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Abstract

Multiprocessor computers are rapidly becoming the norm. Parallel workstations are widely available today,
and it is likely that most PCs in the near future will contain multiple processors. To accommodate these
changes, some classes of applications must be developed in explicitly parallel form. Yet, in order to avoid a
substantial increase in software development costs, compilers that translate conventional programs into efficient
parallel form clearly will be necessary. In the ideal case, multiprocessor parallelism should be as transparent
to programmers as instruction level parallelism is to programmers of today’s superscalar machines. However,
compiling for multiprocessors is substantially more complex than compiling for functional unit parallelism, in
part because successful parallelization often requires a very accurate analysis of long sections of code. This
article discusses recent experience at Illinois on the automatic parallelization of scientific codes using the Polaris
restructurer. We also present several new analysis techniques that we have developed in recent years based on
an extensive analysis of the characteristics of real Fortran codes. These techniques, based on both static and
dynamic parallelization strategies, have been incorporated into the Polaris restructurer. Preliminary results on
parallel workstations are encouraging, and once the implementation of the new techniques is complete, we expect
that Polaris will be able to obtain good speedups for many real scientific codes on parallel workstations.
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1 Introduction

Parallel computing is an enabling technology for many areas of science and engineering. Parallel computing is

also our best investment to continue achieving performance gains as the limits of semiconductor technology are

approached. Whereas the design of parallel computers is reasonably well-understood, the programming of these

machines remains in its infancy. As a consequence, programming parallel computers is substantially more difficult

than programming conventional uniprocessors. In fact, it is commonly said that the development of effective

parallel programming techniques is the main challenge faced by high-performance computing today.

Unless this challenge is met, the acceptance of parallel computers will remain slow, thereby hampering

progress in computational science and engineering. An appealing strategy to meet this challenge is to develop

parallelizers. That is, compilers that translate conventional sequential programs into parallel form. Such compilers

would enable the execution of existing programs on new parallel machines, thus allowing a seamless transition

into parallel computing. Also, with the support of parallelizers, new programs could be developed in the familiar

sequential paradigm, thus liberating the programmer from the complexities of explicit, machine-oriented parallel

programming.

In this article, we present an overview of Polaris, an experimental parallelizer for shared-memory multiproces-

sors and scalable machines with a global address space, such as the Cray T3D. For a broader overview of compiler

techniques for parallel computers and a more extensive list of references, the reader is referred to [2].

2 Techniques Implemented in Polaris

The development of the most important techniques implemented in Polaris ensued from a study of the effectiveness

of commercial Fortran parallelizers [4]. In that study, the Perfect Benchmarks, a collection of conventional Fortran

programs representing the typical workload of high-performance computers, were compiled for the Alliant FX/80,

an eight-processor multiprocessor popular in the late 1980s. For each program, we computed the speedup as a

measure of the quality of the parallelization. By speedup, we mean the ratio of a program’s sequential execution

time to the execution time of the automatically parallelized version. Although the speedups obtained were
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satisfactory in a few cases, the Alliant Fortran compiler failed to deliver any significant speedup for the majority

of the programs.

The main reason for this failure was the inability of the compiler to parallelize some of the most important

loops in the Perfect Benchmarks. In retrospect, this was not surprising because the parallelization module of

the Alliant compiler was originally developed for vectorization, then retro-fitted to parallelization. This was

a common practice in the late 1980s when commercial multiprocessors were still relatively new, and the only

software available was for vectorization. Vectorizers [1, 7] focus primarily on innermost loops in their search

for vector operations. While multiprocessor compilers can take advantage of the availability of multiple control

units by parallelizing outer loops. Furthermore, outer loop parallelization is often needed to amortize the start-up

overhead typical of today’s multiprocessors.

Our study showed that extending the four most important analysis and transformation techniques traditionally

used for vectorization led to significant increases in speedup. Next, we briefly discuss each of these four techniques

and the extensions we found necessary to obtain good multiprocessor speedups.

