
Parallel Programming and Performance Evaluation with The

Ursa Tool Family�

Insung Park Michael Voss Brian Armstrong Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University

Abstract

This paper contributes to the solution of several open problems with parallel programming tools

and their integration with performance evaluation environments. First, we propose interactive com-

pilation scenarios instead of the usual black-box-oriented use of compiler tools. In such scenarios,

information gathered by the compiler and the compiler's reasoning are presented to the user in mean-

ingful ways and on-demand. Second, a tight integration of compilation and performance analysis

tools is advocated. Many of the existing, advanced instruments for gathering performance results

are being used in the presented environment and their results are combined in integrated views

with compiler information and data from other tools. Initial instruments that assist users in \data

mining" this information are presented and the need for much stronger facilities is explained.

The Ursa Family provides two tools addressing these issues. Ursa Minor supports a group of

users at a speci�c site, such as a research or development project. Ursa Major complements this

tool by making available the gathered results to the user community at large via the World-wide

Web.

This paper presents objectives, functionality, experience, and next development steps of the Ursa

tool family. Two case studies are presented that illustrate the use of the tools for developing and

studying parallel applications and for evaluating parallelizing compilers.

1 Introduction

Interactive use of parallelizing compilers. Many programming tools exist that assist the user in
the challenging task of developing well-performing parallel programs. Parallelizing compilers are one
important class of such tools [BDE+96, HAA+96]. The apparent advantage of using a parallelizing
compiler is that the conversion of a given serial program into parallel form is done mechanically by the
tool. One disadvantage of this scenario is that the compiler may have insu�cient knowledge or limited
capabilities to parallelize a program optimally. In some cases it would be easy for the user to make up for
these shortcomings. For example, although the compiler detects a value-speci�c data dependence, the
user may know that in every reasonable program input the values are such that the dependence does not
occur. In other cases, users may know that the array sections accessed in di�erent loop iterations do not
overlap. Furthermore, certain program transformations may make a substantial performance di�erence,
but are applicable to very few programs, and hence not built into a compiler's repertoire. If a user can
�nd the reason why a loop was not parallelized automatically, a small modi�cation may be applied that
ensures parallel execution. Because of these reasons, manual code modi�cation in addition to automatic
parallelization is often necessary to achieve good performance.

�This work was supported in part by Purdue University, U. S. Army contract #DABT63-92-C-0033, and an NSF CA-

REER award. This work is not necessarily representative of the positions or policies of the U. S. Army or the Government.

1

Integrated compilation and performance evaluation. During the process of compiling a parallel
program and measuring its performance, a considerable amount of information is gathered. For example,
timing information becomes available from various program runs, structural information of the program
is gathered from the code documentation, and compilers o�er a large amount of program analysis in-
formation. Finding parallelism starts from looking through this information and locating potentially
parallel sections of code. Improving parallel performance is the immediate next step. Decisions are
made based on timing results and their relationship to program characteristics. The bookkeeping e�ort
accompanying this procedure is often overwhelming. Tools that assist this process are important.

In this paper, we introduce an on-going tool project that supports a scenario of user-plus-compiler
parallelization. The tool helps a programmer understand the structure of a program, identify parallelism,
and compare performance results of di�erent program variants. The tool, Ursa Minor [PVAE97],
gathers information along the course of compiling and running a program and presents it in a format
that is easy to look up and comprehend. Using the tool, the programmer comes to an understanding
of the compilation process, the characteristics of the given program, its performance results, and the
relationships of these data. It is the basis for enhancing the performance of an existing parallel program
as well as for beginning to parallelize a serial program.

The presented tool is closely related to the Polaris compiler infrastructure [BDE+96]. Polaris, as a
compiler, includes advanced program analysis and transformation techniques, such as array privatiza-
tion, symbolic and nonlinear data dependence testing, idiom recognition, interprocedural analysis, and
symbolic program analysis. Polaris also represents a general infrastructure for analyzing and manip-
ulating Fortran programs, which can provide useful information about the program structure and its
potential parallelism. Polaris plays a major role in generating the data �les used as input to Ursa
Minor. Examples of such �les are loop parallelization summaries, data-dependence information, and
loop/subroutine call graphs. Polaris also instruments programs for timing measurements and maximum
parallelism detection.

Section 2 presents our objectives in developing Ursa Minor. Section 3 gives an overview and
discusses its functionality. Section 4 presents the Ursa Major tool [PE98], a web-based tool built upon
Ursa Minor that was designed for distribution and evaluation of experimental results with various
parallel applications. Section 5 then shows two case studies of Ursa Minor in use. Section 6 concludes
the paper.

