
Towards the Design of a Heterogeneous Hierarchical Machine:
A Simulation Approach 1

Zina Ben Miledy, José A. B. Fortesy, Rudolf Eigenmanny and Valerie Taylorz

ySchool of ECE zDepartment of ECE
Purdue University Northwestern University

W. Lafayette, In 47907-1285 Evanston, IL 60208-3118

Abstract

HPAM Sim is an execution-driven simulator of heteroge-
neous machines. HPAM Sim allows the simulation of target
machines consisting of different processors and intercon-
nection networks. HPAM Sim attempts to reduce simulation
time by using lightweight threads and static augmentation.
Additionally, simulation can be performed either in con-
tention or non contention mode. The results of HPAM Sim
simulations were validated using two complementary ap-
proaches. As illustrated by an example, HPAM Sim is very
flexible and allows the simulation of various heterogeneous
machines with non-traditional organizations.

1 Introduction

Several analytical studies ([2], [3], [4], [5], [17] and [18])
have shown that heterogeneous architectures can provide a
cost-efficient solution to high performance computing. In
particular, [4] and [5] propose a hierarchy of processors and
memory architecture (HPAM) as a solution for cost-effective
high performance computing. HPAM (Figure 1) is a multi-
level hierarchy with varying implementation for each level.
The top levels of the hierarchy have a small number of fast
processors. These levels can efficiently execute serial and
low parallelism sections of the application. The low levels
of the hierarchy have a large number of slow processors and
can efficiently execute portions of the code with high degree
of parallelism. HPAM is heterogeneous in several respects.
Processor speed is highest for the top levels of the hierarchy
and decreases with lower levels of HPAM. Memory access
time and overall size increases down the levels of the HPAM
hierarchy. Intra-level interconnection and communication
paradigms (i.e. message passing or shared memory) also

1This research was supported in part by NSF grants ASC-9612133 and
ASC-9612023.

vary across levels. For ease of programming, explicit data
transfer can be abstracted so that a given level can appear
as a shared memory extension of the level preceding it. The
distinctive features of HPAM include:

� multilevel organization

� coexistence of different networks (topology, band-
width and latency)

� coexistence of processors with varying performance

� coexistence of different communication paradigms
(message passing or shared memory)

� coexistence of memory modules with varying size and
access time.

Detailed performance studies of these and other features
of heterogeneous multiprocessor systems are necessary for
the design and evaluation of HPAM machines. They are also
necessary to validate and refine the above mentioned analyt-
ical predictions of high performance of heterogeneous mul-
tiprocessors. Unfortunately, these performance studies can-
not be done with existing multiprocessor simulators which
are intended for homogeneous designs (Heterogeneous sim-
ulation environments, such as Ptolemy [10] target signal
processing systems). This fact provided the motivation for
the development of a simulator of HPAM like machines,
called HPAM Sim, which is described in this paper.

In order to develop HPAM Sim, previously established
and tested homogeneous multiprocessor simulation tech-
niques were evaluated in the context of providing an en-
vironment that supports the features of HPAM and targets
general purpose processor based systems.

HPAM Sim has the following characteristics:

� fast: HPAM Sim combines the use of static augmen-
tation and lightweight threads to achieve low simula-
tion overhead.

Level 1

Level 2

Level h

P

P P P P

P P P P

SM

SM

M

M

M

M M M

M MM

INTERFACE

INTERFACE

IN

IN

... ...

... ...

... ...

...

...

Figure 1. HPAM Organization.

� flexible: HPAM Sim allows different network topolo-
gies, bandwidths and latencies to coexist. Further-
more, HPAM Sim allows the use of different proces-
sors in the same target machine.

� efficient: HPAM Sim uses resources (i.e. memory,
processors and I/O) efficiently. Memory is allocated
and deallocated as needed. Furthermore, it is possi-
ble to control the I/O overhead by specifying the de-
sired level of details of the generated logfile. Finally,
HPAM Sim uses as many processors as available.

Currently the communication paradigm is restricted to
message passing. Future enhancements of HPAM Sim
will allow the study of HPAM architectures with heteroge-
neous memory organizations and different communication
paradigms.

While HPAM Sim was mainly motivated by the need to
study HPAM machines, it also provides a simulation envi-
ronment for other heterogeneous as well as homogeneous
architectures. Thus, HPAM Sim can be used to compare
the performance of heterogeneous machines to that of ho-
mogeneous machines. Heterogeneity is parameterized in
HPAM Sim. Therefore, it can be turned off for the simula-
tion of homogeneous machines.

Section 2 of this paper includes a review of previous
related work. A description of HPAM Sim is provided in
Section 3. Validation and experimental results are presented
in Section 4 and Section 5, respectively. Conclusions and
directions for future work are provided in Section 6.

2 Related Work

In general, simulation can be categorized under three
major areas: model-driven, trace-driven and program-driven
([14], [8], [9], [24] and [26]). These three approaches are
complementary and there are instances for which one is

more appropriate than the other. The model-driven approach
consists of representing the behavior of the target machine by
a stochastic model [14]. This approach is concise but cannot
be easily applied because an accurate model depends on
detailed knowledge of the target machine. Such knowledge
is not available when a machine is being developed.

Trace-driven simulation consists of generating a trace of
the events under study which are then fed to a program that
simulates the functional behavior of the target architecture.
Trace-driven simulation is practically difficult because trace
collection consumes a large amount of storage space and
trace processing is time consuming [26]. Often, this tech-
nique relies on the similarities between the host and the
target architecture.