2.1 Dependence Analysis

A loop can be transformed into parallel form if it contains no cross-iteration dependences. That is, the loop must

not have two iterations that access the same memory location, if at least one of the accesses changes its value.

Dependence analysis techniques proceed by analyzing in turn, every pair of references to the same array within

a loop to check whether their subscript expressions might produce the same value in two different iterations. To

guarantee correct code, dependence analysis techniques must assume cross-iteration dependences when they are

unable to accurately analyze the subscripts.

We illustrate these ideas using the loop:
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DO I = 1,N
R: A(2*I) = ...
S: ... = A(2*I)
T: ... = A(2*I+1)

END DO

Studying the subscript expressions is necessary to determine if cross-iteration dependences are possible

between different executions of statement R, between the statements R and S, and between R and T. Notice that

there cannot be a cross-iteration dependence between S and T because there is no write to array A in either

statement.

One of the simplest dependence analysis techniques is the Equality Test. This test determines that there are no

cross-iteration dependences between two array references whenever the subscripts are identical linear expressions.

In the previous loop, the Equality Test will determine that there are no cross-iteration dependences between two

executions of statement R, nor between R and S. However, it will leave open the possibility of a cross-iteration

dependence between R and T.

Another simple test is the GCD Test, which checks whether an equation involving two linear subscript

expressions has an integer solution. Thus, to analyze the potential dependence between R and T, the GCD Test

considers the equation 2i = 2i0 + 1. Since there are no integer solutions for i and i0 in this equation, R and T will

never access the same element of A.

The GCD Test determines that there are no integer solutions to the equation when the greatest common divisor

of the coefficients does not divide the independent term. Thus, the previous equation has no integer solution

because GCD(2; 2) = 2 does not divide 1. This shows that there are no dependences between R and T. Notice

that in the loop above, the GCD Test cannot disprove the two potential dependences which were disproved by the

Equality Test. Therefore, both tests are necessary to obtain accurate results. In practice, parallelizing compilers

apply a variety of these dependence tests in sequence.

Like the GCD and Equality tests, most dependence tests only work on linear expressions. However, we found

several cases of nonlinear subscript expressions in the Perfect Benchmarks. As discussed below, some nonlinear

subscripts were generated by our induction variable substitution transformations, and the rest were part of the
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original program. To handle these, we developed the Range Test [3]. Our implementation of the Range Test

makes use of sophisticated computer algebra capabilities as well as data range information extracted from the

whole program.

Another powerful dependence test is the Omega Test [9], which is capable of detecting parallelism in many,

but not all, cases that the Range Test can analyze accurately.

2.2 Privatization

Temporary variables are often used inside loops to carry values between statements. An example is variable T in

the loop:

DO I = 1,N
T = A(I) +1
B(I) = T**2
C(I) = T + 1

END DO

Temporary variables cause cross-iteration dependences because they are read and written on different loop

iterations. However, when a temporary variable is assigned before it is read within each iteration, it is possible to

use a different memory location for the variable in each loop iteration. This eliminates the dependence.

When translating for multiprocessors, it is sufficient to give such a variable a different location for each

processor, by declaring the variable private to the loop.

For vectorization, it is often sufficient to identify loop private scalars. However, we found many cases in the

Perfect Benchmarks where arrays are used as temporaries within multiply-nested loops. Identifying private arrays

eliminates many apparent dependences in outermost loops.

Arrays may be privatized under conditions analogous to those for scalars - each element of an array which is

read in an iteration must have already been assigned in that iteration.

In Polaris, we have implemented a privatization technique to deal with both scalars and arrays [11]. This

algorithm had to be substantially more complex than the traditional scalar privatization algorithm because the
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reading and writing of a single array may occur at multiple points within the loop and because the subscript

expressions involved may be arbitrarily complex.

2.3 Induction Variable Substitution

Induction variables have integer values and are incremented by constants on every loop iteration. An example is

variable J in the loop:

J = 0
DO I=1,N

J = J + 2
U(J) = ...

