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Abstract

Internet sharing systems aim at federating and uti-
lizing distributed computing resources across the Inter-
net. This paper presents a user-level virtual machine
(VM) approach to MPI program execution in an Inter-
net sharing framework. In this approach, the resource
consumer has its own operating system running on top
of, and isolated from, the operating system of the re-
source provider. We propose an efficient socket virtual-
ization technique to optimize VM network performance.
Socket virtualization achieves the same network band-
width as the physical network. In our LAN environ-
ment, it reduces the latency overhead from 172% (using
existing TUN/TAP technique) to 35.6%. Performance
results on MPI benchmarks show that our virtualiza-
tion technique incurs small overhead compared with the
physical host platform, while gaining in return a higher
degree of guest isolation and customization. We also
describe the key mechanisms that allow the employment
of VMs in an existing Internet sharing system.

1 Introduction and Motivation

Significant computing power can be aggregated from
machines connected by the Internet. Systems, such as
BOINC [1], have begun to exploit this power by encour-
aging Internet users to contribute their idle computing
resources. Computation-intensive jobs, such as those in
SETI@home [10], can achieve high computing capacity
by gathering idle CPU cycles. Our Internet sharing
system, iShare [17], is one such system. It employs
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Peer-to-Peer (P2P) techniques for publishing, discov-
ering and federating Internet resources such as CPU
cycles, software, and disk space. IShare’s initial focus
was to manage these resources for applications that
need single-node platforms. In this paper, we present
techniques that allow distributed MPI programs to ex-
ecute in an Internet sharing environment like iShare.

Meanwhile, many users are still reluctant to par-
ticipate in Internet sharing systems, due to lack of
safeguards between resource providers and consumers.
Resource providers are concerned with the potential
harm inflicted by Internet sharing systems, especially
when the installation or use of the system requires ad-
ministrator (or root) privileges. Moreover, resource
providers distrust guest jobs, because erroneous or ma-
licious applications submitted by a consumer may harm
the provider’s host machine. On the other hand, re-
source consumers distrust other guest jobs on the same
host machine, because these jobs may peek, forge or
terminate their own jobs.

Recently, virtual machine (VM) techniques have
been proposed to address some of the above issues [7].
Virtual machines enhance system security by provid-
ing strict isolation between the host and guest jobs.
The resource provider starts a VM, which provides a
complete machine and OS illusion, for a consumer. Dif-
ferent consumers use different VMs running on top of
the physical host machine. In this way, each job is
executed in a sandboxing environment – a confined ex-
ecution environment for running untrusted programs.

In this paper, we build on the VM technique to pro-
vide an environment for running distributed, message-
passing (MPI) programs in Internet sharing systems.
We deploy VMs completely at user level, using the
User-Mode Linux (UML) [5] VM platform. In addi-
tion, we implement an efficient, secure VM network,



which can be easily set up without any network ad-
ministration effort. Our VM solution works in concert
with techniques to discover and select machines on the
Internet for an MPI program in an environment of fluc-
tuating resources.

The key challenge we address is to provide an ef-
ficient, secure VM network. In our design, we assign
the same host machine IP address to the VM, and im-
plement the TCP/IP socket functionality for the VM,
called guest socket, based on the socket functionality
of the host machine, called host socket. We work on
socket functions, because they are widely used in the
Internet and in numerous MPI implementations. Mul-
tiple VMs on the host use the same IP address, and can
be uniquely identified by different ports on the host
machine. To be shown in Section 5, communication
overhead of our VM network implementation is low.
To prevent potential abuse of network resources in VM
networks [23], we set security policies to ensure that
guest socket communications only happen between spe-
cific machines, ports and applications. Our prototype
of guest socket functions are developed based on User-
Mode Linux (UML).

Another challenge is the management of resources
in a non-dedicated cycle-sharing environment, where
the availability of resources fluctuates. Our system
schedules an MPI program on multiple VMs, each of
which is mapped to and started on a physical machine.
To ensure reliable MPI program executions, iShare’s
resource allocation algorithm leverages results of the
node availability prediction [19].