Program-driven simulation consists of executing the in-
put workload on a host machine. Each event generated by
this execution is processed by the simulator [9]. This ap-
proach can be resource bound (i.e limited by the resources
available on the host machine). However, it is flexible, rel-
atively accurate, and allows the study of different aspects
of the target architecture. A special case of program-driven
simulation is execution-driven simulation where control is
transferred to the simulator only at events of interest ([9]
and [27]). The main advantage of program-driven simula-
tion is the (feedback) ability to steer the execution of the
input program according to the ordering of events dictated
by the results of the simulator. Therefore, altering the be-
havior of the execution can be easily done. This feedback
does not exist in trace-driven simulations. The generated
trace is based on a certain order of execution that is difficult
to modify given the information included in the trace.

In trying to analyze the features of HPAM, a model-
driven approach was first considered. However, very little
is known about the different parameters of HPAM to allow
an accurate conception of such a model and an accurate
evaluation of the needed parameters. The trace based ap-
proach was also considered from two avenues. The first
avenue consists of first reorganizing existing hardware into
a multilevel hierarchical setup, then using tracing tools to
obtain the desired information. This avenue was not ade-
quate because hardware reorganization is limited by existing
physical hardware which allows very few features to be var-
ied. The second avenue consists of emulating the target
machine on a host machine and then using the tracing capa-
bility of the host machine to generate necessary information
about the target machine. Tracing is heavily dependent on
the physical features of the hardware of the host machine.
Thus, it is difficult to isolate the effect of one feature of
HPAM from that of another feature, a major disadvantage
when designing new architectures.

There are several existing program-driven and execution-
driven simulators for homogeneous multiprocessor ma-
chines. These simulators include RPPT [12], Tango-Lite

and its predecessor Tango [15], Proteus [8], CacheMire [9],
WWT [20], SPASM [24], Mint [27], SimOS [22] and Aug-
mint [23]. This list of simulators is not exhaustive. However,
it is a representative set of different simulation techniques
reported in the literature.

Each of the above simulators targeted one or more as-
pects of machine architectures. The focus of RPPT is net-
work simulation for parallel message passing Fortran and
C programs. Tango and Tango-Lite are network simulators
for parallel shared memory C and Fortran programs. Tango-
Lite is an enhanced version of Tango that uses lightweight
threads. Proteus is a network simulator for parallel shared
memory C programs. Tango, Tango-Lite and Proteus are
execution-driven simulators that do not simulate local mem-
ory references. CacheMire is a distributed shared memory
simulator that takes shared memory C parallel programs as
input. It is a program-driven simulator that simulates both
instructions and (local and shared) data references. WWT is
an execution-driven network simulator for distributed shared
memory multiprocessors that runs on a CM5. The main idea
behind the design of WWT is to exploit architectural sim-
ilarities between the target machine and the host machine.
Within WWT all instructions run natively on the host ex-
cept for shared memory references that generate a cache
miss. Using a multiprocessor platform and the fact that
only shared memory reference misses are simulated allows
fast simulation of large applications. SPASM is a network
simulator that takes as input parallel C message passing and
shared memory programs. Reported work is only about
the message passing aspect of SPASM. Mint is a program-
driven simulator for shared memory parallel programs. Mint
accepts any MIPS R3000 compatible object code. There-
fore, Mint is not limited to a given high-level language
but is restricted to MIPS based host machines. Augmint
is a shared memory simulator based on Mint. However
Mint is program-driven and MIPS based whereas Augmint
is execution-driven and X86 based.

SimOS follows a different approach from all the above
mentioned simulators. SimOS is intended to be a complete
workload simulator. It cannot only simulate user level ap-
plications but also operating system calls. SimOS includes
different models for each component of an architecture. The
more accurate is the model the longer is the simulation
time. Following an approach similar to SimOS to sim-
ulate heterogeneous systems requires a long development
time. Furthermore, aside from the fact that it is operating
system dependent, the level of details provided by such an
approach is not necessary at the early stages of development
of HPAM Sim. At later stages of the development and pro-
totyping of an HPAM machine, studying the effect of full
workloads will be necessary and a SimOS approach should
be considered and evaluated with respect to heterogeneous
simulation environments.

The possibility of reusing any of the above mentioned
simulators as basic building block for HPAM Sim was con-
sidered. However, software reuse requires detailed knowl-
edge of the inner workings of candidate simulators. This
knowledge is rarely available because end-users would sel-
dom need to modify user transparent components such as
the engine of the simulator. Furthermore,in the develop-
ment of previous simulators, there was no prevision of the
need to introduce the kind of modifications required for
a heterogeneous simulator. Reusing an existing simulator
would require major recoding effort which in some cases is
equivalent to the effort needed to develop a new simulator.
Moreover, there are several advantages to developing a new
simulator. Data structures and programming techniques that
support heterogeneous simulation can be incorporated in the
early stages of the simulator design process. Furthermore,
the efficiency of different simulation techniques with respect
to the simulation of heterogeneous machines can be taken
into consideration at each step of the simulator development.

HPAM Sim is an execution-driven, heterogeneous net-
work simulator for message passing Fortran and C parallel
programs. The choice of execution-driven simulation was
based on the fact that this approach leads to a low overhead
simulator and it can be easily implemented. Compared to
execution-driven simulation, program-driven simulation is
more accurate and detailed at the expense of longer simula-
tion time. This is due to the fact that in program-driven sim-
ulation any event generated by the execution of the input pro-
gram is simulated. In contrast, execution-driven simulation
processes only events of interest. Furthermore, execution-
driven simulation can adequately satisfy the requirements of
an initial study of HPAM architectures.

HPAM Sim is different from previously mentioned sim-
ulators in several aspects. Within HPAM Sim, processors
can be organized in several groups. Each group constitutes
a homogeneous multiprocessor level. Furthermore, the rel-
ative processor performance of each group can be varied.
Additionally, the interconnect between groups and within
groups varies. These features are not supported by previ-
ously mentioned simulators and they are crucial to the study
of an HPAM architecture. HPAM Sim allows the user to
easily specify and simulate architectures in which networks
with different characteristics coexist. Furthermore, the user
can easily specify the performance of processors in each
level independently and without modifying the input code.
Previously developed simulators allow users to generate this
behavior by explicitly calling delay functions from within
the input source code (e.g. SPASM). This feature was not
intended for altering relative overall speed performance of
processors. Using it for such a purpose is not only a tedious
process but also error prone.