2 Objectives of Ursa Minor

The intended users of the Ursa Minor tool are parallel programmers that have some experience us-
ing parallelizing compilers and performance analysis tools. In order to assist them in identifying and
exploiting parallelism, the tool pursues the following objectives:

Integrated Browsers for Program, Compilation, and Performance Data : The Ursa Minor
tool collects and facilitates the use of program, compilation, and performance data. The infor-
mation needs to be presented in a format that conveys high-level as well as detailed descriptions
of a program. In this way, a user can start from an overall view of the program and inspect the
details whenever he or she feels the need to concentrate on a speci�c portion of the program. The
tool complements and integrates capabilities provided by tools such as the Pablo [Ree94], Paradyn
[MCC+95], and PTOPP [EM93] performance analysis environments.

Interactive Compilers : The current, predominantly black-box use of parallelizing compilers needs
to be changed into an interactive scenario. This goes beyond interactive pass invocation as pio-
neered by tools such as Start/Pat [ASM89] and Parascope [BKK+89]. The ultimate goal of the
Ursa Minor project is to provide a comprehensive environment that encompasses the process of
writing, compiling, running, and improving parallel programs. To this end interactive capabilities

2

are provided to view program information gathered by the compiler and relate it to information
provided by other programming tools.

These objectives distinguish our approach from related e�orts, such as the Polaris, Pablo and Para-
dyn projects, which provide advanced facilities for optimizing and instrumenting programs, gathering
performance data, and visualizing this information. The Ursa Minor environment provides aids for the
user to understand the gathered performance data and to reason about the information in an interactive
way. In the sense that the tool provides users with advice to improve performance, Ursa Minor has a
similar objective to that of VTune[Int97], which is an advanced tool for single-processor systems.

In addition to the main objectives, we observe the following design rules to make our tool more useful
and easily accessible:

Portability: For disseminating a new tool to the user community, it is important that it be easy to
install on new platforms. We approach this goal by implementing Ursa Minor in the target-
independent Java language, and by using only widely-available Application Programming Inter-
faces (APIs). The tool makes use of information gathered by other facilities, such as the Polaris
compiler and its performance analysis libraries, which themselves are portable to many platforms.
In addition, Ursa Minor is to be
exible in the data format it can read, such that it can adapt
to the tools (compilers and performance analyzers) available on the local platform.

Leveraging o� existing tools: We consider using other available tools to augment the features of
Ursa Minor that we regarded as \not original but nice to have". For instance, there are spread-
sheets capable of rich graphical presentation of data. By allowing the information to be understood
by one of these spreadsheets, we can take advantage of its features to create charts, while focusing
on the new functionality of Ursa Minor.

Expandability : The main function of the Ursa Minor tool is information gathering and browsing.
Hence, whenever we obtain new types of information about the given program we should be able to
see it through the tool with minimal modi�cations. We can also enable the tool to read a generic
data �le, so that new type of information can be understood without signi�cant modi�cations.

3 Description of Ursa Minor

In this section, we provide an overview of Ursa Minor [PVAE97] and describe its functionality. We
will discuss how our design objectives were realized in the concrete tool.

3.1 Overview

The Ursa Minor project provides tools that assist parallel programmers in e�ectively writing and
tuning codes. It provides users with information available from various sources in a comprehensible way.
These sources include tools such as compilers, pro�lers, and simulators. It interacts with users through a
graphical interface, which can provide selective views and combinations of the data. Figure 1 illustrates
interaction between Ursa Minor and the various data �les.

Ursa Minor collects and combines information from various sources. Timing information is gathered
from instrumented program runs. The tool performing this instrumentation is a Polaris-based utility,
not discussed further in this paper [Eig93]. Maximum parallelism estimates are supplied by the Max/P
tool [Pet93, KE97]. Information about which loops are serial or parallel is provided by the actual
Polaris compiler. The Ursa Minor tool includes a subroutine and loop nest structure analyzer, also
implemented using the Polaris infrastructure.

In the current implementation, these information sources are available in �les that need to be created
explicitly by the user before Ursa Minor can read and combine them. Once they exist, several tool
options are provided to read from the various original �les, add to the existing information incrementally,

3

Saved DataBase

Data Dependence
Test Summary

Calling Structure
Analyzer Result

Source File

Simulation Report
from Max/P

Performance Results

Information
Sources

URSA MINOR
UMD

(Ursa Minor DataBase)

Loop Table View Call Graph View

User

Other Tools

SpreadSheet

exportopen/save

interactioninteraction

presentation/edit databasepresentation/edit database

Generated by
Polaris-based Tools
Other Information
Sources

Figure 1: Components of the Ursa Minor tool and their interactions.

store the entire database, or read from a previously saved database. In future releases we plan to
automate the process of creating the information sources by, for example, invoking the compiler on-
demand.

