custom designs.

Currently it is possible to build very e�cient shared



memory multiprocessor systems with small numbers
of processors. Within 10 years, given the above dis-
cussion and accepted predictions for semiconductor
technology it is reasonable to expect that moderate
size multiprocessors with shared memory can be in-
tegrated into one or a few chips in a cost-e�ective
manner. However, very large shared memory multi-
processors will continue to present design challenges
and will require distributed shared memory implemen-
tations. These, in turn, will increase design cost, la-
tencies and processing overheads that will render very
large multiprocessors increasingly ine�cient unless the
requirement of shared memory is relaxed (and imple-
mented in software). A very large one-level shared
memory machine capable of more than 100 Teraops
would either be too expensive (if we could build it) or
would not be able to provide a friendly shared-memory
environment with good performance for all levels of
parallelism. The alternative of choice might be a dis-
tributed, message-passing machine. The HPAM ap-
proach attempts to provide very e�cient cost-e�ective
shared-memory top levels and simpler-to-implement
distributed-memory-based lower levels that are also
cost-e�ective but perhaps harder to program. The
nature of each level of the HPAM would also change
naturally with the evolution of technology. Finally,
the HPAM organization lends itself well to single-user
mode or multi-users mode at di�erent levels of HPAM.
This would amortize costs across several users.

5 HPAM Programming Environment
HPAM can support a programming environment

that is usable by users with varying expertise in par-
allel processing (with proportionate performance re-
turns) by making di�erent levels of the hierarchy
user-visible. It can leverage and allow coexistence of
evolving practices in parallel programming, including
optimizing compilation, data-parallel programming,
message-passing and library-based approaches.

A programming environment for the HPAM ma-
chine can leverage many tools and software developed
for shared-memory and distributed memory machines.
There are three possible scenarios for an HPAM pro-
gramming environment. One scenario relies on auto-
matic translation of a conventional user program into
an HPAM program { the user sees only the top level
of the HPAM and expects the system to run programs
written in standard languages and select PAM levels
automatically. The second scenario, a library-based
programming approach, would allow users to compose
their programs out of existing code blocks which are
already optimized for the HPAM machine. The third
scenario allows the user to specify how parts of a pro-
gram should be executed and provide information that
the HPAM system could use to allocate code to lev-
els. The HPAM architecture is well-suited for all three
scenarios.

The �rst scenario necessitates an automatic transla-
tion system which, ideally, is able to analyze program
characteristics, the program data set, machine prop-
erties, the environment of the program execution and
the dynamic machine load. It must be able to assign
windows to hierarchy levels statically at compile time,

at runtime and also facilitate dynamic migration.
For window mappings, several tradeo�s have to be

considered such as parallelism versus execution speed
of individual processors, inter-level versus intra-level
communication costs and the cost of migrating win-
dows versus the load-imbalance of �xed window as-
signments.

The decision about window mappings can be made
at compile time if su�cient information can be ob-
tained from the source program. Decisions will be de-
ferred to runtime where additional information on the
actual data set and the current load of the machine is
available.

Our implementation of the translation system will
be based on the Polaris compilation system. An ini-
tial static algorithm will use Polaris' symbolic anal-
ysis capabilities to gather information from the pro-
gram that leads to static mapping decisions. In a sec-
ond step the compiler will be able to inject code into
the program that evaluates the best mapping at run-
time. Furthermore, Polaris includes an infrastructure
for adaptive and speculative program analysis meth-
ods, which will be available for window de�nitions and
mappings. These methods can use knowledge from the
program execution history and execute program seg-
ments speculatively with a possible backtracking step
if the speculation failed.

The second programming scenario will facilitate the
composition of programs from optimized libraries. To
this end a study and implementation of the algorithms
used in the application programs in the form of library
routines is needed. This involves identifying program
segments that can be optimized as individual subrou-
tines and characterizing their behavior on the HPAM
architecture.

For the knowledgeable programmer automatic trans-
lation tools are a starting point. In addition per-
formance instrumentation, analysis and visualization
tools are needed. These tools will allow the program-
mer to observe the detailed program behavior and
tune it to a given HPAM machine.

6 Conclusions and Future Work

This study presented an initial high-level descrip-
tion and motivation for a 100-Teraops multilevel het-
erogeneous machine (HPAM). However, more detailed
studies are needed to re�ne and analyze this design by
carefully considering its technological feasibility along
with the usability of the programming environment in
the context of important representative applications.

Future work includes understanding technology ad-
vances and how they a�ect an HPAM architecture.
The challenge is to compare a traditional multiproces-
sor design which is based on the technology available
in 10 years to an HPAM that consists of components
that might span several generations of processors and
memories. Furthermore, understanding how di�erent
parameters of HPAM (such as number of processors,
size of memory, and memory latency per level) a�ect
the execution of petaop applications is a crucial com-
ponent of our design strategy.
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