HPAM Sim uses the feedback feature of execution-
driven simulation time to slow down the execution on a

given processor or to slow down the transfer of a message
on the network. Alternatively, a post processing stage can be
added to account for changes in different parameters such as
processor speed, network bandwidth and network latency.
This alternative can be inaccurate because modifying any of
the mentioned parameters can result in a change of the order
of execution of certain events.

3 HPAM Sim Organization

The input to HPAM Sim can be either Fortran or C code
with message passing directives. Assembly code corre-
sponding to the input program is generated using a Fortran
or C compiler. The generated code is the actual input to
the simulator. A complete block diagram of HPAM Sim is
provided in Figure 2. Although this figure includes a shared
memory simulator, a cache simulator and a scheduler, these
modules are yet to be implemented (future work is discussed
in Section 5).

In its current implementation, HPAM Sim contains sev-
eral modules. The details of the augmentation, engine,
message passing and network modules are presented in the
following subsections. The augmented standard libraries
contain augmented source code that results from processing
standard libraries codes through the augmentation module.

There are well established performance analysis and vi-
sualization tools which are based on extensive studies of
existent systems and try to provide report summaries about
potential sources of bottlenecks. HPAM Sim takes advan-
tage of these tools by generating a log file in PICL format
[28]. This log file can be then analyzed and graphically
displayed by ParaGraph [16]. There are instances where the
generated log file requires a large amount of disk storage and
causes high I/O overhead. For these instances, HPAM Sim
allows the user to select a concise summary of the simulation
results rather than the regular log file.

3.1 Augmentation Module

The augmentation module in HPAM Sim inserts code
to account for the evolution of time during simulation. The
success of the augmentation process is evaluated by its accu-
racy in estimating execution time and by the time overhead
it adds to the simulation. The lower this overhead the more
successful is the augmentation. There are two different
augmentation strategies: assembly level augmentation (per-
formed on the assembly code) and binary level augmentation
(performed on the object code).

Binary augmentation is usually more accurate than as-
sembly augmentation because it includes the exact cost of
all library calls and synthetic operations. In assembly level
augmentation, the libraries have to also be augmented and

Parallel C
Program

Parallel Fortran
Program

C Compiler Fortran Compiler

Augmentation

Engine

Graphic Display

Shared
Memory
Simulator

Augmented
Standard
Libraries

Cache
Simulator

Network
Simulator

Scheduler
Message
Passing
Library

Figure 2. HPAM Sim Organization. Solid and
dashed boxes correspond to implemented
and unimplemented modules respectively.

the simulator might not provide full coverage (i.e not all li-
braries have been augmented). TangoLite has 90% coverage
[15]. The added accuracy of binary augmentation is mainly
due to the fact that synthetic instructions in the assembly
code are fully interpreted at the object code level. From an
implementation point of view, there are two disadvantages
to binary augmentation: portability and ease of implemen-
tation. Binary augmentation is machine dependent and it
requires extensive knowledge about the host machine object
code format. Additionally, jump targets and labels might
have to be recomputed [23]. Binary augmentation is used
in SimOS, CacheMire and Mint. Assembly augmentation is
used in Proteus, SPASM, Augmint, RPPT, Tango and Tango-
Lite. Augmentation in HPAM Sim is done at the assembly
level code. However, in order to reduce the inaccuracy
due to synthetic operations, these operations are replaced
by an equivalent assembly level routine that can be aug-
mented. Thus, code generated by the augmentation module
of HPAM Sim does not include synthetic operations.

Augmentation can also be classified as dynamic, static or
hybrid (i.e a combination of both). Dynamic augmentation
is usually associated with binary augmentation. That is, at
the object level each instruction is interpreted by a scheduler
that models the functional units of the target processor. This
results in a very accurate estimation of the execution time.
However, this interpretation can be slow. In order to reduce
this overhead static augmentation is used when the cost
of execution is known a-priori. This hybrid approach was
adopted in SimOS.

Static augmentation consists of first assigning a dedicated
location in memory for cycle counting. The augmentation
module then processes the input assembly code basic block
by basic block and inserts code to increment the cycle count
by the sum of the cost of the individual instructions in the
corresponding basic block. Proteus, Tango, Tango-Lite and
Augmint are examples of simulators that use static augmen-
tation. If the purpose of the simulator is to study the detailed
functionality of a given processor in a multiprocessor sys-

tem, this approach can be inadequate. However, if the intent
of the simulator is to understand relative system behavior
by comparing different organizations, static augmentation
is sufficient. In SPASM, a different approach to static aug-
mentation is adopted. The average cost of a basic block is
estimated by collecting timing statistics over several runs of
the input program. These costs are then inserted by hand
into the input program via calls to a delay function. Aside
from being tedious, this process is error prone [24].

In HPAM Sim, it is assumed that an assembly instruc-
tion can be issued at each clock cycle. This assumption
allows us to use static augmentation for cycle counting.
However, HPAM machines have heterogeneous processors,
thus some processors are faster than others. Therefore, the
relative delay due to the difference in processor speed is de-
termined dynamically (i.e at run time). In addition, within
HPAM Sim, all calls to standard library routines are re-
placed by calls to equivalent augmented routines. These
libraries are modified versions of the BSD Berkeley distri-
bution libraries. Given that the execution of most routines
is dependent on the input operands, providing such libraries
gives an accurate cycle count every time a routine is called.
Additionally, it increases the portability of the simulator by
making it self contained. A similar approach was used in
Proteus. HPAM Sim extends this approach also to synthetic
operations by replacing each synthetic operation with an
augmented assembly level routine.