END DO

The presence of induction variables presents a parallelization problem for two reasons. First, induction

variables are read and written on every iteration and, thus, are the source of cross-iteration dependences. Second,

a subscript expression involving induction variables cannot be directly analyzed by most dependence tests because

the variables are not loop indices, nor do they have constant values.

To avoid these problems, all occurrences of an induction variable must be transformed by the compiler. They

are replaced by an expression involving the loop index. For example, in the previous loop, the array reference

could be replaced by U(2*I). Once that is done, the induction statement (and its dependence) can be removed.

Many current compilers transform only induction variables that can be expressed in terms of a single loop

index. However, in the multiply-nested loops of real programs, induction variables can be incremented at several

different levels of nesting within a single loop. Techniques that produce closed form expressions in terms of

several loop indices for these cases have been implemented in Polaris [8]. For example, in the loop:
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J = 0
DO I=1,N

...
S: J = J + 1

...
DO K = 1, I

...
T: J = J + 1

...
END DO

END DO

all occurrences of J after S in the outer loop would be replaced by I + I*(I-1)/2, and those after T within

the inner loop by I + I*(I-1)/2 + K. Notice that, as mentioned above, these expressions are nonlinear

and, although unanalyzable by a traditional dependence test, the Range Test applied by Polaris can handle them.

Another approach to induction variable recognition, also inspired by our earlier study, is presented in [12].

2.4 Reduction Substitution

A reduction operates across one or more dimensions of an array to produce a reduction variable in the form of

a lower dimensional array or a scalar. A reduction causes cross-iteration dependences in the loop that evaluates

it. Within the loop, if a reduction variable is accessed only by the statements performing the modification and the

reduction operation is associative, it can be parallelized. For example, in the loop

DO I=1,N
...

S: Q = Q + A(I)
...

END DO

Q is accessed only inS. If we assume that floating-point addition is associative then the loop can be transformed

into a parallel form in which each processor computes the sum of a different section of A. The partial sums are

added at the end of the loop to obtain the final value of Q. As is well-known, floating point operations are not

associative, but in many cases assuming that they are does not change significantly the result of the program.

7



Vectorizers considered only simple reductions, as in our example. However, more complex patterns occur in

many programs. For example, the reduction variable could be an array, there could be multiple reduction statements

in a loop, and the subscripts of reduction arrays can be array elements themselves. Advanced techniques to handle

cases like these have been implemented in Polaris[8][6].

3 Effectiveness of Polaris Techniques

In addition to the four techniques presented in the preceding section, Polaris applies Autoinlining [5] and Interpro-

cedural Value Propagation (IPVP). Autoinlining replaces a call to a subroutine with the code for that subroutine,

when heuristics deem it profitable. Interprocedural Value Propagation finds instances in which an expression

representing the value of an integer variable in one subroutine is valid upon entry to a different subroutine. When a

routine is called from more than one call site with different values for a given variable, IPVP clones the subroutine,

and uses a different value in each clone.

As can be seen below, these two transformations, although not as powerful as a comprehensive interprocedural

analysis algorithm, have improved the accuracy of program analysis in several cases.

Figure 1 presents a speedup comparison between Polaris and SGI’s parallelizer PFA. PFA, like the Alliant

parallelizer, was developed by an independent software house. Both parallelizers were originally developed as

vectorizers.

The sixteen benchmark programs used for the analysis come from three different sources:

� arc2d, bdna, flo52, mdg, ocean, and trfd from the Perfect Benchmark suite;

� applu, appsp, hydro2d, su2cor, swim, tfft2, tomcatv, and wave5 from the SPEC CFP95

Benchmark suite; and,

� cmhog and cloud3d from the National Center for Supercomputing Applications (NCSA).

The first two suites are well-known. The third source is a collection of programs currently being used in

scientific research at NCSA. The programs in the NCSA collection are of moderate size, containing approximately

8



ar
c2

d

bd
na

flo
52

m
dg

oc
ea

n

tr
fd

ap
pl

u

ap
ps

p

hy
dr

o2
d

su
2c

or

sw
im

tff
t2

to
m

ca
tv

w
av

e5

cl
ou

d3
d

cm
ho

g

0

1

2

3

4

5

6

7

8

PFA Polaris

Perfect Spec NCSA

S
pe

ed
up

Figure 1: Speedup Comparison Between the SGI PFA Compiler and Polaris
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10,000 lines each.