Our contributions are summarized as follows:

1. We develop a method for efficient communication
between VMs. The key idea is to enable guest
socket functions to access host socket functions di-
rectly, avoiding overheads that other VM network
implementations [5, 13, 21, 23] incur.

2. We enhance security in our Internet sharing sys-
tem by employing a user-level VM and a VM net-
work approach for running (MPI) programs on re-
mote, untrusted hosts. A number of security poli-
cies are proposed to work with our VM networking
technique.

3. We install and employ a VM using normal user
privileges on a host machine. The setup of the
VM network requires no administration effort.

4. We develop new resource management methods
that complement the VM operations in our In-
ternet sharing system, iShare. These methods en-
able reliable guest job execution in an environment
with fluctuating computing resources.

The remainder of this paper is organized as follows.
Section 2 provides background about the UML vir-
tual machine platform, on which our techniques are
based. Section 3 presents our VM networking solu-
tion for message-passing programs. Section 4 gives an
overview of using VMs in a real-world Internet sharing
system. Section 5 presents experimental results of our
VM solution. Section 6 discusses related work. Sec-
tion 7 concludes this paper.

2 Background: User-Mode Linux

User-Mode Linux (UML) [5] adapts the Linux ker-
nel, so that it can execute as a set of host Linux pro-
cesses. A user-space virtual machine (VM) using this
adapted Linux kernel can be created on an unmodified
host OS. The VM uses emulated hardware constructed
from services provided by the host. Processes running
in the guest OS of the VM see a self-contained environ-
ment. They do not have any access to host resources
other than those explicitly provided to the VM. Hence,
UML provides a sandboxing environment to the guests.

The key technique in UML implementation is its
tracing thread, which is a special thread intercepting
all system calls from processes in the guest OS. The
tracing thread can intercept a guest system call and
its arguments, annul the system call, and divert the
process into the user-space kernel to be executed. In
our system, the tracing thread diverts socket system
calls to our implementation of guest socket functions,
which will then call host socket functions.

Although the tracing mechanism in UML does
not introduce significant overhead to computation-
intensive programs, it does to programs with frequent
system calls. Other virtual machine platforms with
better performance, for example, VMware [12] and
Xen [6], can be adopted for MPI program execution in
a networked environment. In this paper, we choose to
use UML because of the following three requirements of
Internet sharing systems: (1) Internet sharing systems
favor a pure user-level solution, with no root or admin-
istration privilege required. (2) They should not make
significant changes to the host environment, to mini-
mize the impact on the resource provider. (3) The sys-
tems aim at providing a realistic guest environment to
the resource consumer. Furthermore, consumers may
configure their own guest environments, for example,
guest OS versions, libraries and software. UML can
be installed at user level and it meets these three re-
quirements. The next section describes our user-level
solution to enabling efficient VM communication over
the Internet.



3 VM Networking in iShare

To use VMs for MPI program execution in an In-
ternet sharing system, a VM network is needed to en-
able communication between multiple VMs hosted on
distributed physical machines. The VM network is ex-
pected to achieve the following three goals.

1. Efficiency: It is desirable that VM network per-
formance (latency and bandwidth) be as close as
possible to physical network performance.

2. Security: Policies are needed for restricting the
power of using the VM network, limiting potential
abuse. Network security in its entirety is beyond
the scope of this paper.

3. No root privilege requirement: Resource providers
should be allowed to offer machines for remote use
“as is”, without performing installation or configu-
ration that requires administrator privileges. This
requirement is a key enabler for a large range of
machines to become available for Internet sharing.

There exist several solutions to VM networking,
characterized by dynamic IP allocation, network ad-
dress translation, and link layer virtualization. For the
following reasons, these solutions are not well suited
for use in message-passing program execution in an In-
ternet sharing environment.

1. With dynamic IP allocation, the virtual network
interface of a VM is emulated by using the physical
interface of the underlying host, as shown in the
bridged connection in VMware [12]. This solution
requires dynamic allocation of new Internet IPs
for VMs. This is not practical because it could
prohibitively inflate the number of IP addresses
needed and it also requires system administration
tasks.