As already mentioned, augmentation uses a location in
memory to store the cycle counter during simulation. In the
case of Proteus, Tango and Tango-Lite, this counter is an
integer and each time it is incremented it is compared to a
maximum value in order to prevent overflow. In HPAM Sim
an approach similar to Mint was adopted. Timing is imple-
mented in double precision in order to allow the simulation
to run for a longer period of time before transferring control
to the engine which handles the overflow. This reduces the
overhead of switching between the input program execution
and the engine of HPAM Sim. The disadvantage of this
design decision is that it takes longer to load and update the
counter. However, this overhead is balanced by the addi-
tional overhead due to checking the counter for overflow in
an integer implementation.

In order to manipulate the cycle counter, a set of registers
is needed to perform loads, increments and stores. The aug-
mentation module of Proteus scans the assembly code to find
unused registers and uses them in the above mentioned ma-
nipulationoperations. For HPAM Sim, a different approach
was adopted. The compiler is instructed to reserve the set
of registers needed by the augmentation. This choice was
based on several factors. First, the compiler has highly op-
timized register allocation algorithms and these algorithms
are improved with new releases. Therefore, HPAM Sim can
benefit from these optimized register allocation schemes.

Second, the fact that the same registers are used throughout
the augmentation process facilitates debugging of the aug-
mentation module. Theoretically, the HPAM Sim approach
is intrusive because it actually eliminates a set of registers
that are used for augmentation and can cause unnecessary
register spills. However, practical tests using the Purdue
[21], CMU [13] and Perfect-Club [6] benchmarks showed
that none of the registers used in the augmentation were
actually used in the assembly code generated by normal
compilation. Therefore, register spills are not created by the
augmentation process in the above mentioned benchmarks.

3.2 Engine Module

The purpose of the engine of the simulator is to initi-
ate and orchestrate calls to other modules of the simulator.
Furthermore, the engine is the part of the simulator that in-
terfaces with the execution of the input program on the host
machine.

The engine of HPAM Sim is based on lightweight
threads. Each virtual processor (i.e. processor of the tar-
get machine) is associated with a thread. When a pro-
cessor issues a send or a receive, the engine takes con-
trol over the execution. Several simulators were based on
lightweight threads, including Proteus, SPASM and Tango-
lite. Lightweight threads have low overhead and can signifi-
cantly help in producing fast simulators [15]. The engine of
HPAM Sim uses the Solaris multithreading library [25]. In
order to increase the portability of HPAM Sim, the engine
does not rely on a specific scheduling of the threads. The
engine synchronizes virtual processors based on data rather
than on the order of the execution of the threads. Addi-
tionally, only basic thread subroutines that are commonly
available in other thread libraries are used within the en-
gine. These two aspects of the engine allow the substitution
of the Solaris multithreading library with another library
easily. Aside from the currently used Solaris multithreading
library, HPAM Sim was tested using Cthreads [19].

In addition to producing fast simulators, using
lightweight threads offers an additional advantage.
HPAM Sim can be used on a uniprocessor host as well as
any multiprocessor host that supports multithreading. This
allows the simulation of small benchmarks on uniprocessor
hosts and the simulation of large benchmarks on multipro-
cessor hosts. The timing results included in this paper cor-
respond to the execution of HPAM Sim on a uniprocessor
host. However, the validation of HPAM Sim results was
performed using both a uniprocessor as well as a multipro-
cessor host (2-and 4-processors UltraSparc).

The engine can work in two different modes depending
on whether contention in the network is simulated or not.
Contention in the network occurs when two or more mes-
sages compete for the same path in the network.

Non Contention Mode:
In this mode, the engine stores incoming messages in a

message buffer shared by all the virtual processors. On a
receive, the engine checks whether or not the message has
arrived. If the message has arrived, the transfer latency of
the message is evaluated regardless of the other messages in
the network. If the message has not arrived, the destination
processor becomes idle until it receives the corresponding
message.

Contention Mode:
In this mode, the engine orders the execution of sends and

receives chronologically so to allow exact simulation of net-
work transfer operations as explained in Section 3.4. This
ordering is enforced mainly through the information con-
tained in the message header and the evolution of time in the
virtual processor. The message header contains the source,
the destination, the size, the timestamp in and the times-
tamp out of the message. The timestamp in corresponds
to the time the message was introduced in the network and
the timestamp out corresponds to the time the message was
removed from the network and delivered to the destination.
This header is used by the network module to evaluate trans-
fer latency. It is removed by the network module when it is
no longer needed.

Each virtual processor maintains a status time and a
communication time. For a given processor i, the sta-
tus time (sti) corresponds to the time accumulated through
execution-driven simulation up to the current communica-
tion operation. The lookahead time (lti) is used to advance
the simulation process when processor i is idle (i.e. wait-
ing for a message). Additionally there are two flags asso-
ciated with each processor i, Not Waitingi and ENDi.
When processor i is not waiting for a message, the flag
Not Waitingi is set to true. When processor i terminates
execution, ENDi is set to true.