Internally, Ursa Minor stores information in Ursa Minor/Major Databases (UMD). A UMD
is a storage unit that holds the collective information about a program and its execution results in
a certain system environment. This database is organized as a text �le, which can optionally be in-
spected with an editor and printed. Furthermore, the information can be saved in a format that can be
read by commercial spreadsheets, providing a richer set of data manipulation functions and graphical
representations.

The Ursa Minor tool is written in Java. Thus, any platform on which the Java runtime environment
is available can be used to run the tool. It uses the basic Java language with standard APIs, which
enhances the portability of the tool. Object orientation in Java allows a relatively easy addition of
new types of data to the database. The windowing toolkits and utilities provide a good environment for
prototyping user interfaces, which enable us to focus on the design of the tool functionality. Furthermore,
Java, with its network support, makes a useful language for realizing another goal of this project: making
available the gathered program, compilation, and performance results to remote users. This goal has
been realized in the Ursa Major tool, which is discussed in Section 4. In the next section, we examine
the functionality of Ursa Minor more closely.

3.2 Functionality

TheUrsa Minor tool presents information to the user through two display windows: A loop information
table and a call graph. The user interacts with the tool by choosing menu items or mouse-clicking.

Figure 2 shows the loop table view, each line displaying information for an individual loop. Cur-
rently, the table displays information such as timing results from various program runs, the number
of invocations of each loop, the parent in the nest structure, and the maximum degree of parallelism
provided by Max/P [Pet93, KE97]. It also indicates whether a loop is serial or parallel as detected by
Polaris. If it is serial, the reason given by the compiler can be displayed on mouse-clicking. In Figure 2,

4

Figure 2: Loop Table View of the Ursa Minor tool.

the user has clicked on loop RESTAR do560 to see the reason inhibiting parallelization.
Whenever new information from other tools becomes available, the user can add columns in this

view. Also, a user can rearrange columns, delete columns, sort the entries alphabetically or based on
the execution time. By specifying a reference column, speedups can be calculated on-demand. In our
program tuning projects, an Ursa Minor loop table is usually present all the time. After each program
run, the newly collected timing information is included as an additional column in the loop table. In this
way, performance di�erences can be inspected immediately for each individual loop as well as for the
overall program. E�ects of program modi�cations on other program sections become obvious as well.
The modi�cation may change the relative importance of the loops, so that sorting them by their newest
execution time yields a new most-time-consuming loop on which the programmer can focus next.

Another view of Ursa Minor provides the calling structure of a given program, which includes
subroutine, function, and loop nest information as shown in Figure 3. Each rectangle represents either a
subroutine, function, or loop. For example, parallel loops are represented by green rectangles, and serial
loops by red rectangles. Clicking one of these will display the corresponding source code. In Figure 3
the user is inspecting the loop ACTFOR do240 in this way. If one wants a wider view of the program
structure, the user can zoom in and out. This display helps to understand the program structure for
tasks such as interchanging loops or �nding outer or inner candidate parallel loops.

Ursa Minor can save the database in a format that generic spreadsheet programs can understand.
In Figure 4 we have read this form into the commercial xess3 spreadsheet program. This allows one
to exploit the many options and graphical representations of this tool. In Figure 4 the user has chosen
an execution time graph for the program BDNA, comparing the performance of Polaris with the compiler
from Sun Microsystems, (a third line indicating \linear speedup" for reference).

4 Ursa Major: Web-based evaluation of parallel applications

Ursa Major [PE98] is an extension of the Ursa Minor tool. Because we chose Java as an imple-

5

Figure 3: Annotated Call Graph View of the Ursa Minor tool.

Figure 4: Spread-Sheet View of the Ursa Minor tool.

6

mentation language, it was natural to combine our tool capabilities with the rapidly advancing internet
technology and, in this way, allow users at remote sites to access our experimental data.