2. Network address translation, such as the NAT net-
work in VMware [12], is a commonly used tech-
nique in border routers and firewalls. It maps
IP addresses and TCP/UDP ports on VMs to
IP addresses and ports on host machines. These
mappings need to be recorded or explicitly added.
NAT networking is insufficient, because the map-
pings have to be created manually to enable in-
coming traffic [23].

3. Virtual networks, such as VNET [23] and VIO-
LIN [13, 21], incur non-trivial performance penalty
due to their link layer virtualization approach.

The TUN/TAP VM networking solution suggested
by UML belongs to the first category (dynamic IP al-
location). In addition to the aforementioned disadvan-
tages, TUN/TAP decreases network bandwidth and
increases network latency significantly, to be demon-
strated in Section 5.

The key idea in our approach is to realize guest
socket functions directly via host socket functions.
VMs are connected in the same way as physical ma-
chines. Communication between VMs is essentially the
same as communication between physical machines.
Our solution achieves all the three design goals for VM
networking. First, a guest socket system call is essen-
tially a host socket system call without further trans-
lation or redirection. The overhead of virtualization
is insignificant. Second, VM network communication
is based on user-level socket calls on the host and re-
stricted by our security policies. Third, because VMs
are connected in the same way as physical machines,
no system administration operations (e.g., IP alloca-
tion and routing) are needed to set up VM networks.
By contrast, the current TUN/TAP solution in UML
requires root privileges.

Our user-level solution guarantees that the whole
VM system can be installed and operate under a nor-
mal user account. It enables resource providers to use
their unmodified administrative procedures for manag-
ing and providing security for this account.

We will discuss issues involved in our guest socket
implementation and security policies in Section 3.1 and
Section 3.2, respectively.

3.1 Socket Implementation Issues

In our VM networking technique, socket system calls
from a guest process are intercepted by UML’s trac-
ing mechanism. These calls are diverted to our socket
implementation, which includes the socket system calls
and all the file access functions. Because file operations
can also be performed on a socket, attention should be
paid to system calls on file operations as well. Essen-
tially, these functions invoke the corresponding host
socket calls. As guest socket calls invoke host sockets
directly, the following issues, not present in the original
UML, need to be resolved:

3.1.1 File Descriptor Virtualization

Guest socket operations use guest-domain file descrip-
tors; the kernel (UML) calls host socket functions, us-
ing host-domain descriptors, to realize the guest socket
operations. However, a file descriptor in the host do-
main is not the one in the guest domain, due to virtu-
alization.



Our UML kernel maintains a mapping from guest-
domain descriptors to host-domain descriptors for live
sockets. Whenever a new descriptor is created for
a guest socket call, in socket(), socketpair() or ac-
cept(), the kernel allocates a guest-domain file descrip-
tor and maps it to the host-domain descriptor, re-
turned from the corresponding host socket function
call. Upon guest socket operations, the kernel re-
trieves host-domain file descriptors from the mapping
and passes them to the corresponding host socket func-
tion calls. During the operations, the reference counter
associated with a guest-domain descriptor is incre-
mented/decremented in the same way as in the orig-
inal Linux approach. When the counter reaches zero,
mostly due to close(), both the host-domain descriptor
and the guest-domain descriptor will be freed.

3.1.2 Page Fault Manipulation

For socket operations like send() and recv(), a buffer
in the user address space is passed to the UML kernel.
Page faults may happen, when the buffer is accessed
during the kernel-mode execution. In this situation,
the page fault handler of the guest OS should be in-
voked. However, in UML, by default, the page fault
handler in the host OS is invoked.

Similar situations have happened to the original
UML, for example, in system call read(). UML solves
this problem by providing special memory copying util-
ities, which transfer data between kernel address space
and user address space [5]. These utility functions have
a code path that gets executed when a fault happens
during the memory copy. This code path will emulate
the page fault in the user address space, which will
then be processed by the guest page fault handler. Our
socket implementation makes use of the above mecha-
nism to handle page faults that happen during socket
calls.