Each virtual processor is assumed to have an incoming
and an outgoing queue. There is a cost associated with the
transfer of a message out of the incoming queue or into the
outgoing queue. Let i and j denote the source and the desti-
nation of a message (msgij) respectively. Additionally, let
�ij denote the time needed by processor j to putmsgij on its
outgoingqueue. On a send,msgij with its header is inserted
in the message buffer in increasing order of timestamp in.
On a receive, if the message is not in the message buffer
then there are two possible scenarios. The first scenario is
when processor j is not itself waiting for a message, then
msgij cannot be delivered to processor i prior to the status
time of processor j (stj) plus the time needed by processor
by j to put msgij on its outgoing queue (�ij). Thus the
timestamp in of msgij cannot be less than stj + �ij. This
limit is the amount of lookahead corresponding to processor
i that is available to the engine. The second scenario is if
processor j is waiting for a message. Processor j needs to

receive its own message first, then it can send msgij to pro-
cessor i. Therefore, msgij cannot be delivered to processor
i prior to the lookahead time of processor j plus the time
needed by processor j to put msgij on its outgoing queue.
The lookahead time of processor i for the two scenarios can
be expressed by the following equations:

if (Not Waitingj)
lti = stj + �

else
lti = ltj + �

For the two scenarios, the lookahead time is always safe
and therefore no rollback is needed. This lookahead possi-
bility reduces the overhead of switching between two virtual
processors and increases concurrency in HPAM Sim.

If on a receive, the message is in the message buffer, then
the engine checks if there are no possible other messages
that are chronologically ahead of msgij . This process is
performed by checking if any processor k that has not ter-
minated simulation (i.e. ENDk is set to false) satisfies the
following condition:

(stk <= timestamp in) and
((Not Waitingk) or (ltk <= timestamp in))

In the above condition timestamp in refers to the time
msgij was introduced in the network. If two processors
attempt to send a message at the same time, precedence is
given to the processor with the smallest global number (i).
This ordering is needed to guarantee a deterministic behavior
of HPAM Sim across different simulation runs on the same
host machine and across different host machines regardless
of the scheduling strategy of the underlying threads. It
is enforced by using the above condition for k < i and
changing the two inequalities (<=) to strict inequalities (<)
for k > i.

3.3 Message Passing Module

The message passing library was modeled after the MPI
library. MPI code requires minor modifications in order to
be ported to a valid HPAM Sim input (if necessary the mod-
ifications could be made systematically so to be transparent
to the user). This allows the use of the large amount of MPI
code available to test the simulator as well as the machines to
be simulated. The syntax and semantics of a non-blocking
send and blocking receive in HPAM Sim when contention
is not simulated are as follows:

hpam nsend(destination,level,type,message,size,tag)
store message in the message buffer

hpam brecv(source,level,TYPE,message,size,tag)
if (message has arrived)

evaluate transfer latencies
retrieve message from the message buffer

else
yield to other processors

When contention is simulated the syntax and semantics
of a non-blocking send and a blocking receive in HPAM Sim
are as follows:

hpam nsend(destination,level,type,message,size,tag)
store message by increasing time stamp in

hpam brecv(source,level,TYPE,message,size,tag)
if (message has arrived)

if (message has smallest time stamp in)
evaluate transfer latencies
retrieve message from message buffer

else
yield to other processors

else
advance time stamp
yield to other processors

In a one level multiprocessor organization each proces-
sor is identified with a unique number (node identifier). For
the HPAM multilevel architecture, each processor has two
identifiers. The first is the processor local number within its
level. The second is the processor global number with re-
spect to the entire architecture. Having these two identifiers
allows the user to express inter-level and intra-level commu-
nication easily. For a given level of the architecture there is
a direct mapping between the local number of a processor
in a given level and its global number. The user needs to
specify not only the source or destination local number but
also the level. For example, processor 0 of level 1 can send
or receive a message from processor 0 of level 2.

In addition to send and receive operations, several other
message passing operations are provided in HPAM Sim.
These include arithmetic reduction, logical reduction and
broadcast operations. The implementation of these opera-
tions are based on a binary tree reduction algorithm.

3.4 Network Module

The network module in HPAM Sim is different from any
implementation of the simulators introduced in the related
work section. First, in HPAM Sim, the network module has
two major components, the intra-level interconnect and the
inter-level interconnect. Figure 3 shows an example HPAM
configuration. Each level of HPAM can have a different
interconnect. Furthermore, the interconnect latency and
bandwidth can vary from one level to the next. Given the

latency, bandwidthand topologyof the network, the network
module evaluates the transfer latency for a given message.
The evaluation of the transfer latency follows the model
discussed in [1].

Let S, W , and L denote the size of the message, the
network point to point bandwidth and point to point latency
respectively. The topologyof the intra-level interconnection
network can be either a bus, a cross-bar or a mesh. This
selection is representative of the types of networks that are
used in commercial multiprocessor machines. For a given
message, with no contention, the transfer latency (tl) for a
bus and a cross-bar are given by the following two equations.

tlbus = L � (
S

W
) (1)

tlcross�bar = L � (
S

W
) (2)

The routing for the mesh topology is a dimension ordered
x-y routing. Furthermore, the mesh network is assumed
to be circuit-switched and pipelined. This mesh network
model can be easily extended to other configurations (e.g
wormhole routing, packet-switched) when needed. Given
that the number of hops from the source to the destination
is n, the transfer latency with no contention for the mesh
topology is given by the following equation.

tlmesh = L � (
S

W
+ n) (3)

The inter-level interconnect is based on a point to point
connection between two nodes from two different levels.
Therefore, the inter-level transfer latency between directly
connected processors is similar to the transfer latency be-
tween two nodes in a cross-bar network.

As previously mentioned, the network module routes
messages in chronological order when the network con-
tention is simulated. In this mode and in order to exactly
evaluate contention, the header of all the messages remain
in the message buffer until it no longer needed. Let msg
be the message being routed by the network module. The
message buffer is examined and any message that has a
timestamp out greater than the timestamp in of msg is dis-
carded. Given the remainder of the messages, the delay due
to the the transfer of msg is evaluated. This delay is the
sum of the transfer latency with no contention and the de-
lay due to contention. As explained in the next paragraph,
the contention and its corresponding delay depends on the
topology of the network. When the network contention is
not simulated the message and its header are removed as
soon as they are retrieved by the destination processor.