In extending the use of our tool to a world-wide audience we are addressing several new issues:
First, a�ordable multiprocessor workstations and PCs are currently leading to a substantial increase

in non-expert users and programmers. However, there are no established programming methodologies
that could guide these users in exploiting the new machines. Ursa Major provides a methodology of
\learning by example" to both local and remote users. New users see a variety of sample programs,
their serial and parallel source code, performance improvements resulting from compilation or source
code modi�cations, etc. The tool helps relate all these pieces of information, so that, for example, one
can identify precisely the e�ect of a source code change on the performance for both the modi�ed code
section and the overall program.

Second, a core need for advancing the state of the art of computer systems is performance evaluation
and the comparison of results with those obtained by others. To this end, many test applications have
been made publicly available for study and benchmarking by both researchers and industry. Although
a large body of measurements obtained from these programs can be found in the literature and on
public data repositories, it is usually extremely di�cult to combine them into a form meaningful for
new purposes. In part this is because data are not readily available (i.e., they have to be extracted
from several papers) and they have to undergo substantial re-categorizations and transformations. In
addressing this issue, the Ursa Major project is creating a comprehensive database of information.
From the beginning, the abstraction of performance and program information into a form that answers
the questions of the observer was one of our goals. However, this issue becomes drastically more complex
as we consider large data repositories organized into a multitude of dimensions. The internet technology
and its combination with high-performance computing tools opens this new realm of questions and
opportunities, which we are beginning to explore with Ursa Major.

4.1 Description of Ursa Major

Ursa Major is a web-based tool capable of presenting the Ursa Minor/Major database to a remote
user. Figure 5 shows an overall view of the interactions between Ursa Major, a user, and the Ursa
Major repository (UMR), which will be discussed in the next section. Ursa Major is available at
http://www.ecn.purdue.edu/~ipark/UM/index.html.

Ursa Minor's facilities for manipulating databases and for creating graphical user interfaces are
basic building blocks for Ursa Major. Java class inheritance was utilized extensively for developing
Ursa Major's modules from these components. In addition, new modules were created for the tool's
networking features and for organizing the data into a repository that is easy to access from remote
Web sites. The latter includes the de�nition of naming schemes with which information can be found
intuitively and can easily be related to other information.

Since it is based on Ursa Minor, Ursa Major o�ers the same basic functionality. One di�erence
is the access to the repository. Remote Java applications cannot access disk �les directly. They have to
retrieve data in the form of Web documents. This is due to Java security restrictions. Users may choose
the UMDs of their interest by examining the descriptions provided for the available UMDs. UMDs are
then retrieved by their URL. Once a UMD is displayed, users may perform the same tasks as they do
with Ursa Minor, except that they cannot save �les on the local disk. The look and feel of the Ursa
Major tool is almost identical with those of Ursa Minor, but Ursa Major is embedded in a web
page through Java Applet and is invoked by clicking a button in the web page.

4.2 Ursa Major Repository (UMR)

During the process of compiling a parallel program and measuring its performance, a considerable
amount of information is gathered. Several such e�orts are ongoing in our group, hence the UMR is

7

URSA MAJOR
UMD

(Ursa Major Database)

Loop Table View Call Graph View

User

DataBase DownloadJava Program Download

interactioninteraction

presentation/edit databasepresentation/edit database

UMR
(Ursa Major Repository)

Ursa Major
Applet

Remote Server

Figure 5: Interaction provided by the Ursa Major tool.

continuously being extended. It currently contains several benchmark suites that have been studied at
Purdue University, including SPEC and Perfect benchmarks.

The speci�c data includes structural program information, results of program analysis, simulation
reports, as well as the timing information of various program runs. Finding parallelism starts from
looking through this information and locating potentially parallel sections of code. Several tools and
methodologies are being used to gather and organize such data [VGGJ+89, EM93].

One issue in designing the repository was to de�ne storage schemes that makes it easy for users to
�nd information entered by other users. To this end, the repository structure consists of extensions on
�le and directory names indicating data such as the program names, platforms, compilers, optimization,
and parallel languages. To be
exible, these extensions are not hard-coded. Instead, they are described
in a con�guration �le that is read by Ursa Major at the start of a session.

4.3 Experiences with Ursa Major

We present early experiences with using the Ursa Major tool and with its implementation. We have
used the tool in our research team, on multiple workstation platforms and also PCs connected through
modems at home. Our team includes researchers at two universities, so that realistic remote accesses
were involved. Based on these experiences we can picture scenarios of how the di�erent user communities
can best take advantage of the tool and what challenges need to be addressed to make it even more
useful in the future.