The programs were executed (in real-time mode for timing accuracy) on eight processors of an SGI Chal-

lenge with 150 MHz R4400 processors, located at NCSA. Figure 1 shows that Polaris delivers, in many cases,

substantially better speedups than PFA.

In three of the sixteen programs, PFA produces better speedups than Polaris. The reason is that PFA uses an

elaborate code generation strategy that includes loop transformations, such as loop interchanging, unrolling, and

fusion, which, when applied to the right loops, improve performance by decreasing overhead, enhancing locality,

and facilitating the detection of instruction-level parallelism. However, the elaborate strategy has a negative effect

for the program tomcatv, for which PFA detects as much parallelism as does Polaris, yet the Polaris-transformed

program ran faster.

To evaluate the effectiveness of Autoinlining, IPVP, Array Privatization, Range Test, Multiply-Nested Induc-

tion Substitution, and Advanced Reduction Substitution, we transformed each program six times, with a different

technique turned off each time, and then compared those with the program compiled with all techniques enabled.

These six transformations contain all that is new in Polaris with respect to PFA and the Alliant parallelizer.

However, PFA includes some of the capabilities in these six transformations. For example, the dependence

analysis modules of PFA and most commercial parallelizers, although not as powerful as the Range Test, are

substantially more powerful than the Equality and GCD tests. Also, PFA can substitute multiply-nested induction

variables but only if the bounds of inner loops do not contain indices of outer loops. A detailed comparison of the

capabilities of Polaris and commercial parallelizers is beyond the scope of this article.

Figure 2 presents the results of the six experiments conducted for each code. The height of the bar at (P; T )

represents, in logarithmic scale, the percentage of the total number of loops in programP which become serialized

by disabling technique T .

From Figure 2, it can be seen that all techniques enable parallelization of loops from many programs in

the collection. Although the inspiration for the techniques came from analyzing programs in only the Perfect

Benchmarks, they seem equally useful for programs outside the Perfect Benchmarks.
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Figure 2: Percentage of Loops Serialized when Disabling Certain Techniques

4 The Future: More Parallelism, Better Performance

Polaris has detected much, but not all, of the parallelism available in our set of benchmark codes. A careful

analysis of the loops in our benchmark codes which Polaris could parallelize, but does not, shows several areas

where improvement is possible.

First, we need a true interprocedural framework for analysis. However, due to the large amount of information

required by our analysis algorithms, a traditional global algorithm would be too inefficient. We are, therefore,

focusing on a demand-driven strategy that would allow high accuracy without significantly increasing the analysis

time.

Second, improving our analysis techniques for dependence and privatization is important. When compile time

analysis fails, analysis code needs to be generated for use at run-time. This will allow Polaris to parallelize even

loops with access patterns determined by input values [10].

Third, Polaris needs to take into account additional program patterns, such as more complicated forms for
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induction and reduction variables, associative recurrences, multiple exit loops,and loops containing I/O statements.

We also must improve the efficiency of Polaris in order to allow us to compile very large Fortran programs.

Although Polaris can routinely compile programs with 10,000 lines, we hope to eventually be able to compile

programs 10 or 100 times larger.

5 Conclusions

The techniques implemented in the first version of Polaris have proven quite effective on a variety of programs.

This verifies the results of our study involving the Alliant machine. Even so, we find that further progress is

necessary. A wide range of techniques is necessary to detect all the parallelism in real programs.

Perhaps the most important achievement of our work in the Polaris project has been the demonstration that

substantial progress in compiling conventional languages is possible. There have been, and still are, many who do

not believe it is possible to develop compilers capable of generating effective parallel code for a wide range of real

programs. We disagree, and believe that, at least for Fortran and other similar languages, effective parallelizers

will be available within the next decade. Our experimental results and careful hand analysis of real codes strongly

support this opinion.
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