For a bus based interconnect, only one message can be
on the bus at a time. Therefore, each message has to wait
for all pending messages to clear from the bus. The cross-
bar interconnect has a dedicated point to point connection

level 1

level 2

level 3

Figure 3. Three-Level HPAM Architecture Ex-
ample.

between any two nodes. Within HPAM Sim contention
between a current message and a previous message in a
cross-bar can occur only if the two nodes involved in the
two messages are the same. Given the assumed routing
mechanism for the mesh topology, two messages collide in
the mesh network if and only if their paths cross. In the event
of a collision, the message that last entered the network waits
for its path to clear.

4 Validation

There are two approaches to the validation of a simulator
that have been reported in the literature. The first approach
consists of comparing the results of a previously tested and
established simulator to the newly developed simulator. The
second approach consists of comparing the result of the
newly developed simulator to the results of an actual execu-
tion on an existing machine. For example, the first approach
was used in the validation of WWT and the second approach
was used in the validation of Proteus.

Given the unique hierarchical organization of HPAM, the
validation of HPAM Sim had to rely on both of the above
two mentioned validation approaches as explained in the
following two subsections.

4.1 Validation of the Augmentation Module

The performance of the augmentation module is mea-
sured by its correctness, accuracy and overhead. The cor-
rectness of the augmentation establishes whether or not (un-
der the assumed conditions) the generated result is correct.
Given that in HPAM Sim it is assumed that an instruction
is issued every cycle, it is possible to verify that the re-
sults generated by the augmentation module of HPAM Sim
are correct using Spixtools [11]. This verification was per-
formed by first using Spixtools to evaluate the total number

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

+ : Paragon

o : HPAM_Sim (ratio: 1.00)

* : HPAM_Sim (ratio: 1.02)

Number of Processors

T
im

e
in

 m
se

c.

Figure 4. HPAM Sim Validation for Problem01.

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

+ : Paragon

o : HPAM_Sim (ratio: 1.00)

* : HPAM_Sim (ratio: 3.78)

Number of Processors

T
im

e
in

 m
se

c.

Figure 5. HPAM Sim Validation for Problem04.

of cycles needed for the execution of the non-augmented
sequential code. This number was then compared to the
total number of cycles obtained from running the same code
on one processor using HPAM Sim. The results of Spix-
tools and HPAM Sim match for all of the fifteen Purdue
benchmarks. This test establishes the correctness of the
augmentation module.

Evaluating the accuracy of augmentation consists of com-
paring the number of cycles obtained from the execution of
the non augmented application on the host machine (native
execution) and comparing it to the number of cycles ob-
tained from HPAM Sim when the target machine is the same
as the host machine. This test was performed on the Purdue
benchmark suite using a Sun Workstation (85Mhz Sun Mi-
crosparc). Ideally, the number of cycles obtained through
native execution and HPAM Sim would be the same. How-
ever, in practice it is application specific and in this experi-
ment the ratio of the two numbers varied from 0.33 to 0.81.
Given that native execution and HPAM Sim are operating on
identical input codes, the differences in the number of cycles
are due to two factors. The first factor is that HPAM Sim
does not take into account delays due to memory reference
misses. The second factor is that HPAM Sim assumes that

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

+ : Paragon

o : HPAM_Sim (ratio 1.00)

* : HPAM_Sim (ratio 0.56)

Number of Processors

T
im

e
in

 m
se

c.

Figure 6. HPAM Sim Validation for Problem07.

an instruction can be issued at every clock cycle. However,
it might not be possible to sustain this rate due to data de-
pendencies and resource limitations. A cache simulator and
a resource scheduler can be used to correct for the inaccu-
racies due to the first and second factor respectively. Future
work will address the development of these two components.
However, even without these components which affect local
processor operations, it is still possible to study the rela-
tive behavior of different applications on different HPAM
architectures as shown in the next subsection.

The overhead of augmentation is the time contributed
by the augmentation to the total execution time of the aug-
mented application. This overhead is obtained by compar-
ing the execution time of the non-augmented code to the
execution time of the corresponding augmented code. This
experiment showed that the ratio of the two execution times
varied from 1.1 to 3.7. It is possible to improve this ratio by
trying to combine basic blocks during augmentation. This
optimization is used in Proteus. However, after measuring
the overhead introduced by the augmentation in HPAM Sim
and comparing it to the overhead reported in the literature af-
ter optimization [8], it was deemed unnecessary to introduce
this optimization because of its low return.

4.2 Validation of the Network Module

In this validation experiment HPAM Sim was used to
simulate an architecture similar to the Intel Paragon XP/S.
The Paragon is a homogeneous mesh-connected multipro-
cessor. This configurationcorresponds to a one-level HPAM
with mesh intra-level interconnect. The execution of the
Purdue benchmarks on the Paragon was compared to the re-
sults obtained from HPAM Sim. The results corresponding
to five of these benchmarks when the network contention is
simulated are included in this section. Table 1 summarizes
the important characteristics of these benchmarks.

Problem01 of the Purdue suite evaluates a trapezoidal
rule estimate of an integral. Problem04 computes the sum

Benchmark Commu- Data Set Mathematical
nication Size (KB) Functions
Pattern Called

Problem01 regular < 1 exp
Problem04 regular 4096 none
Problem07 irregular 512 none
Problem10 irregular 40 sin
Problem13 regular 4096 log,sin and cos

Table 1. Purdue benchmarks characteristics.

of the terms of a harmonic series. Problem07 uses Lagrange
interpolation to compute polynomial interpolant values of
a function at five points. Problem10 computes the LU fac-
torization of a matrix using Gauss elimination with pivot-
ing. Finally, Problem13 computes the sum of the terms
of a power series. This benchmark selection is intended
to cover different possible simulation scenarios (i.e regular
and irregular communication patterns, small, medium and
large data set sizes). Furthermore, this selection includes
benchmarks that contain mathematical library routine calls.
HPAM Sim is intended for scientific applications as well as
general purpose applications. Therefore, it is important to
include mathematical as well as non-mathematical bench-
marks.

