
Future directions in the interaction of architectures and

compilers in high-performance processor design.

Position paper, presented at the HICSS'97 Task Force of this title

Rudolf Eigenmann

Purdue University, School of Electrical and Computer Engineering

January 10, 1997

The interface between compilers and architectures has been an intrinsic part of every design of a
compiler or a new architecture. Hence, the appropriate form of this interface may be considered an old
and well-discussed question.

Are there any new issues? Certainly, as machines change, their instruction sets change, requiring com-
pilers to respond with new code generation and new optimization techniques. By "instruction set" I mean
the entire machine functionality that is at the compiler's disposal for driving a program execution. This
instruction set is expected to change signi�cantly with new generations of machines. Instructions may
increasingly deal with latency hiding (multithreading, prefetch, cache-control), parallelism exploitation
(at instruction level or coarse-grain), heterogeneous machine con�gurations, and a range of revolutionary
issues introduced by future "peta
op" computers and their interfaces.

For the sake of this essay, however, I will not discuss the challenges created by such new functionality.
Instead, I will discuss yet another challenge that we will have to meet: Although, we may succeed in
creating compilation techniques that take advantage of the instruction sets o�ered by new architectures,
we have begun to experience that it is no longer su�cient to accumulate all these advanced methods and
tricks into one big compilation tool. While we could expect of early compilers that a �xed percentage
of a machine's performance was consumed by the ine�ciency of the compiler-generated code, this is no
longer true. With the raise of parallel machines we have already begun to learn that the e�ciency of
compiled code can decrease as the architecture scales. Today, as the complexity of machines and the
range of application problems keeps increasing, we are facing the situation that program e�ciencies can
reach very low levels. Our compilers, although exploiting architectural features well in some programs
and contexts, may in fact decrease performance for just the range of problems that the eventual user is
interested in.

As a consequence it is no longer so that architects can build new components, and that compiler writers
can invent new optimization techniques, assuming that they will incrementally improve application
performance. A combined compiler/architecture solutions is necessary. If it has been true all along that
there has to be a match between machine, compiler and the range of applications that we are interested
in, this design principle is now becoming of paramount importance. Strong interactions are called for
between compiler writers and computer architects, but also between these two communities and the
authors of the eventual applications.

How can we address this challenge? Generally, all of us have to become much more knowledgeable
about the applications, the input data, the software, the hardware, and the environment of a program

1



execution. We have to become more aggressive in extracting information from these information sources
and creating a knowledge base. Architectures and compilers can no longer a�ord to be naive in ap-
plying their techniques. Instead, we have to apply them more intelligently { driven by the knowledge
base. Where static, compile-time knowledge is insu�cient (and we have learned that this is often the
case) we need to develop runtime query and optimization techniques. I will term this the "adaptive
compiler/architecture interface".

What are the new roles of compilers and architectures in this adaptive scenario? The role of the
compiler will be to use knowledge that becames available at program execution time and perform op-
timizations dynamically. In part, the compiler may need to speculate on certain optimizations, and
verify them after the information has become available - with proper safe guards if the speculation fails.
The architecture's role will be more than just providing the "instruction set". Runtime optimizations
generally do runtime bookkeeping operations, which introduces overhead when done entirely in software.
Hardware assistance is needed. Examples are fast range checks to monitor the index address of an array,
data-dependence tests "in hardware", and fast comparisons of control parameters to test if the current
execution context is the same as at the last subroutine entry.

Where are we on the path to these goals? We have developed a framework for adaptive and speculative
compilation in the Polaris compiler. Polaris is an advanced program analysis infrastructure, including
new techniques such as symbolic range analysis, demand-driven interprocedural analysis, and non-linear
data dependence tests. Our framework for runtime optimization and speculative execution has demon-
strated signi�cant potential for improvements beyond what current compilers can achieve. It has also
uncovered certain overheads, which will need combined compiler/architecture solutions.

Furthermore, in our work we have taken an active role in de�ning "signi�cant computational applica-
tions" that can be used to drive and evaluate new software and hardware technology. In cooperation with
the SPEC/High-Performance Group we are collecting and making available to the research community
a set of industrially signi�cant computational applications. This problem set will be an important basis
for gathering the knowledge base referred to above.

In summary , the integrated design of compiler-architecture interfaces is no longer just a question of
good system design; it has become a crucial performance issue. Architectures need to supply compilers
with both static and dynamic information and provide fast implementations of expensive operations.
Compilers need to use such facilities to carefully select appropriate optimizations and adapt them dy-
namically to the runtime context. We have to make an e�ort to understand important computational
applications and how they can take advantage of advanced features o�ered by compilers and architec-
tures. We have begun to tackle these issues in ongoing projects. However, signi�cantly more work is
necessary in order to ensure that the next generation of machines will become a successful one.

2