Ursa Major targets several audiences. They include novice parallel programmers, advanced pro-
grammers, and researchers interested in performance evaluation and benchmarking. Obviously these
categories can overlap. For beginners, the tool supports a methodology of \learning by example". New
programmers start by getting the general feel for the repository. This is best done starting with the
call graph view and clicking on several nodes in this graph to inspect the source programs. To get more

8

insights about an individual program the user now can step through the most time-consuming loops and
compare serial and parallel program versions. Ursa Major supports this by providing the loop table
view. Source code corresponding to serial and the parallel variant can be opened. The loop table also
shows timings of the two variants giving the user a �rst view of the speedups obtained by each loop. The
tool can compute and display these speedup numbers as an option. Comparing these program variants
gives the new user a �rst idea of how programs need to be transformed to run in parallel and what
performance improvement can be obtained.

The advanced programmer may bene�t from this tool by exploiting the features allowing the in-
spection of the reasons why certain parallel loops or program sections perform well or poorly in more
detail and why a code section is not parallel. In this way, users may identify the bottleneck and possible
improvements by combining the perspectives from both performance evaluation and compiler analysis
results.

Ursa Major further serves the research community in general by making available the large amount
of information kept in the Ursa Major repository and facilitating access to this information in various
dimensions. Even within our research group the availability of the repository enabled many di�erent
studies, such as architectural comparisons, comparisons of di�erent compilers, di�erent programs, di�er-
ent subroutines and loops within a program, and scalability studies over numbers of processors and data
set sizes. Increasing the support for inspecting our database from these various angles is an important
ongoing e�ort.

5 Case Studies

5.1 Experiments with the ARC2D Application

In a current study, we are comparing parallel directive languages for their suitability as a portable com-
piler output representation [Vos97]. In doing so, we have expressed the parallelism in several benchmark
codes with various directive sets. If the performance results of these codes are signi�cantly di�erent,
Ursa Minor is used in the search for explanations of these di�erences. An example of such a search
performed on the Perfect Benchmarks code ARC2D, is presented here as our �rst case study.

First, as a base-line measurement, a loop by loop pro�le of the serial version of the code executed
on a 4 processor UltraSPARC workstation was done. The results of this instrumentation was then
gathered by Ursa Minor and transformed into a form which is readable by commercial spreadsheet
packages such as Excel andXess3. One concern with instrumentation is that the associated overhead will
noticeably impact the measured performance. Using the number of times each loop is executed, as well
as the execution time measured by the instrumentation, it is easily determined when such perturbation
occurs. In ARC2D, 114 of the 149 loops had an instrumentation overhead of more than 0.1% of the loop
execution time. We chose 0.1% as the cuto� to ensure that the instrumented timing measurements still
re
ected the program performance with high accuracy. Removing the instrumentation from these 114
loops, reduced the total execution time of the program by 46%. Ursa Minor currently provides the
average execution times for computing the overhead. In future releases of the tool this computation will
be fully automated.

Additionally, the most time-consuming loops were identi�ed in the serial code. The Polaris-
parallelized versions of these loops were used to compare the performance of several parallel directive
languages. The major loops in ARC2D parallelized by Polaris are FILERX do19, STEPFX do210 and
STEPFX do230. The identi�cation of these loops was straightforward given thatUrsa Minor presented
the execution times of each loop as well as annotated it as parallel or serial. The relative importance of
these loops in the serial version can be seen in Figure 6.

The parallelism found by Polaris was expressed in two forms. One using the native Sun SPARC
dialect and the other using the portable KAP/Pro directive set [Kuc88], a close relative of the new
OpenMP industry standard [OMP97]. Browsing through the performance results displayed by Ursa
Minor it was seen that on 4 processors, the KAP/Pro directive language exhibited superior performance.

9

FILERX−do19

(6.0%)

STEPFX−do210

(10.9%)

STEPFX−do230

(11.7%)

Others
(71.4%)

Figure 6: Percentage of execution time spent in major loops of ARC2D.

Furthermore, by adding the loop-by-loop pro�le of ARC2D, as parallelized by the Sun native compiler,
an interesting phenomenon was discovered: A signi�cant \negative overhead" existed for many of the
loops in the KAP/Pro version when comparing the 1 processor parallel execution to the execution of
the untransformed code. Apparently, sequential optimizations were performed in the KAP/Pro version
which were not performed in the serial version. Interestingly, this same optimization was often performed
in the loops found to be parallel by the native compiler, but not in the Polaris version which used the
Sun SPARC directives. The performance of the three major loops is shown in Figure 7.