In this experiment the codes executed on HPAM Sim
and the codes executed on the Paragon are different. The
first uses HPAM Sim message passing routines, while the
second uses the MPI library on the Paragon. Furthermore,
the compilers used to compile the two source codes are
different. Finally, standard library routines called by the
two source codes are also different.

Figures 4 through 8 summarize the result of this vali-
dation experiment. In each of these figures there are three
plots. The first corresponds to the timings obtained on the
Paragon for different number of processors. The second and
third plots are obtained from HPAM Sim simulations. In the
second plot, the processor number of cycles per seconds was
set to that of the building processor of the Paragon. In the
third plot, this parameter was adjusted by a factor to account
for delays due to memory accesses, data dependencies and
instruction scheduling conflicts. This factor is application
dependent. It was estimated as the ratio of the execution
time of the benchmark on one processor of the Paragon to
the execution time of the same benchmark on one proces-
sor with the number of cycles per second equal to that of a
Paragon processor using HPAM Sim.

One might expect this ratio to be always greater than 1.0
because it represents how far from ideal is the actual execu-
tion. In the case of Problem07 and Problem10, this ratio is
less than 1.0 (0.56 and 0.61 respectively). This result can be
explained by the fact that two different compilers and two

10
0

10
1

10
2

10
3

10
4

10
2

10
3

+ : Paragon

o : HPAM_Sim (ratio: 1.00)

* : HPAM_Sim (ratio: 0.61)

Number of Processors

T
im

e
in

 m
se

c.

Figure 7. HPAM Sim Validation for Problem10.

different libraries were used in the two cases. Furthermore,
the instruction set for the two processors is different. In [8]
and references there in, it was found that two different com-
pilers can lead to as much as 33% difference in simulation
results.

The result of this experiment (Figures 4 through 8) show
that HPAM Sim timings closely follow real timing obtained
on the Paragon for all five example benchmarks. In these
figures, the difference between the Paragon and HPAM Sim
timings increases as the number of processor increases.
This increase in difference is mainly due to the fact that
HPAM Sim does not account for the time it takes to route
the message header. The size of the message header in the
Paragon is 48 Bytes. This difference becomes more appar-
ent as the number of messages in the application increases.
For all the benchmarks presented in this paper, the number
of messages increases as the number of processors increases.

5 Experiment

The three-level HPAM architecture shown in Figure 3
was simulated using HPAM Sim. The input program used
for this experiment is Problem07 of the Purdue suite. Dif-
ferent sections of this benchmark were assigned to different
levels of the architecture. Figure 9 shows the execution time
(y-axis) for this benchmark against different ratios (x-axis).
These ratios represent how much slower one level is in com-
parison with the preceding level. For example, if the ratio
is equal to two, then any processor in level three is twice as
slow as any processor in level two. Similarly, any processor
of level two is twice as slow as any processor of level one.

Figure 9 shows three different plots. Each of these plots
corresponds to a different number of processors in level
three (i.e 8, 16, 32). The second configuration is the one
depicted in Figure 3. The intent of this example is to show
the types of HPAM organization that can be simulated by
HPAM Sim. Qualitative studies of the results are beyond
the scope of this paper.

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
6

10
7

+ : Paragon

o : HPAM_Sim (ratio 1.00)

* : HPAM_Sim (ratio 2.76)

Number of Processors

T
im

e
in

 m
se

c.

Figure 8. HPAM Sim Validation for Problem13.

6 Conclusions and Future Work

This paper presents an execution-driven simulator for
heterogeneous machines. The development of HPAM Sim
was motivated by the need to study a proposed heteroge-
neous multilevel architecture (HPAM).

HPAM Sim extends simulation techniques previously
used in several homogeneous multiprocessor simulators in
order to provide a testbed for the study of heterogeneous
multiprocessor machines. Heterogeneous multiprocessor
machines are in general more complex than homogeneous
machines. However, they are often more cost-efficient than
homogeneous machines. HPAM Sim provides an environ-
ment that can be used to validate this claim. Furthermore
HPAM Sim will allow a better understanding of the effect
of varying the number of processors, processor speeds and
the interconnection network at each level of HPAM.

There are no commercially available machines with an ar-
chitecture organization similar to HPAM. Furthermore, there
are no available tools that can simulate heterogeneous ma-
chines similar to HPAM. Therefore, in order to validate the
results generated by HPAM Sim a piecewise approach had
to be adopted. First, the results of the augmentation module
of HPAM Sim were validated using Spixtools. Second, the
results of an overall simulation of a one-level homogeneous
HPAM were validated with actual runs on an Intel Paragon.
Finally, the functionality of HPAM Sim was validated for a
multilevel HPAM configuration.

The development of HPAM Sim is an evolving project
which is mainly driven by the study of the HPAM archi-
tecture. In its current stage of development, HPAM Sim
allows simulation of C and Fortran message passing parallel
programs. Future enhancements include most importantly
the implementation of the shared memory component of
HPAM Sim. This additional module is needed to allow the
analysis of heterogeneity with respect to memory organiza-
tion and communication paradigm in an HPAM architecture.
There are several tools, such as ADAPTOR [7], that provide

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7
x 10

5

Processor Speed Ratio of two Consecutive Levels

T
im

e
in

 m
se

c.
n=8

n=16

n=32

Figure 9. Simulation of a three-level HPAM.
a shared memory interface to message passing platforms.
The possibility of using an approach similar to ADAPTOR
will be investigated.

Although HPAM Sim was primarily intended as a tool
for the study of HPAM architectures, it can be used for the
simulation of various other homogeneous and heterogeneous
architectures.