3.1.3 Blocking Mode Handling

If a guest socket is in blocking mode (so is the corre-
sponding host socket), the socket operations like send()
and recv() should not exit the kernel to the user un-
til the relevant data or buffer is available. However,
the blocked host socket call in the kernel would block
the entire guest OS, thus the VM would be blocked as
well. As a result, the other processes in the guest would
be blocked inappropriately, leading to a deadlock in a
multi-programming environment.

To avoid such deadlock situation, our implementa-
tion checks, before calling the host socket functions,
if the data or buffer is available. It relinquishes the
processor while this condition is false. In this way,

the host socket function never gets blocked, while the
guest socket function enters/leaves the blocking state
correctly.

Asynchronous socket programming could be used
for the data checking mentioned above. In this so-
lution, signals would be utilized to notify the kernel
whether the relevant socket has available data. How-
ever, the asynchronous socket is not well implemented
in all Linux systems. For example, our experimental
system, RedHat 9.0, does not support asynchronous
sockets.

We adopt a different solution, periodic polling, in
which the socket system call implementation polls the
host socket. If the data or buffer is not available,
the process that is making the socket call sleeps and
yields the processor to other processes. At each pro-
cess rescheduling action, the kernel scheduler polls the
pending host sockets and wakes up the correspond-
ing processes upon the occurrences of certain socket
events. To minimize the duration of sleep, the idle
process periodically polls the sockets as well. When
data or buffer is available, the relevant process exits the
polling loop to execute the corresponding host socket
functions. This approach yields low communication la-
tency, as we will see in Section 5.

3.2 Security Policies

By directly connecting the virtual network interface
in a VM to the physical interface of the host, our socket
implementation provides an efficient way of accessing
network resources. To prevent potential abuse of net-
work resources in VM networks, we set security poli-
cies to ensure that guest socket communications only
happen between specific machines and ports. We add
three security policies to our socket implementation.
Essentially, these policies make the VM communica-
tion tamper-resistant by restricting the usage of host
sockets.

3.2.1 TCP/UDP Sockets Only

Our socket implementation is applied only to Internet
domain sockets using TCP or UDP protocols. All other
socket types (e.g., Unix domain sockets) are handled
by the original UML socket functions. (This is because
it is more secure for a guest application to use Unix
domain sockets within the guest domain than within
the host domain.) The support for TCP/UDP sockets
is sufficient for running MPI programs.



3.2.2 Specific Machines Only

VM communication using our socket implementation is
limited to a list of machines, which is generated dynam-
ically as described in Section 4. No data can be sent
to or received from other machines. This list is passed
to the kernel at the time when the VM is initiated. In
iShare, this list is generated by the resource allocator,
which discovers and schedules machines appropriate for
a requested job. The list is neither contained in the
guest OS image, nor in the host file system. It only
exists in the kernel address space of the VM. This so-
lution allows for flexible VM setup, and also disallows
access to the list from the host.

In order to limit network access within the provided
list of machines, a hash table is created from the list.
The peer machine address of a socket connection or the
one specified in sendto()/recvfrom() is checked against
this table. The socket operation is denied, if the ma-
chine address is not found in the table. If the IP ad-
dresses of physical machines should not be revealed to
the user, a virtual private IP address space could be
applied to virtual machines. The kernel would be in
charge of the address translation between virtual IPs
of the VMs and real IPs of the physical machines.

3.2.3 Specific Ports Only

A range of ports are passed to the kernel during VM
initiation. Our socket implementation does not allow
the user application to access any port out of this range.
By default, we do not allow access to the ports below
1024. As a result, a VM cannot talk to the reserved
ports on the physical machines.