Using the source code browsing capabilities, a side-by-side comparison of the loop nests uncovered the
reason. Loop interchanging was being applied to many of the loop nests in the KAP/Pro directive version
by the back-end compiler. The use of the Sun SPARC directives inhibited this transformation. Loop
interchanging was not disabled when parallelizing the code with the native Sun parallelizing compiler;
however it was applied less frequently. For a more detailed discussion of this phenomenon and others
uncovered during the analysis of ARC2D, please refer to [Vos97].

A further analysis of the serial source, the Polaris translated versions, and their graphical loop
structure representation, showed that the two most signi�cant loops STEPFX do210 and STEPFX do230
were imperfectly nested in the original source, but were transformed into a perfect nest by Polaris.
The application of forward substitution and deadcode elimination by Polaris created perfectly nested
loops, which the back-end compiler was then able to interchange. Therefore, although the native Sun
parallelizing compiler was able to identify the same amount of parallelism as Polaris, it did not apply
further optimizations. Figure 8 shows the performance of the three parallel versions of ARC2D executed
on 4 processors of the UltraSPARC. This �gure also shows the performance that would be obtained in
the Sun SPARC directive version if the interchanging had been done.

Ursa Minor allowed the characteristics responsible for the performance di�erences in ARC2D to be
quickly identi�ed. The often tedious task of tabularizing pro�ling results was performed automatically
and the identi�cation of the parallel loops in this table was made obvious. The nesting structure of
the loops was a major factor in the performance of this code, and Ursa Minor's graphical display of
the loop structure was a signi�cant aid in quickly identifying this phenomenon. A detailed study of the
several versions of the source code for each loop nest was often necessary, and a side-by-side comparison
was easily performed with the browsing facilities. The graphs presented in Figures 6 through 8 can
be generated by exporting the Ursa Minor/Major database to the Xess3 spreadsheet and using its
graphing functions.

The full results of this study, performed on 8 benchmark programs across 4 multiprocessor architec-
tures, can be interactively explored through the Ursa Major web page. Performance measurements
obtained on a 4 processor SPARCstation 20, a 6 processor UltraSPARC Enterprise, a 16 processor Sili-
con Graphics Power Challenge and a 32 processors Origin 2000 have been made available as UMDs at

10

ser 1 2 3 4
Number of Processors

0

1

2

3

4

5

6

E
xe

cu
tio

n
T

im
e

(s
ec

)

1 2 3 4
Number of Processors

0
2
4
6
8

10
12
14

S
pe

ed
up

(a) (b)

ser 1 2 3 4
Number of Processors

0

2

4

6

8

10

E
xe

cu
tio

n
T

im
e

(s
ec

)

1 2 3 4
Number of Processors

0

2

4

6

8

10

S
pe

ed
up

(c) (d)

ser 1 2 3 4
Number of Processors

0

2

4

6

8

10

12

E
xe

cu
tio

n
T

im
e

(s
ec

)

1 2 3 4
Number of Processors

0

2

4

6

8

10

S
pe

ed
up

(e) (f)

Native Parallelizer
Polaris+Native Directives
Polaris+KAP/Pro Directives

Figure 7: Loop performance of ARC2D on an UltraSPARC: (a) Execution time of FILERX do19, (b)
Speedup of FILERX do19, (c) Execution time of STEPFX do210, (d) Speedup of STEPFX do210, (e)
Execution time of STEPFX do230 and (f) Speedup of STEPFX do230.

0

1

2

3

4

 Native Sun Parallelizer

 Polaris+Sun Directives
 +Perfect Nest Interchange

 +Imperfect Nest Interchange

 Polaris+KAP/Pro Directives

Figure 8: Performance of ARC2D on 4 Processors of UltraSPARC.

11

that site. For a detailed description of these results refer to [Vos97].

5.2 Experiment with the Seismic Application Suite

As the second case study, we introduce another project that characterizes and analyzes large-scope
industrial applications [AE97]. One of the programs we considered was the Seismic Benchmark Suite
[MH93], a seismic activity simulation program consisting of 20,000 lines of Fortran code. The Seismic
Benchmark Suite contains a deep hierarchy of nested subroutines and loops. Our goal is to understand
how the computational complexity of the overall application suite scales with the number of processors
and with the input data space. Here, we will brie
y describe how the Ursa Minor tool can be of help
in the process of characterizing a large application.