References

[1] A. Agrawal. Limits on Interconnection Network Perfor-
mance. IEEE trans. Par. and Dist. Systems, 2(4):398–412,
October 1991.

[2] Andrews, J.B. and Polychronopoulos, C.D. An Analytical
Approach to Performance/Cost Modeling of Parallel Com-
puters. J. Par. Dist. Computing, 12(4):343–356, August
1991.

[3] Barton, M.L. and Whiters, G.R. Computing Performance as
a Function of the Speed,Quantity, and Cost of the Processors.
Supercomputing, pages 759–764, 1989.

[4] Ben-Miled, Z., Eigenmann, R., Fortes, J.A.B., and Taylor, V.
Hierarchical Processors-and-Memory Architecture for High
Performance Computing. Frontiers of Massively Parallel
Computation Symp., pages 355–362, October 1996.

[5] Ben-Miled, Z. and Fortes, J.A.B. A Heterogeneous Hier-
archical Solution to Cost-efficient High Performance Com-
puting. Par. and Dist. Processing Symp., pages 138–145,
October 1996.

[6] Berry, M., Chen, D., and al. The Perfect Club Bench-
marks: Effective Performance Evaluation on Supercomput-
ers. CSRD, Univ. of Illinois, Tech. Rep. UIUC-CSRD-827,
July 1994.

[7] Brandes, T. and Zimmermann, F. . ADAPTOR - A Transfor-
mation Tool for HPF Programs. Programming Environments
for Massively Parallel Distributed Systems, Birkhauser Ver-
lag, pages 91–96, 1994.

[8] Brewer, E., Dellarocas, C.N, Colbrook, A., and Weihl, W.E.
Proteus: A High-Performance Parallel-Architecture Simu-
lator. LCS, Massachussetts Institute of Technology, Tech.
Rep. MIT-LCS-TR-516, 1991.

[9] Brorsson, M., Dahlgren, F., Nilsson, H., and Stenstrom, P.
The CacheMire Test Bench - A Flexible and Effective Ap-
proach for Simulation of Multiprocessors. Simulation Symp.,
pages 41–49, 1993.

[10] Chang, W.T., Ha, S., and Lee, E.A. Heterogeneous Simula-
tion - Mixing Discrete-Event Models with Dataflow. VLSI
Signal Processing, 1996.

[11] Cmelik, R.F. and Keppel, D. Shade: A Fast Instruction-Set
Simulator for Execution Profiling. Sun Microsystems, Inc.,
Tech. Rep. TR-93-12, July 1993.

[12] Convington, R.G., Madala, S., Mehta, V., and Jump, J.R.
The Rice Parallel Processing Testbed. Measurement and
Modeling of Computer Systems Conf., pages 4–11, 1988.

[13] Dinda, P.A., Gross, T., and al. The CMU Task Parallel Pro-
gram Suite. School of Computer Science, Carnegie Mellon
Univ., Tech. Rep. CMU-CS-94-131, January 1994.

[14] D. Ferrari. Computer Systems Performance Evaluation.
Prentice Hall, 1978.

[15] Goldschmidt, S.R. and Davis, H. Tango Introduction and
Tutorial. CSL, Stanford Univ., Tech. Rep. CSL-TR-90-1410,
January 1990.

[16] M. Heath. Recent Developments and Case Studies in Perfor-
mance Visualization using ParaGraph. Performance Mea-
surementand Visualization of Parallel Systems, Elsevier Sci-
ence Publishers, pages 175–200, 1993.

[17] Menasce, D. and Almeida, V. Cost-performance Analysis
of Heterogeneity in Supercomputer Architectures. Proc. Su-
percomputing Conf., pages 169–177, November 1990.

[18] Moncrieff, D., Overill, R.E, and al. Heterogeneous Com-
puting Machines and Amdahl’s Law. Parallel Computing,
22(3):407–413, 1996.

[19] Mukherjee, B., Eisenhauer, G., and Ghosh, K. A Machine
Independent Interface for Lightweight Threads. Operating
Systems Review of the ACM Special Interest Group in Oper-
ating Systems, pages 33–47, January 1994.

[20] Reinhardt, S.K., Hill, M.D., Larus, J.R., Lebeck, A.R.,
Lewis, J.C., and Wood, D. The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers. Measurement
and Modeling Conf., pages 48–60, May 1993.

[21] Rice, J.R. and Jing, J. Problems to Test Parallel and Vec-
tor Languages - II. Computer Science Department, Purdue
University, Tech. Rep. CSD-TR-1016, September 1990.

[22] Rosenblum, M., Herrod, S.A., Witchel, E., and Gupta, A.
Complete Computer Simulation: The SimOS Approach.
Parallel and Distributed Technology, Fall 1995.

[23] Sharma, A. and al. Augmint: A multiprocessor Simulation
Environment for Intel X86 Architectures. CSRD, University
of Illinois, Tech. Rep. CSRD-1463, December 1995.

[24] Sivasubramaniam, A., Singla, A., Ramachandran, U., and
Venkateswaran,H. A Simulation-Based Scalability Study of
Parallel Systems. Par. and Dist. Computing J., 22(3):411–
426, September 1994.

[25] Sunsoft. Solaris Multithreaded Programming Guide. Sun-
soft, 1995.

[26] Uhlig, R.A. and Mudge. T.N. Trace-driven Memory Simu-
lation: A Survey. Computing Surveys, submitted for publi-
cation.

[27] Veenstra, J.E. and Fowler, R.J. Mint Tutorial and User Man-
ual. Computer Science Department, University of Rochester,
Tech. Rep. 452, August 1994.

[28] P. Worley. A New PICL Trace File Format. Oak Ridge Na-
tional Laboratory, Tech. Rep. TM-12125, September 1990.