In this paper, we use a direct mapping from the
port number in the guest address space to the one in
the host address space. The port number in the guest
address space is used by guest socket calls, while the
one in the host address space is used by the host socket
calls made by our socket implementation. In addition,
a port number translation between the guest and the
host could be exploited to support arbitrary ports used
by various applications. Different VMs should agree on
the same translation mechanism, so that their kernels
could talk to each other through the host ports. In
this case, the guest might use any ports, mapped to
different ones on the host.

4 Resource Management in iShare

Managing the nodes (machines) that participate in
the execution of a distributed message-passing program
is an important issue in the large-scale Internet sharing
system like iShare. Resource providers must be able to

maintain autonomy in deciding when and how much
machine cycles are available for resource consumers.
For programs executed in such an environment, re-
source availability can fluctuate substantially. Our re-
source management strategy aims to deliver the best-
effort performance of program execution in this situa-
tion. To optimize the usage of available resources with
minimum interruptions from resource failures (e.g., re-
source revocation or violation of resource constraints),
we take the approach of fault-aware resource allocation.
The key idea is to pro-actively allocate the resources
delivering better performance, with lower probability
of resource failures during the program execution.

This section describes the realization of VM-based
MPI execution in the iShare Internet sharing system.
We will focus on the resource management subsys-
tem, including the resource publishing/discovery and
resource allocation mechanisms.

4.1 Principles of VM-based MPI Execu-
tion in iShare

To run an MPI program within VMs, the iShare
middle-ware needs to allocate the resources (physical
machines and VM images), set the resource configura-
tions for VMs (socket connections, memory size, etc),
stage the program binary code into VMs, and start the
VMs and the program.

Enabled by the techniques described in Section 3,
our solution obeys the following security principles.
First, the startup of VMs does not require any root
or administrator privilege, providing a normal user ac-
count to run iShare software. Second, the root or ad-
ministrator may easily control the resource used by
iShare using common OS utilities. For example, they
can easily set disk quotas or limit file or device access.
Third, a guest job is executed in a separate VM, reduc-
ing the possibility of impacting other jobs on the host.
Fourth, after a job finishes, all execution states will be
removed from the host.

4.2 Architecture of Resource Manage-
ment Subsystem

The overall architecture of the resource management
subsystem is shown in Figure 1. All participants re-
side in a Peer-to-Peer(P2P) network, represented by
the large circle in Figure 1. The P2P overlay pro-
vides the services for resource publishing and discov-
ery. A participant can publish resources by inserting
resource meta-data to the P2P overlay, or search for
requested resources and start program execution on
these resources. Generally, there are three types of
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Figure 1. Resource management in iShare.
The large circle is the P2P overlay, on which
all participating nodes reside. Node A is an
iShare server and node B is an iShare client.
The boxes present the middle-ware modules
on the related nodes.

node functionalities in iShare: clients (resource con-
sumers), servers (resource providers), and persistent
storages (repositories for VM images and other data).
A participant can set its configurations as any arbitrary
combination of these three types.

In Figure 1, nodes A and B show the examples of a
server and a client, respectively. On a server (node A),
the resource usage is monitored by a CPU Sensor and
a Network Sensor. The Failure Predictor forecasts the
occurrences of resource failures using monitoring data.
External nodes can query the resource usage and fault
prediction through the Gateway. When a client (node
B) requests a program execution via the Virtual Service
Interface, resource allocation is invoked. The Resource
Allocator discovers a list of resource candidates in the
P2P overlay, and collects resource information on each
candidate. With the resource information, the Appli-
cation Performance Predictor estimates the program
execution time on each candidate, used for resource se-
lection. The Job Dispatcher stages the binary and VMs
onto each of the selected resources, and starts program
execution.

4.3 Resource Publishing/Discovery

In iShare, resources are organized into a hierarchical
structure and mapped into the underlying P2P overlay.
In an Internet sharing system, resources, i.e., machines,
programs and VM images, can be classified into cate-
gories based on their functional features, described by
meta-data, which form a tree representing the hierar-
chical name space, shown on the left side of Figure 2.
To avoid the centrality of traditional hierarchical ser-

vices, meta-data are published and inserted into the
P2P overlay, by hashing path names in the tree. This
leads to the fact that meta-data with similar semantics
are likely to be co-located in the P2P overlay, thus re-
ducing the search cost (in terms of the number of nodes
searched) for a given query. Figure 2 describes the idea
of mapping the hierarchical resource space to the P2P
overlay. Detailed designs and evaluations of resource
publishing and discovery can be found in [20].