To characterize an application's execution time we sum the times contributed by each loop. A loop's
execution time, exclusive of any inner-loops, is estimated by obtaining an expression for the number of
iterations the loop will execute and combining this expression with the average time per iteration of the
loop from actual measurements. In order to do this we use the loop table view in Ursa Minor which
provides average loop execution times as well as a loop's parent in the calling structure. With codes
as large as the Seismic Suite the simple task of locating the beginning and ending of loops becomes
cumbersome and prone to human errors. Ursa Minor greatly simpli�es this task and provides a visual
description of the loop nest hierarchy with its call graph view.

F
1

M
1

F
2

M
2

F
4

M
4

F
8

M
8

F
16

M
16

F
32

M
32

F = Forecasted, M = Measured
Number of Processors

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
(s

ec
on

d
s)

Phase 4: Depth Migration

Figure 9: Actual measurements of loop execution times were compared with predicted times to determine
the accuracy of the model on a loop-by-loop basis. The separate colors represent the loops of this seismic
phase. The actual measurements were gathered using a 32-processor node of an SGI/Cray Origin2000
of NCSA at the University of Illinois.

After we characterized the code's performance, we usedUrsa Minor to determine the accuracy of our
characterization and locate the points needing re�nement. Figure 9 compares actual measurements with
our predicted times for one seismic processing phase (called depth migration) as the number of processors
increases from 1 to 32. Ursa Minor aided in gathering the data from both the measurements and our
model so that each loop's performance could be analyzed individually. Loops that scaled di�erently
from the measured timings were easy to �nd. Our model could then be modi�ed for more accurate

12

predictions. We used this process to test our model's scalability when the data size increased as well as
when the number of processors increased.

1 10 100 1000 10000
Number of Processors

1x100

1x101

1x102

1x103

1x104

1x105

1x106

1x107

1x108

1x109

T
im

e
(s

ec
on

d
s,

 lo
g

sc
al

e)

Phase 4: Depth Migration

 Total

 Comp

 Comm

 Disk IO

 Disk Reads

 Disk Writes

Figure 10: Forecasted performance of the Seismic Suite as the machine size is scaled up. The curves
divide the total execution time into computation, communication, and disk IO times. The total time is
dominated by the computation time (because of this the curves \Total" and \Comp" overlap).

The �nal goal of our characterizing process was extrapolating the Seismic Suite's performance to
machines larger (more processors) than we currently have available and to input data sizes appropriate
for such large machines. Databases of predicted execution times were exported from Ursa Minor for
importing into an Xess3 spreadsheet, in which we produced graphs visually depicting the scalability
of the application. Figure 10 shows extrapolation results for one seismic processing phase, again depth
migration, as the number of processors is increased from 1 to 2,048 processors. The dataset is one which
would use 3 terabytes of disk space.

Another objective of the Seismic Benchmark case study was to produce a well-performing loop-parallel
program. As originally written, the Seismic Benchmark is a message-passing code. We investigated how
well a loop-parallel version of the program would perform using Polaris as a starting point. Ursa Minor
calculated the speedup of our loop-parallel program for each loop,
agging the loops with speedups below
1. These loops were then investigated further to improve their automatic parallelization by Polaris. If
no improvements could be made, we forced a loop to execute serially so that it would not incur any
parallel execution overhead.

The data from the Seismic Benchmark case study is currently available to outside users through the
use of Ursa Major. Measurements were gathered using the SGI/Cray Origin 2000 at NCSA.

6 Conclusion

We have presented an on-going project that provides tools and methodologies for parallel program
development and performance evaluation. Ursa Minor and Ursa Major support user models of
\parallel programming by examples" for beginners and interactive compilation and performance tuning
for experts. They also serve as a program and benchmark database for computing systems research. The

13

tools integrate information available from performance analysis tools, compilers, simulators, and source
programs to a degree not provided by previous tools. Ursa Major can be executed on the World-Wide
Web, from where a growing repository of information can be viewed.

TheUrsa tool family is evolving in a need-driven way. Its developers are also involved in projects such
as the characterization and analysis of real applications and the development of parallelizing compilers.
Tool capabilities needed in these e�orts are being integrated in both Ursa Minor and Ursa Major.
Keeping close together the tool design projects and application characterization e�orts will ensure the
practicality of our tool in the future.

Several enhancements are planned next. New categories of information will be integrated into the
tools and their user views. For example, we will include improved compiler explanations why certain
optimizations were or were not performed. This enables the programmer to input missing data to the
compiler or to perform certain transformations by hand. Another important goal is the support for
user methodologies. As a long-term goal we envision facilities that allow one to query the information
repository directly for suggested improvements of programs, compilers, or architectures. Better support
for the tool's Web response is another ongoing e�ort. As we have only begun to explore the potential
o�ered by the new Internet technology, continuous feedback from its user community will help improve
the tool's service to a world-wide audience.

References

[AE97] Brian Armstrong and Rudolf Eigenmann. Performance forecasting: Characterization of ap-
plications on current and future architectures. Technical Report ECE-HPCLab-97202, Pur-
due University, School of Electrical and Computer, Engineering, High-Performance Com-
puting Laboratory, February 97.

[AO88] J. Ambras and V. O'Day. MicroScope: A Knowledge-Based Programming Environment.
IEEE Software, pages 50{58, May 1988.

[ASM89] Bill Appelbe, Kevin Smith, and Charles McDowell. Start/Pat: A Parallel-Programming
Toolkit. IEEE Software, 6(4):29{38, July 1989.

[BDE+96] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoe
inger, T. Lawrence, J. Lee, D. Padua,
Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programmingwith Polaris. IEEE
Computer, pages 78{82, December 1996.

[BKK+89] V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok. The ParaScope
editor: An interactive parallel programming tool. In International Conference on Super-
computing, pages 540{550, 1989.

[BST86] G. Bruno, P. Spiller, and I. Tota. AISPE: An Advanced, Industrial Software-Production
Environment . Proceedings of Computer Software and Applications Conf., pages 94{99,
1986.

[Eig93] Rudolf Eigenmann. Toward a Methodology of Optimizing Programs for High-Performance
Computers. Conference Proceedings, ICS'93, Tokyo, Japan, pages 27{36, July 20-22, 1993.

[EM93] Rudolf Eigenmann and Patrick McClaughry. Practical Tools for Optimizing Parallel Pro-
grams. Presented at the 1993 SCS Multiconference, Arlington, VA, March 27 - April 1,
1993.

[HAA+96] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion,
and M. S. Lam. Maximizing multiprocessor performance with the SUIF compiler. IEEE
Computer, pages 84{89, December 1996.

14

[Int97] Intel. VTune: Visual Tuning Environment, 1997.
http://developer.intel.com/design/perftool/vtune/index.htm.

[KE97] Seon-Wook Kim and Rudolf Eigenmann. Max/P: detecting the maximum parallelism in
a Fortran program. Purdue University, School of Electrical and Computer, Engineering,
High-Performance Computing Laboratory, 1997. Manual ECE-HPCLab-97201.

[KT87] J. H. Kuo and H. C. Tu. Prototyping a Software Information Base for Software-Engineeri
ng Environments. Proceedings of Computer Software and Applications Conf., pages 38{44,
1987.

[Kuc88] Kuck & Associates, Inc., Champaign, Illinois. KAP User's Guide, 1988.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Je�rey K. Hollingsworth
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
Paradyn parallel performance measurement tools. IEEE Computer, 28(11), November 1995.

[MH93] C. C. Mosher and S. Hassanzadeh. ARCO seismic processing performance evaluation suite,
user's guide. Technical report, ARCO, Plano, TX., 1993.

[OMP97] OpenMP: A Proposed Industry Standard API for Shared Memory Programming. Technical
report, OpenMP, October 1997.

[PE98] Insung Park and Rudolf Eigenmann. Ursa Major: Exploring Web technology for design
and evaluation of high-performance systems. In Proc. of the International Conference on
High Performance Computing and Networking, April 1998.

[Pet93] Paul Marx Petersen. Evaluation of Programs and Parallelizing Compilers Using Dynamic
Analysis Techniques. PhD thesis, Univ. of Illinois at Urbana-Champaign, Center for Super-
computing Res. & Dev., January 1993.

[PVAE97] Insung Park, Michael J. Voss, Brian Armstrong, and Rudolf Eigenmann. Interactive compi-
lation and performance analysis with Ursa Minor. InWorkshop of Languages and Compilers
for Parallel Computing, August 97.

[Ree94] Daniel A. Reed. Experimental performance analysis of parallel systems: Techniques and
open problems. In Proc. of the 7th Int' Conf on Modelling Techniques and Tools for Com-
puter Performance Evaluation, pages 25{51, 1994.

[VGGJ+89] Jr. Vincent Guarna, Dennis Gannon, David Jablonowski, Allen Malony, and Yogesh Gaur.
Faust: An Integrated Environment for the Development of Parallel Programs. IEEE Soft-
ware, pages 20{27, July 1989.

[Vos97] Michael J. Voss. Portable loop-level parallelism for shared memory multiprocessor architec-
tures. Master's thesis, School of Electrical and Computer Engineering, Purdue University,
October 97.

15