The discovery of idle cycles for running MPI pro-
grams involves three steps. First, available physi-
cal machines are searched. Second, VM images with
matched configurations, e.g., OS version and software
customization, are located or created on-demand. Fi-
nally, resource usage and resource constraints of the
discovered physical machines are checked to make sure
that they can start up VMs and run the MPI programs.

4.4 Resource Allocation

Resource allocation chooses the final resource set
from the resource candidates returned by resource dis-
covery. To make the decision, minimum job execution
time is taken as the cost model, evaluated with a pre-
diction algorithm. The prediction algorithm learns the
program execution time by fitting program inputs, dy-
namic and static resource features, and resource failure
probabilities into a local linear regression model [15].
Program inputs are input parameters specified by the
user who initiates the execution. Resource features
are collected by parsing the resource meta-data and
querying the sensors on each resource. Resource fail-
ure probabilities are calculated by a Semi-Markov Pro-
cess model implemented within the monitoring entity
in each resource [18].

In the virtual environment, the time required to
transfer and start the VM images is a crucial factor
in predicting program execution time. In view of the
image transfer time, slower machines could be selected
if the VM images are already located in their disks or
if faster links connect them with the location of image
storages.

5 Experimental Results

This section presents experimental results on VM
network performance and MPI program performance. 1

We compare with a physical machine and with the

1We are not permitted to disclose performance data on
VMware’s network solution, due to its end user license agree-
ment. Some performance data regarding VMware I/O virtual-
ization techniques are presented in [22].
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Figure 2. Resource discovery in iShare. The large circle represents a P2P ring, with arrows indicating
P2P routing messages to discover resources.

original UML networking solution. We measure effec-
tive network bandwidth and latency as well as overall
program performance for MPI applications run on the
VMs.

5.1 VM Network Performance

To measure the end-to-end network performance
(bandwidth and latency), we use two 1.7 GHz Pen-
tium IV machines, connected to a 100 Mbps LAN. The
host operating system on both machines is RedHat 9.0.
The guest OS is RedHat 7.2. Netperf [11] is used as
the benchmark to measure network bandwidth and la-
tency. We focus on TCP performance in this paper, be-
cause TCP is used by the MPI implementation in our
experiments. A 60-second TCP stream performance
test is conducted for measuring network bandwidth,
via sending/receiving a bulk of data. To measure net-
work latency, a 60-second TCP request/response test
is done by sending a 1-byte request and receiving a 1-
byte response. We repeat the tests 100 times and use
the average as the final result.

We conduct the experiments under three different
settings.

1. PHY: Physical host network. This represents the
upper bound of the performance that a VM net-
work could achieve.

2. UML TAP: VM network via TUN/TAP. This is
the networking solution suggested by UML. The
setup of this configuration needs root privileges.

Table 1. TCP stream performance, reflect-
ing effective network bandwidth. (PHY:
physical network; UML TAP: VM network via
TUN/TAP; UML HS: Our VM network solution
with host socket support.) Higher through-
put (in Mbps) and lower CPU usage are better.
The table shows that our network solution
achieves the same bandwidth as the physical
network, better than TUN/TAP.

PHY UML TAP UML HS
Throughput 93.94 64.54 93.94
CPU Usage 33% 100% 91%

3. UML HS: VM network with host socket support.
This setting is our extension to the UML kernel.
Root privilege is not involved.

Table 1 shows network throughput (in Mbps) and
CPU usage obtained in TCP stream tests. Our socket
implementation (the UML HS column) achieves the
same throughput as the physical network (the PHY col-
umn) at a cost of higher CPU usage. By contrast, the
existing TUN/TAP network (the UML TAP column)
achieves only 68% of the physical bandwidth. This is
because UML TAP has already saturated the CPU. In
this setting, the network performance of UML TAP is
bounded by the CPU, not by the physical network.
Our VM networking implementation with host socket
support achieves much better network bandwidth than
the TUN/TAP solution.
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Figure 3. TCP request/response time,
reflecting round-trip network latency.
Lower bars are better. (PHY: physical
host network; UML TAP: VM network via
TUN/TAP; PHY+Syscall: physical network
request/response time plus system call over-
head introduced by UML’s tracing method;
UML HS: Our VM network solution with host
socket support.) The figure shows that our
network solution drastically reduces the
latency, compared with TUN/TAP.

Figure 3 shows the network latency measured in
TCP request/response tests. TUN/TAP’s latency (the
UML TAP column) is 502% higher than the physical
network latency (the PHY column). By contrast, our
socket implementation (the UML HS column) intro-
duces an overhead of 0.261 milliseconds (199%). The
percentage of latency overhead in our implementation
is less than 40% of the TUN/TAP latency.

It is worth noting that this 0.261-millisecond over-
head caused by our network implementation already
includes the cost introduced by UML’s system call in-
terception. Such interception overhead is inherent in
achieving virtualization. In order to measure the inter-
ception overhead, we implement a dummy socket call,
where the system call returns immediately upon en-
try. This dummy socket call is invoked in the guest
OS 100,000 times, and the average execution time is
measured as the overhead per system call introduced
by UML. In our experimental setting, the overhead
is 0.079 milliseconds per system call. Because there
are two socket calls (send() and recv()) in each re-
quest/response pair, we add 0.079×2 = 0.158 millisec-
onds to the physical network request/response time.
This result is depicted by the PHY+Syscall column in
Figure 3. The value represents the real lower bound

of network latency our VM networking solution could
achieve.

Compared to this lower bound on VM network la-
tency, our socket implementation introduces an over-
head as small as 0.103 milliseconds (35.6%) to the re-
quest/response time. (The overhead for TUN/TAP is
172% relative to this lower bound.) We need to point
out that, our measurement is done in a fast LAN. In a
wide-area Internet environment, this overhead is negli-
gible due to the high latency incurred by the physical
network itself.

In summary, the experimental results show that our
VM networking solution is efficient in both network
bandwidth and network latency.

5.2 Overall MPI Program Performance

We use four 1.5 GHz Pentium IV machines on a
100 Mbps LAN to measure MPI program performance.
Table 2 lists the three application benchmarks in the
NAS parallel benchmark suite [2], which are used for
experiments in this paper. We use the data size of Class
A for these benchmarks. MPICH 1.2.6 [9] is installed
in the guest OS. SSH on a non-default TCP port is
used to start MPI processes in the guest OS. Figure 4
shows the MPI program performance, measured by the
speedup relative to program execution on one physical
machine.

As indicated by the UML 1 columns in Figure 4, the
execution on one original UML virtual machine brings
17% and 27% slowdown to LU and SP (BT’s memory
requirement exceeds the capacity of one original UML
virtual machine.) The equality of the two set of values
for UML 1 and UML HS 1 (one virtual machine with
our host socket support) shows that our implementa-
tion does not introduce overhead beyond socket calls
(there are no socket calls invoked by MPI programs
running on a single node).

The results of the UML HS 4 columns are measured
by running the programs on four VMs, each of which
resides on a different physical machine. The VM is
the UML with our host socket support. BT can be

Table 2. NPB application benchmarks
BT Solution of multiple, independent systems

of non-diagonally dominant, block tridiag-
onal equations with a (5 × 5) block size.

LU A regular-sparse, block (5 × 5) lower and
upper triangular system solution.

SP Solution of multiple, independent systems
of non-diagonally dominant, scalar, penta-
diagonal equations.
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Figure 4. MPI program performance relative
to one physical machine. The metric is wall-
clock time on one physical machine / wall-
clock time, which reflects execution speed.
Higher bars are better. (PHY 1: one physi-
cal machine; UML 1: one virtual machine of
original UML; UML HS 1: one virtual machine
of UML with host socket support; PHY 4:
four physical machines; UML HS 4: four dis-
tributed virtual machines of UML with host
socket support.)

executed under this configuration, since four VMs pro-
vide sufficient memory resources. For the other two
benchmarks, they run faster on four VMs with the host
socket support than on one physical machine. Our so-
lution also achieves a reasonable speedup relative to
the execution with one VM.

Comparison of the results for PHY 4 (four physi-
cal machines) and UML HS 4 shows that running MPI
programs on four VMs is slower than on four physi-
cal machines. Our performance relative to the physical
case is 76%, 70% and 86% for BT, LU and SP, re-
spectively. The performance overhead has two sources:
(1) UML itself introduces overhead, indicated by the
column of UML 1. (2) Our socket communication has
larger latency than the physical case, due to the cost of
virtualization. This is shown by the UML HS column
in Figure 3.

We conclude that the performance degradation ex-
perienced by an MPI application, relative to the speed
on the physical host, is acceptable. In return, our VM
solution gains a higher degree of guest isolation and
customization.

6 Related Work

Many Internet sharing and Grid computing systems
have been developed in recent years. Examples are
Globus [8] and PUNCH [14, 16]. They provide access to
resources within well-defined environments – typically
the systems that have fixed installations, requiring non-
trivial setup efforts from system administrators. By
contrast, the presented techniques and their realization
in our iShare system aim to provide a thin, user-level
solution to Internet sharing. BOINC [1] provides a
tool to share computing resources for the execution of
trusted distributed programs, usually in a master-slave
fashion. By contrast, our work targets general MPI
programs in a system that goes beyond the confines
of trusted environments. In [7], virtual machines have
been introduced to Grid Computing. Entropia [4] uses
virtual machines to provide a sandboxing environment.
However, these two systems do not provide solutions to
the issue of setting up efficient VM networks.

Providing network accesses to virtual machines is
essential to distributed programs. As we have pointed
out in Section 3, dynamic IP allocation and network ad-
dress translation used in virtual machine systems are
not well suited for Internet sharing. Several systems
have been developed to solve this problem. VNET [23]
implements a virtual local area network spreading over
a wide area using layer-2 tunneling. VIOLIN [13, 21]
designs a virtual private network using UDP tunnel-
ing at the user level. Although these two systems de-
sign a functional virtual network for VMs, the extra
level of indirection by tunneling introduces significant
communication overhead, especially for fast local area
networks. This problem does not exist in our design,
since our VM network uses the physical network di-
rectly with an appropriate level of virtualization. Net-
work virtualization in PlanetLab [3] provides a “safe”
version of Linux raw sockets for users to send and re-
ceive IP packets. However, this design requires mod-
ifications to the host operating system, which is not
appropriate for large-scale Internet sharing. Our sys-
tem constructs guest sockets based on user-level host
socket functions, incurring no change to the host OS
kernel.

7 Conclusion

Internet sharing has the potential of federating a
tremendous amount of resources available world-wide.
In such a large-scale environment, the protection of
both resource providers and consumers as well as the
management of dynamic resources are of particular im-
portance. To this end, the contributions presented in



this paper enable message-passing applications to exe-
cute in an Internet sharing environment based on vir-
tual machine (VM) techniques. We provide a user-level
method for setting up the VM network as well as tech-
niques to reduce the communication overhead incurred
by virtual machines. Experimental results show that
our techniques achieve the same network bandwidth as
the physical network. The network latency overhead is
reduced from 172% to 35.6% in a LAN setting. We have
also described how these techniques can be integrated
into an existing Internet sharing testbed, iShare, and
how they interact with iShare’s resource publishing,
discovery and allocation functionalities. The virtual
machine implementation makes use of UML to execute
jobs submitted by iShare users. The guest jobs have
a (virtually) dedicated, native view of their own oper-
ating systems and networks, which are isolated from
those of the underlying physical environment.
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